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Abstract

Vision foundation models (VFMs) trained on large-scale
image datasets provide high-quality features that have sig-
nificantly advanced 2D visual recognition. However, their
potential in 3D scene segmentation remains largely un-
tapped, despite the common availability of 2D images
alongside 3D point cloud datasets. While significant re-
search has been dedicated to 2D-3D fusion, recent state-of-
the-art 3D methods predominantly focus on 3D data, leav-
ing the integration of VFMs into 3D models underexplored.
In this work, we challenge this trend by introducing DITR,
a generally applicable approach that extracts 2D founda-
tion model features, projects them to 3D, and finally in-
Jjects them into a 3D point cloud segmentation model. DITR
achieves state-of-the-art results on both indoor and outdoor
3D semantic segmentation benchmarks. To enable the use
of VFMs even when images are unavailable during infer-
ence, we additionally propose to pretrain 3D models by dis-
tilling 2D foundation models. By initializing the 3D back-
bone with knowledge distilled from 2D VFMs, we create a
strong basis for downstream 3D segmentation tasks, ulti-
mately boosting performance across various datasets.

1. Introduction

The idiom “elephant in the room” refers to a situation
where something important is being ignored, while it should
be discussed. Currently, 2D foundation models, such as
DINOv2 [35], remain largely ignored for 3D segmenta-
tion, despite their ability to provide strong semantic pri-
ors. Therefore, we believe that we need to talk about the
elephant DINO in the room.

The current paradigm for state-of-the-art 3D segmen-
tation, both in literature and on benchmarks, is to use
models with specialized 3D backbones that are trained
from scratch [9, 59, 61]. In contrast, for the highly re-
lated task of image segmentation, the current paradigm is
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Figure 1. DINO in the room (DITR). We present an approach to
(a) inject or (b) distill DINOv2 features into 3D semantic segmen-
tation models that yields state-of-the-art results across indoor and
outdoor 3D benchmarks.

to use 2D backbones initialized with pretrained weights
of strong vision foundation models (VFMs) [7, 13, 24—
26, 35, 43, 46, 69]. These VFEMs are predominantly trained
in a self-supervised manner on large-scale image datasets,
enabling strong generalization capabilities. However, cur-
rent 3D datasets [1, 5, 6, 10, 47, 53, 72] are orders of magni-
tude smaller than their 2D counterparts [49, 50]. As a result,
while progress has been made [63], generalist 3D founda-
tion models have yet to emerge. Interestingly, though, we
observe that 3D point cloud data is often accompanied by
corresponding 2D images [6, 10, 47, 53]. This raises the
question: how can we leverage the power of 2D foundation
models for 3D segmentation?

For most 3D point clouds, corresponding images are typ-
ically available due to the process with which this data is
captured. In indoor scenarios, a scene is captured with
RGB or RGB-D cameras as a video sequence and a col-
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ored point cloud is formed via 3D reconstruction [10, 47].
As a result, the data inherently includes 2D images, and
correspondences between images and point clouds are ob-
tained as part of data preprocessing. In outdoor scenarios,
3D street scenes are typically captured with LiDAR scan-
ners mounted on vehicles that are often also equipped with
cameras, providing corresponding 2D images [5, 6, 53].
Despite the availability of these images, current state-of-
the-art methods for both indoor and outdoor 3D semantic
segmentation typically only use 3D data [27, 61, 62, 68].
While 2D-3D fusion has been investigated with moderate
success [2, 22, 45, 54, 70], existing works have thus far not
capitalized on the existence of semantically rich VFMs.

In this paper, we challenge the current paradigm and
claim that VFMs can, as they did in 2D, enrich 3D mod-
els with generalist features that are not easily learned from
the 3D data. To verify this, we take a state-of-the-art 3D
segmentation model [61] and augment it with 2D VFM fea-
tures. Concretely, we take a frozen DINOv2 [35] and ex-
tract 2D image features that correspond to the points in the
associated 3D point cloud. Next, for the 3D points that have
been matched to 2D features, we inject these 2D features
into the 3D model at different decoder stages. Then, we
train this model for the regular segmentation objective, re-
sulting in a 2D-to-3D injection approach (see Fig. 1 (a)).
With this injection approach, which only uses unlabeled im-
ages, the semantic segmentation performance improves sig-
nificantly, achieving new state-of-the-art results. Especially
for indoor datasets with many semantic classes and for out-
door datasets that provide 360° camera coverage, this setup
outperforms the 3D-only baseline on public leaderboards
by large margins, i.e., +7.1 mIoU on ScanNet200 [47] and
+2.4 mloU on nuScenes [6]. Furthermore, it achieves the
top score on the recent ScanNet++ benchmark [67], outper-
forming the next best approach by +3.0 mIoU. We call this
approach DINO In The Room (DITR).

