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Abstract:

Data-driven control methods need to be sample-efficient and lightweight, espe-
cially when data acquisition and computational resources are limited—such as
during learning on hardware. Most modern data-driven methods require large
datasets and struggle with real-time updates of models, limiting their performance
in dynamic environments. Koopman theory formally represents nonlinear sys-
tems as linear models over observables, and Koopman representations can be
determined from data in an optimization-friendly setting with potentially rapid
model updates. In this paper, we present a highly sample-efficient, Koopman-
based learning pipeline: Recursive Koopman Learning (RKL). We identify suf-
ficient conditions for model convergence and provide formal algorithmic analy-
sis supporting our claim that RKL is lightweight and fast, with complexity in-
dependent of dataset size. We validate our method on a simulated planar two-
link arm and a hybrid nonlinear hardware system with soft actuators, show-
ing that real-time recursive Koopman model updates improve the sample effi-
ciency and stability of data-driven controller synthesis—requiring only <10%
of the data compared to benchmarks. The high-performance C++ codebase
is open-sourced. Website: https://www.zixinatom990.com/home/robotics/corl-
2025-recursive-koopman-learning.
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1 Introduction

Designing controllers for nonlinear, dynamic

robotic systems is challenging. Conventional , stimated sate &
model-based approaches rely on first principles e
to derive system models and then compute con-  [EELET smated state X
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Input u

trol inputs by solving constrained optimal con-
trol problems, often through trajectory optimiza-
tion. While these methods are mathematically Desired state %
rigorous and have been successfully deployed on
robotic systems [1, 2, 3, 4], they exhibit inherent
limitations: they are difficult to apply to systems  Figure 1: Recursive Koopman Learning Pipeline
that cannot be easily modeled using first princi-

ples, such as soft robots; they require significant time and effort to be adapted for highly dynamic
tasks or complex environments with significant uncertainties; they struggle with designing con-
trollers for hybrid dynamical systems, especially those involving multiple contact modes; and as
the number of constraints increases, these methods impose escalating demands on computational
resources and solver performance.

Koopman model
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Data-driven approaches have advantages in dealing with uncertainties and complex dynamics. Over
the past decade, these approaches—especially Reinforcement Learning (RL)—have made signif-
icant advances. RL algorithms [5, 6, 7] have been widely used to design controllers for various
robotic systems and have achieved remarkable performance in challenging tasks, including soft robot
control [8], dexterous manipulation [9, 10], vehicle control [11], and dynamic locomotion [12, 13].
However, RL typically require large amounts of data and have low sample efficiency, and their train-
ing demands substantial computational resources. These factors make it difficult to perform RL
training solely on hardware—an important consideration for systems that cannot be simulated with
high fidelity, such as soft robots. Additionally, due to the stochastic processes involved and the use
of neural networks, RL often lack convergence guarantees and mathematical interpretability.

Given the disadvantages of conventional model-based control and RL, there is a need for sample-
efficient and computationally lightweight data-driven control policy learning methods. A natu-
ral idea is to use linear model-based methods—Ilinearity brings convexity and makes computa-
tions lighter and faster, and model-based methods tend to have higher sample efficiency. Standard
linearization—which is performed locally and in the original state space—can only produce accu-
rate local models. In contrast, Koopman theory can help us find exact linear models for nonlinear
systems in infinite dimensional spaces. With advances in computational capabilities, it has become
feasible to estimate Koopman operators effectively using data-driven methods such as Dynamic
Mode Decomposition (DMD) and Extended Dynamic Mode Decomposition (EDMD) [14, 15]. As
a result, Koopman theory has been successfully applied in various fields, including fluid dynam-
ics [16], physics [17], power systems [18], and robotics [19, 20, 21, 22, 23].

To improve sample efficiency, a key strategy is to identify and use the most informative data. A
widely accepted but rarely formalized hypothesis—referred to here as the Attempting Control Goal
(ACG) hypothesis—suggests that data collected while attempting a control objective with an ideal
policy is particularly informative for that task. An ideal policy is a control policy that is dynamically
feasible and globally optimizes a specified performance criterion—such as minimizing a cost func-
tion or maximizing reward—under the true system dynamics. Although such a policy is unattainable,
researchers aim to approximate it and use the resulting demonstration data to train control policies.
In imitation learning [24, 25], for example, human or animal instructors are treated as noisy surro-
gates of the ideal policy, and their successful demonstrations are used for training.

However, certain systems are so challenging that even skilled humans struggle to provide consis-
tently successful demonstrations, and the additional resources required to collect these data cannot
be ignored. This motivates a weak ACG hypothesis: when a high-quality approximation of the ideal
policy is unavailable, does the iterative loop of (i) computing the best policy attainable with the data
so far and (ii) repeatedly attempting to control the system still yield data that are highly informative?
This motivates us to adopt real-time online model updates.

Researchers have attempted updating NN models with online data [11, 26], but these model-updating
methods are heavy, slow, far from achieving real-time performance, and sample-inefficient. Linear
models are particularly well-suited for this purpose, and researchers have explored updating Koop-
man models with new data. While a few papers mention model updates [21, 23], they primarily rely
on retraining or iterative numerical solvers to update the parameters, which can be computationally
intensive and slow. Additionally, some works have proposed faster online updating algorithms for
linear models inspired by the Recursive Least Squares (RLS) algorithm [25, 27, 28]; however, these
approaches lack comprehensive convergence and complexity analyses, and no experimental valida-
tion has been conducted on real-world robotic systems. [28] also uses RLS and MPC, but its update
termination condition—which hinders convergence analysis—and MPC operate on the state space
rather than the observable, questionable for Koopman-based methods.

Several studies have analyzed the convergence properties of EDMD. For instance, [29, 30, 31] have
provided detailed discussions on the convergence of EDMD for both stochastic and deterministic
systems, under i.i.d. and ergodic sampling assumptions. However, no existing work formally ana-
lyzes the convergence of EDMD on Markov chains—a key property of data generated by dynamical
systems. The original EDMD paper [15] conceptually discusses approximations of the stochastic



Koopman operator for Markov processes, but does not present a formal analysis. In addition, it omits
the assumptions necessary to apply the Strong Law of Large Numbers for Markov chains [32], and
its treatment of the sampling density does not impose any assumptions on dataset structure. [29]
derives probabilistic error bounds on finite data assuming i.i.d. or ergodic sampling with the ex-
ponentially stable Koopman semigroup—a strong assumption which presupposes all non-constant
observables decay exponentially toward their equilibrium values over time—without considering
data correlation that is critical when using data from trajectories.

