Under review as a conference paper at ICLR 2025

POINCARENORM: RETHINKING OVER-SMOOTHING BE-
YOND DIRICHLET ENERGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Dirichlet energy is intuitive and commonly used to measure over-smoothing. How-
ever, Dirichlet energy can only capture information about the first-order derivative
of features. In light of this, we propose a series of node similarity measures which
are the energy of higher-order derivatives of features and generalize Dirichlet
energy. After we rigorously analyze the property of proposed measures and its
application to establish the sharp decay rate of Dirichlet energy under continuous
diffusion or discrete random walk which is closely related to the first nonzero eigen-
value of graph Laplacian. Lastly, to address over-smoothing with respect to these
measures, we propose a normalization termed PoincareNorm which generalizes
PairNorm to control our proposed measures. We consider the semi-supervised
node classification task in the scenario without missing features, PoincareNorm
outperforms existing normalization methods.

1 INTRODUCTION

Graph neural networks(GNNs) have emerged recently and successfully applied to many fields such
as protein prediction (Gligorijevic et al., 2021)) and social recommendation (Fan et al.,2022). Though
vanilla graph convolutional network(GCN) (Kipf and Welling, 2017), graph attention network(GAT)
(Velickovic et al.,|2018) and a class of neural networks following the paradigm of message passing
type (Gilmer et al.| 2017) have achieved great success in many graph-based tasks, they suffer from
over-smoothing when stacking layers. Many works theoretically analyze the loss of expressive
power for attention-based mechanism (Wu et al.l 2023) and graph convolutional network (Oono and
Suzukil 2020)(Cai and Wang, [2020). Works are emerging to address over-smoothing such as residual
connection (Li et al.,[2019) (Liu et al., [2020) (Chen et al., [2020)(Xu et al., 2018)) originated from
(He et al.,2016)), regularization such as dropout (Papp et al.,|2021)) (Rong et al., 2020)(Fang et al.,
2023). Nguyen et al.|(2023) think that positive Ollivier-Ricci curvature will cause over-smoothing
and they delete edges with highly positive curvature. From the spectrum view over-smoothing is
closely related to the first nonzero eigenvalue of graph Laplacian (Jamadandi et al.| [2024) (Giraldo
et al., 2023)).

Simplified graph convolution(SGC) (Wu et al., |2019) separates transformation and propagation.
With propagation only they can stack layers and achieve competing performance with GCN, Wang
et al.| (2021) further use heat kernel to propagate and [Li et al.| (2022) consider more propagation
kernel. Another mainstream to address over-smoothing is to consider different ordinary differential
equations(ODE) and partial differential equations(PDE) to change the dynamic system of GNNss.
Rusch et al.|(2023b)) use gradient gating to control the update of features. Kang et al.| (2024) apply
fractional time derivative to evolving dynamic system. More equation-based GNNs such as Allen-
Cahn equation (Wang et al., 2023)), reaction-diffusion equation (Choi et al.,[2023). For more equation-
based graph neural networks we refer to (Rusch et al.| [2022)(Maskey et al.;|2023))(Behmanesh et al.,
2023)(Thorpe et al.,|2022)(Chamberlain et al., 2021)(Xhonneux et al.,|[2020).

Normalization of features has also been proven successful in graph neural networks. a few works
are devoted to address over-smoothing such as PairNorm (Zhao and Akoglul|2020) and GroupNorm
(Zhou et al.| [2020). These works keep normalized features away from trivial under the measure of
over-smoothing. NodeNorm (Zhou et al.||2021a)) think of degradation of graph convolutional network
as variance inflammation and normalize over feature dimension for every node similar to layernorm
(Ba et al., 2016), GraphNorm (Cai et al., 2021) think that usual instancenorm (Ulyanov et al., 2017)

Under review as a conference paper at ICLR 2025

applied to GNN will cause loss of information due to standard shift, instead they normalize the feature
values across all nodes in each graph with a learnable shift.

Many measures are proposed to quantitively measure over-smoothing, among which Dirichlet energy
is intuitively and most commonly used (Rusch et al.,2022)(Zhou et al., 2021b), however, Dirichlet
energy can only capture information about the first-order derivative of features. Also, Dirichlet energy
based normalization PairNorm can not control the energy of higher-order derivatives well. Based on
this observation our contributions are as follows

* We propose a series of node similarity measures to measure over-smoothing more finely,
this measure generalizes Dirichlet energy. We prove that these node similarity measures
satisfy the condition of (Rusch et al.|[2023a)). Then we theoretically illustrate the relation
between proposed node similarity measures and use this relation to build up the decay rate of
Dirichlet energy under continuous heat diffusion and general discrete random walk. Results
of the decay rate will show that self-loop is a necessary condition for over-smoothing. Also,
the decay rate under continuous heat diffusion can give a more concrete analysis of over-
smoothing of the work (Wang et al., 2021) and indicate the relation between over-smoothing
and the first nonzero eigenvalues of graph Laplacian.

* In light of these measures, We use Poincare inequality to construct normalization termed
PoincareNorm to control measures proposed by us, we note that this normalization is a
generalization of PairNorm. We consider the semi-supervised node classification task in
the scenario without missing features, PoincareNorm outperforms existing normalization
methods.

2 PRELIMINARY AND NOTATION

We introduce the framework of weighted graphs and calculus on it, this framework is commonly
used when studying differential equations on graphs (Grigor’yan et al.||2016)(Sun and Wang}, [2022)),
we make use of this framework and show that attention-based GNNs can be generalized into this
framework. In this article all graphs are assmued to be finite and undirected. Let G = (V, E,w, u)
be a weighted graph, where V' = {1,2,...,n} is the set of nodes, E C V' x V is the set of edges,
w is a function on E such that w;; = w([i,j]) = w([j,?]) > 0 for [i,j] € E, p is a function
on V such that y; = p(i) > O0fori € V. Fixedi € [n], N; = {j € [n] : wi; > 0,5 # i}
denotes node i’s neighborhood. Denote wy,q,; = MaX;e(n] jeN; Wij> Wmin = Milic(n] jeN; Wi
Pmaz = MaXie[n] fis Pmin = M) fis [V = Zie[n] ;. Following we define the general
gradient and Laplacian of a vectored value function f.

Definition 2.1. Let G = (V, E,w, u) be a weighted graph and f : V — R® is vector valued funtion
on the nodes,integration of f on'V is defined as

n
[=3 st
v i=1
The inner product of the gradient of f and the gradient of g is defined as

(925 Tyt = Y 20 I) -0~ 1)

JEN; 241
Where - is dot product between vectors. General p-norm of a vector x = (21, ..., xy) is defined as
k
lelly = (3 lail?)
i=1

where p > 1. p-norm of Gradient of f on'V is defined as

1911 = (3 D= Tl

P 24(1)

=

)

Laplacian of f on'V is defined as
IWNCEDY wij (f(7) = f(@)

JEN; Hi

Under review as a conference paper at ICLR 2025

The virtue of the above definition is that we can integrate by parts. This is a well-known result and
we give a proof for completeness. Proof of the following Theorem and all proof needed in this paper
will be left in the Appendix.

