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Abstract—We address the problem of preference learning,
which aims to learn user-specific preferences (e.g., “good parking
spot”, “convenient drop-off location”) from visual input. Despite
its similarity to learning factual concepts (e.g., “red cube”),
preference learning is a fundamentally harder problem due to its
subjective nature and the paucity of person-specific training data.
We address this problem using a new framework called SYNAPSE,
which is a neuro-symbolic approach designed to efficiently learn
preferential concepts from limited demonstrations. SYNAPSE
represents preferences as neuro-symbolic programs in a domain-
specific language (DSL) that operates over images, and leverages
a novel combination of visual parsing, large language models,
and program synthesis to learn programs representing individ-
ual preferences. We evaluate SYNAPSE focusing on mobility-
related concepts in mobile robotics and autonomous driving. Our
evaluation demonstrates that SYNAPSE significantly outperforms
existing baselines. The code and other details can be found on
the project website https://amrl.cs.utexas.edu/synapse.

I. INTRODUCTION

Imagine trying to come up with a definition of “a good
taxi drop-off location”. One person may consider a spot to
be a good drop-off location depending on whether it is close
to the door of a building, while someone else might want
it in the shade. Such concepts vary from person to person
and inherently depend on their preferences. We call them
preferential concepts, and we are interested in the problem of
preference learning from visual input. Learning preferences is
important because we want systems that are customizable and
that can adapt to end-users. This problem is quite related to
the task of visual concept learning, wherein much of the work
focuses on learning concepts such as having the color red or
being to the left of another object [1]–[16]. All such prior
work assumes there is a ground-truth for the concept, i.e., the
definition of the concept does not differ among people, and
as a consequence, sufficiently many examples are available,
and can be objectively evaluated. We refer to such concepts
as factual concepts. While most prior work that learns visual
concepts exploits the availability of large datasets such as
CLEVR [17], those methods cannot be applied to preference
learning because it is a data-impoverished setting by its very
nature: a single individual can put up with providing only
so much data. This limitation is also present in most of
the preference learning work in the reinforcement learning
literature as well, where human preferences are represented as

*This work is supported in part by NSF awards OIA-2219236, CCF-
1762299, CCF-1918889, CNS-1908304, CCF-1901376, CNS-2120696, CCF-
2210831, and CCF-2319471, as well as Amazon and JP Morgan

1Department of Computer Science, University of Texas at Austin,
{smodak11, npatt, isil, joydeepb}@cs.utexas.edu

neural networks [18], [19] or latent reward models [20]–[25].
Furthermore, because preferences are inherently individual,
they can depend on entirely different concepts, such as in the
drop-off location example above (i.e., based on proximity to
door as opposed to being in the shade). This requires learning
novel visual concepts in a hierarchical manner. Lastly, coming
up with a complete definition of a preferential concept at once
is itself a hard problem: it is much easier for someone to
show examples that satisfy their intuition as humans tend to
build their notion of a preferential concept over time. Thus,
preference learning calls for an approach that can handle
incremental learning from visual demonstrations.

To address these challenges, we present SYNAPSE, a
novel framework that learns human preferences in a data-
efficient manner. Figure 1 shows a schematic of our proposed
SYNAPSE framework. In contrast to prior preference learning
approaches [18]–[27] which take in weak reward signals to
learn preferences, we use a more direct form of a preference
signal, which consists of a physical demonstration including
visual data, and a natural language (NL) explanation for the
preference. Building up on recent works using LLMs to gener-
ate Language Model Programs (LMPs) [14], [16], [28]–[35],
we use NL input from the human to identify new concepts
to be learned as well as how to compose them in the form
of an LMP. However, in addition to learning new concepts or
composing existing ones, preferences also have a quantitative
aspect. For example, to be a good drop-off spot, you should
be close to a door, but exactly how close is a personal
preference. This is where the demonstrations come into play
and allow us to infer quantitative aspects of the preference
that are hard to capture via natural language alone. Finally, to
allow incremental, data-efficient learning, SYNAPSE expresses
preferential concepts as programs in neuro-symbolic domain
specific language (DSL) operating over images, and learns
these programs based on demonstrations using constrained op-
timization techniques (based on maximum satisfiability [36]).
Such a programmatic representation also facilitates life-long
learning, allowing incremental changes to the learnt program
as new demonstrations arrive.