Moreover, we show that even if images are not avail-
able during inference, it is still possible to utilize features
from the same frozen DINOv2 model to enhance segmenta-
tion performance by pretraining 3D models through distilla-
tion [17]. Specifically, we take 3D point cloud datasets that
have corresponding images and teach a 3D student model to
output features aligned with those extracted from a DINOv2
teacher model, using a distillation objective (see Fig. 1 (b)).
Subsequently, the pretrained, distilled student model can
simply be fine-tuned for 3D segmentation in a regular fash-
ion, without requiring corresponding images, and thus with-
out causing any overhead during inference. This distillation
pretraining enables the 3D model to capture the semantic
richness of 2D foundation models without requiring any la-
beled data, effectively using them as distillation targets in-
stead of semantic labels. Furthermore, it allows pretrain-
ing across multiple datasets without adjusting for dataset-

specific semantic label sets, as the target feature space re-

mains consistent. With this setup, we observe consistent

improvements on all datasets compared to random initial-
ization. On SemanticKITTI [5], where there is only a sin-
gle image per 3D LiDAR scan, and on S3DIS [1], where
camera views are sparser, this distillation setup even outper-
forms DITR. We call this approach Distill DITR (D-DITR).

Altogether, these results highlight the significant yet un-
derexplored potential of VFMs for 3D segmentation tasks.

Therefore, we recommend that whenever corresponding im-

ages are available, they should be used to complement 3D

segmentation models, preferably using injection and other-
wise using distillation. Additionally, we note that while we
focus on DINOV?2 in this paper, as it is one of the strongest
existing VFMs, we show that the general setup can also
leverage even stronger models, like the very recently intro-
duced DINOv3 [51].
In summary, our contributions are as follows:

* We show that injection of DINOv?2 features from 2D im-
ages into a 3D model can significantly improve the seg-
mentation performance, achieving new state-of-the-art re-
sults on multiple indoor and outdoor datasets.

* We demonstrate that DINOv2 can also act as a teacher to
pretrain 3D models through distillation, improving per-
formance without requiring 2D data during inference.

2. Related Work

3D Semantic Segmentation. Despite architectural dif-
ferences, most 3D backbones for dense tasks such as
segmentation follow a U-Net-like hierarchical encoder—
decoder design with skip connections. Early methods ap-
ply point-wise fully-connected layers [40, 41], or contin-
uous 3D convolutions [37, 56] to capture local geometric
patterns. Later, MinkUNet [9] significantly improves ef-
ficiency and accuracy by voxelizing point clouds and uti-
lizing sparse 3D convolutions [15]. Following the success
of Vision Transformers [12], attention mechanisms have
been increasingly adopted for 3D segmentation, although
their quadratic computational complexity poses challenges
for large-scale scenes. To address this, several meth-
ods [29, 58, 59, 66, 71] restrict attention to local neighbor-
hoods, where points are subsampled and aggregated hierar-
chically across multiple layers. Following this, Point Trans-
former V3 (PTv3) [61] employs space-filling curves to map
3D point clouds into 1D sequences, effectively preserving
the local neighborhood structure while significantly simpli-
fying and accelerating local attention computations. Most
recently, Sonata [63] scales up PTv3, tripling the number
of parameters, and adopts DINOv2-style self-supervised
learning on point clouds, enabling the use of a substantially
larger 3D training corpus [1, 3, 4, 10, 44, 67, 72], albeit still
orders of magnitude smaller than its 2D counterparts. In
contrast, our approach enhances PTv3 by directly incorpo-



rating features from powerful 2D VFMs such as DINOv2,
thereby leveraging the vast amount of 2D training data on
which these models are pretrained.

2D-3D Fusion. Significant research has been dedicated to
fusing 2D and 3D information for 3D segmentation. Ex-
isting fusion methods are often designed with a domain-
specific focus, addressing either indoor or outdoor scenes.

Indoor fusion methods exploit multi-view information
from RGB-D videos, as points are visible from multiple
angles. Kundu et al. [28] render 2D images and their cor-
responding ground-truth labels from 3D mesh reconstruc-
tions to train a 2D segmentation model. During inference,
resulting multi-view 2D predictions are aggregated in 3D
space. Other approaches leverage 2D segmentation annota-
tions provided by the 3D datasets [10], either by pretraining
2D networks [23] or by jointly training 2D and 3D networks
with interactions between them [19]. Recent methods use
dedicated architectures for 2D-3D fusion, introducing ei-
ther an aggregation module that selectively fuses 2D fea-
tures into a 3D backbone [45], or a unified 2D-3D model
with alternating 2D-3D layers enabling multi-stage fusion
of multi-modal information [22].