Theorem 2.1. Let G = (V, E,w, 1) be a weighted graph and f,g : V — R% are vector-valued
functions on the nodes, then we have integration by parts

[8t gtn=— [Vs -Vagau= [18
\% \% \%

Thus we can do calculus on graphs under the above general definition of gradient and Laplacian. Now
recall traditionally considered graph Laplacian, A € R"*" D = diag(D;,...,D,),A = A+ 1
and D denotes adjacent matrix, degree matrix, ad_]acent matrix with self- loop and degree matrix of
A respectively. Asym = D~ 3AD~% and A,y = DL A are denoted as symmetric normalization
and row normahzatmn of A respectively. When there exist no isolated nodes, we can also define
Asym = D~3AD~% and A,y = DA, Graph Laplaman with respect to A, A, Asym, Ay Asym,

A, and are defined as A g5 = A—D, Aadj A-D, Asym adj fASym I, A adj = Ay —1,
Agym—adj = Asym — 1 and A, y_qq5 = Arw — I respectively. We give special cases of general

graph Laplacian when A = A4, Aadj, Arw—adj OF Am,adj as follow

wi; =1 =1 when A = A4
wij =1, =1 when A = Ay

wij = 17N1 = Dz +1 when A= Aru)—adj
wij =1,pi=D; when A=A, _qq

From theorem 2.1, —A, is a semi-positive symmetric operator on function space L2(V,du) = {f :
V=R [[|f3dp < oo}. we array its eigenvalues as follows

0=X(-A) < M(-A,) <...<)‘N(*Au)

1

Yien; W
IS = maxgep,) At ", then we

Hi

where N > 1. Denote u} = D ien; Wigs Mmaz = maXep]
have an upper bound for Ay as follows

Theorem 2.2. Given a weighted graph G = (V, E,w, 1), then we have upper bound for An
/\N < 2Mmaa:

Ifvi e [n],> jen; Wi < i, then P, = A, + I is called random walk matrix associated with A,
we say that P, satisfies self-loop if Vi € [n], >, r., wij < pi- We have upper bound Ay < 2. We
recall that the layer of attention-based GNNss is as follows

Xl+1 _ ¢(PleWl)
where ¢ is the activation function, W' is learnable matrix and P! is an aggregation operator in
message-passing. Pl-lj denotes the i-th row and the j-th column element of P", usually Pilj can be
expressed as
l

L ea?p(eij)

Y eap(el;) + Zke]\/,; exp(ely)
where eéj is weight in layer [between node i and j. This aggregation operator coincides with our
definition of random matrix if we specify edge weights w;; and node weights p as follows

wij = explei;), pi = explel) + > exp(ely)
]CE./\/‘i

3 UNDERSTANDING OVER-SMOOTHING

In this work, we consider the semi-supervised node classification task on the graph. Every node ¢ in
V is given features X;. Only a subset of V" are given labels. A training set V},4;y, is a subset of V'
with labels for training, the task aims to predict the labels of the nodes V\V};.q,, from features.

Under review as a conference paper at ICLR 2025

3.1 MEASURES OF OVER-SMOOTHING

There exists a variety of approaches to quantitatively measure the issue of over-smoothing. Kaixion
Zhou proposes a Group distance ratio to measure distances between different groups with the same
label and Instance information gain to measure dependency between node feature and representation.
Chen et al.|(2019) propose mean-average distance to measure similarity between nodes. More lately
'Wu et al.| (2023)) propose a new node similarity measure of the distance between features of nodes
and the mean feature as follows

Ew(X) = [IX = 1,13

; X . . .
ZE% Dirichlet energy is also a commonly used measure as follows

Ep(X) =" > I1Xi— X;3

i€n] JEN;

where 1., =

Generally Rusch et al.|(2023a)) defines the following concept of node similarity measure and over-
smoothing

Definition 3.1. (Over-smoothing) Let G be an undirected, connected graph, and X* € R™*™ denote
the k-th layer hidden features of an N-layer GNN defined on G. Moreover, we call £ : R"*™ — Rx
a node similarity measure if it satisfies the following axioms:

* Je € R™ with X; = cforall nodes i € V ifand only if E(X) =0, for X € R"*™
cE(X+Y)<EX)+EY), forall X, Y € R™*™

We then define over-smoothing with respect to as the layer-wise exponential convergence of the
node-similarity measure £ to zero, that is forn =0, ..., N and some constants C1,Cy > 0

E(X™) < Cre~ @2

If we suppose 1., = 0, then Ey (X) = || X ||3, this is the energy of zero-order derivative of features.
Dirichlet energy can be considered as energy of the first-order derivative of features. Based on these
observations, existing measures only capture information on the low-order derivatives, we propose
a series of node similarity measures as follows to capture information on higher-order derivatives
which is a generalization of the two above measures and proves that attention-based GNNs are
over-smoothing under our proposed measure.

Theorem 3.1. G = (V, E,w, 1) is a connected weighted graph, Given a vector-valued function f on
the graph, We define the energy of higher-order derivatives of f as follows

en)= [IV sl
where p > 1, m € N and higher-order derivatives of f is defined as follows

v = (=A% flp if mis an even number
p BRI ||V#(—AH)%f||p if mis an odd number

where (—A,)°f = limg o+ (—A,)f = f — \% [y fdp, fractional Laplacian follows the defi-

l1a

nition in (Maskey et al.| 2023)). Then node similarities defined as v2,(f) = (Eﬁl(f))% satisfy two
conditions of node-similarity measure. Also, Ew and Ep are all special cases of our proposed
measures.

3.2 ILLUSTRATION OF PROPOSED MEASURE

We claim that exactly EP,(f) are all equivalent if m > 1. If additionally assume that the graph is
connected, then for all m > 0, P, (f) are all equivalent. Case m < 1 is direct consequence of
Poincare inequality and will be left in next section. We give claim for m > 1 as follows

Theorem 3.2. G = (V, E,w, u) is a weighted graph. Then for any function f on the graph, there
exist constants Cy,Cs, Cs, Cy > 0 such that

o) / IV, 12y < / 1A, FllEdp < Cy / IV, f12dp

4

Under review as a conference paper at ICLR 2025

and
Ca [19uu sl < [18,5150 < Ca [19,8, 1
constants Co will be \y when p = 2. Replace f by AZLg we can get the equivalence for all m > 1.

This theorem implies directly that if GNNs are over-smooth with respect to one of these measures,
they will also be over-smooth with respect to other. Equivalence between £?, can be used to estimate
the rate of over-smoothing. Given a weighted graph G = (V, E,w, 11), A (—A,,) is closely related to
the trade-off between over-smoothing and over-squashing (Karhadkar et al., 2023)). The higher \q,
The less over-squashing and the more over-smoothing. Much work is devoted to analyzing relations
between A\ (—A u) and over-smoothing (Giraldo et al.,|2023), However the existing results are not
satisfactory (Chung, [1996)(Cai and Wang, 2020), existing results of decay rate require condition
1—XM(=A,) > An(—=A,) — 1 or self-loop.

Usually, we think that the reason behind message-passing type GNNs is spatial propagation. SGC
removes the transformation operation in GCN and achieves competing performance with GCN. Its
structure is as follows -
Y = softmax(Ag,,, XW)

where K is number of layers and W is learnable parameters. [Wang et al.| (2021)) show that at the
stage of feature propagation Simplified graph convolution is equivalent to heat diffusion on the graph
with fixed step size At = 1, it is known that features within each connected component propagated
by heat diffusion will converge to a constant vector, they control the time step size to address the
over-smoothing. However, existing simplified graph convolution-type methods and equation-based
methods do not analyze the decay rate. For simplicity and clarity, we only consider the propagation
of SGC with general kernel and heat kernel considered by (Wang et al.l 2021) here and prove that for
a general weighted graph, over-smoothing of them are closely related to A; (—A,).

