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Abstract

State-of-the-art KBQA models assume answer-001
ability of questions. Recent research has002
shown that while these can be adapted to de-003
tect unaswerability with suitable training and004
thresholding, this comes at the expense of ac-005
curacy for answerable questions, and no sin-006
gle model is able to handle all categories of007
unanswerability. We propose a new model for008
KBQA named RetinaQA that is robust against009
unaswerability. It complements KB-traversal010
based logical form retrieval with sketch-filling011
based logical form construction. This helps012
with questions that have valid logical forms but013
no data paths in the KB leading to an answer.014
Additionally, it uses discrimination instead of015
generation to better identify questions that do016
not have valid logical forms. We demonstrate017
that RetinaQA significantly outperforms adap-018
tations of state-of-the-art KBQA models across019
answerable and unanswerable questions, while020
showing robustness across unanswerability cat-021
egories. Remarkably, it also establishes a new022
state-of-the art for answerable KBQA by sur-023
passing existing models.024

1 Introduction025

Question answering over knowledge bases (KBQA)026

(Saxena et al., 2022; Zhang et al., 2022; Mitra et al.,027

2022; Wang et al., 2022; Das et al., 2022; Cao et al.,028

2022; Ye et al., 2022; Chen et al., 2021; Das et al.,029

2021; Shu et al., 2022; Gu et al., 2023), requires030

answering natural language questions over a struc-031

tured knowledge base most commonly via produc-032

ing formal queries or logical forms that are then033

executed over the knowledge base to retrieve the034

answers. While specialized models for handling035

unanswerability have been proposed for other ques-036

tion answering tasks (Rajpurkar et al., 2018; Choi037

et al., 2018; Reddy et al., 2019; Sulem et al., 2022;038

Raina and Gales, 2022), all existing models for039

KBQA assume answerability of questions over the040

given KB. This is an unrealistic assumption, since041

user queries are typically agnostic of the underlying 042

KB, which are often incomplete. 043

Recently, Patidar et al. (2023) published a bench- 044

mark dataset called GrailQAbility (Patidar et al., 045

2023), adapting the GrailQA dataset (Gu et al., 046

2021) to incorporate different categories of unan- 047

swerable questions, and also proposed the task 048

of detecting unanswerabilty while answering KB 049

questions. This work also demonstrated that state- 050

of-the-art KBQA models naturally perform poorly 051

for unanswerable questions. This performance im- 052

proves with extrinsic adaptation for unaswerabil- 053

ity, such as adding unanswerable questions during 054

training, and thresholding. However, such adapta- 055

tion significantly hurts performance for answer- 056

able questions. Additionally, different state-of- 057

the-art models struggle with different categories 058

of unaswerability, such as (a) questions for which 059

schema elements (i.e. relations or entity types) are 060

missing in the KB and which therefore do not have 061

valid logical forms, and (b) questions for which 062

data elements (i.e. entities or facts) are missing in 063

the KB and which therefore have logical forms that 064

are valid but return empty answers. 065

Our analysis of state-of-the-art KBQA models 066

provides a few key insights about KBQA architec- 067

tures that are robust against different categories of 068

unanswerability. First, good model calibration is 069

crucial for separating questions that are answerable 070

(having a valid logical form) and those that are 071

unanswerable due to missing schema elements (not 072

having a valid logical form). Secondly, while KB 073

traversal-based retrieval is useful for identifying 074

candidate logical forms for answerable questions, 075

this fails when relevant data elements are missing 076

in the KB, but a valid logical form exists. Detecting 077

this type of unanswerability requires traversal-free 078

logical form construction. 079

Based on these insights, we propose a new 080

multi-staged RETrIeve, geNerate and rAnk model 081

for KBQA which is robust against unanswerabil- 082
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ity named RetinaQA. For better calibration, in-083