Outdoor fusion methods combine appearance-based 2D
features with geometric LiDAR features for segmentation.
Some methods [54, 74] project LiDAR points to the im-
age plane and jointly train a camera and a LiDAR network,
while simultaneously aligning their features. Other ap-
proaches introduce more sophisticated fusion mechanisms,
such as selecting semantically relevant 2D regions for each
point via local attention modules [70], or establishing 2D—
3D correspondences through joint spatial and semantic rea-
soning [31]. Finally, 4D-Former [2] explores 2D-3D fusion
for LIDAR segmentation and tracking, integrating 2D fea-
tures into a 3D backbone at multiple stages.

While these works effectively use 2D information for 3D
segmentation and achieve modest improvements, we ob-
serve that the community has not leveraged 2D VFMs for
3D segmentation, leaving a powerful information source
untapped. In this work, to the best of our knowledge, we are
the first to explore how the power of VFMs can be leveraged
for state-of-the-art 3D segmentation, and demonstrate how
2D-to-3D injection with DITR yields new state-of-the-art
results. Moreover, DITR is the first fusion approach shown
to be effective for both indoor and outdoor scenes, high-
lighting its general applicability.

2D-3D Distillation. Recent methods explore vari-
ous strategies to distill 2D representations into 3D back-
bones for enhanced representation learning in LiDAR point
clouds. Yan et al. [64] propose a joint training frame-
work, where a 3D model is trained for both 3D segmen-
tation and alignment with a 2D model. Several approaches
apply contrastive learning either on super-points and super-

pixels generated by pretrained 2D backbones [32, 48], or
on prototypes created in both the 2D and 3D domains [8].
Others [33, 34] propose new contrastive loss functions, and
conduct experiments with linear probing or limited-data se-
tups. Recently, ScalLR [39] studies the effects of the size
of the backbones and datasets in an image-to-LiDAR distil-
lation setting. These methods focus on—and succeed in—
image-to-LiDAR distillation for zero-shot, limited-data, or
linear probing 3D segmentation settings. However, they of-
ten yield little or no improvement when used as pretrained
models that are subsequently fine-tuned on 100 % of the
data, and fall short of state-of-the-art methods in that set-
ting. In contrast, we demonstrate that our D-DITR dis-
tillation is an effective pretraining step that significantly
improves the fine-tuning performance of a state-of-the-art
model (PTv3). Moreover, unlike previous methods, it also
works especially well for dense indoor scenes.

Orthogonal to other distillation methods, there is also a
line of work that distills specific capabilities from VFMs.
Peng er al. [38] distill language-aligned CLIP [43] fea-
tures from multiple views for 3D open-vocabulary segmen-
tation. Other approaches [20, 36] use projected SAM [26]
segmentation masks as pseudo ground-truth labels to train
class-agnostic 3D segmentation models. Although these ap-
proaches also distill from 2D foundation models, they focus
on obtaining task-specific capabilities in a zero-shot setting
to avoid the reliance on 3D segmentation annotations. In
contrast, we use distillation to obtain a pretrained 3D model
that extracts semantically rich point features, which can
then be fine-tuned for 3D segmentation and, in principle,
other 3D tasks as well.

3. Method

We propose two variants of DITR for 3D semantic segmen-
tation: an injection approach that uses 2D features from DI-
NOV2 [35] during training and inference, and D-DITR, a
distillation approach that aligns 3D features with DINOv2
features during a pretraining phase, which can be followed
by image-free fine-tuning on a specific dataset. In the fol-
lowing, we describe both variants in detail.

3.1. Injection

In many modern 3D datasets, images from calibrated cam-
eras are provided alongside the point clouds [1, 5, 6, 10, 53].
We leverage these images to inject semantically rich 2D fea-
tures into the 3D backbone. An overview of this process is
shown in Fig. 2: we first map 3D points to their correspond-
ing pixels to extract associated DINOv2 features (2D-to-3D
Mapping), and then inject these features into the skip con-
nections of the 3D backbone’s decoder (3D Feature Fusion).