Theorem 3.3. Let G = (V, E,w, i1) be a weighted graph. If f is a solution of the heat equation

of

a0 Al
with initial condition f(t = 0) = fo, then there exists constant Cs > 0 such that Dirichlet energy of
f will decay exponentially when t tends to infinity

/v IV, fll3dp < Csem2X (=8t /V IV, foll2dp

Suppose further Vi € [n}, >, wij < i, Let random walk matrix be P = A, + I, then for the
arbitrary function f on the graph, we have the decay rate as follows

k
JI9P < (1= 2= A a0MEA0) " [19,
where k € N, k > 1. also for flsym we specify wi; = 1, i; = D; + 1, we have decay rate

~ 1~ ~ ~ k ~ 1
J 19D A 1B < (1= 2= (-Brumas DN (Brumas) [19,007 Pl
v \4

We note that the decay rate on Theorem 3.3 is almost the best we can achieve. If Ay (—A4,) = 2,
then [, ||V, Pf|3du possible equate [, ||V, f||5dp. Consider bipartite graph Kj 5 with nodes
V ={1,2,3,4} and edges E = {(1,3),(1,4),(2,3),(2,4)}, given feature X such that X (1) =
X(2)=1,X(3) = X(4) =0, then [, [V, A X|3dp = [i, [V, X||3du. In conclusion, self-loop
is a necessary condition for over-smoothing.

4 ADDRESSING OVER-SMOOTHING

In this section, we introduce Poincare inequality on graphs and propose normalization termed
Poincarenorm which is a generalization of Pairnorm. Generally, we work on a weighted graph
G = (V, E,w,) and a vector-valued function X : V — R9 is given,

Under review as a conference paper at ICLR 2025

4.1 POINCARENORM

First, we recall that PairNorm considers total pairwise square distance(TPSD) as their measure of
over-smoothing

TPSD(X) = Y [IX(i) = X(j)l3
i,j€[n]
TPSD is a special case of Dirichlet energy assuming all nodes are connected. Then they propose
PairNorm composed of two steps: centering and scaling

Xe(i) = X (i) — & Yoy X (k)

oo X°(4)
X0 = s s o

This normalization will make TPSD(X) a constant 21252, This consideration has three limitations.
First making TPSD a constant will strictly constrain the performance of GNNs. The second limitation
is that consideration of TPSD violently assumes all nodes are connected, generally, we have £p(X) <
TPSD(X) but it is generally not true that TPSD(X) < CEp(X) for a constant C, so keeping TPSD
away from zero can not ensure that £p (X)) is away from zero. The third limitation is that PairNorm
only considers Dirichlet energy type measure, It can not control the energy of higher-order derivatives.
To address the first limitation, we first propose a generalization of TPSD. we construct a new weighted
graph G = (V,E, @, i) from G = (V,E,w, u), in G all nodes are connected and w;; = 2. We
propose a total pairwise distance of power p with p > 1 as follows

TPD,(/ IVaX|bda =" > 1XG) - X@G)|7

i€[n] j€[n]

TPSD is a special case of TPD,, when p = 2. Similar to previous work we consider normalization on
the graph to control TPD,,. To control TPD,,, we only need to guarantee TPD,, bounded from below
and above. We first introduce Poincare inequality on the graph. The existence of Poincare inequality
on a graph is closely related to many properties on a graph such as estimation of heat kernel and
volume doubling property (Horn et al., 2019). Poincare inequality on a graph is stated as follows

Theorem 4.1. G = (V, E,w,) is a weighted finite connected graph. Then there exist constants
Cs, C7 > 0 such that for any vectored valued function f on a graph, we have the following Poincare
inequality withp > 1

1
/ I - / FdulBdp < Co / IV, f2du
1% wJv 1%

particularly when p = 2, constant C%; equates A\ (—A,,). We also have the following inequalities
I

1
/ IV, fl2du < Cs / fo / fdp|d
1% 1% |V|# Vv

thus E{ is equivalent to EY.

Poincare inequality is a powerful tool. Notice that if the right-hand side of Poincare inequality is
divided by the left-hand side, then Dirichlet-type energy will be bounded from below and above by
Theorem 4.1. Based on this observation we define PoincareNorm as follows. Given a vector-valued
function X, we define the p-PoincareNorm,(X) of the input X with p > 1 as follows

) 1 X-C
p-PoincareNorm, (X) = s|V|? , —
Uy IX — - J, Xdallpdp)s
where s is the scaling hyperparameter and C' is a centering constant which can be set to zero or
%V‘ fv Xdji. Apparently, this normalization generalizes PairNorm, PairNorm is a special case that
w; =1forallie V,p=2and C = ﬁ fv X dji. By the equivalence of £§ and €7, we know that

1 -
— < i X|Pdin < C
& < | IvaXigai < c;

To address the second limitation and the third limitation, we first observe that

Under review as a conference paper at ICLR 2025

Accuracy Laplacian energy

1.00E+03

-
= ——GraphNorm 1.00E+00
8 06 4
5 %\ﬁ\ GroupNorm 1.00E-03
3o, L\ e NodeNorm

——

———GraphNorm

GroupNorm

Values

NodeNorm

1.00E-06

PairNorm PairNorm
0.2 1.00E-09

PoincareNorm

PoincareNorm

L s N e e None 1.00E-12
1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28
Layers Layers

None

Figure 1: Comparision of different normalization methods enhanced GCN with bias applied on Cora
with no missing features

Theorem 4.2. Given a weighted graph G = (V, E,w, j1) and a new weighted graph G = (V, E, &, [i)
constructed from G where E assume all nodes are connected and w;; = 2. Then there exist constants
Csg, Cy, C1, C11 such that we have the following inequalities

Wk

TPD,(8,X) < Ci [1A, X i < Ca(Ep(X)
\4

and

(NS}

(X)) < Cuo [14, X du < CuTPD,(A,X)
1%

Therefore to control £p(X) and Laplacian energy [, [|A,X|[5dy, we need only to control
TPD, (A, X), similar to previous analysis we define p-PonicareNorm, as follows

X-C
(fv ||AMX - ﬁ fv AMXdﬂHPd/])E

Under this normalization TPD,, (A, X') will have a fixed upper bound and lower bound. Generally,
we can define p-PonicareNorm,,, of input X with m € N as follows

X-C
(fv HA;TX - ﬁ fv A;TXdﬁdeﬂ);

By previous analysis, we know that p-PonicareNorm,,, can control the energy of higher-order deriva-
tives more finely than PairNorm.

p-PonicareNorm, (X) = s|V|§

1
p-PonicareNorm,,, (X) = s|V|?

4.2 ESTIMATION OF POINCARENORM

We term €3 (X) = 3,1 1A, X [13(4) i withw;; = 1 and pi; = D; + 1 as Laplacian energy. To test
the efficiency of p-PonicareNorm,,, and its ability to control Laplacian energy, we simply here use
GCN with bias as the base model and apply different normalizations on dataset Cora. PoincareNorm
is set to be 8-PoincareNorm;. Parameters of other normalization methods are introduced in Appendix
A.3 and detailed experiment setups are introduced in Appendix A.5. We experiment in the scenario
with no missing features and vary layers from 1 to 30. Each experiment runs 1000 epochs 5 times.
We report average performance and the results are plotted in Figure 1, the left figure reports the mean
accuracy and the right figure reports the mean Laplacian energy of the output. As the results show,
The base model with normalization methods does not perform much better than the base model with
no normalization when the neural network is shallow. However, when the neural network goes deep,
PoincareNorm outperforms all normalizations and can control Laplacian energy better than others.