stead of generating logical forms as the final stage,084

RetinaQA discriminates between candidate logical085

forms. To construct candidate logical forms, Reti-086

naQA complements KB-traversal based retrieval087

with sketch-filling based construction, which gen-088

erates KB-independent sketches and then grounds089

these by directly retrieving schema elements rele-090

vant for the question. This enables identification091

of logical forms for questions with missing data092

elements and therefore no connected KB path.093

RetinaQA brings together and adapts ideas094

from different KBQA architectures for robust095

KBQA over answerable and unanswerable ques-096

tions. While traversal based retrieval (Ye et al.,097

2022; Chen et al., 2021; Shu et al., 2022) and098

sketch-filling (Cao et al., 2022; Ravishankar et al.,099

2022; Li et al., 2023) have been separately used100

for in-domain and transfer settings for KBQA, we101

recognize the simultaneous need for both styles for102

handling unanswerability and unify these in a sin-103

gle architecture. Also, while step-by-step discrimi-104

nation has been recently proposed for KBQA (Gu105

et al., 2023), this is the first model that discrim-106

inates between fully-formed logical forms in the107

final stage.108

Using experiments over GrailQAbility, we109

demonstrate that RetinaQA significantly outper-110

forms adaptations of multiple state-of-the-art111

KBQA models that assume answerability, not only112

across different categories of unanswerable ques-113

tions, but also for answerable questions. Interest-114

ingly, we demonstrate that the RetinaQA architec-115

ture performs strongly for fully answerable KBQA116

benchmarks as well, and establishes a new state-of-117

the-art performance on the GrailQA dataset.118

2 Related Work119

The predominant approach for KBQA is to con-120

struct logical forms based on the question which are121

then executed to retrieve answers (Cao et al., 2022;122

Ye et al., 2022; Chen et al., 2021; Das et al., 2021).123

State-of-the-art models involve a KB traversal-124

based retrieval stage that retrieves k-hop data paths125

from linked entities in the question (Ye et al., 2022;126

Shu et al., 2022). Some models instead (Chen127

et al., 2021) or additionally (Shu et al., 2022) re-128

trieve schema elements (namely entity types and129

relations) based on the question. These are used130

to generate the target logical form. These architec-131

tures are completely dependent on KB-traversal for132

creating input context for logical form generation. 133

In contrast to this generative style, Pangu (Gu et al., 134

2023) uses language models to incrementally eval- 135

uate and discriminate between partial logical forms. 136

Some retrieval-based methods (Saxena et al., 2020, 137

2022) also perform ranking of answer paths to se- 138

lect answer nodes, however these methods are op- 139

timized to increase the similarity score between a 140

relation (partial answer path) and question. While 141

we perform contrastive-learning based one-shot 142

discrimination on fully-formed logical form candi- 143

dates as the final stage. 144

In addition to iid settings, transfer (Cao et al., 145

2022; Ravishankar et al., 2022) and few-shot (Li 146

et al., 2023) settings has also been studied for 147

KBQA. Here, test questions involve unseen KB re- 148

lations and entity types. These approaches use the 149

notion of generalizable sketches (also called drafts 150

or skeletons) that capture the syntax of the target 151

language. Such sketches are first generated and 152

then filled in with KB-specific arguments to con- 153

struct complete programs, which are then scored 154

and ranked. Notably, these transfer architectures 155

do not involve any traversal based component to 156

retrieve logical forms. 157

Unanswerability and specialized models for de- 158

tecting unanswerable questions have been studied 159

for different question answering tasks (Rajpurkar 160

et al., 2018; Choi et al., 2018; Reddy et al., 2019; 161

Sulem et al., 2022; Raina and Gales, 2022). How- 162

ever, no specialized models have been proposed 163

for detecting unanswerable questions in KBQA. 164

All existing KBQA models assume that questions 165

have valid logical forms with non-empty answers. 166

Even in the transfer setting for KBQA (Cao et al., 167

2022; Ravishankar et al., 2022), questions are still 168

assumed to be answerable in the target domain 169

though the logical forms may involve schema ele- 170

ments unseen during training. Recent work (Pati- 171

dar et al., 2023) has published the GrailQAbil- 172

ity benchmark by modifying the popular GrailQA 173

dataset (Gu et al., 2021) to incorporate various cat- 174

egories of unanswerable questions. This work also 175

demonstrates the shortcomings of loose adaptions 176

of existing KBQA models that assume answerabil- 177

ity for the detecting unanswerable questions. 178

3 Problem and Solution 179

We first briefly define the KBQA with unanswer- 180

ability task and then describe the architecture of 181

our proposed model RetinaQA. 182
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Figure 1: RetinaQA Architecture showing different components illustrated with an example question. Symbols l
and s represent candidate logical form and its score as Discriminator output, L the output logical form, A the final
answer, l(1) the top ranked logical form, Ex(l) the answer obtained by executing logical form l. NK and NA are
special symbols indicating No Knowledge (for logical form) and No Answer. The logical form in red under LF
Retriever would not be found if data element (C. Manning, works at, Stanford) is missing in the KB, and additionally
that in red under LF Integrator would not be found if relation works at is missing in KB schema and therefore not
retrieved by the Schema Retriever. The candidate logical form in red under Discriminator would not be found if
both of these are missing.

3.1 KBQA with Unanswerability183

A Knowledge Base G consists of a schema S with184

data D stored under it. The schema consists of185

entity types T and binary relations R defined over186

pairs of types. Together we refer to these as schema187

elements. The data D consists of entities E as in-188

stances of types T , and facts F ⊆ E × R × E.189

Together, we refer to these as data elements. We190

follow the definition of (Patidar et al., 2023) for191

defining the task of Knowledge Base Question An-192

swering (KBQA) with unanswerability. A natural193

language question q is said to be answerable for194

a KB G if it has a corresponding logical form l195

which when executed over G returns a non-empty196

answer A. In contrast, a question q is unanswerable197

for G, if it either (a) does not have a correspond-198

ing logical form that is valid for G, or (b) it has a199

valid logical form l for G, but which on executing200

returns an empty answer. The first case indicates201

that G is missing some schema element necessary202

for capturing the semantics for q. The second case203

indicates that the schema S is sufficient for q, but204

G is missing some necessary data elements for an-205

swering it. In the KBQA with unanswerability task,206

given a question q, if it is answerable, the model207

needs to output the corresponding logical form l208

and the non-empty answer A entailed by it, and if 209

it is unanswerable, the model either needs to out- 210

put NK (meaning No Knowledge) for the logical 211

form, or a valid logical form l with NA (meaning 212

No Answer) as the answer. While different for- 213

malisms have been proposed for logical forms, we 214

use s-expressions (Gu et al., 2021). These have 215

set-based semantics, functions with arguments and 216

return values as sets. 217

3.2 The RetinaQA Model 218

Fig. 1 shows the architecture of RetinaQA. At a 219

high level, RetinaQA has two stages - logical form 220

enumeration, followed by logical form ranking. 221

For logical form enumeration, RetinaQA follows 222

two complementary approaches and then takes the 223

union. The first is KB-traversal based retrieval. 224

Starting from linked entities in the question, Reti- 225

naQA traverses data-level KB paths and transforms 226

these to logical forms. The second is sketch-filling 227

based construction, which is critical when the KB 228

has missing data elements for the question. Here, 229

RetinaQA first generates logical form sketches 230

corresponding to the question, and then enumer- 231

ates semantically valid groundings for these by 232

retrieving relevant KB schema elements for filling 233

in the sketch arguments. Note that this approach 234

3



utilizes only the KB schema and avoids data. Once235

candidate logical forms are so identified, RetinaQA236

uses discriminative scoring to rank these logical237

forms with respect to the question. We next explain238

each of these components in more detail.239

Entity Linker: The pipeline starts with linking240

mentioned entities in the question with KB entities241

E. This is required for both logical form retrieval242

and logical form construction. We use an off-the-243

shelf entity linker (Ye et al., 2022) previously used244

in the KBQA literature (Shu et al., 2022; Gu et al.,245

2023). More details are in the Appendix A.1. If246

the mentioned entities are missing in the KB, the247

entity linker returns an empty set.248

Logical Form Retriever: As the first approach249

for enumerating logical forms, RetinaQA uses KB250

data path traversal (Ye et al., 2022). RetinaQA251

traverses 2-hop paths starting from the linked en-252

tities and transforms these to logical forms in s-253

expression. These logical forms are then scored254

according to their similarity with the question and255

the top-10 logical forms are selected for the next256

stage, as illustrated under LF Retriever in Fig. 1.257

Following (Ye et al., 2022), we score a logical form258

l and question q as:259

s(l, q) = LINEAR(BERTCLS([l; q])) (1)260

and optimize a contrastive objective for ranking:261

Lret = − exp(s(l∗, q))