To demonstrate the effectiveness of our framework, we
evaluate it on three mobility-related visual preferential con-
cepts which find their use in mobile robotics and autonomous
driving. Empirical results show that SYNAPSE outperforms the
baselines by a significant margin, especially when evaluated on
out-of-distribution data — even when SYNAPSE is trained on
an order of magnitude fewer examples than baseline Neural-
Network (NN) approaches.

https://amrl.cs.utexas.edu/synapse


Fig. 1: Illustration of SYNAPSE for identifying good taxi drop-off locations. (a) SYNAPSE learns a neuro-symbolic program
that represents the preferential concept based on user demonstrations, which include both a NL explanation and a physical
demonstration. The learning algorithm consists of three steps, namely updating the concept library, synthesizing a program
sketch, and performing parameter synthesis; (b) SYNAPSE evaluates the program on a new query image to return a preference
(in this case, boolean) mask over the input image; (c) given a user demonstration, (d) we extract entities of relevance from the
NL input; (e) for the new observed predicates, SYNAPSE recursively calls itself to first learn these auxiliary predicates from new
user demonstrations (here, in the example, it takes the form of NL-only demonstrations) followed by (f) code generation; (g)
once all the newly seen predicates are learned, a compact form representation (i.e., CNF) is extracted from the NL input, and
(h) partial evaluations are carried out from the physical demonstrations; (i) using the previous program sketch and the current
CNF, a new sketch is synthesized; (j) finally, parameter synthesis fills the holes in the sketch using the partial evaluations.

II. METHOD

We define a preference task T := ⟨O,Q,P⟩ as a tuple
consisting of an observation space O, a query space Q, and
a preference space P. A preference evaluator π accepts an
observation and a query, and returns a preference value:
π : O×Q→P. The goal of preference learning is to synthesize
a suitable evaluator π that accurately predicts a person’s visual
preferences given an image. As stated earlier, a distinguishing
feature of preference learning is that it must be performed
using small amounts of training data due to the subjective
nature of preferences. To enable data-efficient learning, our
proposed SYNAPSE approach represents the preference evalu-
ator π as a neuro-symbolic program in a DSL and synthesizes
π from a small number of user demonstrations, where each
demonstration includes a sequence of images along with a
natural language explanation for the user’s preference. In the
following discussion, we first present our DSL for representing

Algorithm 1: SYNAPSE-Learn
Input: a set of previously seen demonstrations D , the new demonstration dn,

a potentially empty previous sketch π̂o, a previous concept library C
Output: The new demonstrations set D ′, a neuro-symbolic preference

evaluator π parameterized by the new concept library C ′, the sketch π̂ used
to generate π

1: Learn(D ,dn, π̂o,C )
2: # Update concept library with new natural language utterance
3: C ′← UpdateConceptLibrary(dn.e,C )
4: # Get the updated sketch from the new demonstration and previous sketch
5: π̂ ← SketchSynth(dn, π̂o,C ′)
6: # Fill the holes in π̂ based off of the demonstrations D ′

7: π ← ParamSynth(π̂,D ∪{dn})
8: return D ∪{dn},π,C ′, π̂

preferences and then describe our learning algorithm.

A. Representing Preferences

We represent preference evaluation functions π (or prefer-
ences for short) in the neuro-symbolic DSL shown in Figure 2.
This DSL is parameterized over a so-called concept library



Inputs

q ∈ Q
o ∈ O

Constants

v ∈ {Int,Real, . . .}
p ∈ P

Terms

t := q | o | v
| f (t1, . . . , tn) where f ∈ C f

Conditions

φ := pc(t1, . . . , tn) where pc ∈ Cb
| ¬φ | φ ∧φ | φ ∨φ

Programs

π := p | if (φ) then π else π ′

Fig. 2: The SYNAPSE neuro-symbolic DSL parametrized over
concept library C , which consists of a set of predicates Cb
and functions C f .

C , which includes both predicates Cb as well as non-boolean
functions C f . The concept library includes built-in operators
and predicates (e.g., +,×,≤, . . .), pre-trained neural networks
(e.g., for object classification and terrain detection), zero-
shot visual language models (VLMs), as well as previously
learned concepts and functions (expressed in the same DSL).
We sometimes use the notation πC to denote programs using
concept library C and omit the subscript C where it is clear
from context.

At a high level, a program π consists of (nested) if-then-else
statements and is therefore conceptually similar to a decision
tree. Each leaf of this decision tree is a preference (e.g., good,
bad, neutral) drawn from the preference space P, which is
assumed to be a finite set. Internal nodes of the decision
tree are neuro-symbolic conditions φ , which include boolean
combinations of predicates of the form p(t1, . . . , tn) where each
ti is a neuro-symbolic term and p is a predicate drawn from Cb,
which could be a built-in relation (e.g., ≤), result of a neural
classifier, or a previously-learned concept (e.g., close-to).

