
FedMBridge: Bridgeable Multimodal Federated Learning

Jiayi Chen 1 Aidong Zhang 1

Abstract
Multimodal Federated Learning (MFL) addresses
the setup of multiple clients with diversified
modality types (e.g. image, text, video, and au-
dio) working together to improve their local per-
sonal models in a data-privacy manner. Prior
MFL works rely on restrictive compositional neu-
ral architecture designs to ensure inter-client in-
formation sharing via blockwise model aggrega-
tion, limiting their applicability in the real-world
Architecture-personalized MFL (AMFL) sce-
narios, where clients may have distinguished mul-
timodal interaction strategies and there is no re-
striction on local architecture design. The key
challenge in AMFL is how to automatically and
efficiently tackle the two heterogeneity patterns–
statistical and architecture heterogeneity–while
maximizing the beneficial information sharing
among clients. To solve this challenge, we pro-
pose FedMBridge, which leverages a topology-
aware hypernetwork to act as a bridge that can au-
tomatically balance and digest the two heterogene-
ity patterns in a communication-efficient man-
ner. Our experiments on four AMFL simulations
demonstrate the efficiency and effectiveness of
our proposed approach.

1. Introduction
Personalized Federated Learning (PFL) (Arivazhagan et al.,
2019; T Dinh et al., 2020; Deng et al., 2020) provides a col-
laborative training scheme, allowing multiple clients to train
their personal models simultaneously while taking benefits
from each other’s learning experiences with a guarantee of
data privacy. With recent advancements of multi-sensory
devices, Multimodal Federated Learning (MFL) (Chen
& Zhang, 2022; Zhao et al., 2021; Xiong et al., 2022) in-
corporating diverse modality types (e.g. image, video, text,

1Department of Computer Science, University of Virginia,
Charlottesville, VA 22903, USA. Correspondence to: Jiayi Chen
<jc4td@virginia.edu>, Aidong Zhang <aidong@virginia.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

and audio) into the PFL systems has become a significant
research area. For example, in vision-centered MFL, clients
could leverage various auxiliary modalities, such as text
and audio, to boost the unimodal vision-only models; some
clients learn only the image modality, some learn to fuse
image and audio modalities, and some others may focus on
modeling image-text interactions.

A key challenge in MFL is how to encourage knowledge
sharing among clients with diversified neural architectures
due to their inconsistent input modality types. To address
this challenge, prior MFL approaches (Zhao et al., 2021;
Chen & Zhang, 2022; Yu et al., 2023) have leveraged a com-
positional neural architecture design (i.e., neural architec-
tures are made of common smaller blocks) for a blockwise
knowledge sharing scheme. However, these methods re-
quire that all clients’ models should be splittable into blocks
as well as use the same multimodal fusion flow, which have
ignored three real-world characteristics of MFL. (1) Task
complexity difference. Due to personalization, clients may
vary greatly in their complexity of modeling the inter-modal
interactions, with some local tasks being more complex than
others. In this situation, it is essential for different clients to
employ diverse neural network sizes or even utilize varied
network families that align with their personal data distri-
butions. (2) Multimodal pattern difference. Studies in
Multimodal Fusion (Atrey et al., 2010; Gao et al., 2020)
have demonstrated that the patterns of inter-modal inter-
actions can also shift across clients, necessitating distinct
mechanisms for effective learning (Atrey et al., 2010; Gao
et al., 2020). For example, some image-text clients may ben-
efit from just a straightforward concatenation of different
modalities’ features; some image-audio clients may need an
element-wise alignment; and some image-text-audio clients
may need a complex intra- and inter-modal attention mech-
anism. (3) Resource budget difference. In real systems,
client devices can be mobile phones, tablets, and personal
computers, thus vary greatly in computation resource bud-
gets (e.g., computation capacity, memory, storage, and net-
work bandwidth). A client with poor resource cannot afford
large-size models, such as pre-trained large foundation mod-
els, while a resource-rich client can benefit from it.

Motivated by the above practical MFL properties under-
explored in prior works, it is natural to consider the coex-
istence of diverse multimodal fusion strategies, as well as

1

FedMBridge: Bridgeable Multimodal Federated Learning

different widths, depths, and architecture topologies across
the clients in an MFL system. We name such MFL scenar-
ios as Architecture-personalized MFL (AMFL), where
different clients’ neural networks might adopt structurally
distinct computational flows and thus are non-splittable into
global common blocks. As an analogy, AMFL can be
likened to a social scenario where individuals who think
in different ways to engage in efficient communication with
each other. Different from traditional MFL that can be
solved by manual block split, in AMFL we have no prior
knowledge on how heterogeneous architectures are corre-
lated with each other. Therefore, the unique challenge of
AMFL, which is different from traditional MFL, is how to
employ an automatic way to tackle the architecture gap dur-
ing knowledge sharing among statistically-heterogeneous
and architecture-heterogeneous clients.

Real-world AMFL systems have observed limitations of
existing straightforward approaches in tackling this novel
challenge. First, one might consider that using a globally-
shared large language model to unify all different local tasks
could be enough to overcome AMFL. However, the commu-
nication would be forbiddingly expansive and many local
devices may not afford such an expansive model. Moreover,
although some unimodal PFL approaches have explored
the settings with diversified neural architectures, includ-
ing feature-sharing methods (Ahmad & Aral, 2022; Zhu
et al., 2021; Yang et al., 2021; Yao et al., 2023) and explicit
parameter-sharing methods (Diao et al., 2021; Hong et al.,
2022; Kim et al., 2023; Dai et al., 2022), these methods
have shown to be inefficient in AMFL scenarios, since the
diverse model topologies in AMFL either impose a costly
workload on the server or require long time for uploading
and downloading a large super-network at each communica-
tion round. Also, these methods struggle to maximize the
beneficial knowledge sharing among clients, especially with
significant topology differences among models.

Different from existing MFL/PFL works, we propose a
novel implicit parameter-sharing PFL framework to solve
the AMFL challenge, namely FedMBridge. The main idea
is that, instead of sharing original weights across diverse
weight spaces, we introduce a global bridge function that
learns to perform knowledge sharing on a globally-shareable
latent space. Intuitively, the bridge function is held on the
server to act as a “bridge”, which balances and digests the
two disentangled heterogeneity patterns (i.e., statistical and
architecture heterogeneity) and then generates local weights
in the raw statistical-architectural entangled heterogeneity
pattern. To achieve such a bridge function, we introduce a
Topology-Aware HyperNetwork (TAHN), which is for-
mulated as a two-stage process: the first stage encodes the
implicit roles of each layer using graph neural networks, and
the second stage aims to combine the layer-role information
with task information to reconstruct local weights.

Our contributions are threefold: (1) We study an under-
explored AMFL problem. To the best of our knowledge,
this is one of the first works that tackle the collaboration of
diversified multimodal fusion strategies for general-purpose
federated AI systems. (2) We propose the FedMBridge
framework to solve AMFL, where we introduce a brand-new
Topology-aware HyperNetwork to automatically balance
and digest architecture gap and statistical heterogeneity in
an efficient manner. (3) We evaluate our approach on four
AMFL simulations, which demonstrates the effectiveness
of our approach to addressing AMFL.

2. Related Works
Personalized Federated Learning (PFL). PFL (Ari-
vazhagan et al., 2019; T Dinh et al., 2020; Deng et al.,
2020) is a learning paradigm that enables multiple clients to
train their own personal models in parallel while collabo-
rating with each other such that each local model can draw
upon the learning experiences of others. PFL typically deals
with the challenge of how to share valuable knowledge
among client models who are trained from distinct local
distributions, i.e., statistical heterogeneity or Non-IIDness.
Considering what types of knowledge to be shared among
clients, PFL methods can be categorized into two families:
(1) Feature-sharing PFL employs the local models’ predic-
tions or intermediate features as the forms of knowledge
shared among clients. For example, FedDistill (Jiang et al.,
2020; Ahmad & Aral, 2022; Zhu et al., 2021), FML (Shen
et al., 2020), KT-pFL (Zhang et al., 2021), and FedGKD
(Yao et al., 2023) adopt collaborative knowledge distilla-
tion to align predictions among diverse client models on the
server. (2) Parameter-sharing PFL employs the weights or
gradients of local models as the forms of the knowledge
exchanged between clients, which can be further divided
into fine-tuning methods (Arivazhagan et al., 2019; T Dinh
et al., 2020), meta-learning methods (Finn et al., 2017),
factorization-based methods (Deng et al., 2020; Guo et al.,
2021; Jeong & Hwang, 2022), multi-task learning methods
(Smith et al., 2017; Chen & Zhang, 2022), and HyperNet-
based methods (Shamsian et al., 2021). The two lines of
research, Feature-sharing PFL and Parameter-sharing PFL,
are orthogonal to each other and have their own distinct
assumptions: while Feature-sharing PFL relies on an extra
public dataset (Zhang et al., 2021) or additional data genera-
tors (Zhu et al., 2021; Zhang et al., 2022) to compute pseudo-
supervision signals on the server, Parameter-sharing PFL
typically assumes the symmetry of weight spaces across
different clients to aggregate them at the server side.

Architecture-heterogeneous PFL. Recently, there has
been significant attention towards adapting PFL to sce-
narios where local models have diversified structures and
sizes, particularly in budget-limited or personalized-use con-
texts. In pursuit of addressing architecture heterogeneity,

2

FedMBridge: Bridgeable Multimodal Federated Learning

Feature-sharing PFL frameworks have been widely adopted
as they naturally bypass this challenge through knowledge
distillation (see above for details). The drawback of these
methods lies in their reliance on unrealistic and auxiliary
data pipelines. Meanwhile, the research community within
Parameter-sharing PFL also explores ways to address het-
erogeneity of client architectures. A stream of research
employs super-networks, such as HeteroFL (Diao et al.,
2021), Split-Mix (Hong et al., 2022), DisPFL (Dai et al.,
2022), DepthFL (Kim et al., 2023), and FlexiFed (Wang
et al., 2023), where each client is aligned to a smaller subset
of a global super-network, using a local super-mask that
are manually designed or computed through pruning tech-
niques. Yet in our AMFL scenarios, these methods show
inefficient and suboptimal communication–due to the signif-
icant variations in computational flows among local models,
the masked weight aggregation referring to the supernet
becomes costly and limits the knowledge-sharing opportu-
nities among local weights. Few works (Litany et al., 2022)
explored using hyper-networks to generalize different archi-
tectures in the federated context; they do not yet effectively
address the joint statistical-architectural client heterogeneity
and study only single-modality cases. In contrast to existing
works, we introduce a more efficient and effective parameter-
sharing scheme to handle joint statistical-architectural het-
erogeneity among multimodal clients.

