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Abstract

Parameter-efficient fine-tuning (PEFT) has become crucial for adapting large lan-
guage models to specific tasks, with Low-Rank Adaptation (LoRA) emerging as
a prominent method. However, capturing diverse representations within LoRA’s
limited parameter space remains challenging. We propose Multi-Path LoRA
(MPLoRA), a novel approach that decomposes the adaptation matrix into multi-
ple smaller matrices with orthogonal constraints. MPLoORA encourages diverse
representations and improves adaptation capability without increasing parame-
ter count. Experiments on various tasks demonstrate that MPLoRA outperforms
LoRA and other baselines, with notable improvements on datasets with limited
samples. Our analysis reveals that both the multi-path structure and orthogonal
constraints contribute significantly to MPLoRA’s effectiveness. These findings
highlight MPLoRA’s potential for enhancing LLM performance and generalization,
especially in resource-constrained scenarios, offering new insights into parameter-
efficient fine-tuning.

1 Introduction

Recent advancements in machine learning, particularly the development of large language models
(LLMs), have led to remarkable performance across diverse domains [[Brown et al.,|2020]]. Never-
theless, their immense size presents significant challenges for task-specific adaptation. In response,
parameter-efficient fine-tuning methods have emerged [Liu et al., 2022, with Low-Rank Adaptation
(LoRA) [Hu et al.|2021] gaining popularity. LoRA introduces trainable low-rank matrices to adapt
pre-trained weights, significantly reducing the number of trainable parameters while maintaining
competitive performance and offering memory efficiency. While LoRA offers substantial benefits,
opportunities remain for capturing more diverse representations within the limited parameter
space. This is particularly relevant for complex tasks or datasets with limited samples. Additionally,
the single low-rank adaptation path in LoRA may not fully exploit the rich information contained in
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Figure 1: Overview of our motivation and proposed method. a) Multi-LoRA: A group of independent
low-rank adapters trained on the same task. b) Share-LoRA: Extends Multi-LoRA by sharing the
downsample component (matrix A) across all adapters. c) Multi-Path LoORA (MPLoRA): Further
refines the approach by sharing the full downsample matrix, introducing orthogonality constraints
among a batch of mini-LoRAs, and concatenating their outputs.

task domain. Addressing these challenges while preserving LoRA’s efficiency benefits remains an
active area of research, as the field continues to seek optimal solutions for adapting LLMs to specific
domains and tasks efficiently.

Ensemble learning [Dong et al.,|2020], which combines multiple models to create a stronger predictor,
has been widely adopted in machine learning to enhance performance and reduce overfitting. The
concept of combining LoRA with ensemble learning is intuitive, as each LoRA can naturally be
treated as a separate learner [Huang et al.l 2023]]. However, most previous works applying ensembled
LoRA focus on scenarios like multi-task learning [Dou et al.,|2023]] or continual learning [Wang
et al.| 2023]], where each LoRA is responsible for acquiring knowledge from different tasks or time
periods. The potential of ensemble techniques within a single task, particularly for improving LoRA’s
representational capacity and performance, remains largely unexplored.

In this work, we explore ensemble multiple low-rank adapters within the same task domain
to enhance LoRA’s performance. We begin by horizontally stacking multiple LoRAs trained on
the same dataset, demonstrating that scaling the number of LoRAs can improve performance to
some extent. However, we observe that when multiple LoRAs extract knowledge from the same
feature space, performance can become unstable. To mitigate this, we introduce an orthogonality
loss, encouraging each adapter to learn different aspects of the data. Furthermore, inspired by feature
compression techniques, we propose a compress-then-concatenate strategy to aggregate the diverse
outputs of multiple adapters. This novel approach, which we call Multi-Path LoRA (MPLoRA),
achieves better performance while maintaining the overall parameter count of the original LoRA,
effectively enhancing its representational capacity without sacrificing efficiency.The contributions of
this work are threefold:

1. We introduce Multi-Path LoRA (MPLoRA), a novel parameter-efficient fine-tuning method
that enhances LoRA’s capabilities without increasing parameter count. By incorporating mul-
tiple orthogonal learning paths and feature compression, MPLORA enables more effective
task-specific adaptations while maintaining computational efficiency.