2D-to-3D Mapping. Let P = {p; € R3}}\, be a 3D point
cloud of N points, and assume a collection of K calibrated
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Figure 2. DITR architecture overview. We extract 2D image features from a frozen DINOv2 [35] model () and unproject them (2D-to-
3D) onto the 3D point cloud. The unprojected features are subsequently max-pooled to create a multi-scale feature hierarchy. The raw

point cloud is fed through a 3D backbone
and decoder D; blocks on each level I € {1,2,..

cameras, {(I;, Kx, Tx)} ,. Each camera has intrinsics
K, and world-to-camera extrinsics T}, with Iy denoting
its captured image of resolution H x W. We feed each 2D
image I, into a frozen DINOv2 ViT [12], obtaining patch-
level embeddings Fy, € R7 X% XD where P is the patch
size and D»p is the feature dimension. For each point p;, we
transform it into the k-th camera space as qF = T} (pi, 1)
and multiply by the intrinsics Ky to obtain homogeneous
pixel coordinates (z¥, y¥, 2F) = K;.qF. The pixel coordi-
nates are then given by (uf, vF) = (aF/2F, yF/2F). We
consider point p; visible in the k-th image if u¥ € [0, W),
vF € [0,H) and the depth z¥ is positive (view-frustum

culling). If p; is visible in the k-th image, we determine
the corresponding patch index as

@k o) = ([%]. %))

and assign the corresponding feature from the 2D feature
map Fy to p;. If p; is visible in multiple images, we ran-
domly select one of them to provide the feature. Otherwise,
if p; is not visible in any image, we assign an all-zero fea-
ture vector. Empirically, we find that directly assigning the
feature from the frozen 2D feature map F; at patch index
(d%, o) yields better results than bilinearly interpolating
features from Fy, at the pixel coordinates (u¥,v¥). Also,
aggregating from multiple 2D feature maps resulted in infe-
rior performance compared to random selection.

3D Feature Fusion. Because point clouds are unstruc-
tured, common 3D backbones [9, 61, 73] voxelize the in-

and the unprojected image features are added to the skip connection between the encoder &;
., L}. The model is then trained with the regular segmentation loss.

put, keeping only one point per voxel, thereby reducing P
to P’ with M < N points. These backbones typically fol-
low a U-Net-like encoder—decoder architecture, processing
P’ at multiple spatial resolution levels [ € {1,2,...,L}.
At each encoder level, a pooling layer downsamples the
point features to a coarser spatial resolution. Formally, let
Xlg € RMixDu denote the output of the I-th level encoder
block &;, where [ = 1 is the finest (original) resolution with
M, = M. After the encoder and the bottleneck B, the de-
coder upsamples and refines these features back toward the
original resolution, yielding X? as the output of each de-
coder block D;. To simplify notation, we define X 41 to
be the output of the bottleneck B.

To incorporate DINOv2 features, we first use the pre-
viously described assignment to gather point-wise features
XD ¢ RM*DPw for the points in P’ from the 2D feature
maps Fj. Then, to mirror the spatial structure of the de-
coder features XP across different levels, we repeatedly
apply max pooling to X*P, obtaining features X;® for each
level . In the decoder, features from the encoder (Xf) and
unpooled features from the previous decoder level (TX}L)
are combined via skip connections. In DITR, we addition-
ally inject X7P into these skip connections. Specifically, the
fused input to the I-th decoder block D; becomes

LX) + £(XF) + 7°(XP),
N———— N—_—— N——

prev. dec. block skip connection DINOv2

where + denotes element-wise addition, and each f; is a



linear projection into the decoder’s feature dimension fol-
lowed by batch normalization [21] and GELU [16]. Finally,
the output X of the last decoder block yields per-point fea-
tures for P’, which are passed through a linear segmentation
head to produce class logits. With our injection approach,
we ensure that rich 2D VFM features are available at all 3D
decoder feature resolutions, enabling access to 2D informa-
tion where needed and at different levels of granularity.

3.2. Distillation

While injecting DINOV?2 features directly into the 3D back-
bone can significantly boost segmentation performance, re-
lying on calibrated images at inference time may be restric-
tive in certain real-world scenarios. To address situations
where only 3D data can be used at test time, we propose a
distillation scheme (D-DITR) to transfer 2D knowledge into
a pure 3D model as a pretraining step.

Pretraining via 2D-to-3D Alignment. During pretraining,
we first match 3D points to 2D patches and assign per-point
DINOV2 features X?P as described in Sec. 3.1. We then
feed only the point cloud into the 3D backbone, but instead
of predicting segmentation logits, the network’s final linear
layer regresses the DINOv?2 features. For each point p;, we
denote the predicted feature by x*™** and the corresponding
DINOV2 target feature by x2°. We minimize the following
cosine similarity loss [38], averaged over all visible points:

1 XEred . XZZ-D
‘Ccosine = W Z |} - M y (1)
K3

icy [ ||Xi

where V is the set of indices of points visible in at least
one camera. This distillation pretraining encourages the 3D
backbone to replicate the semantically rich representations
of DINOV2, which capture fine-grained details without be-
ing constrained by the coarse granularity of traditional se-
mantic segmentation annotations. An overview of the dis-
tillation setup is shown in Fig. 1 (b).