Multimodal Federated Learning (MFL). MFL (Che
et al., 2023; Lin et al., 2023; Barry et al., 2024) is a special
case of Architecture-heterogeneous PFL that incorporates
multiple modality types into the systems, where clients are
equipped with different sensory devices requiring different
architectures to process them. Existing MFL works have
mainly employed global super-networks to serve both uni-
modal clients and clients employing various combinations
of multiple modalities, including (Zhao et al., 2021; Chen
& Zhang, 2022) that employ cross-modal alignment and
(Xiong et al., 2022; Yu et al., 2023; Feng et al., 2023; Chen
& Zhang, 2024) that utilize advanced mechanisms to fuse
different modalities. However, the robustness of these meth-
ods relies on an assumption that all clients employ the same
multimodal fusion strategy (e.g., feature alignment) in their
model designs. In contrast, our work relaxes the use cases
to diversified multimodal fusion strategies, which we be-
lieve reflect real-world situations (as argued in the Introduc-
tion), and we seek to automatically maximize the transfer
of multimodal-interaction experiences among clients.

3. Problem Definition
Multimodal Federated Learning (MFL) (Zhao et al., 2021)
addresses the setup of N clients with M modality types
(e.g. image, video, text, and audio) working together to
improve their local personal models θ1, θ2, ..., θN . Each

client i ∈ {1, 2, ..., N} focuses on learning a subset of
modality types Ii ⊆ {1, 2...M} and has a combinato-
rial input space XIi := (U (m)|∀m ∈ Ii), where U (m) is
the subspace associated with the modality type m. For
example, as illustrated in Figure 1(a), “client 2” focuses
on an image-text bimodal task; “client 3” focuses on an
audio-visual bimodal task; and “client 1” learns a text-
only unimodal task. Each client i also has a person-
alized label space Yi. Each client i aims to obtain a
local mapping function fAi

(·; θi) : XIi
→ Yi character-

ized by a client-specific model architecture Ai and param-
eterized by trainable weights θi ∈ Rdi , where di indicates
the structure of the weight space associated with Ai.

Each client i has access only to its local dataset Di =
{(xij , yij)}ni

j=1, sampled from xij ∼ Pi(x) and yij ∼
Qi(y|xij), where Pi is the client-specific input distribution
over the combinatorial input space XIi , and Qi is the
conditional output distribution over the space Yi. Each sam-
ple’s input consists of the modalities xij = (u

(m)
ij)m∈Ii

present as in Ii, where u(m)
ij denotes the modality m in xij .

The global objective of MFL is formulated as

min
θ1,θ2,...,θN

[
1

N

N∑
i=1

Li(θi)

]
+R(θ1, θ2, ..., θN), (1)

which aims to (1) jointly optimize the local objectives of all
clients minθi Li(θi) := E(x,y)∼Di

l (y, fAi
(x; θi)), where

l(·, ·) is the loss function, and meanwhile, (2) leverage a
central server to encourage a privacy-preserving knowledge
sharing scheme among clientsR(·) in order to boost each
client’s local model performance.

MFL is a problem that naturally suffers from network ar-
chitecture heterogeneity among clients. Therefore, one
of the main challenges of solving Eq.(1) is how to de-
sign and maximize the benefits of the inter-client knowl-
edge sharing schemeR(·), wherein there are simultaneous
architecture heterogeneity (A1 ̸= A2 ̸= ... ̸= AN) as well
as statistical heterogeneity (Non-IIDness) among clients.

Definition 1 (Architecture-compositional MFL): When
addressing the knowledge sharing among heterogeneous
multimodal model architectures, traditional MFL systems
typically leverage a restrictive design of compositional neu-
ral architectures: Ai := {B(m)

enc |∀m ∈ Ii} ∪ {Bshare} ∪
{Bdec,i}, such that heterogeneous model architectures are
manually split into smaller homogeneous blocks, allowing
any pair of clients ∀i, i′ ∈ [N] share some common blocks:

Ai ∩ Ai′ = {B(m)
enc |∀m ∈ Ii ∩ Ii′} ∪ {Bshare}, (2)

as illustrated in Figure 1(b). Such design allows R(θ1:N)
to be achieved through blockwise weight sharing schemes,
such as (Chen & Zhang, 2022; Zhao et al., 2021).

3

FedMBridge: Bridgeable Multimodal Federated Learning

Figure 1. (a) Local mapping functions per client in Multimodal Federated Learning (MFL). (b) Problem setting of traditional MFL that
requires restrictive compositional neural architectures. (c) Problem setting of Architecture-personalized MFL (AMFL), without a
restriction on local model architectures. In this AMFL example, “client 1” and “client 2” show a layer-width difference, “client 2” and
“client 3” show a depth difference, and “client 3” and “client 4” show a topology difference, at multimodal interaction modules.

Definition 2 (Architecture-personalized MFL (AMFL)):
We relax the traditional constraint Eq.(2), focusing on more
general MFL scenarios without setting any restriction on
the architecture design. Ai can be any neural architectures
specified by local users, which is non-compositional so that
the server has no prior knowledge about the inter-client
weight-space sharing scheme. That is, for ∀i, i′ ∈ [N],

Ai ∩ Ai′ = ∅. (3)

Given this relaxed design, there will be three particular
cases of architecture heterogeneity that are not permit-
ted in traditional MFL: (1) Topology Difference is a most
common situation in multimodal FL systems. Two clients
might use different model types (e.g., one client is based
on Transformer while the other is based on ResNet) or use
different multimodal fusion strategies for different input
modality types (e.g., one client uses alignment while the
other uses concatenation). (2) Depth Difference refers that
two clients having the same topology (e.g., both are based
on ResNet) but their numbers of layers/modules are differ-
ent. (3) Width Difference describes a situation where two
clients having the same topology and same depth, but their
numbers of neurons at each layer are different. Examples
of the three cases are illustrated in Figure 1(c). While tra-
ditional MFL does not address these cases of architecture
heterogeneity, the goal of AMFL particularly deals with
how to automatically bridge the architecture gap, for effi-
cient and effective knowledge sharing among clients with
heterogeneous neural architectures and distributions.

4. Methodology
In order to solve Eq.(1) under AMFL settings (Eq.(3)), we
propose a new multimodal FL framework, FedMBridge,
which automatically bridges the architecture gap among
statistically heterogeneous clients. We will first introduce

the main idea of FedMBridge and then present its three com-
ponents: (1) the topological graph representation of local
multimodal architectures; (2) the hypernetwork that gener-
ates personal weights conditioned on the topological graphs
of architectures; and (3) the federated training workflow.

4.1. Main Idea of FedMBridge

Rethinking Implicit and Explicit Weight Sharing: Ex-
plicit weight sharing, or the simple weight aggregation
within a globally-shared weight space, is seen in standard
FL with homogeneous architectures (Li et al., 2019; Sham-
sian et al., 2021) or some Pruning-based FL methods with
only width or depth differences (Jiang et al., 2022; Vahid-
ian et al., 2021; Jiang et al., 2023). However, in AMFL,
an explicit weight sharing is not available since a globally
shared weight space does not even exist, especially if client
models vary significantly in their topologies or depths. Alter-
natively, we explore an implicit weight sharing mechanism
for AMFL: instead of sharing original weights across di-
verse weight spaces, we aim to perform knowledge sharing
among clients within globally-shared latent space(s).

Definition 3 (Bridge Function): We propose an implicit
weight sharing mechanism for AMFL by introducing a
global “bridge” function h(·, ·;ϕ), where ϕ ∈ RD is the
trainable weights of the bridge function. The original
locally-trained weights of N clients from diverse weight
spaces θi ∈ Rdi , d1 ̸= d2 ̸= ... ̸= dN , are re-parameterized
as the output of the bridge function conditioned on two
client-specific generative factors

θi := h(Ai, ci;ϕ), ∀i ∈ [N], (4)

where the first generative factor Ai ∈ G is the local neural
architecture from a globally-shared latent topology space G
and the second generative factor ci ∈ T represents the lo-

4

FedMBridge: Bridgeable Multimodal Federated Learning

cal task from a globally-shared latent task space T . While
G manages only architectural heterogeneity, T manages
only statistical heterogeneity. Intuitively, the bridge func-
tion h can be treated as a generative meta-learner that can
digest two disentangled heterogeneity patterns to solve the
raw statistical-architectural entangled heterogeneity pattern.
We will show design details in the following sections.

4.2. Multimodal Neural Architectures as Graphs

The multimodal neural architecture Ai at each client i is
represented as a directed acyclic graph structure:

Ai := (Vi, Ei,Z(0)
i). (5)

Each node v ∈ Vi stands for a computational operator fv
in the neural architecture. fv can be either non-parametric
(e.g., a concatenation operator) or parametric (e.g., a linear
layer with weights of size 16×64). Edges Ei represents the
computational flow of the neural architecture, where each
edge ev′→v ∈ Ei indicates that the output of the operator
fv′ is the input of the operator fv . Every node v is equipped
with K types of configuration or prior information for the
operator fv , including layer types, layer levels, layer shapes,
modality types or fusion stage, etc. The node feature matrix
Z

(0)
i ∈ R|Vi|×K holds such K configuration/prior informa-

tion types for all operators in the graph.