In this paper, we introduce Recursive Koopman Learning (RKL), a sample-efficient, Koopman-
based learning pipeline. By leveraging Koopman theory, EDMD [15], RLS [25, 27, 28], and Model
Predictive Control (MPC), RKL enables rapid control policy learning and real-time recursive model
updates. RKL significantly outperforms other data-driven methods in sample efficiency. On a sim-
ulated planar two-link arm, it surpasses RL benchmarks using <5% of their data and with far lower
computational cost. In hardware, RKL requires only 1 minute and 20 seconds (8,000 steps, 6,000
pretrained) to design a high-performance controller (Fig. 2) for a highly nonlinear, hybrid-dynamic
soft robot (Appx. Fig. 4). In contrast, a SotA RL algorithm takes 2 hours and 46 minutes (100,000
steps) and only attains <50% of RKL'’s performance. We also provide the first formal convergence
analysis of EDMD and RLS under continuous data growth within Markov chains, establishing suf-
ficient conditions for convergence—crucial for practical use and previously unaddressed. We also
discuss how to relate these conditions to the ACG hypothesis and our experimental results. Addi-
tionally, we present detailed algorithmic analyses of EDMD and RLS, demonstrating that RKL is
computationally lightweight, with complexity independent of dataset size.

The contributions of the paper are summarized as follows:

* We present RKL, an extremely sample-efficient, data-driven control policy learning pipeline with
low computational cost, supported by rigorous convergence and algorithmic complexity analysis
as well as thorough experiments on hardware and in simulation.

* We explicitly identify the sufficient conditions for the convergence of EDMD and RLS under
continuous data growth in the context of Markov chains, addressing a gap in prior research.
Additionally, we discuss the association between this analysis and the ACG hypothesis, and how
they can guide the design of sample-efficient model learning methods.

e We provide a high-performance, multi-threaded C++ codebase designed to enable easy deploy-
ment and reproducibility: https://github.com/zixinz990/recursive-koopman-learning.git.

This paper is organized as follows: Sec. 2 provides the necessary background. Sec. 3 details the
RKL pipeline. Sec. 4 presents our experimental results and discuss their relation to the ACG hy-
pothesis and our convergence analysis. Sec. 5 summarizes our conclusions. Finally, Sec. 6 discusses
the limitations of our method and outlines directions for future research. The appendix is in the
supplementary materials.

2 Background

This section briefly presents the mathematical background of the proposed method, including Koop-
man theory, EDMD, RLS and MPC.

2.1 Koopman Theory

Consider a discrete-time dynamical system x;+1 = f (X)), x € X C R"=. Define an observation
function (or “observable”) z := ¢ (x) : R" — R"* n, > n,, which lifts the state into a higher-
dimensional space. Let H be a Hilbert space on X. If the components of the observation function
{1, @, ...} form an orthonormal set of basis functions spanning H, and the composition function
¢ o f is also an element of the Hilbert space, then there exists a linear operator K such that ¢ o
f (x) = K¢ (x), when n, = oo [33, 34]. We also need consider control inputs u € R™ to design
controllers. Define another observation function g := % (u) : R™ — R"s,n, > n, and a new
pair of variables o, € RV = [ (x1), 1 (uy)] and B, € R*=T"9 = [ (x541), % (ug)], the
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Koopman model becomes 3;, = Ko, [21, 35]. We can extract K, and K, from K and get
¢ (xk+1) = K. (xi) + Kyt (uy) . (1)

2.2 Extended Dynamic Mode Decomposition

We need to estimate the Koopman operator using data in a finite-dimensional observation space
in order to use it. First, define two data matrices Y = [aga; -] € RM=Fm)XN apd
Y [B, B, ---] € R(=+m)XN \where N is the number of data. Y contains the “current” data,
and Y contains the data one time step further. We can estimate the Koopman matrix K by solving

min [[KY — Y||r, )
where F indicates the Frobenius norm. To solve this, EDMD does
K=YY" (Y)'vt=(vy") (vv)' 3)

The matrix YY T is a square matrix and is well-conditioned to matrix inversion computation.

2.3 Recursive Least Squares

Suppose we have a standard linear regression model of the form y; = x;w + ey, where y € R is
the scalar output, x € R" is the input/regressor vector, w € R" is the unknown parameter vector
we wish to estimate, e € R is noise or modeling error. To estimate w in a way that incorporates
each new data pair (xy, yx ), RLS algorithm solves min,, J = Zﬁzl (y;€ — x,;'—w). First, initialize
the RLS algorithm at £ = 0 by picking wg and P(. At each time step k, given the new data pair
(XK, Yk ), update the gain vector gy, the parameter estimate wy, and the inverse covariance P, by

_ Proaxg P 1xpx, Pj_1
1 —&—ngk,lxk 1 —&—ngk,lxk
Conceptually, Py, tracks the inverse of the “data covariance” seen so far. Updating P uses the

Sherman-Morrison formula [36] so that large matrix inversions are unnecesary. In Sec. 3.3 and
Appx. B, we show that RLS can be generalized to update state-space models.

8k Wi = Wi_1+8k (Vi — X Wi—1) , P = Pj_q — 4)

2.4 Model Predictive Control

A classical MPC policy computes control actions by solving a trajectory optimization problem at
each step. It minimizes an objective function composed of a terminal cost and either an integral (for
continuous-time) or a summation (for discrete-time) of the running cost, subject to initial conditions,
system dynamics, and equality and inequality constraints. Only the first control input from the
solution is applied before the process repeats at the next time step. More details are provided in
Appx. A.

3 Recursive Koopman Learning

In this section, we present the details of RKL,
which is built on an MPC framework. Ini-
Esafl:l(i/t ;1 Cs(r)rllfllll datase.t 1s clolleczlteld (?fﬂérg 1\fllrll)d Ko, Py < EDMD (Yo, Y1)

) pute an .1n1.t1a model via ’ uy = MPC (Ko, 2o, Z) > z is the goal
which serves to initialize both the MPC and z1 = ENV (2o, ug)
RLS modules. Subsequently, the MPC con- k=0

Algorithm 1 Recursive Koopman learning

Require: Initial dataset Y and Y4

troller, using the Koopman model, iteratively while True do

computes the optimal control input at each Kii1,Pry1 < RLS (K, Py, 2, g, Zg11)
time step according to the user-defined con- Upt1 < MPC (K41, 2541,2)

trol objective. Simultaneously, the RLS mod- Zy2 = ENV (Z 41, Ugp1)

ule continuously updates the Koopman model k—k+1

in real time using newly collected data. The __ ¢nd while

overall pipeline is shown in Fig. 1 and Alg. 1.




3.1 MPC Solver

For controller synthesis, we formulate an MPC problem using the learned Koopman model. Any
MPC technique could be used; we use Sequential Action Control (MPC-SAC) [37] as the solver
because it achieves better performance than LQR in experiments (details in Sec. 4), similar to the
findings in [38]. Further details can be found in [37] and Appx. A.

3.2 Dataset Initialization

Previous studies have initialized Koopman models using normal distributions [21], but this often
causes numerical issues, such as severely ill-conditioned optimal control problems. In MPC-SAC,
such an initialization can cause the adjoint variable to become excessively large, leading to overflow.
To avoid this, we initialize the Koopman model using a dataset, ensuring numerical stability during
MPC optimization. Sec. 4 details the initial dataset collection and its impact on control performance.