2. We provide empirical evidence of MPLoRA’s superiority over existing methods. Our results
demonstrate improved performance across various natural language processing scenarios,
offering quantitative support for the practical benefits of our approach.

3. We offer insights into the behavior of decomposed low-rank adaptations and the role of
orthogonality in representation learning. Our analysis reveals how multiple low-rank paths
interact within the same task domain, contributing to a deeper understanding of efficient
parameter adaptation in machine learning.

2 Preliminaries and Motivation

In this section, we introduce the fundamentals of Low-Rank Adaptation and explore its potential
enhancements. We first examine the effects of increasing the number of LoRA modules for a single



task. Then, we present a novel approach that shares feature space across multiple adaptation paths,
aiming to improve efficiency while preserving multi-path benefits.

2.1 Low Rank Adaptation

Low Rank Adaptation, introduced by [Hu et al.| [2021]], is an efficient method for adapting pre-trained
models. The core idea of LoRA is to represent weight updates using low-rank decomposition.
This approach significantly reduces the number of trainable parameters while maintaining model
performance. The key mechanism of LoRA can be expressed mathematically as:

h=Wzx+ AWz =Wz + BAx )

In this equation, W, AW € R¥*9 represents the original pre-trained weight and update weight
respectively, while B € R%*" and A € R"*? are low-rank matrices that mimic the update procedure.
The input vector is denoted by x € R?, and the rank r satisfy r < d, ensuring a low-rank
approximation of the weight update. Matrix A is randomly initialized using a Gaussian distribution,
while B is set to a zero matrix. This procedure ensures that the initial update (B A) is zero, preserving
the pre-trained model’s initial behavior. As training progresses, W remain frozen, while matrices A
and B are updated through backpropagation, allowing the model to adapt to new tasks efficiently.

2.2 Learning Multiple LoRA Adapters for the Same Task

While LoRA has shown remarkable effectiveness and efficiency in adapting LLMs, individual LoRA
adapters may struggle to fully capture the complex representation space necessary for optimal task
performance. The low-rank nature of these adapters[Hu et al. 2021]], although computationally
efficient, potentially limits their ability to represent the complete spectrum of task-specific knowledge.
Drawing inspiration from ensemble learning, we propose training multiple low-rank adapters (Multi-
LoRA) on the same task data (Fig. [Th). This approach aims to capture and focus on diverse aspects
of the task, with each LoRA serving as a unique path for knowledge acquisition. The structure of this
Multi-LoRA approach can be mathematically described as:

h=Wz+Y BiAx ()

i=1

where n € R is the number of LoRA, and A;, B; is the component of the i-th LoRA. We can see
from Table (1] that this brings consistent improvement compared with vanilla LoRA baseline over
four datasets from GLUE benchmark [Wang et al.| 2018|]. Each low-rank adapter can be viewed as
a unique path for extracting distinct representative knowledge from the dataset. As the number n
increases, the model’s capacity expands, naturally leading to enhanced performance.

2.3 Improve Efficiency with Shared Downsample Matrix

While the concept of Multi-LoRA offers promising potential for performance improvement, it
inevitably raises concerns about increased parameter count and computational requirements. To
address these concerns, we introduce Share-LoRA (Fig. m)), a variant of Multi-LoRA designed to
enhance parameter efficiency while still leveraging multiple adaptation paths. Specifically, Share-
LoRA achieves this balance by sharing the downsample matrix (the A matrix) across all paths,
while allowing the B matrices to remain path-specific. This approach draws inspiration from recent
advancements in efficient attention mechanisms, such as grouped-query attention (GQA) [Ainslie
et al., [2023]], which have demonstrated that sharing feature space can lead to efficiency gains without
significant performance degradation.