4.3 TIME COMPLEXITY

Suppose the number of nodes is n, the number of edges is e, given a feature X : V — R?. For
p-PoincareNorm, computational complexity of [, [| X — ﬁ [y Xdjil[pdfi is O(nd), therefore so is

p-PoincareNorm,,. For p-PoincareNorm,, when m > 1, computational complexity of fv HAZ‘X —
I—‘lf‘ [A X dpi||bdfi is O(mde), therefore so is p-PoincareNorm,,,

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we empirically evaluate the efficiency of our proposed normalization in enabling deep
GNN in the scenario with missing features.

5.1 EXPERIMENT SET UP

Datasets We conduct our model on three well-known datasets: Cora, Citeseer, and Pubmed(Yang
et al.,|2016). We use the standard split of the training set and validation set, the remaining nodes are
the test set. Details of datasets are introduced in Appendix A.2.

Model Since the graph convolutional network with bias and the graph attention network with bias
are more practical compared to generic ones, we use the graph convolutional network with bias,
the graph attention network with bias, and simplified graph convolution as the backbone of neural
networks. Graph convolutional network with bias uses flm as the kernel and SGC uses /isym as the
kernel. We implement GAT by torch geometric(Fey and Lenssen, [2019)). Details of the base model
are introduced in Appendix A.4.

Baselines We compare our method with no normalization, PairNorm, GroupNorm, NodeNorm,
and GraphNorm.
Hyperparameter We set hidden features as 64 for GCN with bias and GAT with bias. Hyper-

parameters of baselines are specified in Appendix A.3. We use Adam optimizer (Kingma and Bal
2017), the learning rate is 0.01, L2 regularization is 5e-4, and the dropout rate is 0.6. In the scenario
with the missing features, we apply GCN with bias and GAT with bias with varying layers from
{1,2,...,20,25,30}, SGC with varying layers from {1, 2, ..., 10, 15,20, ...,50}. the main hyper-
parameter in PoincareNorm is order of derivative m, power p, constant C, scale s, edge weight w;;
and node weights ;. We vary m from {0, 1} and p from {4, 8}. For all datasets we set all w;; = 1,
C = ﬁ fV Xdf, s = 1 for input X. For Cora and Pubmed we set [i; = u; = Zje/\fi w;j, for

Citeseer we setfi; = p; = 1+ ZjeM Wij-

Configurations We apply each normalization method after the graph convolutional layer and before
the nonlinear activation layer. For each normalization method, we run the experiment with 1000
epochs 5 times for each layer and report the average accuracy and standard variation of the layer
which achieve the best mean validation accuracy.

Table 1: Comparison of different normalization methods enhanced GCN with bias applied on datasets

Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6512(0.0074) 0.3576(0.0079) 0.5396(0.0460)
PairNorm 0.7463(0.0379) 0.4330(0.0233) 0.7063(0.0054)
GroupNorm 0.6641(0.0326) 0.3855(0.0419) 0.5814(0.0134)
GraphNorm 0.7594(0.0169) 0.4587(0.0169) 0.6949(0.0238)
NodeNorm 0.7385(0.0060) 0.4487(0.0147) 0.5930(0.0080)
4-PoincareNormg 0.7427(0.0273) 0.4389(0.0296) 0.6799(0.0213)
8-PoincareNormgy 0.7603(0.0083) 0.4328(0.0257) 0.6875(0.0222)
4-PoincareNorm; 0.7631(0.0073) 0.4602(0.0077) 0.7077(0.0156)
8-PoincareNorm; 0.7674(0.0060) 0.4572(0.0174) 0.6898(0.0094)

5.2 EXPERIMENTS RESULT

Scenario with missing features in common in the real world such as missing features of users on social
recommendation networks. This scenario is complex and require more layers to learn information of
larger neighborhood compared to the classical scenario with no missing features. More specifically,

Under review as a conference paper at ICLR 2025

Let M be a subset of a set of nodes V;, we remove features of nodes in M and set features as
zero. The fraction % is called the missing rate, where |[M| =}, _,, 1. To study our proposed
normalization to enable neural networks to go deeper, we remove all features in the validation set and
test set of datasets and set them to zeros while keeping features in the training set original. Results are
reported in Table 1, Table 2, and Table 3 respectively. OOM represents that the experiment is out of
memory when GNNs are going deep. As the results show, our proposed normalization outperforms

in 6 experiments out of 9 experiments.

Table 2: Comparison of different normalization methods enhanced SGC applied on datasets

Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6701(0.0068) 0.3554(0.0232) 0.6581(0.0110)
PairNorm 0.7691(0.0012) 0.4656(0.0007) 0.6923(0.0054)
GroupNorm OOM OOM OOM
GraphNorm 0.7620(0.0063) 010)Y| OoOM
NodeNorm 0.7574(0.0159) 0.5317(0.0086) 0.7773(0.0023)
4-PoincareNormg 0.7854(0.0012) 0.4926(0.0261) 0.7017(0.0150)
8-PoincareNormy 0.7846(0.0015) 0.4834(0.0178) 0.7001(0.0048)
4-PoincareNorm; 0.7971(0.0035) 0.5039(0.0237) 0.7012(0.0125)
8-PoincareNorm; 0.7975(0.0016) 0.5229(0.0181) 0.6998(0.0041)

Table 3: Comparison of different normalization methods enhanced GAT with bias applied on datasets

Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.7063(0.0086) 0.4096(0.0164) 0.5386(0.0353)
PairNorm 0.7073(0.0504) 0.4351(0.0278) 0.6469(0.0218)
GroupNorm 0.7242(0.0141) 0.4208(0.0363) 0.6183(0.0033)
GraphNorm 0.7351(0.0017) 0.4083(0.0149) 0.6183(0.0176)
NodeNorm 0.7477(0.0038) 0.4781(0.0176) 0.6240(0.0057)
4-PoincareNormg 0.7297(0.0159) 0.3932(0.0234) 0.6504(0.0338)
8-PoincareNormg 0.7095(0.0220) 0.4027(0.0300) 0.6477(0.0279)
4-PoincareNorm; 0.7507(0.0053) 0.4185(0.0154) 0.6440(0.0195)
8-PoincareNorm; 0.7443(0.0045) 0.4323(0.0104) 0.6460(0.0322)

6 CONCLUSION

In this work, we generalize some existing node similarity measures including Dirichlet energy, and
propose measures called the energy of higher-order derivatives. We rigorously establish relations
between the energy of higher-order derivatives. Using this relation we establish the decay rate of
Dirichlet energy of diffusion under heat kernel and discrete random walk, and we show that self-loop
is a necessary condition for over-smoothing. These results and techniques can also be easily used
to establish the decay rate for other dynamical systems. Future work can design GNNs in light of
these measures. To address over-smoothing in light of the energy of higher-order derivatives, we
propose a normalization termed PoincareNorm which is a generalization of PairNorm. PoincareNorm
outperforms existing normalizations on the semi-supervised node classification task in the scenario
with missing features and can control the energy of higher-order derivatives well.

REFERENCES
Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

Behmanesh, M., Krahn, M., and Ovsjanikov, M. (2023). Tide: Time derivative diffusion for deep
learning on graphs.