Particularly, following standard multimodal learning (Zadeh
et al., 2017; 2018b), the neural architectures of local models
employ a three-step procedure. (1) Unimodal Encoders:
At the first step, we employ unimodal encoders to extract
modality-specific features. We consider multiple differ-
ent architecture families (including ResNets, CNNs, MLPs,
RNNs, and Small Transformers) simultaneously appear-
ing across AMFL as unimodal encoders for different/same
modality types. (2) Multi-modality Interaction Module:
At the second step, we model the complex intra- and inter-
modality interactions to effectively fuse the complementary
information from multiple modalities. Since such interac-
tion modes can be diverse across client tasks, herein, we
allow AMFL to cover many existing multimodal fusion
strategies, including concatenation, element-wise alignment,
tensor fusion (Zadeh et al., 2017), low-rank fusion (Zadeh
et al., 2018a), and so on. Figure 2 (top) shows three example
clients in AMFL–client-1 fuses image and text using fea-
ture summation; client-2 combines audio and image using
outer-product interactions; and client-3 uses cross-attention
strategies to fuse the input audio and image. (3) Personal
Final Layer: Each client’s final layer handles client-specific
decision making. In broader contexts, it can be a classifier,
a value prediction head, or a data generator.

The graph defined in Eq.(5) is constructed by traversing the
computational flow of the user-designed model architecture
as follows. (1) Collection of Nodes and Edges: First, we
borrow the ideas from DARTS (Differentiable Architecture

Search) (Liu et al., 2018; Funoki & Ono, 2021) to gather
nodes Vi and edges Ei, by tracing the chain of backward
gradients of variables. Specifically, a dummy multimodal
input sample is fed to the model and undergoes forward
function execution. After this, starting from the output vari-
able’s gradient function, we iteratively traverse the chain
of gradient functions in reverse order. During the traversal,
the gradient functions associated with parametric modules
are gathered as parametric nodes, while other gradient func-
tions, such as ConcatBackward and BmmBackward, are
collected as non-parametric nodes. |Ii| input nodes are ad-
ditionally attached to those operators with zero in-degrees,
respectively. Directed edges are gathered along with the
traversal. (2) Construction of Node Features: Second,
we construct node features Z(0)

i such that they provide suf-
ficient contexts for learning the functionality role of each
layer. In particular, we utilize K = 7 information types
and each of them is categorical, including branch types
(k = 1), operator types (k = 2), layer levels (k = 3),
and parameter shapes (k = 4, 5, 6, 7). Branch types re-
fer to which branch the operator fv is located within the
computational flow, which should be one of the unimodal
branches or be the fusion branch. Operator types refer to
how fv transforms the input message it receives from pre-
vious nodes. For example, parametric node have operator
types including “Linear/Conv weights”, “bias”, “layer nor-
malization”, and so on; non-parametric nodes have operator
types such as “sum”, “concatenation”, “element-wise dot
product”, and “outer product”. In addition, we enable each
node to be aware of which knowledge granularity it learns,
by computing its relative layer level within its parent branch.
Furthermore, different parameter sizes for the same layer
necessitate varying densities of message during weight gen-
eration, and therefore, the weight-tensor shapes of each
parametric layer are considered as parts of nodes features.
Specifically, the raw shape sizes, since they leads to learn-
ing sparsity, are ranked into several shape scales using a
lookup table. We use a held-out shape scale “<HO>” for
non-parametric nodes and input nodes.

4.3. Topology-aware HyperNetwork

As in Eq.(4), we propose to learn a bridge function that can
jointly digest the two heterogeneity patterns (i.e., statistics
and architecture heterogeneity). A challenge underlying this
goal is that how to balance and combine the two separate
heterogeneity patterns, such as which pattern is more crucial
and whether there is any inter-pattern interactions.

We propose a Topology-Aware HyperNetwork (TAHN) to
build such a bridge function. The key idea of TAHN is to
encourage h(·, ·;ϕ) to capture the implicit roles of each
layer within the neural architecture, which are then com-
bined with layer-invariant client-specific task information.
This is inspired by an intuition that for a pair of layers from

5

FedMBridge: Bridgeable Multimodal Federated Learning

Figure 2. The proposed FedMBridge framework. The three example clients use different multimodal fusion strategies. The server holds
the Topology-aware HyperNetwork (TAHN), a trainable bridge function for implicit weight sharing, which simultaneously overcomes the
statistical heterogeneity and architecture heterogeneity among clients.

two different clients, if they act as similar roles within their
models, would tend to have similar operations and weights.

Specifically, our TAHN consists of a two-stage process

h(Ai, ci;ϕ) = Comb (ci,Role(Ai;ϕ1);ϕ2) (6)

where the first stage Role(·;ϕ1) parameterized by ϕ1 learns
the implicit roles of layers such that layers across clients
share a unified layer-role embedding space, and the second
stage Comb(·, ·;ϕ2) parameterized by ϕ2 aims to combine
the two heterogeneity patterns and directly generates the
weights. We represent ϕ = {ϕ1, ϕ2}.

4.3.1. STAGE ONE: LAYER-ROLE ENCODER

In order to encode the implicit roles of layers, we consider
two types of information. First, each layer’s configuration
information is important to determine the layer role. For
example, if two layers from different architecture both are
the convolutional layer and both are in the early level in the
entire network, they tend to have similar filter and role dur-
ing the computational flow. Such information is specified in
Z

(0)
i . Second, the position and contexts of each layer within

the graphical computational flow is also important. For ex-
ample, if two layers from different architectures are located
in the same position in the same computational flow, they

tend to have the same role. Such information is specified as
the graphical structure Vi, Ei of the computational flow.

The two types of information can be incorporated by apply-
ing a Graph Neural Network (GNN) on the neural architec-
ture graph Ai = (Vi, Ei,Z(0)

i), inspired from (Zhang et al.,
2018; Knyazev et al., 2021; Lim et al., 2023). We formulate
the layer-role encoder as an L-layer GNN

Z
(L)
i = Role(Ai;ϕ1)

:= gL ◦ gL−1 ◦ ... ◦ g1(Z(0)
i ;Vi, Ei),

(7)

where Z
(l)
i = gl(Z

(l−1)
i ;Vi, Ei, ψl) is the l-th GNN layer

with trainable weights ψl. Every computational operator
z
(l)
i,v ∈ Z

(l)
i is encoded through message passing as

z
(l)
i,v = σ(W

(l)
selfz

(l−1)
i,v +W

(l)
in

∑
(v′,v)∈Ei

z
(l−1)
i,v′

+W
(l)
out

∑
(v,v′)∈Ei

z
(l−1)
i,v′ + b(l)),

(8)

where ψl = {W (l)
self,W

(l)
in ,W

(l)
out, b

(l)} are trainable param-
eters. ϕ1 = {ψ1, ψ2, ..., ψL}. The output of the final GNN
layer Z(L)

i = {z(L)
i,v ∈ RS}v∈Vi

is a collection of layer-role
embeddings for all parametric computational operators in
Ai, where S is the size of the layer-role embedding space.

6

FedMBridge: Bridgeable Multimodal Federated Learning

4.3.2. STAGE TWO: ROLE-AWARE WEIGHT GENERATOR

The layer-role information obtained from the first stage
Z

(L)
i is combined with client-specific task information ci

and then is used to generate the client weights in a node-
wise manner: θi = Comb

(
ci,Z

(L)
i ;ϕ2

)
. We represent

the client model weights as a collection of weights for all
computational operators θi = {θi,v|v ∈ Vi}. Specifically,
θi is obtained using a HyperNetwork-based node decoder
gnodec applied to each node in the neural architecture graph.
Let θi,v denote the weights associated with the parametric
computational operator v of client i. Every θi,v is computed

θi,v := gnodec

(
ci ⊕ z

(L)
i,v ;ϕ2

)
, ∀v ∈ Vi (9)

where ⊕ denotes an operation (e.g., concatenation or sum-
mation) combining two embedding vectors: layer-specific
role embedding z

(L)
i,v and a trainable client-specific layer-

invariant task embedding ci ∈ RF , where F is the size
of task embedding space. gnodec is an MLP-based neural
network in all experiments.

4.4. FedMBridge Training

We let clients hold only their local personal models but
the server holds the TAHN model that acts as a bridge for
knowledge sharing. During training, clients perform their
local model updates, and meanwhile, they communicate
frequently with the server to help to optimize the TAHN.

The training workflow of FedMBridge is as follows. Each
communication round r contains the following steps: (1)
Download. The server predicts the weights {θi}i∈Nr

=
{h(Ai, ci;ϕ)}i∈Nr

or a subset of clients Nr ⊂ [N], using
the current TAHN parameters and the current task embed-
ding ci and conditioned on client architecture graphs Ai.
Note that the graphs Ai can be auto-recognized and con-
structed on the server based on the uploaded client models
before the first round starts, and therefore, they do not raise
significant privacy issue. (2) Local Updates: Each selected
client i ∈ Nr begins from the downloaded θi, performs sev-
eral local optimization steps based on its local data Di, and
finally obtain new weights θ̃i. (3) Upload. Each client send
its update direction ∆θi = θ̃i − θi to the server. (4) Global
Update and Knowledge Sharing. The server computes the
updates for TAHN inspired by the chain rule:

∆ci = ∇ciLi(θi) = ∆θi · ∇ciθi

∆ϕ2 =
1

|Nr|
∑
i∈Nr

(∆θi · ∇ϕ2θi)

∆ϕ1 =
1

|Nr|
∑
i∈Nr

(
∆θi · ∇Z

(L)
i
θi · ∇ϕ1Z

(L)
i

)
,

(10)

where the multi-step local update direction ∆θi has replaced
the original single-step local gradients ∇θiLi(θi) that are

not efficient in FL. We perform an average of TAHN updates
over clients Nr for implicit knowledge sharing. Figure 2
shows an illustration of the workflow. Algorithm 1 in the
appendix summarizes the training workflow of FedMBridge.