3.3 Real-Time Recursive Model Update

The learned Koopman model is continuously updated while pursuing the control goal. To efficiently
utilize runtime data, we aim to find a stable, fast, and lightweight real-time model updating algo-
rithm. RLS (introduced in Sec. 2.3) is well-suited for this purpose: it is tailored for linear systems,
much faster and lighter than resolving full linear regressions, and can be readily generalized to up-
date linear state-space models. Appx. Alg. 3 summarizes the algorithm.

Consider the two data matrices used in Eq. 2. At time step k, we have the data matrices Y and Y,
as well as the latest estimate of the Koopman matrix K. Additionally, we define

Y, T
Qi =Y,Y, . P = (YiY)) . 5)
After one time step, we obtain a new pair of data oy, 3;, and we use them to update the model Kj.
Finding that P tracks the inverse of the data covariance, similar to RLS (Eq. 4), we can utilize the

Sherman-Morrison formula [36] and the update rule of P is given by
1

Pii1 =P, — wPrapa Py i = ——————. 6
k+1 k — YePraroy Pr, v [+ a Pras (6)

It can be shown that the estimate of the Koopman matrix can be updated through
K1 = Ki + % (8), — Kraw) o Py. (7)

A single RLS update yields exactly the same result as retraining the entire model with EDMD on
the updated dataset (see Appx. B for the proof). Our algorithmic analysis (Appx. C) shows that
RLS is well-suited for online updates under continuous data growth, as its speed depends only
on the dimension of the observables, not on dataset size. Additionally, among all methods that
compute exact solutions to the linear regression in Eq. 2, RLS has the lowest time complexity. In
contrast, EDMD’s complexity grows with both the observables dimension and dataset size, making
it increasingly slower as more data is added, which is detrimental to real-time model updates under
continuous data growth.

Based on the conclusion that RLS and EDMD produce identical computational results, we discuss
the convergence properties of RKL by analyzing the convergence of EDMD. In particular, we as-
sume that the dataset forms a Markov chain, which aligns well with our data collection process
(Sec. 4) for both the initial and online dataset.

We find that the Strong Law of Large Numbers for Markov chains [32] can be used to prove the
convergence of EDMD under continuous data growth. However, this theorem requires the dataset
to be an irreducible, aperiodic, and positively recurrent Markov chain w.r.t. an invariant measure
1, meaning the chain is ergodic. These requirements are overlooked in previous research [15]. In
addition, the observation function must be p-square-integrable, and the P matrix in Eq. 5 must be
of full rank. Together, these conditions provide sufficient guarantees for the convergence of EDMD
as the size of the dataset approaches infinity. Details of the analysis is presented in Appx. D. In the
next section, we relate the above results to the experimental results and the ACG hypothesis.



4 Experiments

Our experiments are conducted on a simulated tracking
tasks with a planar two-link arm, and dynamic balancing
with a Soft Stewart Platform (SSP) [39] (Appx. Fig. 4),

Method  Dataset size RMSE mean (cm) Time lag mean (sec)
RKL-SAC 500 Demo + 500 0.725 0.01

RKL-SAC 3,000 + 500 0.8359 0.0228

RKL-SAC 5,000 + 500 0.8723 0.018

. . . . KL-SAC 5,000 0.901 0.02
a. nonlinear hyb.nd system agtuated with soft transmis-  pu"cis 000450 0016 00196
sions [40]. Details are shown in Appx. E. RKL-SAC 1,000 +500 1039 00214
KL-SAC 3,000 1.2037 -0.032
[RREIGRI5 000 + 500 13925 0.1392
4.1 Benchmarks [RKEEEGRI 500 Demo + 500 1.4341 0.16
KL-SAC 2,000 15113 -0.031
. . . KL-LQR 5,000 1.5379 0.1354
We use the following five methods in our experiments: BREBEGRI3 000 +500 15478 0.1378
. . RL-SAC 2,000,000 1.6001 0.15
* RKL-SAC and RKL-LQR: Both are RKL, but differ- o™ <200 00 e e
ent MPC solvers are chosen (MPC-SAC or LQR). RL-SAC 2,500,000 1.6755 017
. _2,000 +500 1.6887 0.1962
¢ KL-SAC and KL-LQR: Standard Koopman learning KLALOR 3000 oo e
without any model updates [41]. RL-SAC 1,500,000 17823 021
. .. REDQ 80,000 1.8107 0.19
* NN-MPPI: Model-based RL using Model Predictive  gepg 100000 LGP a2
Path Integral (MPPI) control via NN models [11]. REDSI 0,000 Az g
.. . KL-LQR 2,000 2.6088 0.1276
* RL-SAC: Soft Actor-Critic, a prominent model-free EREESRI100+500 26257 0.188
RL algorithm [7] NN-MPPI 15,000 3.1099 -0.2111666667
: . KL-SAC 1,000 3.6219 -0.1808
. REDQ Randomized Ensembled Double Q—Learnmg, RL-SAC 1,000,000 3.6782 0.35
a SotA sample-efficient model-free RL algorithm [42].  NN-MPPI 10000 SUIRE WA
KL-LQR 1,000 4.8095 0.2324
[RIESEGR] 500 + 500 5.8193 -0.2148
. . NN-MPPI 5,000 6.3037 -0.0013
4.2 Planar Two-Link Arm Experiments KL-SAC 500 75709 -0.7148
KL-SAC 500 Demo 8.1981 -0.2
. KL-LQR 500 Demo 8.4155 -0.6
We evaluate all benchmarks on a planar two-link arm o T 85075 10408

simulated in MuJoCo. The goal is to control the joint

states to any desired states in the workspace, and the per-
formance is assessed based on the ability to control the
tip to track a 500-step reference trajectory shaped like
an “8” (details are shown in Appx. E.1 and Fig. 7-10).

Table 1: The results of tracking a ref-
erence trajectory on the simulated pla-
nar two-link arm, sorted by RMSE.
Online model updates significantly im-

proves sampling efficiency and con-
trol performance. Additionally, MPC-
SAC enhances the performance of both
RKL and KL compared to using LQR.
RKL shows higher sample efficiency
and superior control performance than
the baselines.

Each method is tested across 50 trials, summarized in Ta-
ble 1. RKL achieves the best overall performance while
requiring a significantly smaller dataset compared to RL.
Specifically, RKL-SAC outperforms the RL baselines us-
ing only 3,500 steps of data—3,000 of which are gen-
erated by random actions—representing just ~5% of the
minimum data required by RL methods. Although NN-
MPPI requires less data than model-free RL methods (though still more than RKL), its control
performance is comparatively lower. Furthermore, using MPC-SAC improves the performance of
both RKL and KL relative to LQR, supporting our claim in Sec. 3.1. Comparing KL to RKL demon-
strates the impact of online recursive model updates—reducing not only the RMSE by up to 77.94%
but also the time lag, especially on small datasets.