B. Learning Preferences

We now discuss our learning algorithm, SYNAPSE-Learn,
for synthesizing preference evaluation functions from a set of
demonstrations D . As SYNAPSE-Learn is meant to be used
in a life-long-learning setting, we present it as an incremental
algorithm that takes one additional demonstration in each invo-
cation and returns an updated preference evaluation function.
As mentioned earlier, we represent each demonstration d as
a pair (t,e) where t is a physical demonstration consisting
of a sequence of images and LiDAR point clouds and e is
a natural language explanation for the preference. Given a
demonstration d, we write d.t and d.e to denote its physical
demonstration and explanation component respectively.

In addition to the new demonstration dn, SYNAPSE-Learn
takes three additional arguments, namely the previous set of
demonstrations D , the previously learnt preference evaluation
function πo (None for the first invocation), and the current
concept library C , which is initialized to contain only a set
of built-in concepts. SYNAPSE-Learn uses the old program
πo to bootstrap the learning process, and the previous demon-
strations are required to ensure that the updated program is
consistent with all demonstrations provided thus far.

At a high level, the learning procedure consists of three
steps, which are explained in more detail in the remainder of
this section:

1) Updating the concept library: SYNAPSE first checks
whether the existing concept library C is sufficient
for successfully learning the desired preference eval-
uation function. For example, if the natural language
explanation uses the term “far away” but the con-
cept library does not contain a suitable definition,
SYNAPSE-Learn interactively queries the user for
clarification and updates its concept library as needed.

2) Synthesizing a program sketch: If the concept li-
brary is sufficient for representing the preference,
SYNAPSE-Learn proceeds to synthesize a so-called
program sketch, which is a program with missing con-
stants to be synthesized. We differentiate between pro-
gram sketches and complete programs because the user’s
natural language explanation is often sufficient to under-
stand the general structure of the preference evaluation
function but not its numeric parameters, which can only
be accurately learned from the physical demonstrations.
Thus, SYNAPSE-Learn generates the program sketch
based only on the natural language explanation.

3) Parameter synthesis: The final phase of the learning
algorithm utilizes all physical demonstrations provided
thus far to synthesize the unknown numeric parameters
of the sketch using a constraint-solving approach. For
example, if the user’s NL explanation mentions “not
too close to the sidewalk”, the physical demonstrations
are needed to understand what the user considers “too
close”. For this reason, SYNAPSE-Learn utilizes a
separate parameter synthesis procedure to determine
suitable numeric parameters from the physical demon-
strations.

The remainder of this section explains these aspects of the
learning procedure in more detail.

1) Concept Library Update.: SYNAPSE analyzes the user’s
natural language explanation e to extract concepts of interest.
We differentiate between two types of concepts: (1) entities
(e.g., car, door, sidewalk) and (2) predicates (e.g., far, near).
Because SYNAPSE uses an open-vocabulary visual language
model to find entities of interest in the current observation,
new entity concepts do not require interacting with the user.
On the other hand, if the natural language explanation contains
new predicates that are not part of the existing concept
library, SYNAPSE needs to query the user to provide suitable
demonstrations.

First, the ExtractEntities procedure grounds the en-
tities used in the NL description and cross-references them
against existing entities in the concept library. Any new
entities are added to the concept library without requiring
user interaction, as we assume that any entity can be ex-
tracted from the observation using a modern VLM. Next,
we must extract new predicates from the natural language
description. Since the semantics of these predicates are not
known a priori (unless they are already in the concept li-
brary), we must query the user to learn their semantics.
Thus, the QueryUserForDemonstration procedure ob-
tains new demonstrations, which are then used to synthe-



TABLE I: Mean IOU (%) results for the three concepts. The train set represents the training set for neural baselines – SYNAPSE
only needs 29 demonstrations (from the train area on UT Campus), and the visual-language baselines have not been fine-tuned.