Formally, Share-LoRA can be expressed as:

h=Wz+ Z B;Ax 3)

=1

As evident from Table|[T] although Share-LoRA experiences a slight performance decrease compared
to Multi-LoRA, it still maintains competitive performance across most datasets and on average with



Table 1: Results of motivation experiments on four natural language processing tasks. Higher is better
for all metrics. We also report number of LoORA paths (#Num) and number of trainable parameters
(#Params). CE and Orth stand for cross-entropy and orthogonality loss respectively. Bold indicates
the best results for each metric; underlined values represent the second-best results.

Model #Num #Param Loss MRPC COLA SST-2 STS-B Avg.
LoRA 1 295k CE 87.09 52.07 94.61 90.12 80.97
Multi-LoRA 2 589k CE 87.91 53.53 94.80 90.45 81.67
Multi-LoRA 3 884k CE 88.40 54.48 95.03 90.30 82.05
Multi-LoRA 4 1179k CE 88.56 55.04 9491 90.65 82.29
Share-LoRA 2 442k CE 87.82 52.33 94.95 90.45 81.39
Share-LoRA 3 589k CE 88.40 54.26 94.68 90.48 81.96
Share-LoRA 4 737k CE 88.72 54.67 94.34 90.71 82.11
Share-LoRA ;1 2 442k  CE+Orth 86.76 53.50 94.73 90.34 81.33
Share-LoRA,+1, 3 589k  CE+Orth 88.32 54.48 94.92 90.54 82.07
Share-LoRA,+1, 4 737« CE+Orth 88.97 55.03 95.15 90.13 82.32

much fewer parameters. However, an interesting observation emerges in the SST-2 dataset, where
Share-LoRA’s performance declines as n increases. This phenomenon suggests potential instability
when multiple paths share the same feature space. It highlights the need to further investigate the
balance between shared representations and path-specific adaptations in multi-path architectures.

3 Method

Inspired by the performance improvements from scaling up the number of paths, we propose Multi-
Path LoRA (MPLoRA), an extensible framework for parameter-efficient fine-tuning (Fig. Ek). First,
we introduce orthogonality loss to encourage the model to learn diverse representations from the
shared feature space. After that, we propose a compress-then-concatenate strategy to reduce parameter
size while maintaining model diversity.

3.1 Adaptation in Orthogonal Subspaces

As previously discussed, each matrix B; acts as a unique path for extracting knowledge from the
feature space generated by matrix A in our Multi-LoRA framework. To encourage these B; matrices
to learn distinct aspects of the feature space, we introduce an orthogonality loss. This loss function
promotes diversity among the learned representations by minimizing the similarity between different
paths, pushing each path to focus on unique aspects of the input data. Consequently, this enhances
the overall effectiveness by maximizing the information captured within the limited parameter space.

Formally, We approximate the parameter update path If; for the i-th LoRA as the subspace spanned
by the column vectors of B;:

B; = [b},b%,...,07], U; = span{b;,b?, ... b;} 4)

(R S]

To ensure the orthogonality between different paths, the correspond subspace U/ and the subspace W
should satisfy that:
<u,w>=0,Yu e U,YVw e W o)

In the context of our framework, this orthogonality condition translates to B} B; = 0 for i # j,
where B; and B; are the matrices spanning these subspaces. To enforce this condition during training,
we define the orthogonality loss as:

Lorth(Biij) = Z ||BzTBjH2 6
4,J

We applied the orthogonality loss to Share-LoRA, with results presented in Table[I] The data shows
a notable performance improvement across most scenarios.



Table 2: Performance on natural language processing tasks. Bold indicates best results while
underlined shows second-best. Analysis of hyper-parameter setting are provided in SectionE}

Model #Rank MRPC COLA SST-2 STS-B QNLI RTE Avg.

LoRA 8 87.09 52.07 94.61 90.12 9299  76.17 82.18
AdaLLoRA 8 79.90 - 94.72 88.78 92.15 73.76 -
MELO0RA g 8 86.76  47.18 9498  89.86  92.58  75.33 81.12
MELORA s 8 8742 4966  95.03 90.22  92.83 75.81 81.83
MPLORA 8 88.02 5221 9476  90.27 9284 77.54  82.61
MPLORApeg 8 88.40 5257  94.88 90.32 9291 78.10  82.86

3.2 Multi-path Low Rank Adapter

Drawing inspiration from[Ronneberger et al., 2015[ and [Ren et al.| |2024]], we propose that task-
relevant information can be effectively preserved in a slightly reduced dimensional space for each
adaptation path. This approach suggests that model performance can be maintained even with smaller
feature spaces allocated to individual components in our multi-path system.