Image-Free Inference. After pretraining, we discard the
linear regression head and replace it with the standard seg-
mentation head. The pretrained model can then be fine-
tuned on any 3D segmentation dataset without requiring im-
age features. The final model thus makes predictions based
on 3D data only, yet benefits from the semantic knowledge
transferred from strong 2D models.

Multi-Dataset Training. A key advantage of our 2D-to-
3D distillation approach is that it does not require any anno-
tated data. It only requires aligned 2D and 3D inputs. This
enables us to combine multiple unannotated point cloud
datasets under a single distillation objective, where each
point simply regresses to its corresponding DINOv2 fea-
ture. Following prior multi-dataset work [62], we maintain
separate batch-normalization layers per dataset, which em-
pirically leads to more stable training.

4. Experiments
4.1. Datasets

We evaluate our method on well-established 3D indoor and
outdoor segmentation benchmarks. For indoor segmen-
tation, we select ScanNet [10], ScanNet200 [47], Scan-
Net++ v2 (SN++) [67], and S3DIS [1]. All four datasets
consist of colored point clouds and corresponding RGB-D
frames. For outdoor segmentation, we select nuScenes [6],
SemanticKITTI (Sem.KITTI) [5], and Waymo [53].

4.2. Implementation Details

We use PTv3 [61] as our 3D backbone, as it is the state-
of-the-art model for 3D semantic segmentation across both
indoor and outdoor datasets. Unless stated otherwise, we
retain the default architecture and hyperparameters of PTv3
to ensure fair comparison. Additional details are provided
in the supplementary material. For all datasets, we adhere
to standard evaluation protocols and metrics. Reproducing
PTV3 results on the S3DIS' and SemanticKITTI? datasets
has been notoriously hard for the community. Therefore,
we also report our reproduced results as a reference.

For outdoor scenarios, we observe large performance im-
provements with larger DINOv2 variants and thus we opt
for the largest ViT-g model. For indoor datasets, the ViT-
L and ViT-g variants yield comparable results (as shown in
Tab. 6). Consequently, we choose the ViT-L model to op-
timize resource efficiency, enabling the use of more images
while remaining within GPU memory constraints.

During both training and inference on outdoor scenes,
we use all available camera views: one for SemanticKITTI,
five for Waymo, and six for nuScenes. These camera views
appear in a consistent orientation with respect to the LIDAR
sensor and can be assumed always to be present. For the
indoor datasets, the number of RGB-D frames per scene
can vary tremendously and always surpasses the number of
frames we can effectively process with the available GPU
memory. Therefore, unless specified otherwise, we select
10 uniformly sampled, temporally equidistant frames from
each RGB-D video during inference, while randomly sam-
pling 10 views per scene during training to enhance data di-
versity. Since DINOV2 is pretrained at a maximum resolu-
tion of 518 x 518, we resize input images to maintain a sim-
ilar number of patches while preserving aspect ratio [57].

4.3. Main Results

Injection. Tabs. 1 and 2 show that DITR significantly out-
performs the reproduced PTv3 baseline [61] by injecting
DINOvV2 image features into the PTv3 backbone. These
improvements are consistent across both indoor and out-
door benchmarks. We find that the performance improve-

Uhttps://github.com/Pointcept/Pointcept/issues/154
Zhttps://github.com/Pointcept/Pointcept/issues/186



ScanNet ScanNet200 S3DIS SN++ Method ScanNet  ScanNet200 S3DIS
Method
Val  Test Val  Test Area5 Test PTv3 [61] f
ST [29] 743 137 — _ 72.0 — t» reproduced 76.8 354 72.1
PTvl [71] 70.6 < — 27.8 — 70.4 — D-DITR 78.6 37.2 —
PointNeXt [42] 71.5 71.2 — — 70.5 — D-DITR (multi-dataset) 79.2 37.7 75.0
MinkUNet [9] 722 73.6 250 253 654 456
OctFormer [58] 757 76.6 326 326 — 46.0 Table 3. Indoor distillation results (mIoU). We evaluate mod-
Swin3D [66] 76.4 — — — 72.5 — els pretrained and fine-tuned on the same datasets, as well as one
PTv2 [59] 754 742 302 — 71.6 445 pretrained on ScanNet and Structured3D jointly. All models out-
PTv3 [61] 77.9 37.8 T 488 perform the randomly initialized PTv3 baseline. T Uses a smaller
L reproduced  76.8 _ 354 _ 72.1 _ point patch size and relative positional encoding.
Sonata [63] 794 — 368 — 760 495
DVA [45] 71.0 - _ _ 67.2 _ Method nuScenes  Sem.KITTI Waymo
BPNet* [19] 73.9 749 — — — — PTv3 [61]
DMF-Net [65] 75.6 752 — — — — t» reproduced 79.9 68.3 71.5
VMVF™ [28] 764 74.6 — — — —
, D-DITR 80.9 — 71.6
ODIN” [22] 778 744 405 368 686 — D-DITR (multi-dataset) 80.7 69.8 72.1