5. Experiments
5.1. Setups

AMFL Simulations: We evaluated our approach in four
AMFL simulation scenarios, whose statistics are summa-
rized in Table 1. (1) SceneAMF is constructed from the
bimodal NYU-v2 dataset (Nathan Silberman & Fergus,
2012) that recognizes scenes from pairs of aligned RGB
and depth images for these scenes. We create 80 clients
covering 2 modality types, 3 types of input signals (RGB-
only, depth-only, and RGB-depth bimodal inputs), and 40
types of neural architectures for local models. Each bimodal
client adopts one of the two traditional multimodal fusion
strategies: concatenation and element-wise product. Each
client has its personal label space of size 50 sampled from
a pool of 464 scenes. (2) ObjectAMF is constructed from
the bimodal ModelNet40 dataset (Wu et al., 2015) whose
task is 3D object recognition from two views of 3D models.
We create 112 clients in this simulation covering 56 types
of neural architectures. For each bimodal client, we employ
one of three multimodal fusion strategies: concatenation,
average alignment, and tensor fusion (Zadeh et al., 2017).
(3) EmotionAMF is created from the CMU-MOSEI dataset
(Liang et al., 2021) that focuses on emotion recognition task
from real-world online videos consisting of 3 modalities
(video, language script, and audio). Each video is annotated
for the presence of 9 discrete emotions (angry, excited, fear,
sad, surprised, frustrated, happy, disappointed, and neutral).
The local tasks can be unimodal, bimodal, or trimodal. We
employ three multimodal fusion strategies across clients: av-
erage alignment, tensor fusion (Zadeh et al., 2017), and Mul-
tiEMO (Shi & Huang, 2023). (4) MnistAMF is made from
AVMnist (Liang et al., 2021) and MultiMnist (Sabour et al.,
2017) datasets, covering three modalities (image of style
one, image of style two, and the audio for digit). MnistAMF
uses 4 multimodal fusion strategies: average alignment, ten-
sor fusion, MultiEMO, and cross-attention fusion (Praveen
et al., 2022). More details of local datasets and the local
neural architecture configurations in these simulations are
provided in Table 4 in Appendix A.

Baseline Methods: We compare FedMBridge with three
families of baselines. (1) No-knowledge-sharing method,
namely Local, which separately trains local models that
have different neural architectures, without any knowledge
sharing among clients, i.e., R(·)=0. (2) Feature-sharing
approaches, such as FedDistill (McMahan et al., 2018) and
FedGKD (Yao et al., 2023), which employ a public dataset
at server that facilitates mutual knowledge distillation across

7

FedMBridge: Bridgeable Multimodal Federated Learning

Table 1. Summary of the 4 simulations of AMFL. FS: number of different multimodal fusion strategies. W: number of different widths
for each unimodal encoder. D: number of different depths for each unimodal encoder. T: number of topology types for visual modality’s
encoder. Acronyms for some modality types: V (Video), L (Language), A (Audio), I1 (Style-one image), I2 (Style-two image).

Simulation #Clients Input modalities per client #Target classes per client #Architectures (W, D, T, FS)

SceneAMF 80 {RGB}, {Depth}, or {RGB, Depth} random 50 in 464 scenes 40 (1, 2, 2, 2)
ObjectAMF 112 {3D View1}, {3D View2}, or {3D View1, 3D View2} random 5 in 40 objects 56 (2, 2, 1, 3)
EmotionAMF 90 {V}, {L}, {A}, {V, L}, {V, A}, {L, A}, or {V, L, A} 9 emotions 66 (1, 2, 1, 3)
MnistAMF 86 {I1}, {I2}, {A}, {I1,I2}, {I1,A}, {I2,A}, or {I1,I2,A} random 4 digits in 0∼9 86 (2, 1, 1, 4)

heterogeneous architectures. For fair comparison, the public
dataset should not result in much privacy risk and thus we
allow only 5% clients submit only 5% of their samples to
the server during the setup phase before training begins. We
skip data-free federated distillation methods as they require
extra decoders to generate multimodal data. (3) Parameter-
sharing approaches, including those using fixed local subnet
allocations, such as HeteroFL (Diao et al., 2021), as well as
proper extensions of architecture-homogeneous PFL (such
as HyperPFL (Shamsian et al., 2021) and APFL (Jeong &
Hwang, 2022)) using pruning techniques. Our FedMBridge
belongs to parameter-sharing approaches, while we also
show that FedMBridge can be combined with the feature-
sharing methods and achieves better performance.

Reproductibility: Implementation details and hyperpa-
rameters are provided in Appendix B.

5.2. Main Results

Table 2 reports the results on all simulations, comparing
FedMBridge with baseline approaches. We use two evalua-
tion metrics: ACC (%) refers to the final average accuracy
on the testing datasets over all clients; COT (seconds) refers
to the average time spent by each round of server-client com-
munication, including downloading, uploading, and global
knowledge sharing stages, whose weights in the metric are
0.46, 0.46, and 0.08, respectively. Each experiment was
executed by 5 trials using different random seeds.

Performance Comparison: From Table 2, in general, the
FL methods that utilize either features or weights for knowl-
edge sharing outperform the non-knowledge-sharing Local,
showing that the knowledge learned at local clients were
successfully exchanged among clients and improved local
performance. However, we observe that the feature-sharing
baselines (rows 4-5) were sensitive to the modality gap and
statistical heterogeneity in AMFL since feature distillation
is not sufficiently robust to distribution shift. In addition to
robustness issue, these methods relied on a public dataset
with complete modalities, which raises privacy risk. Also,
we observe that the Parameter-sharing baselines (rows 6-8)
significantly suffered from the architecture heterogeneity
in AMFL: the more heterogeneous the local neural archi-
tectures, the less shareable weights between clients, and

therefore, trained weights or gradients might be not suffi-
ciently transferred among local models. In contrast, FedM-
Bridge outperformed both feature- and Parameter-sharing
baselines. This is because FedMBridge does not rely on
public data; does not rely on knowledge transfer losses that
is difficult to balance task shifts; and leverages TAHN to
implicitly maximize sufficient weight sharing instead of
explicit aggregation of unaligned weight spaces.

Communication Efficiency: As in Table 2, Local has the
best efficiency as it requires no inter-client knowledge shar-
ing and no communication. Figure 3 breakdowns the time
costs (row 2) and memory costs (row 1) on ObjectAMF dur-
ing each communication round into multiple stages, where
its column-1 reports the average costs of local training over
all selected clients with different sizes of models and data,
its column-2 shows the average costs during the information
exchange between the server and selected clients (includ-
ing reading, copy, transmission, and writing of models),
and its column-3 shows the costs associated with cross-
client knowledge sharing facilitated by the server. Among
knowledge-sharing FL methods, FedMBridge and feature-
sharing baselines required the same time for uploading local
models. However, FedMBridge was faster in knowledge
aggregation compared to on-server distillation methods and
more efficient in downloading compared to on-device dis-
tillation. This is because feature-sharing methods require
computing pseudo-labels for distillation using all data on
local or global sites, while FedMBridge avoids this by not
needing data loaders on the server or additional client-side
processing. Moreover, FedMBridge showed higher effi-
ciency in uploading and downloading than pruning-based
parameter-sharing baselines. This is because FedMBridge
transmits the original local models, whereas these baselines
transmit a large supermask indicating parameter shareability.
Although parameter-sharing baselines using fixed masks can
mitigate this issue, they suffer performance drops due to
connection collapse.

5.3. Ablation Study

Table 3 reports the ablation study for our FedMBridge frame-
work. We investigated the impacts of four components or
factors in FedMBridge. (1) Impact of TAHN Stage One.

8

FedMBridge: Bridgeable Multimodal Federated Learning

Table 2. Average performance comparison between different methods on all AMFL simulations. “s”: seconds. “*”: privacy leakage risk.

Method SceneAMF ObjectAMF EmotionAMF MnistAMF

ACC ↑ COT ↓ ACC ↑ COT ↓ ACC ↑ COT ↓ ACC ↑ COT ↓
Local 76.56 ± 0.99 0 91.41 ± 0.90 0 67.83 ± 0.93 0 91.83 ± 1.32 0

FedDistill* 78.20 ± 0.84 41.4 91.49 ± 0.33 21.4 71.47 ± 0.56 33.2 92.33 ± 1.21 37.8
FedGKD* 81.32 ± 0.83 35.2 93.82 ± 0.98 17.6 73.97 ± 0.86 28.4 93.91 ± 0.63 29.7

HeteroFL w/ Mask 76.32 ± 1.03 25.8 91.63 ± 0.79 9.69 68.47 ± 1.35 20.8 91.94 ± 0.77 18.7
HyperPFL w/ Prune 78.92 ± 0.91 117.9 92.39 ± 0.33 63.6 72.85 ± 0.91 152.9 92.67 ± 0.43 140.2
APFL w/ Prune 77.36 ± 0.83 36.6 92.65 ± 0.92 16.2 71.61 ± 0.32 25.0 91.95 ± 0.80 31.6

FedMBridge (Ours) 83.92 ± 0.95 37.4 94.64 ± 0.94 18.6 75.96 ± 0.83 26.6 95.78 ± 0.61 29.5

Figure 3. Comparison of time costs and memory costs per communication round between different approaches on ObjectAMF dataset.

Table 3. Ablation Study for FedMBridge using MnistAMF dataset.