exp(s(l∗, q)) +
∑

l∈L∧l ̸=l∗ exp(s(l, q))
(2)262

where l∗ is the gold-standard logical form for q and263

L is the set of logical forms similar to l∗. Note264

that the transformation to logical forms from KB-265

paths only covers certain operators (such as count),266

but not some others (such as argmin, argmax), so267

that this enumeration approach is not guaranteed268

to cover all logical forms. As illustrated in Fig. 1,269

this approach cannot retrieve the logical form in270

red when the relevant data path in the KB is broken,271

as by the absence of the data element (C. Manning,272

works at, Stanford) in our example.273

Logical Form Constructor: The second ap-274

proach used by RetinaQA for logical form enu-275

meration is sketch-filling. Drawing inspiration276

from the transfer approaches for KBQA (Cao et al.,277

2022; Ravishankar et al., 2022; Li et al., 2023),278

RetinaQA uses logical form sketches, which cap-279

ture KB-independent syntax of s-expressions with280

functions, operators and literals, and replace KB- 281

specific elements, specifically entities, entity types 282

and relations, with arguments. RetinaQA first gen- 283

erates sketches using a sketch generator, and in 284

parallel retrieves relevant schema elements as can- 285

didates for arguments using a schema retriever, 286

and finally fills in arguments for each candidate 287

sketch using the retrieved argument candidates in 288

all possible valid ways using a logical form inte- 289

grator. Since this style bypasses data-path based 290

KB-retrieval, this can construct valid logical forms 291

when these exist, even when some relevant data el- 292

ement for the question is missing in the KB, for ex- 293

ample when the data element (C. Manning, works 294

at, Stanford) is missing in the KB but the relation 295

works at is present in the KB schema. 296

Sketch Generator: The sketch generator takes 297

the question q as input and outputs a sketch s, opti- 298

mizing a cross-entropy-based objective: 299

Lsketch = −
n∑

t=1

log(p(st|s<t, q)) 300

Specifically, we fine-tune T5 (Raffel et al., 2020) 301

as the Seq2Seq model. We also perform constraint 302

decoding during inference to ensure syntactic cor- 303

rectness of the generated sketch. This step is unaf- 304

fected by any KB incompleteness. 305

Schema Retriever: To retrieve candidate argu- 306

ments for generated sketches, we follow the schema 307

retriever pipeline of TIARA (Shu et al., 2022). It is 308

a cross encoder and uses the form of Eqn.1 to score 309

a schema element x and the question q, and uses 310

an objective same as sentence-pair classification 311

task (Devlin et al., 2019) for optimization. We 312

train two retriever models, one for relations and 313

one for types, and use the top-10 types and top-10 314

relations as candidate arguments for each question. 315

As illustrated in Fig. 1, this step is affected when 316

relevant relations, such as works at, or entity types 317

are missing from the KB schema. 318

Logical Form Integrator: This component 319

grounds each generated candidate sketch using the 320

retrieved candidate arguments and also the linked 321

entities to construct complete logical form can- 322

didates. Each candidate sketch is grounded us- 323

ing every possible combination of arguments. A 324

symbolic checker ensures type-level validity of the 325

grounded logical forms for the KB G. This also 326

avoids a combinatorial blow-up and restricts the 327

space of logical form candidates. This component 328

does not involve any trainable parameters. 329
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Logical Form Discriminator: Finally, this com-330

ponent considers the union of logical form can-331

didates from the retriever and constructor compo-332

nents and scores and ranks these. A T5 encoder-333

decoder model is trained to compute scores. Fol-334

lowing Zhuang et al. (2022), we feed a (question,335

logical form) pair to the encoder and use decoding336

probability for a special token as ranking score.1337

This component uses a contrastive learning based338

optimization objective similar to Eqn.2. We per-339

form random negative sampling, typically covering340

all negative candidates, since the the set of negative341

candidates is very small. For a test question, the342

candidate logical forms are ranked according to the343

predicted discriminator scores. If the score of top-344

ranked candidate is below a threshold (tuned on345

validation set), it is classified as unanswerable i.e.346

l =NK. Otherwise, the top ranked candidate is pre-347

dicted as the logical form. This helps in identifying348

questions for which valid logical forms do not exist349

due to missing schema elements. For example, in350

Fig. 1, if the logical form in red is missing from351

the candidate list, the discriminator assigns a low352

score to the rank 1 logical form candidate, and NK353

is output after thresholding. Our experiments sug-354

gest that this also helps in separating correct and355

incorrect logical forms for answerable questions.356

4 Experiments357

We address the following research questions: (1)358

How does RetinaQA compare against baselines359

on both answerable and unanswerable questions360

in two different train-settings: one that have only361

answerable questions and the other that have both362

answerable and unanswerable questions? (2) How363

does RetinaQA perform for different categories of364

unanswerable questions? (3) What are the indi-365

vidual contributions of various model components366

towards the performance of RetinaQA in (1) and (2)367

above? (4) How does RetinaQA compare against368

baselines on only-answerable questions?369

4.1 Experimental Setup370

Datasets: For research questions (1), (2) and371

(3) above we use the GrailQAbility dataset, which372

is the only KBQA dataset that contains both an-373

swerable and unanswerable questions. For re-374

search question (4), we use the two most popular375

KBQA datasets with only answerable questions,376

1We use < extra_id_6 > token of T5 for tuning ranking
score.