DITR 80.5 79.7 412 449 741 525

Table 1. Indoor semantic segmentation results (mloU). DITR
significantly outperforms PTv3 on all datasets and obtains state-
of-the-art results on three of them. We compare against both 3D-
only (top) and 2D-3D fusion methods (bottom). t Uses a smaller
point patch size and relative positional encoding. * Latest results
from the challenge in combination with multi-dataset fine-tuning.
* Requires 2D segmentation labels.

nuScenes Sem.KITTI ~ Waymo
Method
Val Test Val Test Val
MinkUNet [9] 73.3 — 63.8 — 65.9
SPVNAS [55] 77.4 — 647  66.4 —

Cylinder3D [73] 76.1 77.2 64.3 67.8 —
SphereFormer [30]  78.4 81.9 67.8 74.8 69.9

PTv2 [59] 80.2  82.6 703 72.6 70.6
PTv3 [61] 82.7 74.2

t» reproduced 79.9 — 68.3 — 71.5
Sonata [63] 81.7 — 72.6 — 72.9
4D-Former [2] 789 804 66.3 — —
2DPASS [64] 794 80.8 69.3 729 —
MSeg3D [31] 80.0  8l1.1 66.7 — 69.6
LCPS [70] 80.5 789 67.5 628 —
DITR 84.2 851 69.0 744 73.3

Table 2. Outdoor semantic segmentation results (mloU). DITR
obtains state-of-the-art results on datasets with full camera cov-
erage: nuScenes and Waymo. We compare against both 3D-only
(top) and 2D-3D fusion methods (bottom).

ment is particularly large on the hidden test set of Scan-
Net200, where we observe a gain of +7.1 mloU. This shows
that image feature injection is especially beneficial for more
complex segmentation tasks with many categories. The
only dataset where we observe only moderate gains is the
Sem.KITTT dataset. However, this is to be expected because

Table 4. Outdoor distillation results (mIoU). We evaluate mod-
els pretrained and fine-tuned on the same datasets, as well as one
pretrained on all three. In all cases, our models outperform the
randomly initialized PTv3 baseline. Sem.KITTI is excluded from
single-dataset pretraining due to its single-camera setup.

this dataset provides images from only a single front-facing
camera, covering only a fraction of the 3D points, limiting
the number of points for which 2D injection can be applied.

Compared to existing state-of-the-art methods, we note
that DITR not only outperforms all previous 2D-3D fu-
sion methods, but also the very recent Sonata [63] on most
datasets. The improved performance compared to exist-
ing fusion methods is especially noteworthy because these
methods only focus on either indoor or outdoor segmenta-
tion, while DITR is effective in both settings, and because
some of them require 2D segmentation labels, which DITR
does not. The fact that DITR surpasses Sonata, on the other
hand, is striking because Sonata uses a PTv3 backbone that
is three times larger than DITR’s, and because it uses an
expanded 3D training corpus. Interestingly, we observe in
Tab. 6 that DITR still outperforms Sonata even when using
the small DINOv2-S backbone, with DITR’s model size—
including a frozen DINOv2—amounting to only half of that
of Sonata. This reinforces our main message: given the rel-
atively limited availability of 3D data, 2D VFMs are crucial
for advancing 3D segmentation, and even the inexpensive
small variants can be highly effective.

Distillation. For distillation pretraining, we explore two
settings: (1) pretraining on individual datasets and fine-
tuning on the same dataset to show the effectiveness of
VEM features as distillation targets, and (2) joint pretrain-
ing on multiple datasets. In the indoor multi-dataset dis-
tillation case, we jointly pretrain on ScanNet and Struc-
tured3D [72] and for the outdoor case we use nuScenes,
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Figure 3. D-DITR distillation. We show PCA projected features
from D-DITR after distillation. Many objects in the ground-truth
segmentation are clearly separable in the predicted features, indi-
cating the value of DINOvV2 features for 3D segmentation. The
colors are not expected to match, but color “clusters” should align.