Under review as a conference paper at ICLR 2025

Cai, C. and Wang, Y. (2020). A note on over-smoothing for graph neural networks.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., and Wang, L. (2021). Graphnorm: A principled approach
to accelerating graph neural network training. In Meila, M. and Zhang, T., editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 1204—1215. PMLR.

Chamberlain, B. P., Rowbottom, J., Gorinova, M. 1., Webb, S. D., Rossi, E., and Bronstein, M. M.
(2021). GRAND: Graph neural diffusion. In The Symbiosis of Deep Learning and Differential
Equations.

Chen, D., Lin, Y., Li, W., Li, P,, Zhou, J., and Sun, X. (2019). Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI Conference on
Artificial Intelligence.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020). Simple and deep graph convolutional
networks. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org.

Choi, J., Hong, S., Park, N., and Cho, S.-B. (2023). GREAD: Graph neural reaction-diffusion
networks. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 5722-5747. PMLR.

Chung, F. R. K. (1996). Spectral graph theory.

Fan, W., Ma, Y., Li, Q., Wang, J., Cai, G., Tang, J., and Yin, D. (2022). A graph neural network
framework for social recommendations. IEEE Transactions on Knowledge and Data Engineering,
34(5):2033-2047.

Fang, T., Xiao, Z., Wang, C., Xu, J., Yang, X., and Yang, Y. (2023). Dropmessage: Unifying random
dropping for graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
37(4):4267-4275.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric.

Gilmer, J., Schoenholz, S. S., Riley, P. F.,, Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’ 17, page 1263-1272. JMLR.org.

Giraldo, J. H., Skianis, K., Bouwmans, T., and Malliaros, F. D. (2023). On the trade-off between
over-smoothing and over-squashing in deep graph neural networks. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management, CIKM 23, page
566-576, New York, NY, USA. Association for Computing Machinery.

Gligorijevié, V., Renfrew, P. D., Kosciolek, T., Leman, J. K., Berenberg, D., Vatanen, T., Chandler, C.,
Taylor, B. C., Fisk, I. M., Vlamakis, H., et al. (2021). Structure-based protein function prediction
using graph convolutional networks. Nature communications, 12(1):3168.

Grigor’yan, A., Lin, Y., and Yang, Y. (2016). Yamabe type equations on graphs. Journal of Differential
Equations, 261(9):4924-4943.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778.

Horn, P, Lin, Y., Liu, S., and Yau, S.-T. (2019). Volume doubling, poincaré inequality and gaussian
heat kernel estimate for non-negatively curved graphs. Journal fiir die reine und angewandte
Mathematik (Crelles Journal), 2019(757):89-130.

Jamadandi, A., Rubio-Madrigal, C., and Burkholz, R. (2024). Spectral graph pruning against
over-squashing and over-smoothing.

Kang, Q., Zhao, K., Ding, Q., Ji, F, Li, X., Liang, W., Song, Y., and Tay, W. P. (2024). Unleashing the
potential of fractional calculus in graph neural networks with FROND. In The Tielfth International
Conference on Learning Representations.

10

Under review as a conference paper at ICLR 2025

Karhadkar, K., Banerjee, P. K., and Montufar, G. (2023). FoSR: First-order spectral rewiring for
addressing oversquashing in GNNs. In The Eleventh International Conference on Learning
Representations.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations.

Li, G., Muller, M., Thabet, A., and Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

Li, M., Guo, X., Wang, Y., Wang, Y., and Lin, Z. (2022). G2CN: Graph Gaussian convolution
networks with concentrated graph filters. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 12782-12796. PMLR.

Liu, M., Gao, H., and Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20,
page 338-348, New York, NY, USA. Association for Computing Machinery.

Maskey, S., Paolino, R., Bacho, A., and Kutyniok, G. (2023). A fractional graph laplacian approach
to oversmoothing. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S., editors, Advances in Neural Information Processing Systems, volume 36, pages 13022—-13063.
Curran Associates, Inc.

Nguyen, K., Nong, H., Nguyen, V., Ho, N., Osher, S., and Nguyen, T. (2023). Revisiting over-
smoothing and over-squashing using ollivier-ricci curvature. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML 23. JMLR.org.

Oono, K. and Suzuki, T. (2020). Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations.

Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R. (2021). Dropgnn: Random dropouts
increase the expressiveness of graph neural networks. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 21997-22009. Curran Associates, Inc.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations.

Rusch, T. K., Bronstein, M. M., and Mishra, S. (2023a). A survey on oversmoothing in graph neural
networks.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S., and Bronstein, M. (2022). Graph-coupled
oscillator networks. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 18888—18909. PMLR.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bronstein, M. M., and Mishra, S. (2023b).
Gradient gating for deep multi-rate learning on graphs. In The Eleventh International Conference
on Learning Representations.

Sun, L. and Wang, L. (2022). Brouwer degree for kazdan-warner equations on a connected finite
graph. Advances in Mathematics, 404:108422.

Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T., Bertozzi, A., Osher, S., and Wang, B. (2022).
GRAND++: Graph neural diffusion with a source term. In International Conference on Learning
Representations.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). Instance normalization: The missing ingredient
for fast stylization.

11

Under review as a conference paper at ICLR 2025

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. (2018). Graph
attention networks. In International Conference on Learning Representations.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. (2021). Dissecting the diffusion process in linear graph
convolutional networks. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors,
Advances in Neural Information Processing Systems.

Wang, Y., Yi, K., Liu, X., Wang, Y. G., and Jin, S. (2023). ACMP: Allen-cahn message passing with
attractive and repulsive forces for graph neural networks. In The Eleventh International Conference
on Learning Representations.

Wu, F, Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph
convolutional networks. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 6861-6871. PMLR.

Wu, X., Ajorlou, A., Wu, Z., and Jadbabaie, A. (2023). Demystifying oversmoothing in attention-
based graph neural networks. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S., editors, Advances in Neural Information Processing Systems, volume 36, pages
35084-35106. Curran Associates, Inc.

Xhonneux, L.-P., Qu, M., and Tang, J. (2020). Continuous graph neural networks. In III, H. D. and
Singh, A., editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 10432—-10441. PMLR.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018). Representation
learning on graphs with jumping knowledge networks. In Dy, J. and Krause, A., editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5453-5462. PMLR.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-supervised learning with
graph embeddings.

Zhao, L. and Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations.

Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H., and Feng, J. (2021a). Understanding and
resolving performance degradation in deep graph convolutional networks. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, CIKM °21, page
2728-2737, New York, NY, USA. Association for Computing Machinery.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X. (2020). Towards deeper graph neural
networks with differentiable group normalization. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS *20, Red Hook, NY, USA. Curran
Associates Inc.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H., and Hu, X. (2021b). Dirichlet energy
constrained learning for deep graph neural networks. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 21834-21846. Curran Associates, Inc.

A APPENDIX

B EXPERIMENT DETAILS

B.1 RUNNING ENVIRONMENT

All our normalization methods and base models are implemented in PyTorch. Experiment that apply
GCN with bias with different normalization methods on dataset Cora with no missing features and
experiment that apply GAT with bias with different normalization methods on dataset Citeseer with
100% missing features are conducted on a machine with NVIDIA GeForce RTX 3070 Ti Laptop 16

12

Under review as a conference paper at ICLR 2025

GB GPU and 12th Gen Intel(R) Core(TM) i7-12700H CPU. Other experiments are conducted on a
machine with NVIDIA GeForce RTX 3080 Laptop 16 GB GPU and AMD Ryzen 9 5900HX with
Radeon Graphics CPU.