namely GrailQA and WebQSP. GrailQA is a pop- 377

ular KBQA dataset that contains only answerable 378

questions. The background KB is Freebase. It con- 379

tains questions at various levels of generalization: 380

iid (seen schema elements), compositional (unseen 381

combination of seen schema elements) and zero- 382

shot (unseen schema elements). WebQSP also has 383

only answerable questions with Freebase as the KB, 384

but unlike GrailQA, where the questions are syn- 385

thetically constructed, contains real user queries 386

annotated with logical forms. It only has IID test 387

questions. GrailQAbility is a recent dataset that 388

adapts GrailQA to additionally incorporate unan- 389

swerable questions. The unanswerable questions 390

are constructed by systematically dropping data 391

and schema elements from the KB. More details 392

are added in the appendix A.4. 393

Evaluation Metrics: We primarily focus on evalu- 394

ating the logical form using the Exact Match (EM) 395

metric, which verifies whether the predicted logical 396

form is same as the gold logical form (which is NK 397

for unanswerable questions with missing schema 398

element). We also evaluate the answers using the 399

F1 score, which compares the predicted answers 400

with the gold answers. For unanswerable ques- 401

tions, similar to prior work (Patidar et al., 2023), 402

we report two F1 scores – the strict score com- 403

pares the list of answers based on the given incom- 404

plete KB. and lenient score - it does not penalize 405

a model for returning ideal answers i.e. it accepts 406

answers wrt to both KBs - the ideal/complete KB 407

and new/incomplete KB. In a way, it evaluates the 408

model’s ability to infer missing paths and predict 409

the correct answer 410

Baselines: We compare RetinaQA against ex- 411

isting state-of-the-art KBQA models, as per the 412

GrailQA leaderboard and code availability. These 413

are TIARA (Shu et al., 2022), RnG (Ye et al., 414

2022), and Pangu (Gu et al., 2023). Of these, the 415

first two are shown to the best performing mod- 416

els on GrailQAbility, and Pangu is a SoTA model 417

for GrailQA2 and WebQSP (Gu et al., 2023). For 418

fair comparison, all models use the same entity 419

linker (Ye et al., 2022) and T5-base as base LLM. 420

For GrailQAbility, we adapt all models appropri- 421

ately for unanswerability. Specifically, we perform 422

thresholding (denoted as "+T") on entity disam- 423

biguation and logical form generation to output 424

NK. The thresholds are tuned on the dev set. Addi- 425

tionally, we train the models using both answerable 426

2https://dki-lab.github.io/GrailQA/
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Train Model Overall Answerable Unanswerable
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG 67.80 65.60 51.60 78.10 78.10 74.20 46.90 40.10 5.70
RnG+T 67.60 65.80 57.00 71.40 71.30 68.50 59.90 54.50 33.60
Tiara 75.05 72.84 53.69 80.03 80.00 75.63 64.95 58.31 9.20
Tiara + T 73.26 71.62 55.23 74.08 74.05 70.56 71.60 66.68 24.15
Pangu 63.09 60.06 54.55 78.72 78.7 74.00 31.40 22.25 15.13
Pangu + T 79.14 77.89 66.53 75.52 75.51 72.37 86.48 82.70 54.68
RetinaQA 76.83 75.24 64.54 81.22 81.2 77.41 67.93 63.16 38.45
RetinaQA+ T 83.30 82.18 73.76 81.19 81.17 75.01 87.59 84.22 71.20

A+U

RnG 80.50 79.40 68.20 75.90 75.90 72.60 89.70 86.40 59.40
RnG+T 77.80 77.10 67.80 70.90 70.80 68.10 92.00 89.80 67.20
Tiara 78.29 77.43 66.29 71.33 71.32 68.29 92.4 89.82 62.24
Tiara + T 77.67 76.94 66.87 69.89 69.88 66.98 93.43 91.24 66.65
Pangu 63.59 60.42 53.79 79.45 79.42 73.49 31.42 21.89 13.85
Pangu +T 78.29 76.91 66.14 75.25 75.22 71.62 80.46 80.32 55.03
RetinaQA 77.31 75.71 64.79 80.98 80.97 76.95 69.87 65.04 40.14
RetinaQA+ T 83.30 82.69 77.45 77.91 77.91 75.16 94.21 92.38 82.10

A+U
RetinaQA - LFR + T 77.36 76.37 65.37 73.40 73.39 70.90 85.38 82.43 54.17
RetinaQA - LFI + T 74.89 73.53 53.89 70.89 70.85 68.07 83.01 78.95 25.13
RetinaQA - (SG ∪ SR) + T 64.68 62.58 52.46 72.99 72.95 68.13 47.84 41.54 20.70

Table 1: Performance of different models on the GrailQAbility dataset: overall and for answerable and unanswerable
questions. A indicates training with answerable questions, A+U with answerable and unanswerable questions, +T
indicates thresholding. Ablations of RetinaQA are named as RetinaQA - X, where we denote logical form retriever
as LFR, logical form integrator as LFI and sketch generator and schema retriever together as (SG ∪ SR).

Train Model Schema Element Missing Data Element Missing
Type Relation Mention Entity Other Entity Fact

F1(R) EM F1(R) EM F1(R) EM F1(R) EM F1(R) EM

A

RnG+T 55.50 49.50 57.10 46.60 44.70 40.30 56.00 11.50 58.60 13.90
Tiara + T 66.27 21.70 70.21 28.06 61.01 23.43 68.91 22.97 68.29 23.63
Pangu + T 87.97 87.50 80.07 79.63 90.57 90.41 83.19 0.00 76.48 1.07
RetinaQA+ T 86.32 80.31 79.41 62.08 90.72 77.83 85.71 68.07 84.68 71.14

A+U

RnG+T 93.40 86.80 89.70 85.50 92.10 89.60 87.10 30.80 86.00 32.50
Tiara + T 91.63 83.84 90.90 72.37 94.50 71.38 91.60 50.42 90.38 52.85
Pangu+T 90.80 90.68 78.66 78.44 90.41 90.25 74.51 0.00 69.71 0.95
RetinaQA+ T 94.22 90.21 88.52 81.91 94.34 86.64 93.84 75.91 94.30 76.13