Specifically, in our system with n different paths, we down-sample the output length of each LoRA to
4 where d is the original feature dimensi illustrated in Fig. [1c. Sub tl tenat
—» where d is the original feature dimension, as illustrated in Fig. |1¢. Subsequently, we concatenate
the outputs of these narrowed LoRAs to restore the original feature length:

h =Wz + (concat}_ B} A)x = Wz + (concat]_, B) Az ™)
where A € R™4, B$ € R™%, z,h € R, and B = >, Bg. For initialization, we adopt the
same approach as LoRA: A is initialized with Gaussian distribution, while each B; is set to zero.

After incorporating the orthogonality loss, our learning objective becomes:

n—1 n
> logpe(ylz) + XY Y Lown(B;, B)) ®)

z,yeD i=1 j=i+1

where D represents the training dataset, x and y are input-output pairs from D, © denotes the model
parameters, and A is the hyper-parameter that balance the losses.

4 Experimental Setups

4.1 Baselines
1. LoRA [Hu et al., 2021] employs low-rank matrix products to learn incremental updates.
This approach substantially reduces GPU memory usage during model fine-tuning.

2. AdaLoRA [Zhang et al.,[2023]] introduces adaptive singular value pruning for optimizing
matrix ranks. It assigns different ranks to various layers based on singular value magnitudes.

3. MELoRA [Ren et al., [2024] stacks multiple mini LoRAs in parallel. It constructs an
equivalent block diagonal LoRA matrix by concatenating mini LoRAs along the diagonal.

4.2 Datasets

We evaluate the performance on vary tasks in General Language Understanding Evaluation (GLUE)
benchmark [Wang et al., 2018]], including single-sentence tasks CoLA and SST-2, similarity and
paraphrasing tasks MRPC and STS-B, and natural language inference tasks RTE and QNLI. Detailed
description of the datasets can be found at Supplementary [T.1}

4.3 Implementation Details

In our experiments, we follow settings from previous works and fine-tune the W and Wy, parameters,
as suggested by [Ren et al.,[2024]]. We utilize models and datasets from Huggingfaceﬂ conducting

*https://huggingface.co/



fine-tuning on NVIDIA V100 GPUs.We reproduce the result of LoRA and AdaL.oRA based on peftﬂ
and MELoRA base on public codeﬂ Results reported are averaged over 3 runs with different random
seeds. AdalLoRA results on CoL A consistently yielded O scores and are thus omitted. We employ
RoBERTa-base|Liu, 2019] as our foundational language model. To ensure fair comparisons, we
adopt training configurations based on [Ren et al.,2024]], with details provided in the Supplementary
[_1;2} We set the rank r to 8 for LoORA and its variants, including MELoRA, to maintain consistent
parameter number across all methods. For our proposed method, we explore values of n from {2,4,8},
reporting both the best and average performance. Performance metrics vary by task: for CoLA, we
report Matthew’s correlation; for STS-B, Pearson correlation; and accuracy for the remaining tasks.
Across all metrics, higher values indicate superior performance.
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Figure 2: Analysis of performance across different hyper-parameter settings, where "Avg." denotes
the mean score on four natural language processing tasks: MRPC, CoLA, STS-B, and SST-2.

5 Results and Analysis

5.1 Performance on GLUE datasets

The results of all methods on six GLUE datasets are shown in Table 2l MPLoRA demonstrates
superior performance compared to other baseline methods across the majority of datasets under
equivalent parameter configurations. Notably, significant improvements are observed in datasets with
limited training samples, such as MRPC, RTE, and CoLA. We attribute this enhanced performance to
MPLORA’s capacity to promote diverse representations among its LoORA components, each capturing
unique data aspects. The concatenation of these diverse outputs likely contributes to improved model
robustness and generalization. Additionally, MPLoRA’s competitive performance on other datasets
demonstrates its stability and reliability across various experimental settings.