CONTINGENCY DROPOFF PARKING

train in-test out-test train in-test out-test train out-test

Synapse 77.64 76.29 74.07 79.32 80.18 80.72 68.60 62.75
SF-RGB-b0 70.49 62.75 57.42 72.99 68.13 52.21 57.68 49.66
SF-RGB-b5 74.59 70.48 56.00 77.26 72.83 55.04 68.63 52.90
SF-RGBD-b0 72.17 67.23 54.75 74.33 69.80 54.90 60.90 50.69
SF-RGBD-b5 76.48 67.81 56.11 77.69 70.70 52.39 71.06 49.99
GPT4V 26.49 29.64 30.40 30.49 32.96 37.15 38.41 40.18
GPT4V+ 28.80 29.00 33.84 38.87 38.13 39.31 41.37 39.77
VisProg 45.62 45.63 44.98 46.29 47.49 48.07 39.42 40.99
VisProg+ 38.94 39.21 41.83 39.17 39.44 43.14 38.87 38.99

size the implementation of the new predicate through re-
cursive invocation of SYNAPSE-Learn. Thus, when the
UpdateConceptLibrary procedure terminates, the new
concept library C ′ contains all entities and predicates of
interest.

2) Program Sketch Synthesis.: Once SYNAPSE has all the
required concepts as part of its library, it uses a large language
model to synthesize a suitable program sketch based on the
natural language description and concept library. In particular,
it first prompts the LLM to translate the NL explanation e to
a pair (Φ, p) where Φ is a formula (in conjunctive normal
form) over the predicates in the concept library and p is the
user’s preference. Then, in a second step, SYNAPSE prompts
the LLM to update the previous sketch π̂ to a new one π̂ ′ such
that π̂ ′ returns p when Φ evaluates to True. We found this
two-stage process of first converting the NL explanation to a
CNF formula and then prompting the LLM to repair the old
sketch to work better in practice compared to prompting the
LLM directly with all inputs.

III. EVALUATION

To test the effectiveness of SYNAPSE, we evaluate it on
three mobility-related preferential concepts relevant to mobile
robotics and autonomous driving domains: a) CONTINGENCY:
What is a good spot for a robot to pull over to in case
of an emergency?, b) DROPOFF: What is a good location
for an autonomous taxi to stop and drop-off a customer?,
and c) PARKING: What is a good location for parking an
autonomous car?.

To evaluate SYNAPSE, we create a dataset of 815 labeled
images collected on UT Campus, where the labels mark
the locations on the images that are consistent with the
intended user preference for each of the three tasks. We
split the dataset into three sets: train, in-distribution test,
and out-of-distribution test sets. The train and in-distribution
sets belong to the same part of the UT Campus, while the
out-of-distribution set belongs to a different area. Table I
shows the comparison against various baselines. We use mean
Intersection-Over-Union (mIOU) as the metric and evaluate
the following baselines: (1) pure neural models based on
SegFormer [37] architecture with pretrained weights, with and
without depth input, fine-tuned on our custom dataset; (2)

GPT4 [38] with vision capabilities, and (3) VisProg [29].
The ‘+’ for the latter two indicate additional prompting that
provides additional information about the underlying reasoning
behind the preferential concept.

We find that SYNAPSE outperforms all baselines, and
improves on the closest baseline by a significant mar-
gin on out-of-distribution test data — 74.07 vs. 57.42 for
CONTINGENCY, 80.72 vs. 55.04 for DROPOFF, and 62.75
vs. 52.90 for PARKING. Further, even though SYNAPSE is
trained on an order of magnitude fewer samples (for instance,
29 demonstration for CONTINGENCY) than neural baselines
(for instance, 224 images for CONTINGENCY), it performs
at-par, if not better, on the train dataset.

IV. CONCLUSION, LIMITATIONS, & FUTURE WORKS

We presented SYNAPSE, a data-efficient, neuro-symbolic
framework for learning preferential concepts from a small
number of human demonstrations. The framework utilises a
novel combination of visual parsing, large language models,
and program synthesis to represent preferences as interpretable
programs that can be synthesized from demonstrations. We
experimentally showed that SYNAPSE achieves strong gener-
alization on new data and that it outperforms the baselines by
a large margin (≈ 15% mIOU).

This work has three potential limitations that could be ad-
dressed in future research. First, SYNAPSE relies substantially
on how good the underlying neural modules are and their ca-
pabilities, specifically, the zero-shot LLMs and VLMs. In our
experiments, we observe that a careful selection of parameters
and verbose prompting is needed to achieve best performance.
Second, SYNAPSE relies on the quality of the user’s physical
demonstrations for accurate parameter synthesis. In practice,
the demonstrations may be noisy and imperfect, and SYNAPSE
tries to compensate for slight inconsistencies in the user
demonstration by using a constrained optimization approach
based on MaxSMT. Third, another limitation of operating
on real-world data with SYNAPSE is the incomplete depth
information – SYNAPSE approximates depth at all locations by
interpolation, however, that introduces noise into the quanti-
tative evaluation. Better approaches for scene completion [39]
would reduce such noise.
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