Table 2: Performance of different models for the unanswerable questions in GrailQAbility, grouped by categories of
KB incompleteness. Note that missing mention entities result in invalid logical form, while other missing entities
lead to valid logical form with no answer.

and unanswerable questions (denoted as A+U train-427

ing vs A training). Further implementation details428

are in the Appendix A.2.429

4.2 Results for KBQA with Unanswerability430

Table 1 reports aggregate performance on GrailQA-431

bility. With A+U Training, RetinaQA+T outper-432

forms all models overall and is about 9 pct points433

ahead of the closest competitor (Pangu+T) in term434

of EM. For unanswerable questions, RetinaQA435

achieves a 16 pct points improvement, while be-436

ing consistently better for answerable questions.437

Unsurprisingly, thresholding helps all models for438

unanswerable questions and hurts slightly for an-439

swerable ones. This drop is relatively small for440

Pangu and RetinaQA, suggesting that they are bet-441

ter calibrated due to their discriminative training.442

Table 2 drills down on performance for different 443

categories of unanswerability. First, we observe 444

that for the baselines, performance varies signifi- 445

cantly across different categories. Pangu is good 446

for missing schema elements but the worst for miss- 447

ing data elements. TIARA is the best baseline for 448

missing data elements but is not as good for missing 449

schema elements. The reasons for such behaviors 450

are described in the Appendix(Sec. A.3.1). We ob- 451

serve that RetinaQA performs the best by a large 452

margin for questions with missing data elements, 453

and comparably with Pangu for missing schema 454

elements, making it the overall model of choice 455

across different categories of unanswerability. We 456

also note that RetinaQA with thresholding results 457

in minimal or no loss for questions with missing 458

data (which have valid logical forms), and in huge 459
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gains for questions with missing schema elements.460

As a testimony to its robustness, in the A Train-461

ing setting, RetinaQA achieves comparable perfor-462

mance for answerable and unanswerable questions,463

with a gap of only 4 pct points for EM. This gap is464

18 to 45 pct points for other models. Other trends465

are very similar to the A+U setting. Additionally,466

we see that RetinaQA largely outperforms existing467

models across different generalization settings for468

answerable (Table 3) and unanswerable questions469

(Table 6 in appendix). For answerable questions,470

RetinaQA beats previous the best results for IID471

and compositional generalization, but for zero-shot472

generalization, RetinaQA has a slightly worse per-473

formance than Pangu. This is mainly because of474

the traversal dependence trade-off, as we explain475

further in Section 4.4.476

4.3 Results for Answerable-only KBQA477

Since RetinaQA performs the best for answerable478

questions as well in GrailQAbility, we also evaluate479

it for traditional KBQA benchmarks with only an-480

swerable questions. Since all questions are answer-481

able in this setting, we apply Execution Guided482

Check (EGC) as the final step for all models in-483

cluding RetinaQA. With EGC, models output the484

highest-ranked logical form which when executed485

over the KB returns a non-empty answer. In Ta-486

ble 4, we report results on GrailQA. We find that487

overall RetinaQA beats previous state of the art488

by around 1.2 pct points for F1 and 1.8 pct points489

for EM, establishing a new state-of-the-art for this490

dataset. We also see that, as for answerable ques-491

tions in GrailQAbility, here too RetinaQA performs492

the best for IID and compositional generalization,493

and performs almost at par with Pangu for zero-494

shot generalization.495

Further analysis shows that RetinaQA performs496

well across questions of various complexities. It is497

the best model for 1, 2, and 4-hop questions, while498

it is outperformed by TIARA for 3-hop questions499

Table 13. More details are in Appendix A.3.2.500

In Table 5, we record results for WebQSP.Here,501

RetinaQA outperforms Pangu by 0.3 pct points502

but ranks below TIARA by 0.5 pct points, further503

establishing the usefulness of its architecture for504

answerable-only KBQA as well.505

4.4 Ablation Study506

Here we assess the contributions of the different507

components in RetinaQA. First, we remove (one508

at a time) the three key components: the logical509

form integrator (LFI), the logical form retriever 510

(LFR), and the coupled sketch generator (SG) and 511

schema retriever (SR). The last three rows of Ta- 512

ble 1 shows that at the aggregate level all compo- 513

nents contribute towards RetinaQA’s performance 514

on GrailQAbility to different extents for answer- 515

able and unanswerable questions. 516

Next, we drill down into specific question cat- 517

egories. First, we study the recall of the correct 518

logical form within the candidate set for unanswer- 519

able questions with missing data elements. If we 520

remove SR and SG, the resulting RetinaQA ab- 521

lation only retrieves candidate logical forms via 522

traversal. We find that removing SR and SG results 523

in a massive 65 pct point drop in recall. In contrast, 524

removing LFR does not hurt much (see Table 11 525

in appendix). This agrees with our intuition that 526

when relevant data is missing, traversal necessarily 527

retrieves irrelevant logical forms. 528

Next, we study the impact of traversal-dependent 529

logical form retrieval on the recall of the right logi- 530

cal form for answerable questions. Removing LFR 531

(and also SR+SG) results in a substantial drop in 532

recall (Table 12 in appendix). Also, LFR has sig- 533

nificantly impact for the zero-shot generalization 534

subset of answerable questions. For question forms 535

unseen during training, KB-traversal is the only 536

reliable approach for retrieving logical forms. 537

Finally, we evaluate the impact of LFI and EGC 538

in reducing the space of logical form candidates 539

for the discriminator, by pruning out invalid log- 540

ical forms, in the answerable setting in GrailQA. 541

By switching off LFI and EGC separately, we see 542

about 4 pct points and 2 pct point performance 543

drops respectively. However, on switching off both 544

together, a 17 pct point drop is observed (Table 10 545

in appendix). This suggests that these components 546

can compensate for each other, but at least one of 547

them is needed for good performance. 548

Additional ablations over questions of different 549

complexities show that SG and SR contribute more 550

to the performance of 3-hop and 4-hop questions. 551

See Sec. A.3.2 for more details. 552

4.5 Error Analysis 553

We now briefly report a summary of error analy- 554

sis for RetinaQA on GrailQAbility. More details 555

are in Sec. A.3.3. We use the the best version 556

RetinaQA+T (A+U). There are three main error 557

categories: (1) thresholding error, where, due to 558

thresholding, RetinaQA incorrectly predicts NK for 559
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Train Model IID Compositional Zero-Shot
F1(L) F1(R) EM F1(L) F1(R) EM F1(L) F1(R) EM