5.2 Analysis of the Number of Paths

The parameter n denotes the number of paths in the feature space. As shown in Fig. [Za] model
performance initially improves with increasing n across all datasets, but eventually declines. This
trend can be explained by two competing factors: a larger n allows the model to capture more diverse
features, while simultaneously reducing the feature length %, potentially leading to information loss.
Our empirical results suggest that n values of 3 or 4 strike an optimal balance between these effects.

5.3 Impact of Rank on Model Performance

To assess the impact of the rank » on MPLoRA’s performance, we experimented with four tasks
under two n settings. Fig. [2b]illustrates the results for different r values. When r is extremely small,
performance suffers due to the limited information in the thin feature space. Forcing the model to

*https://huggingface.co/docs/peft/index
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learn from different aspects with such limited information may lead to inconsistent or unreliable
feature representations. As 7 increases, performance improves, reflecting the model’s enhanced
capacity to capture relevant features. However, larger r values do not necessarily yield proportional
gains. We note minimal performance differences between » = 8 and r» = 32, suggesting a low-rank
nature of the model. To balance efficiency and effectiveness, we recommend r» = 8 or r = 16 as
optimal choices.

5.4 Effectiveness of Orthogonality Loss

We evaluated the impact of the hyper-parameter A across various datasets under different settings,
with results presented in Table[3| Since the orthogonality loss serves as an auxiliary to the main loss,
excessively large A\ may lead to distraction from the primary task. Based on our empirical findings,
we recommend A = (.1 as a suitable value across all experimental configurations.

Table 3: Impact of A on model performance. Scores are averaged across MRPC, CoLLA, and STS-B
datasets, with rank » = 8 and n € {2, 4, 8}.

A 0 0.05 0.1 0.15 0.2 0.3 0.5 0.6 0.9 5 10
Score 76.14 76.71 77.00 76.78 76.72 76.60 76.61 76.60 7647 7642 7582

6 Related Work

6.1 Parameter Efficient Fine Tuning

Parameter Efficient Fine-Tuning (PEFT) is a key research direction that aims to enhance model
performance while minimizing computational resources. Researchers have developed various PEFT
strategies, including adapters [Houlsby et al., 2019], prompt learning [Ding et al.,|2022], and fine-
tuning of model subsets [Ploner and Akbikl 2024]]. Among these, Low-Rank Adaptation (LoRA)
[Hu et al.l |2021] stands out as a particularly effective method for adapting models to new tasks
with minimal additional parameters. Building upon LoRA, we propose an efficient architecture that
promotes information diversity without increasing the parameter count.

6.2 Ensemble learning

Ensemble learning [Ganaie et al.,2022]], which leverages multiple weaker models to boost perfor-
mance, has gained widespread adoption. This approach encompasses various strategies, including
but not limited to weighing model contributions, combining diverse outputs, and selectively utilizing
different models based on input characteristics. Among ensemble methods, Mix-of-Experts (MoE)
[Shazeer et al., 2016]] stands out by integrating predictions from multiple specialized sub-models.
Ensemble learning has proven effective across various domains, notably in natural language process-
ing [Shen et al.,[2019] and computer vision [Riquelme et al., [2021]]. Recently, [Jiang et al., 2023]]
introduced LLM-Blender, a framework for ensembling multiple open-source LLMs. This approach,
which combines pairwise ranking for candidate selection with generative fusion for output refinement,
demonstrating the potential of ensemble techniques in advancing LLM capabilities.