Distilled DINOv2 Features

SemanticKITTI, and Waymo. We exclude S3DIS from pre-
training due to its smaller size and instead use it to assess
generalization on an unseen dataset. The results are pre-
sented in Tab. 3 and Tab. 4 as D-DITR. We find that single-
dataset distillation yields consistent improvements over the
PTv3 baseline, demonstrating the effectiveness of DINOv2
distillation. The use of multi-dataset distillation further im-
proves the results. In indoor datasets, distillation pretrain-
ing significantly improves the segmentation performance,
with gains of +2.4 mIoU on ScanNet, +2.3 mloU on Scan-
Net200 and +2.9 mIoU on S3DIS over the state-of-the-art
3D baseline. The improvement on S3DIS is particularly in-
teresting, indicating that the distilled features can general-
ize to unseen datasets. For outdoor datasets, D-DITR also
produces consistent improvements over the baseline. In par-
ticular, the distillation approach yields notable gains on Se-
manticKITTI, and even surpasses the injected DITR model
(see Tab. 2). This indicates that even when images are not
available, or compute constraints do not allow for the com-
putation of DINOV?2 features during inference, D-DITR can
utilize the strong 2D features that it sees during pretraining
for enhanced segmentation during inference.

Fig. 3 visualizes feature predictions by D-DITR prior to
fine-tuning. When compared to the ground-truth segmenta-
tion labels, objects are clearly separable by color, even when
visualizing only the first three principal components of the
high-dimensional feature space. This further indicates the
value of 2D VFM features for 3D semantic segmentation.

4.4. Ablation Study

2D-3D Injection Method. As described in Sec. 3.1, DITR
injects 2D image features into all blocks of the 3D de-

Injection method ScanNet200 nuScenes

None (i.e., PTv3 [61]) 35.2 79.9
2D image feature injection
Before 3D encoder [23, 45] 40.1 82.3
Between two 3D encoder—decoders [65] 40.4 82.2
In 3D decoder (all blocks) (i.e., DITR) 41.2 83.1
In 3D decoder (last block only) 40.1 82.5
After 3D decoder 37.6 82.5
Other
[cls] tokens in 3D decoder (all blocks) 374 79.4

Table 5. Comparison of different 2D-3D injection methods.
We compare different methods to inject 2D features, ordered from
early to late injection. All experiments use DINOv2-L.

coder. In Tab. 5, we compare this approach to several al-
ternatives, including the 2D-3D injection methods that are
employed by existing state-of-the-art 2D-3D fusion meth-
ods for indoor 3D segmentation that do not require 2D la-
bels [23, 45, 65]. The results show that early injection—
i.e., before the 3D encoder—as employed by MVPNet [23]
and DVA [45], is better than no injection, but that it un-
derperforms DITR’s intermediate injection in all decoder
blocks. The same applies to DMF-Net’s approach [65] of
having separate 3D encoder—decoders for feature extraction
and 3D segmentation, and injecting features between these
two encoder—decoders. Finally, we also evaluate /ate injec-
tion methods, which either inject 2D features only in the
last decoder block or after the last decoder block, but we
find that these also perform worse than DITR’s default in-
jection. These results highlight the importance of informing
the 3D model about 2D features at multiple stages of the
network, as done by DITR’s 2D-3D injection approach.

In addition to the injection of 2D image features, we also
experiment with injecting the [cls] tokens, generated by
the 2D VFM, as additional tokens into the self-attention op-
erations of the 3D decoder. This is inspired by the observa-
tion in Tab. 8 that DITR even achieves significant improve-
ments on invisible points, suggesting that it might leverage
additional features as a kind of global context, which could
be contained by the [c1s] token as well. However, we find
that injecting the [c1s] tokens only yields a small boost on
indoor scenarios and does not impact outdoor performance.
Therefore, we did not further pursue this direction.