A

RnG 85.50 85.40 83.20 65.90 65.90 60.20 72.70 72.70 67.30
Tiara 86.53 86.47 84.52 72.02 72.02 64.93 74.24 74.24 67.60
Pangu 82.00 81.97 79.09 71.63 71.63 65.95 77.02 77.02 70.18
RetinaQA 87.94 87.90 85.85 73.92 73.92 67.48 74.84 74.84 69.68

A+U

RnG 85.40 85.30 83.30 65.80 65.80 60.80 66.90 66.90 62.60
Tiara 82.38 82.36 80.57 65.16 65.16 59.84 58.50 58.50 54.65
Pangu 81.08 81.01 76.85 77.43 77.43 69.52 78.01 78.01 70.42
RetinaQA 89.00 88.98 87.06 71.69 71.69 65.55 73.59 73.59 67.51

Table 3: Performance of different models for answerable questions in the GrailQAbility dataset, for IID, composi-
tional, and zero-shot test scenarios. Names have the same meanings as in Table 1.

Model Overall IID Compositional Zero-Shot
F1 EM F1 EM F1 EM F1 EM

RnG 85.50 83.20 85.50 83.20 65.90 60.20 72.70 67.30
Tiara 81.90 75.30 91.20 88.40 74.80 66.40 80.70 73.30
Pangu 82.16 75.90 86.38 81.73 76.12 68.82 82.82 76.29
RetinaQA 83.33 77.84 91.22 88.58 77.49 70.48 82.32 76.20

Table 4: Performance of different models on GrailQA (validation set) (which has only answerable questions) for
IID, compositional, and zero-shot test scenarios. Note that we beat previous SOTA on GrailQA.

Model F1
Tiara 75.80
Pangu 75.00
RetinaQA 75.30

Table 5: Performance of different models on WebQSP
(test set) containing only IID answerable questions. We
use the WebQSP evaluation script that only reports F1.

a question with a valid logical form; (2) reranking560

error, where the discriminator makes a mistake in561

scoring, though the candidates contain the correct562

logical form, and (3) recall error, where the correct563

logical form is not in the set of discriminator can-564

didates. This may be due to errors in entity linking,565

logical form retrieval or logical form construction.566

On the subset of answerable questions, threshold-567

ing and reranking errors occur in around 37.67%,568

and 30% of questions, respectively. The most fre-569

quent error is recall error (70%). Among these,570

entity linking errors occur 80% of the time. Unsur-571

prisingly, the majority of the errors of all categories572

occur for the zero-shot generalization questions.573

Detailed statistics are in Table 8. For unanswer-574

able questions with missing data elements, (around575

90%) of errors are recall errors, out of which about576

72% are attributable to the entity linker, 45% to577

thresholding and 5% to reranking. See Table 9 for578

more details. Finally, for the subset of unanswer-579

able questions with missing schema elements, 14%580

have errors, all due to thresholding. 90% of these581

occur for zero-shot generalisation.582

5 Conclusions 583

We have presented RetinaQA, the first specialized 584

KBQA model that shows robust performance for 585

both both answerable and unanswerable questions. 586

For this, RetinaQA unifies key aspects of KBQA 587

models previously used separately for answerable- 588

only iid and transfer settings so that candidate 589

logical forms are identified using data-traversal 590

based retrieval, as well as schema-based genera- 591

tion via sketch-filling that bridges over data gaps 592

that break traversal. RetinaQA also discriminates 593

between fully formed candidate logical forms at 594

the final stage instead of generating these. This 595

enables it to better differentiate between valid 596

and invalid logical forms. We show that Reti- 597

naQA is the first model that demonstrates stable 598

performance across adaptation strategies, across 599

answerable and different categories of unanswer- 600

able questions, and across different generalization 601

settings for answerable and unanswerable ques- 602

tions. By comparing against state-of-the-art KBQA 603

models adapted extrinsically for answerability, we 604

show that RetinaQA performs significantly bet- 605

ter for unanswerable questions and almost at par 606

for answerable ones. RetinaQA also retains this 607

stability for answerable-only KBQA benchmarks, 608

achieving a new state-of-the-art performance on the 609

answerable-only GrailQA dataset. We will make 610

our code-base 3 public for further research. 611

3https://anonymous.4open.science/r/
RETINAQA-122B
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6 Limitations612

A sketch, while free of references to the KB, still613

specifies the length of the path to be traversed in614

the KB. The subsequent grounding step is limited615

by this and cannot adapt the path length after re-616

trieving schema elements from the KB. RetinaQA617

inherits this limitation from existing sketch gener-618

ation approaches (Cao et al., 2022; Ravishankar619

et al., 2022). We hope to improve this in future620

work.621

For unanswerable questions without valid logical622

forms for the given KB, RetinaQA only outputs623

l =NK. However, this does not explain the gap in624

the schema, which, if bridged, would have make625

this question answerable. The situation is similar626

for unanswerable questions with valid logical forms627

but missing data elements. This is also an important628

area of future work.629

7 Risks630

Our work does not have any obvious risks.631
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A Appendix 794

Train Model IID Zero-Shot
F1(R) EM F1(R) EM

A+U

RnG 91.90 73.30 81.70 47.10
RnG+T 94.30 75.90 85.90 59.50
Tiara 93.76 75.22 86.35 50.84
Tiara + T 95.10 77.77 87.86 56.88
Pangu 21.40 12.17 22.32 15.32
Pangu +T 80.51 57.52 80.15 52.85
RetinaQA 64.59 36.43 65.44 43.40
RetinaQA+ T 97.01 89.94 88.31 75.22

Table 6: Performance of different models for unanswer-
able IID and zero-shot test scenarios in GrailQAbility.
Names have the same meanings as in Table 1.