We evaluate two types of initial datasets for KL and RKL: a 500-step demonstration dataset (500
Demo) and datasets generated by uniformly sampling actions from the action space. When initial-
ized with the 500 Demo dataset, RKL-SAC outperforms all competing methods, including RKL-
SAC trained on larger datasets. This advantage reflects the ACG hypothesis and the sufficient con-
ditions for convergence discussed in Sec. 3.3 and Appx. D. In our convergence analysis, the state can
be interpreted broadly to include both the system state and the control input, so that the controller can
be treated as part of the dynamics. A closed-loop dynamical system with an ideal policy in the ACG
hypothesis for a given control objective can be represented as an autonomous dynamical system in
this generalized state space—the exact target system we aim to learn. A high-quality demonstration
induces a Markov chain that is nearly ergodic w.r.t. the target dynamics’ invariant measure. As a
result, the initial model’s invariant measure closely approximates the true one, providing a good start
for rapid convergence to the optimal representation through online model updates.



The success of RKL empirically validates the weak ACG hypothesis, and our convergence analysis
helps explain this. While pursuing the control objective, real-time online model updates ensure that
the model estimate at each time step is globally optimal, in the sense of Eq. 2, given the currently
available data. This also implies that the system is approaching the behavior of a perfect system in
a manner we define as optimal at the moment—that is, it is doing its best to converge toward the er-
godicity condition (though this is never attainable). We infer that metrics related to ergodicity should
be developed to guide the data collection process, thereby ensuring it more closely aligns with the
ergodicity requirements. This, in turn, would lead to faster convergence and more sample-efficient
learning, particularly for tasks where collecting high-quality demonstration data is challenging.

4.3 Soft Stewart Platform Experiments

Due to the nature of the soft actuators and the mechanical design of the system, the SSP is a highly
nonlinear, hybrid, and time-varying dynamical system, making it an ideal platform for testing RKL.
A puck—comprised of a solid 38-mm Delrin ball enclosed within a 5-cm-diameter plastic ring—is
placed on the SSP. The objective is to control the puck’s state, enabling it to balance at a desired
location or follow a reference trajectory. Details is presented in Appx. E.2.

The initial dataset is collected by a human operator using a SpaceMouse Compact. The same initial
dataset is used for all experiments but cropped to different time lengths (Appx. F). In RKL, each
RLS update is completed in 20 ms (limited by the feedback thread).

4.3.1 Puck Balancing
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Figure 2: KL-SAC vs. RKL-SAC vs. RL-SAC (five random seeds) in puck balancing. The whiskers
show the range of the data, the box represents the middle 50%, and the lines connect the averages.

3
Dataset Size (min)

We test the learned controllers at 293 uniformly distributed goal points across the platform surface.
Each trial lasts 20 seconds, and the model in RKL is reset at the end of each trial. The mean and
standard deviation of the last-5-second absolute position error are used to evaluate the performance
at each desired position. Large mean values indicate significant steady-state errors, while large
standard deviations reflect substantial oscillations. Two types of observation functions are tested: a
28-dimensional polynomial basis function up to the third degree and a 117-dimensional Gaussian
radial basis function (RBF) (Appx. E.2.3). Fig. 3 illustrates a successful example of RKL-SAC.

We compare KL-SAC, RKL-SAC, and RL-SAC across varying dataset sizes. As shown in Fig. 2a,
KL-SAC struggles with datasets under 4 minutes, while RKL-SAC remains robust except for using
RBF with 1-minute data. Fig. 2b shows KL-SAC and RKL-SAC have low standard deviations, indi-
cating stable puck behavior, whereas RL-SAC results in larger oscillations. However, KL-SAC’s low
deviation with small datasets reflects puck immobilization due to static friction, not true stability—
online updates help overcome this. Notably, RKL-SAC achieves better performance than RL-SAC
using just 1 minute of initial data and 20 seconds of online updates (8,000 steps), compared to RL-
SAC’s 2 hours 46 minutes (100,000 steps)—only 0.8% of the training time. We also test NN-MPPI



under the same setup [43]. RKL improves upon NN-MPPI with a 66% lower average error and a 8
times better standard deviation, using only 2.6% of the training time.

We also evaluate RKL-SAC on never-before- 0 ~1.00 15
seen states by removing all data with positions

in the first quadrant from a 4-minute dataset
(Appx. Fig. 5). Using the polynomial observa-
tion function, RKL-SAC achieves a mean error
of 0.03 m and a standard deviation of 0.0237
m across 293 test points. Online model updates
quickly estimate the Koopman model in regions
that is not presented in the dataset. In con-
trast, KL-SAC performs poorly with the same Figure 3: The mean and standard deviation of the
cropped dataset. Although RKL-SAC does not absolute errors (scaled by log base 10) computed
outperform than using the full dataset, it still over the last 5 seconds of each 20-second RKL-

exceeds RL-SAC, demonstrating strong stabil- SAC trial. This controller uses a 4-minute-long
ity and sample efficiency initial dataset and a 28-dimensional polynomial

observation function. The distance between each
Again, online model updates are critical to goal point and its six adjacent goal points is 2 cm.
RKL’s strong performance. A KL-SAC con-

troller trained on a larger initial dataset does not outperform an RKL-SAC controller trained on
a smaller initial dataset with 20-second model updates, which means 20 seconds of online data col-
lected during the process of achieving the control goal is more effective than several minutes of
manually collected data, as shown in Fig. 2a. This empirically validates the weak ACG hypothesis.
Real-time model updates can efficiently utilize this data and enhance the controller’s performance.
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4.3.2 Tracking of Trajectories Containing Contacts

We extend our study to control the puck such that it follows a reference trajectory—one is shaped
like the letter “N” and involves contacts with the boundaries (Appx. Fig. 6). To encourage contacts,
the start, end, and both corners of the “N” lie outside the platform’s boundaries. The reference
velocity for each segment of the “N” is constant, with each segment taking 7 seconds to complete.

Method Mean (m) | Max (m) | Min (m) We conduct ten trials per method,
KL-SAC (4 min) 0.1079 0.2319 0.0628 starting from the lower-left corner of
RKL-SAC (4 min) 0.0636 0.0812 0.0477 the “N”. For each method, we select
RL-SAC 0.0821 0.1006 0.0732 the five best trials based on the Fréchet
Table 2: KL-SAC vs. RKL-SAC vs. RL-SAC in tracking 0.Stnce between the reference and
CONTY et puck’s position trajectories, and report

an “N” trajectory. ) ..
the mean, maximum, and minimum
value (Table 2). The RKL-SAC and KL-SAC controllers use the a 4-minute dataset, while the RL-
SAC policy is chosen based on the lowest mean error. RKL-SAC achieves the best performance.