B.2 DATASET STATISTICS

Table 4: Dataset Statistics

Datasets Cora Citeseer Pubmed
Nodes 2708 3327 19717
Edges 5429 4732 44338
Features 1433 3703 500
Classes 7 6 3
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 2068 2707 19157
Label Rate 0.052 0.036 0.003

B.3 DETAILS OF BASELINE
We use the implementation released by authors to implement baseline

* GroupNorm:https://github.com/Kaixiong—Zhou/DGN

e PairNorm:https://github.com/LingxiaoShawn/PairNorm
e GraphNorm:https://github.com/1s3j2408/GraphNorm

¢ NodeNorm:https://github.com/miafei/NodeNorm

We give details of each baseline and hyperparameter choice as follows

GroupNorm Given an input H* € R™*%, then GroupNorm comprise of two steps. First differen-
tiable cluster nodes into [groups

S* = softmax(HFU")
where U* € R?*!. Then generate [features
HF =Sk iloHY i=1,...,1
and normalization with each group

. HE —
A = (=) 4 B,

where 7y; and ; are learnable parameters. u; and o; are mean and variation over nodes within the
same dimension of features. Finally, GroupNorm generates the final embedding
l
H*=HF +)Y Hf
i=1
For all experiments in this paper. The number of groups [in GroupNorm is 5 for Pubmed and 10 for
others, skip weight A for GroupNorm is set to be 0.003.

NodeNorm Given an input H* € R"*4 its i-th row and j-th column item is denoted as H f e
NodeNorm can be expressed as

HE
NodeNorm(Hf) = ——
(oi)P
d gk n (HF . —u)? .
where p; = % and 0? = M For all experiments, we set p = 2.

13

https://github.com/Kaixiong-Zhou/DGN
https://github.com/LingxiaoShawn/PairNorm
https://github.com/lsj2408/GraphNorm
https://github.com/miafei/NodeNorm

Under review as a conference paper at ICLR 2025

PairNorm Given an input H € R™*4_jts i-th row vector is denoted as H f Then PairNorm can be
expressed as

Hf = H; — %Zzlek

- He
Hi =S L —
Vo 2 IHE

For all experiments, we set s = 1.

GraphNorm Given an input H* € R"*<, its i-th row and j-th column item is denoted as H} ;.
Then GraphNorm can be expressed as

HE. —ajp;
, I
Grathorm(Hikj) ==+ B;
; o
3
n gk S (HE —ajpj)?
. . . J— i=1""1i,3 2 __ i=1 i,]
where v;, 85, o; are learnable parameters. j1; = P ,0; = SE

B.4 DETAILS OF BASE MODEL

Table 5: Graph convolutional layer of base models

Models aggregation function

GAT withbias X[=37\, ay; WFXF + b
GCN with bias X**1 = A,., X*WF 4 pF

SGC)(kJrl = Asmek

B.5 EXPERIMENT SET UP FOR ESTIMATION OF POINCARENORM

For parameters of PoincareNorm, we set m = 1,p = 8,w;; = 1, ji; = p; = Zje/\/,; wij, C =
ﬁ fV Xdp and s = 1. We use Adam optimizer(Kingma and Ba,|2017)), the learning rate is 0.01,
i

L2 regularization is Se-4, and the dropout rate is 0.6. All normalization methods are after the graph
convolutional layer and before the nonlinear activation layer.

C PROOFS OF THEOREMS

C.1 PROOF OF THEOREM 2.1

Given a weighted graph G = (V, E, w, 1) and vectored-valued functions f, g : V — RY. First, we
suppose d = 1, we have the following equality

>3 wiifi)g(i)

i€[n] JEN;

= Y wi(F@)g(i) + (7))

i~

=3 > wif(i)el)

i€n] JEN;

>0 wii)

i€[n] JEN;

= wii (f()gli) + £(i)g(h))

inj

=3 > wif(D)g()

ie[n] je./\/;

and

14

Under review as a conference paper at ICLR 2025

Combining above equalities we deduce

/ At gl =33 wi (FG) — FG))a(i)

i=1 jeN;

_ZZ Wz]f _wz]f()())

i=1jeN;

—ZZ (wij £(1)g(5) — wis F(5)a(d))

i=1jEN;

=3 wiy(F) - £()90)

i=1jeN;

Thus adding the right-hand side of the first line and last line we get

Wij . . .
/ Aot -gdn =32 3 2(70) — £ (ali) — 9)
i=1jEN;
—/ Vuf-Vug
v
Now suppose general d and f = (f1,..., f4)7,9 = (g91,-..,94)", then a direct calculation yield
/ Auf - gdu
v

=/ Apfi-grdpt -+ Apfa- gadp
Vv
- / Vo1 Vugid — - — Vufa- Vgad
1%

— [Vuf Vg
\%

C.2 PROOF OF THEOREM 2.2
Suppose 0 = No < -o- < Ap_q are eigenvalues and vy, . . ., v,—1 are eigenvectors corresponding to

eigenvalues respectively such that [, [[vg[[3dp = 1, V1 < k < nand [, v; - v;dp =0, Vi # j.
For any vector-valued function f : V — R¢, suppose f = covg + - - - + ¢—1Vn—1, then we have

/ IV, f |3y = / AL fdp
\% Vv

5 2 3 2
= AocoUo + -+ Ap—1Ch_1Un—1

<AN(Cvg + -+ 2 jvn1)
= [1B

15

Under review as a conference paper at ICLR 2025

Obviously we have [, ||V, vn_1ll3dp = An [, [[vn—1]|3. We compute that for all vector-valued
function g : V — R¢

[I¥ssldn = 3 (3 Gwslat) o013

i€[n] JEN;
<> (> wiulllg@lz + lg@13))
i€[n] jEN'
N @
o Y () 2
1€[n]

< Mo / gl 2dy
\%4

Therefore we have Ay < 2M,,04

C.3 PROOF OF THEOREM 3.1

(1) Suppose X : V — R is a constant vector-valued function on the connected graph G =
(V, E,w, 1), we wish to prove that £?, (X) = 0. Case m < 1 is well known. For Case m > 2, we
compute that

wij (X (j) — X(3))

AL X (i) = m

=0

Therefore if m is even, &P (X) = [, ||AﬂX||”du = 0. If mis odd, &,(X) =

Ty IV, Au X||pdu = 0. Now Suppose that for some m,p, £P,(X) = 0. we prove induc-
tively that X is a constant vector on the graph. First, suppose d = 1 case m = 1 is obvious. If
m = 2, then A, X = 0. Suppose X attains its maximum at node i, then we have

0=A,X(0) = Y “L(X(j) - X(©) <0
JEN: K

From this we know that for all j € NV;, X(j) = X (i). Because G is connected, we conclude that for
allk € V, X}, = X;. thus X is a constant. If m = 3, then A, X is a constant, suppose A, X = c. If
¢ > 0, then similarly we suppose X attains its maximum at node i, then

e = AX(0) = Y “L(X() - X (i) <0

JEN; Hr

this is a contradiction. If ¢ < 0, then similarly we suppose X attains its minimum at node i, then

c=AX(0) =Y “E(X(j) - X()) <0

JEN; Hi

this is also a contradiction. Thus ¢ = 0, from the analysis when m = 2 we know that X is a constant.
For general m, if m is even, then A,? X = 0, using results when m = 2, 3 inductively we conclude
m—1

X is a constant vector. If m is odd, then A, ?> X is a constant vector, using results when m = 2, 3,
we conclude that X is a constant.