Train Model Full Z-Shot Partial Z-Shot
F1(R) EM F1(R) EM

A+U

RnG 87.20 75.90 78.00 40.00
RnG+T 89.70 86.70 83.10 71.00
Tiara 90.15 68.97 80.25 40.45
Tiara + T 90.64 78.82 82.64 54.14
Pangu 24.63 20.69 21.18 15.76
PAngu +T 89.66 89.66 79.94 79.46
RetinaQA 57.64 25.12 43.47 11.31
RetinaQA+ T 88.67 77.83 80.89 70.54

Table 7: Performance of different models for partial
zero-shot and full-zero test scenarios in GrailQAbility.
Names have the same meanings as in Table 1.

A.1 Entity Linker 795

We use an off-the-shelf entity linker (Ye et al., 796

2022) previously used in the KBQA literature (Shu 797

et al., 2022; Gu et al., 2023), which uses a standard 798
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Components Overall IID Compositional Zero-shot
#questions 6808 3386 981 2441

#errors 1691 445 347 899
thresholding_error 637 161 113 363

reranking_error 508 49 134 325
coverage_error 1183 396 213 574

entity_linking_error 949 343 136 470
schema_retriever_error 460 61 77 322

sketch_parser_error 420 43 154 22

Table 8: Component wise errors of RetinaQA+ T (A+U) for answerable questions

Components Overall IID Zero-shot
#questions 1196 530 666

#errors 287 127 160
thresholding_error 131 59 72

reranking_error 16 5 11
coverage_error 271 122 149

entity_linking_error 195 77 118
schema_retriever_error 56 29 27

sketch_parser_error 49 27 22

Table 9: Component wise errors of RetinaQA+ T (A+U)
for data element missing unanswerable questions

3-staged pipeline - Mention Detection, Candidate799

Generation, and Entity Disambiguation. Mention800

Detector first identifies span of text from question801

which corresponds to name of an entity. For each802

mention a set of candidates entities are generated803

using alias mapping of FACC1 (Gabrilovich et al.,804

2013). Final stage is a neural disambiguator which805

rank candidates given the question and context of806

entities.807

A.2 Implementation Details808

To perform experiments for GrailQAbility, we first809

update the original Freebase KG using codebase4.810

To test baselines for GrailQAbility, we use the ex-811

isting codebases5 6 7 and make changes in code812

to adapt for answer-ability detection. All of the813

baselines assumes answerability and employs Ex-814

ecution Guide Check i.e. if a logical form returns815

an empty answer upon execution then they select816

next best logical form. We have removed this con-817

straint while performing experiments for GrailQA-818

bility. Also for A+U training we have made code819

changes so that models can be trained to predict820

logical form as NK unanswerable questions. We821

implement our model using Pytorch (Paszke et al.,822

4https://github.com/dair-iitd/GrailQAbility
5https://github.com/dki-lab/Pangu
6https://github.com/microsoft/KC/tree/main/

papers/TIARA
7https://github.com/salesforce/rng-kbqa

2019) and Hugging Face8. All the experiments of 823

RetinaQA are performed using an NVIDIA A100 824

GPU with 80 GB RAM. Above mentioned con- 825

figurations are the maximum ones, since we have 826

different components and all do not require same 827

compute configurations. For Sketch Generation 828

we fine tune Seq2Seq t5-base model for 10 epochs 829

(fixed). We use learning rate of 3e-5 and batch size 830

of 8. We use beam search during decoding with 831

beamsize = 10. We also check syntactic correct- 832

ness while selecting top ranked sketch. Training 833

time for sketch parser is around 3 hours. LF Integra- 834

tor is a parameter free module and does not require 835

any training. Since, LF Integrator converts logical 836

forms into query-graphs and validates type-level 837

constraints, it is a costly operation. So we em- 838

ploy parallel processing(with cache) for this stage 839

i.e. we use 4-6 CPUs (each with 2 cores) to cre- 840

ate pool of valid logical forms. It takes around 5 841

hours to generate candidates for all train, dev and 842

test data. Finally we train Discriminator which 843

fine-tune t5-base Seq2Seq model. We train Dis- 844

criminator with learning rate 1e-4 and batch size 4 845

for 10 epochs. For discriminator training we use 846

AdmaW (Loshchilov and Hutter, 2019) optimizer 847

and linear scheduler with warm up ratio of 0.01. 848

We use 64 negative samples per question for con- 849

trastive training. Generally discriminator model 850

converges in 2 epochs of training so we use pa- 851

tience of 2 i.e. if best model does not change for 852

consequent 2 epochs then we assume model has 853

converged and will stop training. It takes around 854

7-8 hours to train a discriminator. Inference time 855

for discriminator is few minutes. 856

For A+U training components like Entity Linker, 857

Schema Retriever, LF Retriever are trained only 858

on question where logical form is known. While 859

training for questions with l ="NK" is performed 860

only at last step. 861

All the results presented for single run (however 862

8https://huggingface.co/
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Model Overall IID Compositional Zero-Shot
F1 EM F1 EM F1 EM F1 EM

RetinaQA’ 83.33 77.84 91.22 88.58 77.49 70.48 82.32 76.2
RetinaQA’ - EGC 80.62 75.68 89.81 87.7 74.78 68.1 79.03 73.58
RetinaQA’ - LFI 78.65 73.1 88.1 84.81 75 67.31 76.04 70.4
RetinaQA’ - LFR 71.8 68.33 87.33 85.56 69 63.47 66.19 62.83

RetinaQA’ - (SG ∪ SR) 73.2 66.78 77.06 72.13 60.63 54.43 76.73 69.56
RetinaQA’ - LFI - EGC 63.29 59.99 79.84 77.84 59.33 54.03 57.73 54.68

Table 10: Ablation experiment on GrailQA dev set. EGC refers to Execution Guided Check and LFI refers to
Logical Form Integrator, RetinaQA’ = RetinaQA + EGC