Trajectories from the best trials are shown in Appx. Fig. 6.

5 Conclusion

In this paper, we present a sample-efficient Koopman-based learning pipeline, RKL. This pipeline
can rapidly generate a controller capable of not only controlling hybrid nonlinear dynamical systems
but also quickly learning and recursively updating models in real time. Our experiments on a sim-
ulated planar two-link arm and a soft-actuated hardware platform demonstrate the superior sample
efficiency and improved control performance of RKL compared to SotA benchmarks. Additionally,
we present the first formal convergence analysis of EDMD and RLS under continuous data growth
within Markov chains, providing detailed sufficient conditions for convergence—critical for practi-
cal use and absent in prior work. We not only empirically validate the ACG hypothesis but also use
our analysis results to explain it. Furthermore, we provide detailed algorithmic analyses of EDMD
and RLS to prove that RKL is lightweight and fast, with complexity independent of dataset size.



6 Limitations

While model updating can significantly improve the control performance, we have observed cases
where the RKL controller struggles to move the puck away from its current location during exper-
iments on the SSP. This typically occurs when the puck remains in a small region for an extended
period. As a result, the dataset becomes imbalanced: the model achieves high accuracy in predict-
ing state transitions near the current location and at zero velocity but performs worse elsewhere.
Additionally, because it is difficult to collect demonstration data on the SSP—whether from human
operators or teaching policies—the initial model often ends up with an invariant measure that is far
from the true distribution, as discussed in Sec. 4.2. Therefore, such an initial model is a poor starting
point for RKL and can lead to the mentioned problems above.

Based on our convergence analysis, this issue can potentially be addressed by using high-quality
demonstration data or by applying ergodicity-related metrics to guide the controller’s behavior while
attempting the control goal. Many systems are naturally poorly suited for learning from demonstra-
tion, making ergodicity-related metrics especially important in those cases.
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A Sequential Action Control

A continuous-time MPC policy determines control inputs for a dynamical system by repeatedly
solving a constrained trajectory optimization problem. At each iteration, we solve

T
Jmin T=m D)+ [ () ()

terminal cost running cost

s.t. x(0) = Xni, initial condition, (8)

)=
% (t) = f(x(t),u(t)), dynamics,
Ceq(x (t) ,u(t)) < 0, equality constraints,

ciq( x (t),u(t)) = 0, inequality constraints.

Once the optimal control sequence is obtained, only the first control input is applied to the system,
and the process is repeated at the next time step.

Sequential Action Control (MPC-SAC) [37] is a model-based approach that solves MPC in real
time within a closed-loop framework for nonlinear systems. Instead of iteratively optimizing finite-
horizon control sequences to minimize a given objective, MPC-SAC utilizes a closed-form expres-
sion to determine individual control actions. These actions, applied over short durations, are de-
signed to optimally enhance a tracking objective over a long time horizon. Moreover, the existence
and uniqueness of optimal actions are globally guaranteed. Here, we introduce the algorithm in
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the context of Koopman-based control, and the detailed derivation is presented in [37, 21]. The
algorithm is summarized in Alg. 2.

Algorithm 2 MPC-SAC using a Koopman model

Require: Nominal policy p, weight matrix R, Koopman matrix K, current feedback z, reference
Zrer and Uyer, time step length ¢, horizon length H
u* = MPC-SAC (K7 Z, Zief, Urerf, by R, O, H)
p.update (Ka Zyef, Uref )
Adjoint.reset (5t, H)
Objective.reset (Zref, Urer)
traj = p.simulate (H, dt, Objective)
p-traj=Adjoint.simulate (traj)
u = p.solve (z, Objective)
u'=-R'K!p(0)+u

The dynamics model used to synthesize the controller is a continuous-time Koopman model,
z(t)=1f(z(t),u(t)) =K.z () + Kyu(t), )

where z is the observation of the state. Define the objective function J; € R,

to+T
le/ Lz (), 1 (z(5))) ds + m (z (to + T)), (10)

to

where p (z) is a nominal feedback control policy. We use LQR as the nominal policy in our experi-
ments.

MPC-SAC finds the change in the objective (Eq. 10) due to inserting a new control policy p* into
the nominal trajectory for a short duration around ¢t = 7 € [to,to + T]. The related mode insertion
gradient is given by

0J1

ah:r,xzo =p(n)' (—1f1), 1D
where f; = f(z(7),pu(z(7))) and f> = £ (z(7),pu* (z(7))). The adjoint variable (or costate) p
satisfies
(2 o) (o otowyT )
P= dz 0z Ou 9z  ouoz) P
with the terminal condition
0
plto+T)= Em(z (to+T)). (13)

We first use the nominal policy to simulate the system’s trajectory over the horizon length, starting
from the current state. Then, we compute the trajectory of p backwards from the terminal condition.

Finally, MPC-SAC solves a new optimization problem to minimize the mode insertion gradient,

to+T 0J1 1 . 9
Jy = ah:s,A:o T3 " (s) — p (2 (1)) ds, (14)
Jto

where R is a diagonal matrix to bound the change from g to p*. It can be shown that the analytical
solution is [37, 21]

p(t) = -RK p(t) + p(z(t). (15)

Finally, p* (0) is applied to the system.
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B RLS Update is Equivalent to EDMD

Algorithm 3 Online Model Update using RLS
Kiew; Prew = RLS(K, P, z, u, 7)
o = [z;4] > column vector
B =[z;u] > column vector
v=1/(1+a"Pa)
Poew =P — 'yPaaTP
Kiew=K+7(8-Ka)a'P

Here we prove that the RLS update algorithm for Koopman models (Alg. 3) is mathematically
equivalent to retraining a Koopman model using EDMD. Similar proofs are also presented by [27,
28].

Consider the two data matrices used in EDMD. At time step k, assume that we have data matrices
Y and Yy, and the latest estimate of the Koopman matrix Kj. In addition, we define

Qi =YY/, Ppo= (YiY)) (16)

Assume that we want to update the model after one time step. We got a new pair of data {a, B, },
and the data matrices becomes

Yi=[Yr oul, (17)
Yiri=[Yr Bi]. (18)
Now we can calculate the new Q and PT

5 Y, o T T

Qi1 = [Yi Bil | JF| =YYy + By, (19)
k

PT Y YII T T

kil = [ k Oék} a; = YkYk + ooy, . (20)

Now we want to update the model. Apply the EDMD update, we get
Kit1 = Qr+1Pr1- 21

However, computing this needs computing the inverse of a large matrix, and involves several large
matrix multiplications. To avoid this, first recall the Sherman-Morrison formula [36]. Suppose A is
an invertible square real matrix, and u, v are column real vectors. Then A + uv ' is invertible if
and only if 1 + v A~'u # 0. In this case,

-1 A luvTA!
A T A - — 22
(A +uv’) 1+vTA-1lu (22)
This formula can be used to compute Py ;. Start from Eq. 20,
-1
_p, Progoy Py (23)
1+ o Pray,
= Py — wPrara) Py,
1
Vi (24

- 1+ a;Pkak '
By substituting Eq. 19 and 23 into Eq. 21 and simplifing the expression, we can update K; without
calculating any matrix inverses,

Kii1 = Ki + 7 (B, — Kpow) o P 25)

Note that we require P to be always full rank.