FedMBridge Hyperparameters ACC ↑ COT ↓
L ⊕ |Nr|/N w/wo KD

4 concat 0.25 β = 0 95.78 29.5
0 concat 0.25 β = 0 87.75 26.1
4 sum 0.25 β = 0 95.51 28.8
4 concat 0.40 β = 0 96.15 36.2
4 concat 0.25 β = 0.01 95.92 41.9
4 concat 0.25 β = 0.05 96.53 41.9

The first stage of TAHN leverages a GNN-based network to
learn layerwise role embeddings. Table 3 (row 4) removes
the stage one by setting L = 0. The performance drops after
this removal demonstrate the importance of this module.
(2) Impact of Role-Task Fusion Operator (⊕) in TAHN
Stage Two. The second stage of TAHN combines the layer-
role embeddings with the task embedding. Table 3 (row
5) replaces the default concatenation with sum operation.
The performance remains almost unchanged. (3) Impact
of Client Selection (|Nr|/N). Table 3 (row 6) slightly im-
proves the performance by selecting more clients at each
communication round. Yet the efficiency drops along with
the performance increase. The main reason of such commu-

nication time increase is that the number of input instances
fed to the TAHN network increases. (4) Combining with
Feature-sharing FL. Table 3 (rows 7-8) show that FedM-
Bridge can be combined with the feature-sharing methods,
i.e. the vanilla federated knowledge distillation, and can
achieve slightly better performance, where β denotes the
importance of the distillation losses during the feature shar-
ing on the server. Although the current improvements are
not obvious, in future work we may explore advanced meth-
ods to better balance the impacts of parameter sharing and
feature sharing in AMFL scenarios.

6. Conclusion
In this paper, we focused on the novel Architecture-
personalized MFL (AMFL) problem, which allows for free
local multimodal neural architecture design with diversified
multimodal fusion strategies. To attain a communication-
efficient solution and improve beneficial parameter sharing
in AMFL, we proposed FedMBridge, which leverages a
topology-aware hypernetwork as a bridge function to bal-
ance and digest the architecture heterogeneity and statistical
heterogeneity. We conduct comprehensive experiments on
several AMFL simulations and the result demonstrates the
efficiency and effectiveness of FedMBridge over baselines.

9

FedMBridge: Bridgeable Multimodal Federated Learning

Acknowledgements
We would like to express sincere appreciation to all the
reviewers for their constructive feedbacks, which greatly
improved the quality of this paper. This work is supported
in part by the US National Science Foundation under grants
2217071, 2213700, 2106913, 2008208, 1955151.

Impact Statement
Our work focuses on a general setting of Multimodal Feder-
ated Learning (MFL), which can be widely used in the real-
world scenarios, including future applications in privacy-
preserving Artificial General Intelligence (AGI), distributed
and efficient edge-driven training of Multimodal Large
Foundation Models, and so on. This work considers task
complexity difference and allows for multimodal pattern di-
vergence across clients, which will support a wide range of
user-personalization tasks, where clients may vary greatly in
their complexity of modeling the inter-modal interactions.

As for the technical impacts, while hypernetwork-based
approach has been proposed in previous works for con-
sistent neural architectures, we think our topology-aware
hypernetwork approach is one of the first attempts that for-
mally emphasize the freedom of architecture gap in MFL
by modeling the computational flows of multimodal inter-
actions as graphs. Our work may drive the future research
on parameter-level knowledge transfer or collaborative AI
between different models, potentially promoting the tradeoff
between large-scale large model training on the server and
efficient and private small model training on local devices.

References
Ahmad, S. and Aral, A. Fedcd: Personalized federated learn-

ing via collaborative distillation. In 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Comput-
ing (UCC), pp. 189–194. IEEE, 2022.

Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and Choud-
hary, S. Federated learning with personalization layers,
2019.

Atrey, P. K., Hossain, M. A., El Saddik, A., and Kankanhalli,
M. S. Multimodal fusion for multimedia analysis: a
survey. Multimedia systems, 16:345–379, 2010.

Barry, G., Konyar, E., Harvill, B., and Johnstone, C. A sur-
vey of advances in multimodal federated learning with ap-
plications. In Multimodal and Tensor Data Analytics for
Industrial Systems Improvement, pp. 315–344. Springer,
2024.

Che, L., Wang, J., Zhou, Y., and Ma, F. Multimodal feder-
ated learning: A survey. Sensors, 23(15):6986, 2023.

Chen, J. and Zhang, A. Fedmsplit: Correlation-adaptive
federated multi-task learning across multimodal split net-
works. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pp.
87–96, 2022.

Chen, J. and Zhang, A. On disentanglement of asymmetrical
knowledge transfer for modality-task agnostic federated
learning. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 38, pp. 11311–11319, 2024.

Dai, R., Shen, L., He, F., Tian, X., and Tao, D. Dispfl:
Towards communication-efficient personalized federated
learning via decentralized sparse training. In Interna-
tional Conference on Machine Learning, pp. 4587–4604.
PMLR, 2022.

Deng, Y., Kamani, M. M., and Mahdavi, M. Adap-
tive personalized federated learning. arXiv preprint
arXiv:2003.13461, 2020.

Diao, E., Ding, J., and Tarokh, V. Heterofl: Computation
and communication efficient federated learning for hetero-
geneous clients. In International Conference on Learning
Representations, 2021.

Feng, T., Bose, D., Zhang, T., Hebbar, R., Ramakrishna, A.,
Gupta, R., Zhang, M., Avestimehr, S., and Narayanan, S.
Fedmultimodal: A benchmark for multimodal federated
learning. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pp.
4035–4045, 2023.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Funoki, Y. and Ono, S. Dmnas: Differentiable multi-modal
neural architecture search. In International Workshop
on Advanced Imaging Technology (IWAIT) 2021, volume
11766, pp. 465–470. SPIE, 2021.

Gao, J., Li, P., Chen, Z., and Zhang, J. A survey on deep
learning for multimodal data fusion. Neural Computation,
32(5):829–864, 2020.

Guo, B., Mei, Y., Xiao, D., and Wu, W. Pfl-moe: Personal-
ized federated learning based on mixture of experts. In
Web and Big Data: 5th International Joint Conference,
APWeb-WAIM 2021, Guangzhou, China, August 23–25,
2021, Proceedings, Part I, pp. 480–486, 2021.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Efficient split-
mix federated learning for on-demand and in-situ cus-
tomization. In International Conference on Learning
Representations (ICLR 2022), 2022.

10

FedMBridge: Bridgeable Multimodal Federated Learning

Jeong, W. and Hwang, S. J. Factorized-fl: Agnostic person-
alized federated learning with kernel factorization simi-
larity matching, 2022.

Jiang, D., Shan, C., and Zhang, Z. Federated learning algo-
rithm based on knowledge distillation. In 2020 Interna-
tional Conference on Artificial Intelligence and Computer
Engineering (ICAICE), pp. 163–167. IEEE, 2020.

Jiang, Y., Wang, S., Valls, V., Ko, B. J., Lee, W.-H., Leung,
K. K., and Tassiulas, L. Model pruning enables efficient
federated learning on edge devices. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

Jiang, Z., Xu, Y., Xu, H., Wang, Z., Liu, J., Chen, Q.,
and Qiao, C. Computation and communication efficient
federated learning with adaptive model pruning. IEEE
Transactions on Mobile Computing, 2023.

Kim, M., Yu, S., Kim, S., and Moon, S.-M. Depthfl: Depth-
wise federated learning for heterogeneous clients. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Knyazev, B., Drozdzal, M., Taylor, G. W., and Romero-
Soriano, A. Parameter prediction for unseen deep archi-
tectures. In Advances in Neural Information Processing
Systems, 2021.

Kumar, G. and Toshniwal, D. Neuron specific pruning
for communication efficient federated learning. In Pro-
ceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 4148–4152,
2022.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

Liang, P. P., Lyu, Y., Fan, X., Wu, Z., Cheng, Y., Wu, J.,
Chen, L., Wu, P., Lee, M. A., Zhu, Y., et al. Multibench:
Multiscale benchmarks for multimodal representation
learning. arXiv preprint arXiv:2107.07502, 2021.

Lim, D., Maron, H., Law, M. T., Lorraine, J., and Lucas,
J. Graph metanetworks for processing diverse neural
architectures. In The Twelfth International Conference
on Learning Representations, 2023.

Lin, Y.-M., Gao, Y., Gong, M.-G., Zhang, S.-J., Zhang, Y.-
Q., and Li, Z.-Y. Federated learning on multimodal data:
A comprehensive survey. Machine Intelligence Research,
pp. 1–15, 2023.

Litany, O., Maron, H., Acuna, D., Kautz, J., Chechik, G.,
and Fidler, S. Federated learning with heterogeneous
architectures using graph hypernetworks. arXiv preprint
arXiv:2201.08459, 2022.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable ar-
chitecture search. In International Conference on Learn-
ing Representations, 2018.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In International Conference on Learning Representations,
2018.

Nathan Silberman, Derek Hoiem, P. K. and Fergus, R. In-
door segmentation and support inference from rgbd im-
ages. In ECCV, 2012.

Praveen, R. G., de Melo, W. C., Ullah, N., Aslam, H., Zee-
shan, O., Denorme, T., Pedersoli, M., Koerich, A. L.,
Bacon, S., Cardinal, P., et al. A joint cross-attention
model for audio-visual fusion in dimensional emotion
recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2486–
2495, 2022.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic rout-
ing between capsules. Advances in neural information
processing systems, 30, 2017.

Shamsian, A., Navon, A., Fetaya, E., and Chechik, G. Per-
sonalized federated learning using hypernetworks. In
International Conference on Machine Learning, pp. 9489–
9502. PMLR, 2021.

Shen, T., Zhang, J., Jia, X., Zhang, F., Huang, G., Zhou, P.,
Kuang, K., Wu, F., and Wu, C. Federated mutual learning.
arXiv preprint arXiv:2006.16765, 2020.

Shi, T. and Huang, S.-L. Multiemo: An attention-based
correlation-aware multimodal fusion framework for emo-
tion recognition in conversations. In Proceedings of the
61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 14752–
14766, 2023.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. Advances in neural infor-
mation processing systems, 30, 2017.

T Dinh, C., Tran, N., and Nguyen, J. Personalized federated
learning with moreau envelopes. Advances in Neural
Information Processing Systems, 33:21394–21405, 2020.

Vahidian, S., Morafah, M., and Lin, B. Personalized fed-
erated learning by structured and unstructured pruning
under data heterogeneity. In 2021 IEEE 41st international
conference on distributed computing systems workshops
(ICDCSW), pp. 27–34. IEEE, 2021.