Model Overall IID Zero-shot
RetinaQA 77.34 76.98 77.63

RetinaQA- LFR 77.17 76.79 77.48
RetinaQA- SP - SR 12.29 10 14.11

Table 11: Ablation experiment of Logical Form Cover-
age(%) on GrailQAbility test set. LFR refers to Logical
Form Retriever, SP refers to Sketch Parser and SR refers
to Schema Retriever.

the reproducibility of results is already verified).863

We release our code-base9 for the community.864

A.3 In Depth Analysis865

A.3.1 Trade-off Analysis866

Sec 4.4 describes how individual components867

strengthens performance for different types of an-868

swerabilties and unanswerabilties. This section869

discusses an important trade-off i.e. Traversal870

dependent Retrieval Vs Traversal independent871

Retrieval : Traversal based Retrieval methods per-872

form step by step enumeration over KB to retrieve873

next possible set of candidates(which is retrieval at874

data level). While Traversal independent Retrieval875

based method generate candidates based on seman-876

tic similarity with the question(which is at schema877

level). So for Data Element Missing unanswerabil-878

ity where data paths are missing, Traversal based879

methods will never find correct path during enu-880

meration and hence will not be able to reach to a881

correct logical form. While Traversal independent882

method can generate correct logical form. Hence883

Traversal independent methods performs well for884

data element missing.885

At the same time the search space for Traversal886

independent methods is much larger as it lacks KB887

grounding information. So for zero-shot generali-888

sation where schema elements are unseen Traversal889

dependent tends to get confused between similar890

schema elements.891

9https://anonymous.4open.science/r/
RETINAQA-122B

A.3.2 Complexity Analysis 892

Tab. 13 records the performance of RetinaQA for 893

queries of different complexities represented by 894

number of relations in s-expression (or number of 895

hops in answer path). We can see that for 1-hop 896

and 2-hop questions RetinaQA is better than both 897

baselines, while for 3-hop questions RetinaQA is 898

not the best but is better than Pangu. Further by 899

comparing ablations i.e. without Logical Form Re- 900

triever and without (Sketch Generation and Schema 901

Retriever) we can see that Sketch Generation and 902

Schema Retriever contribute more to the perfor- 903

mance of 3-hop and 4-hop questions. 904

A.3.3 Error Analysis 905

We now briefly report a summary of error analysis 906

for RetinaQA on GrailQAbility. For this, we use 907

the A+U training with thresholding version which 908

is the most robust. All errors can be classified 909

into three categories: (1) thresholding error, where, 910

due to thresholding, RetinaQA incorrectly predicts 911

NK for a question with a valid logical form; (2) 912

reranking error, where even though the correct 913

logical form is present in the pool of candidates, 914

the discriminator makes a mistake in scoring; and, 915

(3) recall error, where the correct logical form is 916

not in the set of candidates considered by the dis- 917

criminator due to errors in the earlier stages. This 918

may include errors in entity linking, logical form 919

retrieval or logical form construction (via sketch 920

generation and schema retrieval). 921

On the subset of answerable questions, threshold- 922

ing and reranking errors occur in around 37.67%, 923

and 30% of questions, respectively. The most fre- 924

quent error is recall error (70%). Among these, 925

entity linking errors occur 80% of the time. Unsur- 926

prisingly, the majority of the errors of all categories 927

occur for the zero-shot generalization questions. 928

Detailed statistics are in Table 8. 929

For unanswerable questions, we first look at 930

those with missing data elements. We find that 931
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Model Overall IID Compositional Zero-shot
RetinaQA 82.62 88.3 78.29 76.49

RetinaQA- LFR 74.24 85.91 67.38 60.79
RetinaQA- SP - SR 71.94 74.22 65.24 71.49

Table 12: Ablation experiment of Logical Form Coverage(%) on GrailQAbility test set for Answerable questions.
LFR refers to Logical Form Retriever, SP refers to Sketch Parser and SR refers to Schema Retriever.

#relation 1 2 3 4
Pangu 82.8 63.5 24.7 0.0
Tiara 81.2 64.7 29.3 50.0

RetinaQA 83.7 68.5 26.9 50.0
RetinaQA - LFR 76.3 50.9 25.1 50.0

RetinaQA - SG_SR 72.9 56.9 12.0 0.0

Table 13: Performance for different types of questions
on the GrailQA validation set in terms of EM. #relation
denotes the number of relations in the s-expression.

the vast majority of errors (around 90%) are recall932

errors, out of which about 72% are attributable to933

the entity linker. This occurs when mentioned enti-934

ties in the question are missing in the KB, but entity935

linker outputs spurious entities. Thresholding er-936

ror accounts for 45% of errors, while reranking937

errors only occurs in 5% of questions. This sug-938

gests that the discriminator is calibrated well for939

relative ranking of logical forms, but still errs in940

assigning correct absolute scores to logical forms.941

See Table 9 for more details.942

Finally, we look at the subset of unanswerable943

questions with missing schema elements. Since for944

these, the gold logical form is NK, thresholding945

error can be only source of error. This occurs only946

14% of time, out of which 90% errors occur for947

zero-shot generalisation. This indicates that model948

is largely good in this setting, but makes some949

mistakes in absolute scoring of logical forms with950

schema elements not seen during training.951

A.4 GrailQAbility - Dataset Creation952

We summarise the dataset creation algorithm of953

GrailQAbility (Patidar et al., 2023) here. In a954

nutshell, the authors start with a standard KBQA955

dataset containing only answerable questions for956

a given KB. Then they introduce unanswerability957

in steps, by deleting schema elements (entity types958

and relations) and data elements (entities and facts)959

from the given KB. They mark questions that be-960

come unanswerable as a result of each deletion961

with appropriate unanswerability labels. So start-962

ing from a larger set of all answerable questions,963

the authors create two subsets of data - one set964

of answerable questions and another set of unan- 965

swerable questions (which are unanswerable due 966

to missing structures in graph/KB). 967
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