15



C Algorithmic Complexity Analysis

C.1 EDMD Complexity

After collecting N + 1 data pairs {x,u} , let Y and Y be the matrices of observables (same as
Eq. 16), each of size n x N, where n is the dimension of the observation function. The standard
EDMD estimate involves:
* YY" and YY T each require multiplying an n x N matrix by an N x n matrix, which costs
@) (n2N )
» Inverting (or pseudo-inverting) Y Y T to get P typically costs O (ns)

Hence, updating K with every new snapshot in a purely retraining fashion would incur O (nQN ) +
@ (n3) work each time.

C.2 RLS Update Complexity

By contrast, the RLS update uses rank-1 updates and the Sherman—Morrison formula to avoid ex-

pensive matrix inversions at every step. At time k — k + 1, the key operations include:

* Updating Py via the Sherman—Morrison formula, which requires a small number of matrix-
vector multiplications with matrices and vectors of size n, costing O (n2)

e Updating Ky 1. Like the previous step, this is dominated by a small number of matrix-vector
multiplications and outer products at O (n?) each update.

Overall, each update has a per-step cost of O (n?).

D Convergence Analysis

D.1 Definitions

S is the state space. The samples in the dataset construct a Markov chain {s;} C S satisfying
Sg+1 = f(sy) for some map f : S — S. If control inputs are considered, s contains both the
robot state x and the control input u. In addition, ¢ : & — R™~ is a finite-dimensional observation
function applied on s.

The chain {s;} admits a stationary distribution (invariant measure) p — if the system starts in the
stationary distribution, it remains in that distribution after any number of transitions. Intuitively,
we can think of this distribution as describing where the system tends to spend its time. It is an
inherent property of the dynamical system and becomes apparent as time approaches infinity. Under
the invariant measure u, define

Q=E, [p () el ] 26)

t
P=(E.|[e@)es)]) - @7
The optimal estimate of the Koopman matrix in the mean-square sense in the feature space defined
by ¢ is
K* = arg}r{nin E, {H(p (f(s) — Ko (s)HQ} . (28)
And it can be calculated by [44]
K" =QP. (29)

To estimate Eq. 26 and 27 from data, based on EDMD and Eq. 16, we use

2

-1

> @ (se) e lsk) (30)

k=0

1
QN:ﬁ
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e . f
Py = (N kzzogo(sk)cp(sk) ) . 31

where NN is the number of data. Then the estimated Koopman matrix calculated by EDMD and RLS
is (Appendix B)
Ky =QnPny. (32)

Our goal is to show K converges to the optimal estimate K*.

D.2 Assumptions

The following assumptions are required in order to guarantee convergence.
» {si} is a Markov chain. It is irreducible, aperiodic, and positive recurrent w.r.t. its invariant
measure /. This implies the chain is ergodic.
* The observation function ¢ (s) is u-square-integrable, i.e.,

E, [l (s)[?] = /S o (s) IPdu (s) < . (33)

e P and Py are invertible, i.e. they are both full-rank.

In our experiments, data are collected via continuous sampling at very short time intervals (10 ms).
Consequently, the resulting data trajectories can be approximated as Markov chains, consistent with
our state-space model. The experimental results indicate the feasibility of this assumption.

Irreducibility requires that from any sampled state s, there is a nonzero probability of reaching any
other region of the state space within a finite number of steps. This condition can be satisfied by
the two experimental systems we use because both of them are controllable systems over a bounded
domain.

A Markov chain is aperiodic if there is no fixed cycle governing the return of states. For controlled
dynamical systems, whether this condition can be satisfied is related to the control policy.

A state s in a Markov chain is positive recurrent if, starting from s, the chain is guaranteed to return
to s at some future time. For fully actuated systems with bounded control inputs and state space,
such as the two used in this study, we can reasonably expect the resulting Markov chains to be
positive recurrent.

Regarding the assumption about the rank of P and Py, since the components of the observation
function form an orthonormal set of basis functions and real mechanical systems exhibit uncertainty
and noise, this assumption is always satisfied in practice. In our experiments, we check the rank of
P and find that it is always full-rank.

D.3 Convergence

Our assumptions enable us to apply the Strong Law of Large Numbers for Markov chains [32] to
the sequence {s;}. The SLLN states that for any integrable function h : S — R, the following
statement holds under our assumptions,

N-1
. 1
A}E}noo i ’;) h(si) =E, [h(s)], almost surely. (34)

Thus for each fixed ¢, j € {1, ..., n,},

1
Jim 5 X e () <E, [ei(8)ei (0)7] (33)
i 1= _ ) T_F . (f T 36
Jim 5 3 (o) g i) = NECEAUCINE (36)
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almost surely. Hence, we can determine that

= @)

We use —1 instead of 1 here because we have required P to be full-rank. By standard results on the
matrix inverse [45],

Py ——P. (38)
N —o0
Finally, we can conclude that
Ky =QvPy —=— QP =K". (39)
— 00

E Details of Experiments

E.1 Planar Two-Link Arm

The simulation environment is a customized MuJoCo environment based on the Gymnasium
Reacher-v4 environment [46], with modifications to the observations, reward function, action space,
and time step length.

Instead of observing the sine and cosine of the joint angles, as in Reacher-v4, our customized en-
vironment directly observes the joint angles in radians. To enable joint position control, the new
reward function is defined as:

r = —100.0|qq — q|| — 10.0 || — q|| — u? — u3, (40)

where qg € R? and ¢y € R? are the desired joint positions and velocities, ¢ € R? and ¢ € R? are
the actual joint positions and velocities, and u; € R and ua € R are the joint actuator torques. The
action space is defined as uy, us € [—0.5,0.5] Nm. The time step length is set to 10 ms.

During training, the initial positions of the two joints are initialized by uniformly sampling from
[—0.1, 0.1] rad, and the initial joint velocities are uniformly sampled from [—0.005, 0.005] rad/s. The
target joint positions are uniformly sampled from [fg, g} rad for joint 1 and [—7 + 0.15, 7 — 0.15]
rad for joint 2. During evaluations, the initial joint state is always set to the first state in the reference

trajectory (Eq. 44).