11

FedMBridge: Bridgeable Multimodal Federated Learning

Wang, K., He, Q., Chen, F., Chen, C., Huang, F., Jin, H.,
and Yang, Y. Flexifed: Personalized federated learning
for edge clients with heterogeneous model architectures.
In Proceedings of the ACM Web Conference 2023, pp.
2979–2990, 2023.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1912–
1920, 2015.

Xiong, B., Yang, X., Qi, F., and Xu, C. A unified framework
for multi-modal federated learning. Neurocomputing,
2022.

Yang, R., Tian, J., and Zhang, Y. Regularized mutual learn-
ing for personalized federated learning. In Asian Con-
ference on Machine Learning, pp. 1521–1536. PMLR,
2021.

Yao, D., Pan, W., Dai, Y., Wan, Y., Ding, X., Yu, C., Jin, H.,
Xu, Z., and Sun, L. Fed gkd: Towards heterogeneous fed-
erated learning via global knowledge distillation. IEEE
Transactions on Computers, 2023.

Yu, Q., Liu, Y., Wang, Y., Xu, K., and Liu, J. Multimodal
federated learning via contrastive representation ensem-
ble. arXiv preprint arXiv:2302.08888, 2023.

Zadeh, A., Chen, M., Poria, S., Cambria, E., and Morency,
L.-P. Tensor fusion network for multimodal sentiment
analysis. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, pp.
1103–1114, 2017.

Zadeh, A., Liang, P. P., Mazumder, N., Poria, S., Cam-
bria, E., and Morency, L.-P. Memory fusion network for
multi-view sequential learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018a.

Zadeh, A., Liang, P. P., Poria, S., Vij, P., Cambria,
E., and Morency, L.-P. Multi-attention recurrent net-
work for human communication comprehension. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018b. URL https://github.com/A2Zadeh/
CMU-MultimodalSDK.

Zhang, C., Ren, M., and Urtasun, R. Graph hypernet-
works for neural architecture search. arXiv preprint
arXiv:1810.05749, 2018.

Zhang, J., Guo, S., Ma, X., Wang, H., Xu, W., and Wu,
F. Parameterized knowledge transfer for personalized
federated learning. Advances in Neural Information Pro-
cessing Systems, 34:10092–10104, 2021.

Zhang, L., Shen, L., Ding, L., Tao, D., and Duan, L.-Y. Fine-
tuning global model via data-free knowledge distillation
for non-iid federated learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 10174–10183, 2022.

Zhao, Y., Barnaghi, P., and Haddadi, H. Multimodal feder-
ated learning. arXiv preprint arXiv:2109.04833, 2021.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge dis-
tillation for heterogeneous federated learning. In Inter-
national Conference on Machine Learning, pp. 12878–
12889. PMLR, 2021.

12

https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/A2Zadeh/CMU-MultimodalSDK

FedMBridge: Bridgeable Multimodal Federated Learning

A. AMFL Simulations
This paper focuses on the AMFL (short for Architecture-agnostic Multimodal Federated Learning) problem setting. Since it
is an overlooked area we found there is no existing dataset that can be directly used to evaluate our method. Therefore, we
create four simulation scenarios of AMFL: SceneAMF, ObjectAMF, MnistAMF, and EmotionAMF.

Each simulation involves at least one visual modality type, plus other auxiliary modality types such as audio and text. Table
4 illustrates overviews of the four simulations. We will release our AMFL simulations in the future.

A.1. Simulation One: “SceneAMF”

We use the NYU-Depth-v2 dataset (Nathan Silberman & Fergus, 2012) as the source to create SceneAMF. The NYU-Depth-
v2 contains 1,449 RGBD images recorded by both the RGB and Depth cameras from the Microsoft Kinect, spanning 464
different scenes taken from 3 cities with 26 scene types. Each instance consists of two image modalities: an RGB image
(the first modality) and a Depth map (the second modality) of the scene.

Derived from NYU-Depth-v2, SceneAMF consists of N = 80 clients with M = 2 modality types and 40 different local
neural architectures. The statistical and architecture heterogeneity patterns are simulated as follows.

• Simulation of Statistical Heterogeneity:

– Tasks & Label Spaces: The label space sizes on local clients are set to |Yi|= 50,∀i ∈ [N]. In order to create a
diversity of local tasks with distribution shifts, we let each client randomly sample 50 scenes from the pool of 464
scenes of NYU-Depth-v2, and use the 50 scenes as its target classes. Clients annotate their target classes using
relative labels 0/1/2/.../49 and have no knowledge on which classes match the others’. Note that a global label
space does not exist.

– Size of Local Datasets: Each client i has ni training samples and 60 testing samples from the selected 50 scenes.
Here, ni is sampled from a normal distribution ni ∼ Normal(70, 10), which simulates a diverse numbers of
samples across clients.

– Input Modalities & Input Spaces: We let a total of 3 types of input spaces across the 80 local datasets. Specifically,
we let 16 clients take only RGB images as the inputs, 16 clients take only Depth maps as the inputs, and 48 clients
take pairs of the RGB image and Depth map as the inputs.

• Simulation of Architecture Heterogeneity:

– Feature Extractors for RGB Images: There are 64 clients having RGB inputs. We use two architecture families
(CNN and ResNets) and two depths per family (3 and 5) across 64 clients. Specifically, 32 clients use the
CNN-based feature extractors for RGB images, where 16 of them contains 3 CNN layers and the other 18 clients
contain 5 CNN layers. The other 32 clients use the ResNet-based feature extractors for RGB images, among which
16 clients contains 3 ResNet blocks and the others use 5-block ResNets. For those using the same architecture
family and having the same depth, their CNN filter sizes and channel numbers for each layer are fixed to {3x3,
3x3, 5x5, 3x3, 3x3} and {16, 32, 32, 64, 64}, respectively. We use MaxPooling in all the networks.

– Feature Extractors for Depth Maps: There are 64 clients taking Depth maps as inputs. We let each client use
either ViT-based or CNN-based model, with either 2 or 4 layers. Specifically, 32 clients use the ViT-based feature
extractors for Depth maps, with 768-dimensional embedding size, 9 patches, and 3 heads per attention layer for all
clients. Among them, 16 ViT clients contains 2 self-attention layers and the others contain 4 self-attention layers.
The other 32 clients use the CNN-based feature extractors for RGB images, among which 16 clients contains 2
CNN layers and the others use 4-layer CNNs. The CNN filter sizes and channel numbers for each layer are fixed
to {3x3, 3x3, 5x5, 3x3} and {8, 16, 16, 32}, respectively. Again, we use MaxPooling in all the networks.

– Multimodal Fusion Modules: For each of the 32 unimodal clients, we use a 2-layer or 3-layer MLP right
after the feature extractor. The two types of MLP have the same width (counted beginning from the deeper to
shallower layers) but different depths. Then, for each of the 48 bimodal clients, we use either Concatenation
or Element-wise Product to combine the two modality-specific extracted features, which is then followed by a
2-layer or 3-layer MLP. In bimodal clients, there could exist all the 4 types of feature extractors per modality (as
presented above) as well as 4 types of fusion modules, as illustrated in Table 4 (row 1).

– Client-personal Final Layers: The final layer on each client is a dense layer with the output size of 50.

13

FedMBridge: Bridgeable Multimodal Federated Learning

A.2. Simulation Two: “ObjectAMF”

We use the ModelNet40 dataset (Wu et al., 2015) as the source to create ObjectAMF. ModelNet40 contains 12,311 3D
shapes covering 40 common object categories, including airplane, bathtub, bed, bookshelf, chair, cone, cup, and so on. Each
3D object has two image modalities, the two viewpoints of its shape. Derived from ModelNet40, ObjectAMF consists of
N = 112 clients with M = 2 modality types and 56 different local neural architectures. The statistical and architecture
heterogeneity patterns are simulated as follows.

• Simulation of Statistical Heterogeneity:

– Tasks & Label Spaces: The label space sizes on local clients are set to |Yi|= 5,∀i ∈ [N]. We let each client
randomly sample 5 object types from the pool of 40 objects of ModelNet40, and use the 5 object categories as its
target classes. Clients annotate their target classes using relative labels 0/1/2/3/4 and have no knowledge on which
classes match the others’.

– Size of Local Datasets: Each client i have ni ∼ Normal(500, 100) training samples and 1,000 testing samples
from the selected 5 classes.

– Input Modalities & Input Spaces: We let a total of 3 types of input spaces across the 112 local datasets. Specifically,
we let 24 clients take only View-1 images as the inputs, 24 clients take only View-2 images as the inputs, and 64
clients take pairs of the View-1 and View-2 images as the inputs.

• Simulation of Architecture Heterogeneity:

– Unimodal Feature Extractors: We use MLP models extracting features for view1 or view2 images. For each
view point, there are 4 different MLP configurations across clients, including two different network widths and
two different network depths: 2-layer MLPs with a width of [64 ,32] or [128, 64], and 3-layer MLPs with a width
of [128, 64, 32] or [256, 128, 64].

– Multimodal Fusion Modules: For the 48 unimodal clients, there feature extractors are followed by the same 2-layer
MLP with a width of [64, 32], where there is no need for multimodal fusion. Then, for each of the 64 bimodal
clients, we use one of the three multimodal fusion strategies: Concatenation, Tensor Fusion (Zadeh et al., 2017),
and Average Alignment. As illustrated in Table 4 (row 2), those using alignment leverage a 2-layer MLP with
[64, 32] to process the aligned features; those using concatenation fusion leverage a 3-layer MLP with [64, 64,
32] to process the concatenated features; and, those using the tensor fusion leverage a 3-layer MLP with a wider
configuration of [128, 64, 32].

– Client-personal Final Layers: The final layer on each client is a dense layer with the output size of 5.

A.3. Simulation Three: “MnistAMF”

We create AMFL scenarios with more than two modalities and a broader range of fusion strategies. We begin with a
lightweight setup, MnistAMF, using the widely-adopted MNIST dataset for simple digit classification tasks.