6.3 Multi-LoRA Architecture

Multi-LoRA Architecture has emerged as a promising direction in enhancing model performance.
ReLoRA [Lialin et al.] introduces a merge-and-reinit procedure, periodically integrating LoRA
modules into the LLM and reinitializing them during fine-tuning, effectively stacking multiple
LoRA modules. LORAMOE [Dou et al|2023]] extends this concept by incorporating an MoE-style
plugin and a Localize Balancing Constraint, addressing world knowledge forgetting while improving
multi-task learning. MELoRA [Ren et al} 2024] further advances the Multi-LoRA approach by
decomposing LoRA modules into smaller mini LoRAs and stacking them in parallel, aiming to
enhance both efficiency and effectiveness. These developments demonstrate the versatility and
potential of Multi-LoRA architectures in various learning scenarios.



7 Conclusion and Future Work

In this paper, we introduced MPLoRA (Multi-Path Low-Rank Adaptation), a novel parameter-
efficient fine-tuning method that enhances LoRA through orthogonal multi-path learning and matrix
decomposition. Our experiments demonstrated MPLoRA’s superior performance over existing
methods, particularly on datasets with limited samples, while maintaining parameter efficiency.

Though MPLoRA introduces additional hyper-parameters that require tuning, we provided empirical
guidelines to address this challenge. Future work could explore auto-tuning methods, cross-task
generalization, theoretical analyses of decomposed low-rank adaptations, and extensions to larger
datasets and other domains like vision-language tasks.
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Supplementary Material

1.1 Details of the Evaluated Tasks
Single-sentence tasks:

e The SST-2 (Stanford Sentiment Treebank) [[Socher et al., 2013|] consists of sentences ex-
tracted from movie reviews, accompanied by human-annotated sentiment labels. The
objective is to accurately predict the sentiment expressed within each given sentence.

» The CoLA (Corpus of Linguistic Acceptability) dataset [Warstadt et al., [2019]] consists
of judgments on English sentence acceptability, drawn from linguistic theory literature in
books and academic journals. Its primary objective is to determine whether a given English
sentence is grammatically sound.

Similarity and Paraphrase Tasks:

* The MRPC (Microsoft Research Paraphrase Corpus) dataset [Dolan and Brockett, 2005
comprises pairs of sentences automatically extracted from online news sources. Its primary
purpose is to determine whether the sentences in each pair convey the same semantic
meaning.

* The STS-B (Semantic Textual Similarity Benchmark) [Cer et al.l [2017]] comprises pairs
of sentences extracted from various sources including news headlines, video and image
captions, and natural language inference datasets. Human annotators have assigned each
pair a similarity score on a scale of 1 to 5. The objective is to accurately predict these
human-assigned similarity scores.

Inference Tasks:

* The QNLI (Question-answering NLI) dataset [Rajpurkar et al.| [2016] is derived from a
question-answering corpus, featuring pairs of questions and paragraphs. For GLUE, this
dataset is adapted into a sentence pair classification task, where each question is paired with
every sentence from its associated context. The objective is to identify whether a given
context sentence provides the answer to its paired question.

* The RTE (Recognizing Textual Entailment) datasets originate from a sequence of challenges
focused on textual entailment [Dagan et al.,[2005] [Bar-Haim et al., |2006] [|[Giampiccolo
et al., 2007] [Bentivogli et al.,2009]. This task requires determining whether a given premise
logically implies the associated hypothesis.

1.2 Hyper-parameter Setting

The detailed hyper-parameter settings for evaluation datasets are listed in Table [}

Table 4: Hyper-Parameters for Different datasets

Hyper-Parameter SST-2 MRPC CoLA QNLI RTE STS-B
Learning Rate n Se-4 4e-4 4e-4 4e-4 4e-4 4e-4
Batch Size 64 64 64 64 64 64
Number of Epochs 60 30 80 25 80 40
Weight Decay /3 0.1 0.1 0.1 0.1 0.1 0.1
Max Sequence Length 256 256 256 256 512 256
Start Steps K 400 10 100 800 200 200
Update Ratio A 0.5 0.5 0.5 0.5 0.5 0.5
Rank r 8 8 8 8 8 8
Alpha « 16 16 16 16 16 16
LR Scheduler Linear Linear Linear Linear Linear Linear
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06

Evaluation Metrics Accuracy  Accuracy  Matthews Corr.  Accuracy  Accuracy  Pearson Corr.
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