E.1.1 Observation Function

We define the state x € R* = [g1 g2 g1 ¢2] and the action u = [u; uy]. The observation function
¢ (x) € R'7 we use in RKL and KL is

d(x) =[q" 4" 1 poly(x)" ti(x)'], (1)

where
poly(x)" = [¢} @12 @& @ Gide @2, (42)
tri (x)T =[sing; singy sin(¢1 +¢2) cosqgi cosge cos (g1 + g2)]. (43)

E.1.2 Reference Trajectory

The reference tip position trajectory is defined by

4 P
P, = 0.05sin (;ﬁ) +0.1,p, = 0.1cos (;,Tt),t € [0,7], (44)

where T in the period. We choose T' = 5 seconds. The reference joint position trajectory is cal-
culated using inverse kinematics, and the reference joint velocity trajectory is obtained by finite
difference.
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E.1.3 KL and RKL Implementation

We implement KL and RKL in Python, using a single thread. Every 10 ms, we compute the optimal
action, update the model (if using RKL), and simulate the system one step forward. We test six
different initial dataset sizes (500 Demo, 500, 1,000, 2,000, 3,000, and 5,000 data points) and two
types of MPC solver (MPC-SAC and LQR) for both KL. and RKL. The 500 Demo initial dataset
is generated by using a PD controller to control the joints, and other initial datasets are generated
by applying random actions uniformly sampled from the action space. For each of the resulting 24
policies, we perform 50 trials. The results are shown in Table 1 in the main paper and visualized in
Fig. 7.

E.1.4 NN-MPPI Training

We use the NN-MPPI implementation from MaxDiffRL [47]. We train 15 policies using five random
seeds (555, 666, 777, 888, and 999) and three different total numbers of steps (5,000, 10,000, and
15,000). For each trained policy, 50 trials are performed. The average results across all 5 random
seeds are shown in Table 1 in the main paper for each “Dataset size” and visualized in Fig. 8. The
parameters for training and the MPPI controller are shown in Table 5.

E.1.5 RL-SAC Training

We use the RL-SAC implementation from stable-baselines3 [48]. Training is performed on 32
independently and randomly initialized environments with different seeds using SubprocVecEnv.
The evaluation results are shown in Table 1 in the main paper and visualized in Fig. 9. The training
parameters are detailed in Table 6.

E.1.6 REDQ Training

We use the open-source code provided by the authors of REDQ [42]. The evaluation results are
shown in Table 1 in the main paper and in Fig. 10. The training parameters are detailed in Table 7.

E.2 Soft Stewart Platform

Figure 4: The Soft Stewart Platform

The Soft Stewart Platform (SSP) is a six-DoF parallel manipulator inspired by the traditional Stew-
art platform design (Fig. 4). It is actuated by six Handed Shearing Auxetics (HSAs) [40], which
are manufactured using fused deposition modeling (FDM) with TPU 95A filament on a Bambu
X1-Carbon printer. Each actuator is anchored to the top of the platform and driven at the opposite
end by a DYNAMIXEL XM430-W350-T servo motor. Unlike a conventional Stewart platform, this
design eliminates joints at the ends of the struts. Instead, the compliance of the HSAs provides the
kinematic behavior typically achieved with such joints. The platform’s top surface is a hexagonal
piece of acrylic, with each side measuring 24 cm, sanded to reduce friction. Surrounding walls and
edges, made from 3D-printed polylactic acid (PLA), not only prevent the puck from falling off but
also allow intermittent mechanical contact.

State information is obtained using two AprilTags mounted on the top and bottom of the platform. A
Logitech BRIO webcam positioned above the setup tracks these tags while simultaneously detecting
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Horizon 160 ms

LQR q weight 200.0 Horizon 500 ms
— LQR p weight 200.0
LQR g weight 30.0 —
- - LQR g weight 5.0
LQR observations weight 1.0 - -
; LQR observations weight 1.0
LQR u weights 0.001 -
. - LQR u weights 0.001
LQR terminal weights 0.0 LOR terminal weights 0.0
MPC-SAC u weights lelO £ :
Table 3: KL-SAC and RKL-SAC on the Planar .20i¢ 4 KL-LQR and RKL-LQR Parameters on
. the Planar Two-link Arm
Two-link Arm
Horizon 300 ms Batch size 256
Number of samples 2000 Learning rate 3e-4
Temperature 0.5 Buffer size le6
Gaussian noise std dev 0.5 Learning start led
Model learning rate 3e-4 Discount factor 0.99
Model training iterations 6 Training frequency 1
Model training batch size 128 Target network update rate | 0.005

Table 5: NN-MPPI Parameters on the Planar Table 6: RL-SAC Training Parameters on the

Two-link Arm Planar Two-link Arm

Batch size 256

Learning rate 3e-4

Learning start 2000

Buffer size le6

Discount factor 0.99

Polyak averaging factor 0.995
UTD ratio 20
#Q-functios 10

#Q-values when forming the target 2

Q-targets mode min
Policy update delay 20

Table 7: REDQ Training Parameters on the Pla-
nar Two-link Arm

the balancing puck through a Hough circles algorithm. Using ray-tracing techniques, the system
calculates the puck’s position relative to the platform’s center. The combined state of the platform-
puck system is computed at approximately 60 Hz, with motor commands issued at 50 Hz.

E.2.1 NN-MPPI Implementation

Model-predictive path integral control (MPPI) is a model predictive control (MPC) algorithm [49],
and NN-MPPI refers to the model-based reinforcement learning framework that uses MPPI along-
side neural networks as dynamics models [11]. This was implemented and benchmarked on the
Soft Stewart Platform in [43]. This approach uses an approximate geometric model of the SSP as
if it were rigid, and learns residuals over this model to accomodate the platform’s nonlinear actua-
tors. The observation space is defined as o € R® = [z, y, 4,7, ¢,0,1, X, Y]. This vector contains
[x,y, &, y] the position and velocity of the puck, [¢, 8, 1] the Euler angles of the top platform surface
relative to the base, and [X, Y] the coordinates of the balancing setpoint. Actions are computed at
15 Hz.
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Figure 5: The distribution of data in the cropped 4-minute initial dataset, as well as the mean and
standard deviation of the absolute errors (scaled by a base-10 logarithm) computed over the last 5
seconds of each RKL-SAC trial using the cropped dataset. The mean error across the 293 test points
is 0.03 m, with an average standard deviation of 0.0237 m.

y (m)

-0.15 —0.05 m 0.05 0.15
Figure 6: Tracking a reference trajectory containing contacts. The start, end and both corners of the
reference trajectory are outside the platform boundary. The results shown are the best trials for each
method (videos available). The cyan region denotes the platform area, which is slightly smaller than
its actual size due to Apriltag measurement accuracy.

E.2.2 KL and RKL Implementation

State feedback: To model the system, we define the state x € R* = [p,, p,, Vs, v,], which includes
the position and velocity of the puck, and the control input u € RS, representing the angles of the six
servos. The puck’s current position is determined using a computer vision algorithm, and a Moving
Average Filter (MAF) with a window size of approximately 65 ms is applied to the raw position
feedback. The velocity is then estimated from the filtered positions using finite differences.