Now suppose for general dimension d, X = (X1,...,X4)T. Then for arbitrary m, if m is even.
Az X = (A2 X1,...,A7 X4)T = 0. Therefore for all k, A7 Xy = 0, thus X}, is a constant, so
X is a constant vector. If m is odd, the proof is similar.

(2) For arbitrary m, p we wish to prove

YEAX + X?) <AP(XY) + 2 (XP)

16

Under review as a conference paper at ICLR 2025

For m = 0, we compute by Minkowski inequality

1
Vi

1 1 1
= X — | xld Xz——/XdeiE
(Z Z | k |V|M A k :u+ k |V|M v k U| :u)

(X + X2 = (/V I(Xt+ X2) - /V (X + X2)dp|Bdp)

i€ln) 1<k<d
1 1 .
< (xk - e [Xbdul+ 132 = o [XRdlruo?
iez[;t]lszk:gd * |V|ﬂ v VLT
l 1
S(Z Z (| k |V| /Xkd:u| /-% P Z Z k ‘V| /Xde /,Ll)P
i€n) 1<k<d |155%a

— XY + ()
For m = 1, we compute by Minkowski inequality
1
RO+ X = ([19,050+ X2)H5du)f’

= (XX Y SHXEG) - XEG) + XEG) — XE)P

i€[n] JEN; 1<k<d

(ZZ S ((C2)31xkG) — XE@+ (2)X0) — X20))))

o =

[n] JEN; 1<k<d
(XX X (Emm) - X@) m) + (X X Y (SDXEG) - XED))
i€n] jeN; 1<k<d i€[n] jEN; 1<k<d

= A + A (X

For m = 2, we compute by Minkowski inequality

(X 4+ X?) = (/ 1AL(X" + X2)|2du)?

=

= (D 14X + A X3(0) 5ws)

i€[n]
= (D0 D 1AuXL) + AuXR () D)
i€[n] 1<k<d
Z Z \MfA Xy (i +MfA Xp(@)P)»
i€[n] 1<k<d
<S> D IEAXGOP)T + (D] Y wf AXROIP)”
i€[n] 1<k<d i€[n] 1<k<d

=75 (X1) +5(X?)

For general m > 3, if m is an even number, then
A7 (X 4 X2) = (/V I (X1 + X2) 2y
= (1A Xt A
< /V 1AL A T XY 2du)t + / 1A (A T X2) [y

= (X 1) + 7 (X?)

17

=

Under review as a conference paper at ICLR 2025

If m is an odd number, then
O+ = ([19,0 (00 X))
= (19T X A X))
< IV X)+ ([19,807))
=7 (X1) + 1, (X?)

C.4 PROOF OF THEOREM 3.2

We assume G = (V, E,w,) is connected first and prove following lemma

Lemma C.1. Given a weighted graph G = (V, E,w, i) and any vector-valued function g : V — RY,
there exits constants C2, Cy3, C14, C15 such that the following inequalities hold

Coat [Nalg)? < ([NalBn)® < Cua([Lol m
Cu / IV ugl2du)t < / IV,.9l2dp)t < / IV ugl2d) @

Proof. Suppose g = (g1, ...,g4)" . Forinequalities (1), if p > 2, for the right-hand side of inequality,
we compute that

d
[sl =3 (3 gk
k=

i€[n] 1

— (D)7 (i) E /V lglizdu)?

The second line and the third line are from Holder inequality. For the left-hand side of inequality, we
compute that

d
/ lglizdn =3 ka
ZE

gz[: Z'gk * s x max (lg; (D)%)

- / ||g||§du < mae (Ig; (6)/2)

/ lgl3du x (/ lgl3du) =
:U’max

— ([loldw®
(HWmaz) 2 14

18

Under review as a conference paper at ICLR 2025

Proof for case p < 2 is similar. For inequalities (2), if p > 2, for the right-hand side , suppose the
maximal degree is D, = max; D;, then we directly compute that

/V IVaglBdu= 3" 3 3 L oiillgl) — 902

i€[n]JEN
= Z > seu(X0 (0l) - i)?)
n] JEN; 1<k<d
< Z > seu(X losli) — o)) FaF
[n] JEN; 1<k<d
<3 Z (@i Y 10k0) — 96 @)I")) (D)7
zG JEN; 1<k<d
<3 (Z S wh (Y 1k0) — g)P)) (@0 Dpan) T
i€[n] JEN: 1<k<d
<23 s (X 100) - s)P)) Do) T
i€[n] jGN 1<k<d

2_ p=2 2
=2 1(anmaxwmar) r (/VHV;LQHZd/J)P

The third line and the fifth line are from Holder inequality. For the left-hand side we directly compute
that

/ 1Vl =3 3" Seisllo() — o)

i€[n] JEN;
=DID I SRORPAGID
ze[n]ge/\f 1<k<d
<S03 e X 10l) —) x _max 1ou(i) - ()
1€[n]JeN 1<k<d i€[n],jEN:
1 _p-2
< [gl x ([19,0800 (Goomn)
1 s)
:(§Wmaa:) 2 (/ HvugH%dM)Q
1%
case 1 < p < 2is similar. -

We continue the proof of Theorem 3.2. The proof requires Theorem 4.1 so we assume Theorem 4.1
is correct first for clarity. One can also see the proof of Theorem 4.1 first. Given a weighted graph
G = (V, E,w, 1) and a vector-valued function f : V — R9, First we wish to prove

o) / IV, 12y < / 1A, Fll2dp < Cy / IV, 2dp 3)

19

Under review as a conference paper at ICLR 2025

By lemma B.1 we only need to prove for the case p = 2. First, we suppose d = 1, for the right-hand
side of inequality we directly compute that

[18tz =3 (2D ION,

icm] Hi
_ Wij (f(j) - f(l)) 2 (N}V
- iez[;l] (wh) M
< Z Wij(f(j) - f(’))z%
icn] !

< 2 My /V IV, f13du

The third line is from Jenson inequality. For the left-hand side, we have

19t = [19,4 |V1| | famlan
== A= [= g [s

/ Aufllgdu\/ / ||f—m fduH%du
¢ / 1AL 112 du\/Ce / IV,./112d

The third Line is from Holder inequality. Therefore we have

/ IV, fI3dp < Co / 1A F13du
1% 1%

For general dimension d, suppose f = (f1,..., fa)*, then by Jenson inequality we have
Wij fk — fr(i))\2
f1aga- 3 (X ¥ (=).
v i€n] \1<k<djeN;
_ Z (D3 (wij(fk(j)l— fk<z'>>)2> (1)’
i€ln] \1<k<djeN; M i

wig (£1() = Ful@)" (})?
<Y X (fd) - fu))(ij

icln] 1<k<djEN; M

)
= 2 49, i
223 \%

and

[13130 - Z(>y (s fk(i))f)m

ie[n] 1<k<d jeN;

25 X [vz

1<k:<d

2
= d
& [19l

Thus the proof of (3) is over. When p = 2, Ciﬁ = A (—A,), therefore Cy = A1 (—A,). After we
wish to prove

Ca [IVu8uflpan < [18uf I < Co [19,8, 15w)

20

Under review as a conference paper at ICLR 2025

For the right-hand side of (4), we first notice that

/Aufduz/ FALdp =0
\4 1%

Hence by Poincare inequality, we have

1
J18utgdn = 18,5 = i [Awsaulan
A%
< Co [IV, fl3dn

For the left-hand side of (4), we notice that for any vector-valued function g, we have