We first collect our source modalities from several different versions of MNIST. In the last decades, there have been many
modified versions of MNIST datasets extending the original data distribution. For example, in AVMNIST (Liang et al.,
2021), each digit image is accompanied by the corresponding spoken pronunciation of that digit, as articulated by a speaker.
MultiMNIST (Sabour et al., 2017) generates colored digit images, where each image contains both the target digit (in
the red color) as well as a random digit overlayed on the target digit (in the green color). There are also NoisyMNIST,
RotationMNIST, GridMnist, and so on, proposed by previous works. We consider each of these modifications as an “image
style” for the same target digit. Therefore, it is reasonable to create a multimodal MNIST using the combinations of these
modified datasets. In this paper, we collect three source modalities by combining AVMNIST and MultiMNIST, as well as
adding some statistical noise to the original MNIST. Each instance consists of three modalities: the original digit image after
adding noise to its background (Style 1); the colored digit image overlayed with a random beyond-target digit, generated by
from MultiMNIST (Style 2); and, the audio signals of the spoken digit from AVMNIST (Sound).

Derived from the above collections, we construct the MnistAFL, which consists of N = 86 clients with 86 different local
neural architectures across the M = 3 modality types. The statistical and architecture heterogeneity patterns are simulated
as follows and illustrated in Table 4 (row 3).

• Simulation of Statistical Heterogeneity:

14

FedMBridge: Bridgeable Multimodal Federated Learning

– Tasks & Label Spaces: The label space sizes are set to |Yi|= 4,∀i ∈ [N]. We let each client randomly sample 4
digits from the total of 10 digits, and use them as its target classes. Clients maps their target digits using relative
label ids 0/1/2/3.

– Local Data Distributions: When creating Style-1 images, different clients use different random seeds to generate
the noise added to the target images. Also, when creating Style-2 images, different clients use different random
seeds to select the beyond-target digits that overlay on each target image.

– Size of Local Datasets: Each client i have 1,000 testing samples and ni ∼ Normal(1800, 600) training samples
from the selected 4 digits.

– Input Modalities & Input Spaces: We set up a total of 6 input spaces across the 86 local datasets. There are 3
clients taking only Style-1 images as the inputs and 3 clients taking only Style-2 images as the inputs. Also, there
are 3 types of bimodal clients, including 12 clients taking both styles as inputs, 12 clients taking the sound in
accompany with Style-1 images, and 12 clients taking the sound in accompany with Style-2 images. Finally, there
are 48 clients taking both styles as well as the sound as inputs.

• Simulation of Architecture Heterogeneity:

– Unimodal Feature Extractors: We employ CNN-based feature extractors for Style-1 and Style-2 images. For the
sound modality, we convert the audio signals into visual representations, i.e., spectrograms, as illustrated in Table
4 (row 3). Thus we can also use CNN-based feature extractors for the spoken digits. For every modality type, its
corresponding feature extractors on different clients maintain a consistent depth (i.e., fixed two CNN layers) but
vary in their widths (i.e., the number of channels can be either 32 or 64). The kernel sizes of all feature extractors
are set to 3× 3.

– Multimodal Fusion Modules: As mentioned above, we set up 36 bimodal clients and 48 trimodal clients in this
simulation scenario. Before fusion, we use MLP adaptors for each incoming modality’s encoded features, each of
which is an MLP that maps the encoded unimodal features into a 256-dimensional vector. Then, we consider 4
multimodal fusion strategies: Tensor Fusion, MultiEMO (Shi & Huang, 2023), Cross-attention Fusion (Praveen
et al., 2022), and Average Aalignment. As in Figure 4 (row 3), there are 22 clients using MultiEMO to fuse the
Style-1 image and the sound spectrogram, where the widths of their feature extractors are different. Likewise, 22

clients using MultiEMO to fuse the Style-2 image and the sound spectrogram; 23 clients using MultiEMO to fuse
Style-1, Style-2, and the sound spectrogram; etc. We use a 2-layer MLP with the width [64, 32] after obtaining the
fused feature. Furthermore, as edge cases, the remaining 6 unimodal clients do not have the fusion operators so
that we use the similar 2-layer MLP right after the modality-specific feature extractors.

– Client-personal Final Layers: The final layer on each client is a dense layer with the output size of 4.

A.4. Simulation Four: “EmotionAMF”

We use the Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset (Liang et al., 2021) as the source
to create EmotionAMF. CMU-MOSEI contains more than 23,500 sentence utterance videos from more than 1000 online
YouTube speakers. Each video sample consists of three multimedia modalities, including the visual sequence, the audio
channels, plus the annotated language script. Each video is annotated for the presence of 9 discrete emotions, including
angry, excited, fear, sad, surprised, frustrated, happy, disappointed, and neutral.

Derived from CMU-MOSEI, EmotionAMF consists of N = 90 clients with M = 3 modality types and 66 different local
neural architectures. The statistical and architecture heterogeneity patterns are simulated as follows.

• Simulation of Statistical Heterogeneity:

– Tasks & Label Spaces: Since there is only 9 emotion types in CMU-MOSEI, we set the label space sizes of
all clients as |Yi|= 9,∀i ∈ [N]. This is reasonable as the sense for distinguishing different emotions is often a
commonsense shared by human annotators. Yet in EmotionAMF the same emotion type might be annotated as
different label ids on different clients, which simulates the task heterogeneity. We perturb the label indices for
each client.

– Size of Local Datasets: Each client i have 400 testing samples and ni ∼ Normal(215, 40) training samples. To
guarantee data privacy, the videos recorded from each individual speaker appears on only one client.

– Input Modalities & Input Spaces: We consider a situation that many clients do not have enough computation
power to model the complex relationships between video, language, and audio. Instead, some clients may only

15

FedMBridge: Bridgeable Multimodal Federated Learning

Table 4. Statistics of the 4 Simulations of Architecture-agnostic Multimodal Federated Learning (AMFL).

Simulations All Modality Types Client Heterogeneity Illustration
Data Heterogeneity Heterogeneity of Neural Architectures

SceneAMF

ObjectAMF

MnistAMF

EmotionAMF

16

FedMBridge: Bridgeable Multimodal Federated Learning

learn to model its video features but receive such relationship knowledge from other more powerfule clients.
Therefore, we let a total of 7 types of input spaces across the 90 local datasets. Clients can be unimodal, bimodal,
as well as trimodal. There are 3 types of unimodal clients, including 2 clients taking only videos as the inputs, 2
clients taking only texts, and 2 clients taking only audios as the inputs. Also, there are 3 types of bimodal clients,
including 12 audio-visual clients, 12 visual-textual clients, and 12 audio-textual clients. Finally, there are 48
clients taking all the three modalities as inputs.

• Simulation of Architecture Heterogeneity:
– Feature Extractors for the Video Modality: We adopt a pre-trained Video Transformer (VidT) (Shi & Huang, 2023)

to extract spatial and temporal features in videos. For simplicity, during the federated training, we do not fine tune
the entire Video Transformer. Instead, we employ parameter-efficient fine-tuning (PEFT), such as LoRA, which
operates at only a couple of multi-head attention layers. Among the 74 clients that contain video modalities, we
let 37 of them fine-tune the final attention layer while the remaining ones fine-tune the last three attention layers.

– Feature Extractors for the Language Modality: First, following (Liang et al., 2021), we utilize a pre-trained
BERT to extract features for language scripts. Then, each local client aims to train a “self-attentional feature
adaptor”, whose responsibility is to adapt these pre-extracted features to each local task distribution, that is,
feature adaptation. The adapted features will be used for multimodal fusion. As for the neural architecture design
for this adaptor, we let a half of clients that take the language inputs train a single 4-head self-attention layer,
while the other half use a 3-layer 4-head self-attention mechanism as this adaptor. Both use 256 as the size of
key/query/value vectors.

– Feature Extractors for the Audio Modality: We use MLP-based models for the audio modalities. Again, we let
a half of clients that take the audio inputs train a 2-layer MLP with the widths [64, 32] while the others train a
3-layer MLP with the widths [128, 64, 32]. We use ReLU activation functions for all clients.

– Multimodal Fusion Modules: As for the multimodal fusion strategie, we consider both the straightforward way
Average Aalignment as well as those good at modeling complex inter- and intra-modality interactions, such as
Tensor Fusion (Zadeh et al., 2017) and MultiEMO. The detailed configurations can be found in Figure 4 (row
4). There are 22 audio-visual (or audio-text, video-text) clients simply align the two modalities’ feature onto a
common latent space, where the depths of their feature extractors are different. Likewise, 22 audio-visual (or
audio-text, video-text) clients leverage the Tensor Fusion with different backbone depths; and, 22 audio-visual (or
audio-text, video-text) clients leverage the MultiEMO fusion with different backbone depths. For the trimodal
case, there are 23 audio-visual-text clients using each fusion strategy, where the depths of their feature extractors
are different. After the fusion, we use a common 2-layer MLP with the width [64, 32] to process the fused
information. Furthermore, as edge cases, the remaining 6 unimodal clients do not have the fusion operators so that
we use the similar 2-layer MLP right after the modality-specific feature extractors.

– Client-personal Final Layers: The final layer on each client is a dense layer with the output size of 9.

B. Reproducibility
All the approaches are implemented using PyTorch 3.7 and we ran all experiments on a single A800.

B.1. Implementation of Baselines

We compared our approach against seven baselines across three families, whose implementation details are as follows.

B.1.1. Separate Training

Local. Clients separately train their own models. There is no communication and knowledge transfer between clients.
Hence a server is not needed. As clients may converge at varying speeds, to ensure a fair comparison, we adopt the practice
of allowing each client to showcase its optimal performance post-convergence. Subsequently, we calculate the average
accuracy over the best performances of all clients.