Initial dataset: The initial dataset is collected by a human operator using a SpaceMouse Compact
and an inverse kinematic approximation that models the platform as if it was rigid. The purpose
of this dataset is to create a reasonable initial model, thereby mitigating numerical issues, so no
specific control objectives are provided during data collection. The same initial dataset is used for
all experiments, and the distribution of the puck’s positions in this dataset is depicted in Fig. 11
and 12.

Collecting raw state and control input data exhibits fluctuations and occasional missing values. To
address this, linear interpolation is applied to align the state and input data to a consistent frequency.
The processed initial dataset has a time step length of 10 ms. Subsequently, EDMD is performed on
this dataset to obtain the initial Koopman model.
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C++ implementation: The controller is implemented in C++ using a multi-threaded architecture.
Four threads are employed:

» Feedback thread receives feedback on the puck’s states.

¢ Command thread sends commands to the servos.

* Control thread solves the optimal control problem.

» Update thread updates the Koopman model with the latest data.

All threads run at a frequency of 50 Hz, constrained by the raw position feedback rate. However,
in our experiments, MPC-SAC typically solves the control problem within 15 ms, and the model
update is completed within 10 ms. In addition, an MAF is applied to the raw solutions before being
sent to the servos.

E.2.3 KL and RKL Observation Functions

We use two types of observation functions in our experiments on the Soft Stewart Platform: a 28-
dimensional polynomial basis function up to the third degree and a 117-dimensional Gaussian Radial
Basis Function (RBF).

The 28-dimensional polynomial basis function is defined as
¢(X)T = [XT 2 myxe - 3311}2.1?3} , (45)

while the 117-dimensional Gaussian RBF is expressed as

b(x) = x" o1 (x) ¢2(x) -+ dur(x)], (46)
where each ¢; (x) is defined by

¢; (%) = exp (—e Ix — ciug) . (47)

To define the centers c; € R*, we follow the same methodology used to generate the goal points for
the experiments. For the position component of c;, 117 uniformly distributed points are used, with a
distance of 3.5 cm between each point and its six adjacent points. The sampling area for these points
is slightly larger than the platform to ensure that positions near the boundaries can excite a sufficient
number of RBFs, similar to positions within the platform. For the velocity component, k-means++
clustering is performed on the initial dataset to identify suitable velocity centers.

E.2.4 RL-SAC Training

We choose Soft Actor-Critic (RL-SAC) [7] as a benchmark for learned control. RL-SAC is an off-
policy model-free maximum entropy deep reinforcement learning framework and is widely used for
continuous control tasks. We train models in a single deployment—that is, non-episodically without
environmental resets. We allow RL-SAC to train for 100,000 environment steps at a frequency of 10
Hz. To increase learning stability, we use a curriculum learning procedure that uniformly samples
a new balance setpoint every 20 seconds, within a radius of the platform center. This radius is
initialized to 3 cm and over the first half of the training procedure, it linearly expands to cover the
entire platform. We retain the same input-output relationships as KL and RKL, with the addition of
the current setpoint coordinates in the state vector x. Five random seeds of RL-SAC are trained and
evaluated. RL-SAC training does not have access to the initial dataset in Sec. F.

E.2.5 Parameters

The parameters for puck balancing using KL and RKL with the 28-dimensional polynomial basis
function are shown in Table 8. The parameters for puck balancing using KL and RKL with the 117-
dimensional Gaussian RBF are shown in Table 9. The parameters for trajectory tracking using KL
and RKL with the 28-dimensional polynomial basis function are shown in Table 10. The parameters
for RL-SAC training are shown in Table 11. The parameters for NN-MPPI training are shown in
Table 12.
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Figure 7: The results of tracking the reference tip position trajectory on the simulated planar two-
link arm using KL and RKL with different initial dataset size. Since the generation of the dataset
is random, except for the 500-demo dataset, 50 trials are conducted for each plot except for the first
column. The red trajectory indicates the actual tip position, and the blue trajectory is the reference.
By observing each column, it is obvious that RKL consistently demonstrates superior performance
compared to KL. Furthermore, methods based on MPC-SAC outperform those based on LQR.
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Figure 8: The results of tracking the reference tip position trajectory on the simulated planar two-
link arm using policies trained by NN-MPPI. Each row corresponds to a distinct, fixed random seed,
while each column corresponds to a different training steps. The red trajectory indicates the actual

tip position, and the blue trajectory is the reference. Trajectories generated by NN-MPPI exhibit
significant jitter, and the performance consistency across different random seeds is low.
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Horizon 160 ms Horizon 160 ms
LQR p weight 17.0 LOR p weight 17.0
LQR v weight 1.0 LQR v weight 1.0
LQR observations weight 0.0 LQR observations weight 0.0
LQR u weights 1.5 LQR u weights 0.001
LQR terminal weights 0.0 LQR terminal weights 0.0
MPC-SAC u weights 0.002 MPC-SAC u weights 4.25e-5
u MAF window size 120 ms u MAF window size 120 ms

Table 8: Puck Balancing using Polynomial Ob- Table 9: Puck Balancing using Gaussain RBF

servables Observables
Horizon 200 m .
onzon 00 ms State Dim. 6
LQR p weight 17.0 : .
- Action Dim. 6
LQR v weight 1.5 4
. - Learning Rate 0.0003
LQR observations weight 0.0 .
- Batch Size 128
LOR u weights 1.5 - -
- - Policy Network Dim. [256]
LQR terminal weights 0.0 -
. Discount 0.99
MPC-SAC u weights 0.0015 :
: a Smoothing Coeff. 0.005
u MAF window size 120 ms
Reward Scale 0.1

Table 10: Puck Trajectory Tracking using Poly-

nomial Observables Table 11: RL-SAC Parameters

State Dim. 9
Action Dim. 2
Horizon 20 steps
Learning Rate 0.0003
Batch Size 128
Network Dim. | [200, 200]
Discount 0.95
Samples 4096
Temperature A 0.1

Table 12: NN-MPPI Parameters

F Initial Dataset for SSP Experiments

We use the same initial dataset for all experiments on the Soft Stewart Platform. The distribution of
samples are shown in Fig. 11 and 12.
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Figure 9: The results of tracking the reference tip position trajectory on the simulated planar two-
link arm using policies trained by RL-SAC, with training steps 1 million to 2.5 million. The red
trajectory indicates the actual tip position, and the blue trajectory is the reference. Despite the
ability of RL-SAC to achieve adequate control, its sample efficiency is notably low.
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Figure 10: The results of tracking the reference tip position trajectory on the simulated planar two-
link arm using policies trained by REDQ, with training steps 60K, 80K, and 100K. The red trajectory
indicates the actual tip position, and the blue trajectory is the reference. As [42] states, REDQ does

have high sample efficiency compared to other model-free RL. methods, but RKL still significantly
outperforms it.
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Figure 11: The distribution of the puck’s positions (m) in the initial dataset.
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Figure 12: The distribution of the puck’s velocities (m/s) in the initial dataset.
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