/ 1Vl = 3= 3" 20 g(5) — g3

i€n] JEN;

< DD willglz + llg(@)l13)

i€[n] JEN;

—22 JEN ER PO

< 2Mipa / lgl2du
1%

Replace g by A, f we have the left-hand side of (4). Now suppose G = (V, E, w,) is not connected

and has connected components V7, ..., V}, then for the right-hand side of (3) we have
J stz = 32 [sl
1<k<l
< C(1 Z / ”vufH dﬂ
1<k<I

e /V IV, f|2dy

Other cases are similar. In the end we show that &y and Ep are special cases of EP,. Eyy is a special
cases of £P, such that
m=0,p=2,u; =1 Vi € [n]

Ep is a special cases of £2, such that
m = 1,]):2,(,«)1']' =2,u; =1 Vi € [n],] E./\[i
C.5 PROOF OF THEOREM 3.3

(1) Suppose f is a solution to the heat equation with initial condition f(¢t = 0) = fo, then

0y IV, f I3dne _

. 2 [Vuf V0

S / Anf - Ohfdu
\%

. / 1AL 2dp
1%

< oM (=) /V IV, f112dp

Thus we have (A)
AN A [V flI3du
ot

21

Under review as a conference paper at ICLR 2025

Therefore
210, s < (@ [19,)

In conclusion, we have

/v IV, f3dp < e 2201 /V 19, foll 2

(2) Suppose f : V — R< is an arbitrary vector-valued function on the graph. Then by the proof of
Theorem 2.2, we directly compute that

[19.Pldn = [VPt 9, Pran
A% \%
7/ AILPf'PfdPJ
1%
- f/vaﬂmﬂ +1)f (D + 1) fdp
— [A2F A Fdu— | AZF. fdu— AL Fl2du— | ALF-fd
/V 2f A, fdp /V 2f . fdp /VH o F13du /V Wf - fdp
- / IV, 12— 2 / 1AL f12du + / IV, f12du
<l / 1A f |2y — 2 / 1A f |2y + / IV, f 2du

< (w(=8,) =2 (- / IV, f s+ | 19,7 e
= (14 (w2 =2n(=8,)) [19,13
Therefore we have
LIV < (14 O (=8,0 =20(=,) " [19,1

For Asym, we specify P = flm,wij = 1,u; = D; + 1 and notice that Asym ﬁ%A wD™
Therefore we have

19D A2 (DDl < (14 O (=Brieat) =DM (Bro) [19,115l

N

Replace f by D3 g we get desired results.

C.6 PROOF OF THEOREM 4.1

Given a weighted connected graph G = (V, E,w, 1) and a vector-valued function f : V' — R4,
Suppose that every pair of nodes 7, j can be connected by a path that has no more than r edges. First,
we suppose d = 1, Given node i and node j, suppose node i and node j can be connected by a path
with no more than r edges, the path is denoted by P = [igi; . . . i] with iy = ¢ and i, = j. then we
have an estimation

1F@) = FDP < (1FG) = f)] + -+ [f () = FG)I)"

_ (|f(l) — f(i1)| +k+f— | f (i) — f(])‘)p(k‘—i- 1)P
< |f(@) — f(i)P +k+:- |.f (i) —f(j)|p(k+1)p

= (k+DP7H(1f(@) = f)IP + -+ f(ir) = F()IP)
<P = F@)IP A+ -+ i) = FO)IP)

22

Under review as a conference paper at ICLR 2025

Using this result we directly compute that

W
1= o | paiz = Z|Z—|V| P

i€[n] jE€[n]

f p
Sy oy V”>|) B

i€[n] j€[n]

e 5 WO =Sl -4 1) = F)

i
Vv
i€[n] jen) Ve

nQrpM2
max N\ | P
TV el |f(&) = F(5)

Z Z n TpMmaz Wz]|f(]) _ f(2)|p

IN

The second line is from Jenson inequality. If p = 2, Suppose 0 = 5\0 << 5\n_1 are eigenvalues
and vy, ..., v,_1 are eigenvectors corresponding to eigenvalues respectively such that || v vk |3dp =
1, Vi<k<nand fv v; - v;dp =0, Vi # j. Since the graph is connected, the multiplicity of 0 is

1. Then we have
J 191 == [A i
1% 1%
Z S\kC%’Uk

1<k<N

>\ Y Gu

1<k<N

- 1
=y If - | faulBan
1% wJV

Thus when p = 2, 0%3 = Xl =)\; For general dimension d we have

1f = —— | fdulpdp
vV

_ p 1 P
s = [l U= e [gl

< i /V (VW 4 + [V fallEdp)

— /V IV, f|2du

Next, we wish to prove

) 1
/ IV, fIEdy < Cs / T / FdullZdu
1% 1% |V|M Vv

23

Under review as a conference paper at ICLR 2025

We directly compute that

|19l = 323 Sloti) ~ st

i€ln] JEN;
SPIPIL O ITORFAC
]Je/\/ 1<k<d
< Z > w22 (> (e + (i)
n] JEN: 1<k<d

=2} Z JGN g (@) 12
< 2?*1MW / lolizdu
v
Replace g by f — ﬁ fv fdu we have the desired result.

C.7 PROOF OF THEOREM 4.2

First, we wish to prove that there exist constants C's, Cy such that we have the following inequalities

(SIS

TPD, (A, X) < Cg/ AL X|[Pdp < Co(Ep(X)))
Vv

For the left-hand side of (5), we directly compute
TPD,(A,X) = Y A, X () — A X @)
i,j€[n]
<2770 N (IAXD)IE + 12X @)

i,j€[n]
2Pn
<

For the right-hand side of (5), by the proof Theorem 3.2, we have
[12,x150
v
< [19X
1%

Cy »

< 2 ([19, X13du)*
2 Jv

C, Wi _

= o (20 > SFIX0) - X@I3)

12 ien]jeN;

Clwmagc
< (T S 1 - X0

7.6 JE/\/

P
2

P
2

P
o Clwﬁmw

P
C(12

P
2

(ép(X))

After, we wish to prove that there exist constants Cg, C17 such that we have the following inequalities

(<€D(1())IZ7 S ClO ||AM"(” d,u S C’llII Dp(Au;() (6)
p

24

Under review as a conference paper at ICLR 2025

For the right-hand side of (6), we have

[1ax15n
1%
<Cu [IV,8,X
1%
C . .
== Z wii AL X (F) — A X (@)D
i€[n] JEN;
C Wmax . ;
< YD Y IAXG) - AX @)
i€[n] JEN;
C Wmax . ;
<Y D IAWX () - AX @)
i€[n] j€[n]
- C4Wma:c

= TTPDp(AuX)
For the left-hand side of (6), we have
Ep(X) =Y > IX() - X3

i€n] JEN;
1 . .
< 33wl X)) - X303
min icn] JEN:
-2 [v.xi3d
N Wmin Jv a 2 a
< 20%

2
(/ IV, X[[2du)}
\%

Wmin

25

	Introduction
	Preliminary and Notation
	Understanding over-smoothing
	Measures of over-smoothing
	Illustration of proposed measure

	Addressing over-smoothing
	PoincareNorm
	Estimation of PoincareNorm
	Time complexity

	Experiments
	Experiment set up
	Experiments result

	Conclusion
	Appendix
	Experiment details
	Running Environment
	Dataset Statistics
	Details of baseline
	Details of base model
	Experiment set up for estimation of PoincareNorm

	Proofs of theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