Image Backbone Ablation. To assess the impact of the
image backbone used to extract 2D features, we experiment
with various commonly used image backbones with frozen
weights as shown in Tab. 6. When comparing different
DINOV2-pretrained ViT models, there is a consistent trend
that larger models perform better. Comparing DINOv2 with
other pretraining approach, we find that a standard ViT-L
model pretrained on IN21k [11, 52] shows a modest per-
formance improvement in indoor scenarios compared to the



Image backbone ScanNet200 SemanticKITTI
ScanNet200 nuScenes Method

Pretraining Model Visible Invisible Visible Invisible

— — 352 80.4 PTv3 [61] 352 34.5 68.5 68.1

IN21k [52] ViT-L 38.2 80.2 DITR 41.5 39.7 71.6 68.3

AIMV2 [14] ViT-L 39.1 82.8

SigLIP 2 [57] ViT-g 38.1 83.6 Table 8. Performance on visible and invisible points. We com-

DINOV2 [35] ViT-S 38.2 82.8 pare the segmentation performance of points visible in at least one

DINOV2 [35] ViT-B 40.7 83.0 image to those that are never visible. For SemanticKITTI, only

DINOV2 [35] ViT-L 412 83.1 18.9 % of labeled points are visible.

DINOV2 [35] ViT-g 40.8 84.2

DINOV3 [51] ViT-L 423 83.9 data is available during fine-tuning. Overall, this experi-

Table 6. Injection with different image backbones. We compare
different image backbones and pretraining schemes for DITR.

% Data  Scratch CSC[18] MSC[60] PPT[62] D-DITR
1% 260 289129 292132 313157 34,118
5% 478 498120 507129 522144 56,6158
10% 56.7  59.4127 610147 628101 652185
20 % 62.9 646117 649720 664135 683154
100% 722 738116 753131 758136 762140

Table 7. ScanNet “limited reconstructions” benchmark with
the MinkUNet [9] 3D backbone. All methods perform pretrain-
ing on unannotated raw data, followed by segmentation fine-tuning
on fixed labeled subsets of ScanNet. For fair comparison, all meth-
ods use a MinkUNet backbone (not PTv3).

no-injection baseline, but reduces performance on the out-
door nuScenes dataset. SigLIP 2 [57] and AIMv2 [14],
on the other hand, consistently outperform the baseline in
both indoor and outdoor settings, but perform worse than
DINOV2. Finally, DINOv3 [51], which was released only
days ago, performs even better than DINOv2 with ViT-L,
and achieves the absolute best ScanNet200 performance.
These results show that strong pretraining, as used in foun-
dation models, is key to achieving consistent gains across
diverse environments. They also suggest that our conclu-
sions are not specific to DINOv2 but hold with very recent,
more powerful VFMs like DINOv3 as well, and that these
models are simply drop-in replacements in our framework.

4.5. Additional Analyses

ScanNet Data Efficient Benchmark. To demonstrate that
D-DITR is also effective in label-scarce settings, we use the
ScanNet “limited reconstructions” benchmark and show re-
sults for different percentages of available data during fine-
tuning in Tab. 7. For this setting, we use MinkUNet [9] as
the student model to compare with previous unsupervised
approaches in a consistent setting. Similar to CSC [18],
we use additional unlabeled images. D-DITR outperforms
all previous unsupervised pretraining approaches in all set-
tings. The gap is even larger when a small percentage of

ment shows that our distillation approach can be applied to
other commonly used 3D backbones and that it provides a
strong supervision signal compared to raw 3D data.

Visibility vs. Performance. To better understand the
source of the performance improvement, in Tab. 8, we com-
pare the performance of DITR and the baseline on visible
and invisible points separately. DITR shows a notable im-
provement on visible points for both the ScanNet200 and
SemanticKITTI datasets. Moreover, it still outperforms
the PTv3 baseline even on invisible points. The large im-
provement on ScanNet200 suggests that the model captures
global context from the 2D features, aiding the segmenta-
tion of invisible regions.

Resource Usage. We assess the runtime impact of DITR,
compared to the PTv3 baseline without additional injec-
tion of 2D features. On ScanNet200, using a ViT-L DI-
NOv2 backbone and 10 camera views, training time in-
creases from 12 to 15 hours using two H100 GPUs. The
average per-scene inference latency increases from 41 to
76 ms, while the required GPU memory increases from 1.4
to 5.6 GiB (using a single H100 GPU for inference).

5. Conclusion

We demonstrate that the rich semantic features of 2D
VEMs, like DINOV2, can be leveraged to advance 3D seg-
mentation performance by large margins. First, with DITR,
we demonstrate that injecting frozen 2D VFM features into
a 3D model’s decoder yields significant performance gains,
achieving new state-of-the-art results. Second, we show
that 2D VFMs can enable substantial improvements even
when images are unavailable during inference, by using our
D-DITR distillation strategy to pretrain a 3D backbone. No-
tably, both DITR and D-DITR require only unlabeled im-
ages and are not bound by the choice of VFM, making
them readily and generally applicable. In conclusion, given
our promising results, we strongly advocate the use of 2D
VEMs for 3D scene understanding whenever possible.
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