B.1.2. Federated Training via Feature Sharing

FedDistill (McMahan et al., 2018). The server utilizes an unlabeled public dataset to enable feature sharing among uploaded
client models through Knowledge Distillation (KD). When applying FedDistill to the AMFL scenarios, we make the
following three adjustments. First, the original FedDistill relies on a unified global weight space–the student model in the

17

FedMBridge: Bridgeable Multimodal Federated Learning

Figure 4. Baselines’ supernet architecture on the server.

original FedDistill is the average of all uploaded models. This condition is not met in AMFL. Thus we conduct client-wise
KD, where the uploaded model of each client is considered as a student. Second, FedDistill leverages several models
θ̂1, θ̂2, ..., θ̂s as teachers to compute the pseudo-labels, which then guide the student training. Upon receiving the weights
{θi|∀i ∈ Nr} from selects clients, instead of constructing a Gaussian weight distribution p(θ|D) = q({θi|∀i ∈ Nr}) and
computing the pseudo-labels from re-sampled models θ̂1, θ̂2, ..., θ̂s ∼ p(θ|D), we directly select a subset {θ̂1, θ̂2, ..., θ̂s} ⊆
{θi|∀i ∈ Nr} and use these models to compute the pseudo-labels. In all experiments, we set s = 10 and use the step size
β = 0.1 for the gradients of KD losses. Third, whereas FedDistill gathers public data from sources outside the client pool,
this is not feasible for Personalized and Multimodal Federated Learning, where each client is engaged in distinct tasks and
employs diverse modalities. In our scenario, before the start of federated training, the public dataset is collected from the
clients such that every pattern of modality combinations has public samples available for client-wise KD. Specifically, we
randomly sample ρ% clients from each group of clients having the same input structure (the same combination of modality
types). For example, for SceneAMF, we sample 16 × ρ% RGB-only client, 16 × ρ% Depth-only client, and 48 × ρ%
RGB-Depth bimodal clients. Then, we request each of them to submit ρ% of their local training samples. Considering the
potential privacy leakage of such data collection way, we mitigate this risk by deliberately keeping the hyperparameter ρ at a
small value, specifically ρ = 5.

FedGKD (Yao et al., 2023). The server employs a memory buffer to store multiple historical global models from recent
rounds, which are used as teachers to guide the local model training via Knowledge Distillation (KD). Students are the
local models trained on the data owners. Different from FedDistill, a public dataset is not needed in FedGKD since KD
is performed locally using the local dataset. Yet a tradeoff is that FedGKD requires the server to (1) capture the accurate
global knowledge as the teacher, as well as (2) each client has sufficient computation resource to download the historical
teachers to perform local KD. Both cannot be satisfied in AMFL given the weight-space heterogeneity and limited storage at
clients. Thus, when we apply FedGKD to the AMFL scenarios, we make the following adjustments. First, about what are
the teachers stored in the memory buffer at server, since the aggregated knowledge in the original FedGKD is unavailable,
we opt to directly store the historical uploaded client models. To mitigate excessive memory usage in storing all clients’
historical models, the server selects only s uploaded models to be added to the memory buffer at each round r. The models
before round (r − 3) are removed. These models are randomly selected from {θ̂r1, θ̂r2, ..., θ̂rs} ⊆ {θi|∀i ∈ Nr} and are
associated with their round ids and client ids. In all experiments, we set s = 10 and use the step size β = 0.1 for the
gradients of KD losses. Second, considering the limited storage capacity at local clients, the number of downloaded teachers
is determined according to local memory budgets. In our implementations, each client sends requests to the server to obtain
s′ ∈ [4, 8] teachers, and then, the server randomly sample s′ teachers from its the buffer to give it back.

We did not consider data-free federated distillation baselines as they require extra computational efforts on the server for
generating multimodal data via Generative Models (such as GAN and VAE). This is particularly an issue when the local
multimodal interactions are too complex to reconstruct. It’s worth to mention that the proposed framework, FedMBridge,

18

FedMBridge: Bridgeable Multimodal Federated Learning

belongs to another line of approaches; thus, we can combine it with any feature-sharing FL methods for further enhancements.

B.1.3. Federated Training via Parameter Sharing

HeteroFL (Diao et al., 2021) deals with the setup that local models do not share the same architecture, by utilizing a global
supernet Θsuper on the server such that every local model is a sub-network of this supernet θi ⊆ Θsuper,∀i ∈ [N]. Each local
model θi is associated with a supermask mi indicating which parameters in the supernet are activated in the local model.
Although HeteroFL is designed for single modality and assumes the same model family and the same network depths, we
can adapt it to our AMFL scenarios as follows. We need to manually construct a Θsuper supernet to cover all local networks.
To obtain the supernet architecture, we merge all local neural networks following three rules: (1) If there are different
network widths using the same model class (i.e. network topology) and the same depth, we can merge them into a single
network having the same model family and depth, but using the maximum width per layer for the supernet. (2) If there are
not only different widths but also different network depths using the same model class, we can also merge them into a single
network, with the maximum depths for the supernet and add residual connections beginning from the layers corresponding
to each local model’s end layer to the final layer. The merge of widths is similar to the first rule. (3) If two clients use
different network topologies (i.e. model families) at the same module–for example, client-A uses a CNN-based network for
the video feature extractor and client-B uses a ViT-based network for the video extractor, we cannot merge this part of their
networks. Instead, we construct a two-channel network, where each channel refers to a model family, and the outputs of the
two channels are added together. An overview of the implemented supernet is shown in Figure 4.

HyperPFL + Pruning (Shamsian et al., 2021; Kumar & Toshniwal, 2022). HyperPFL solves the similar setup as APFL,
except using the HyperNetwork on the server to generate the local weights. Yet the original HyperPFL can only handle
the same architecture across clients. We extend HyperPFL like APFL as follows. We let the HyperNetwork generate the
supernet instead of the original local models. We employ a 16-dimensional task embedding and a 5-layer MLP-based
HyperNetwork with intermediate widths [128, 128, 16, 30, *], where * denotes the number of parameters in the supernet.
Since the supernet is very large, the HyperNetwork contains a large number of parameters. In practice, the forward and
backward process of the HyperNetwork is conducted in a parallel manner.

APFL + Pruning (Jeong & Hwang, 2022; Kumar & Toshniwal, 2022). The original paper introduced the Agnostic
Personalized Federated Learning (APFL) problem and addressed it using Factorized-FL framework, which factorizes the
model parameters into a pair of rank-1 vectors, where one captures the common knowledge across different labels and tasks
and the other captures knowledge specific to the task for each local model. Yet APFL assumes all local models share the
same architecture. Thus, when applying APFL to our AMFL scenarios, we make the following two adjustments. First, we
extend APFL to the architecture-heterogeneous setting by straightforwardly combining AFPL with the supernet idea of
HeteroFL. We let both global and local models of APFL use the supernet architecture instead. The supernet architecture
is constructed using the same way as in HeteroFL. Since local datasets may not contain all modality types to feed to the
supernet, those missing input modalities are imputed by zeros. Second, model aggregation on the server is guided by the
supermasks of each client. In contrast to HeteroFL, supermasks are dynamically updated at each round using structured
magnitude Pruning, with the target compression ratio determined by the specific local network size.

All these parameter-sharing FL baselines depend on a manually constructed supernet, which essentially provides prior
knowledge about the relationships between local parameters. Howewer, we found such heuristic prior knowledge pro-
vided by a supernet does not contain sufficient parameter-level correlation information, thereby limiting their potential
of knowledge transfer. For example, in Figure 4, there is no knowledge sharing across clients between different model
families, between different fusion strategies, between different network layers, and between each pair of parameters in the
same layer. In addition, operating on the supernet is not efficient. In contrast, our proposed framework does not construct
but automatically learn the knowledge about the relationships between local parameters.

B.2. FedMBridge Algorithm
The FedMBridge training process is summarized in Algorithm 1.

B.3. Hyperparameters

The hyperparameters are listed in Table 5.

19

FedMBridge: Bridgeable Multimodal Federated Learning

Algorithm 1 FedMBridge
Input: Local dataset Di, i = 1, 2, ..., N ; number of communication rounds T ; local learning rate α; global learning rate
η; local neural architecture configurations.
Initialization: On each i ∈ [N], construct local neural architecture graph Ai and initializes the local model θi.
Initialization: Each i ∈ [N] upload Ai to server.
for round r = 1, 2, ..., T do

Select Nr ⊂ [N] clients as participants.
// Inference and Download
for client i ∈ Nr in parallel do

Compute θi = h(Ai, ci;ϕ) and send to client i.
end for
// Local updates & Upload
for client i ∈ Nr in parallel do

Copy θ̃i ← θi
for each local update step do

Sample mini-batch B ∈ Di and local update θ̃i ← θ̃i − α∇θ̃i
Li(θ̃i;B)

end for
Compute update direction ∆θi = θ̃i − θi
Upload ∆θi to server.

end for
// Global update and knowledge sharing on the server
for client i ∈ Nr in parallel do

Update task embeddings ci ← ci − η∆θi · ∇ciθi
end for
Update layer-role encoder ϕ1 ← ϕ1 − η∆ϕ1, where ∆ϕ1 = 1

|Nr|
∑

i∈Nr

(
∆θi · ∇

Z
(L)
i

θi · ∇ϕ1Z
(L)
i

)
.

Update weight generator ϕ2 ← ϕ2 − η∆ϕ2, where ∆ϕ2 = 1
|Nr|

∑
i∈Nr

(∆θi · ∇ϕ2θi) .

Combine ϕ = {ϕ1, ϕ2}
end for
Return (Server): Global topology-aware hypernetwork ϕ and client embeddings ci,∀i ∈ [N].
Return (Clients): Personal models θi,∀i ∈ [N] saved or obtained from the server via weight generation as in Eq.(4).

Table 5. List of Hyperparameters.
Where Notations/Descriptions Values

Clients

local optimizers Adam
local learning rate (α) 0.1 ∼ 0.02
training epoch per round 15
training batch size 128

Server

client selection ratio (|Nr|/N) 0.25
GNN layers (L) 4
node feature size per GNN layer [32, 64, 64, 32]
layer-role embedding size (S) 32
task embedding size (F) 16
learning rate of TAHN (η) 0.07∼0.005
optimizer of TAHN SGD
weight decay 0.06

20

