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ABSTRACT

Dirichlet energy is intuitive and commonly used to measure over-smoothing. How-
ever, Dirichlet energy can only capture information about the first-order derivative
of features. In light of this, we propose a series of node similarity measures which
are the energy of higher-order derivatives of features and generalize Dirichlet
energy. After we rigorously analyze the property of proposed measures and its
application to establish the sharp decay rate of Dirichlet energy under continuous
diffusion or discrete random walk which is closely related to the first nonzero eigen-
value of graph Laplacian. Lastly, to address over-smoothing with respect to these
measures, we propose a normalization termed PoincareNorm which generalizes
PairNorm to control our proposed measures. We consider the semi-supervised
node classification task in the scenario without missing features, PoincareNorm
outperforms existing normalization methods.

1 INTRODUCTION

Graph neural networks(GNNs) have emerged recently and successfully applied to many fields such
as protein prediction (Gligorijević et al., 2021) and social recommendation (Fan et al., 2022). Though
vanilla graph convolutional network(GCN) (Kipf and Welling, 2017), graph attention network(GAT)
(Veličković et al., 2018) and a class of neural networks following the paradigm of message passing
type (Gilmer et al., 2017) have achieved great success in many graph-based tasks, they suffer from
over-smoothing when stacking layers. Many works theoretically analyze the loss of expressive
power for attention-based mechanism (Wu et al., 2023) and graph convolutional network (Oono and
Suzuki, 2020)(Cai and Wang, 2020). Works are emerging to address over-smoothing such as residual
connection (Li et al., 2019) (Liu et al., 2020) (Chen et al., 2020)(Xu et al., 2018) originated from
(He et al., 2016), regularization such as dropout (Papp et al., 2021) (Rong et al., 2020)(Fang et al.,
2023). Nguyen et al. (2023) think that positive Ollivier-Ricci curvature will cause over-smoothing
and they delete edges with highly positive curvature. From the spectrum view over-smoothing is
closely related to the first nonzero eigenvalue of graph Laplacian (Jamadandi et al., 2024) (Giraldo
et al., 2023).

Simplified graph convolution(SGC) (Wu et al., 2019) separates transformation and propagation.
With propagation only they can stack layers and achieve competing performance with GCN, Wang
et al. (2021) further use heat kernel to propagate and Li et al. (2022) consider more propagation
kernel. Another mainstream to address over-smoothing is to consider different ordinary differential
equations(ODE) and partial differential equations(PDE) to change the dynamic system of GNNs.
Rusch et al. (2023b) use gradient gating to control the update of features. Kang et al. (2024) apply
fractional time derivative to evolving dynamic system. More equation-based GNNs such as Allen-
Cahn equation (Wang et al., 2023), reaction-diffusion equation (Choi et al., 2023). For more equation-
based graph neural networks we refer to (Rusch et al., 2022)(Maskey et al., 2023)(Behmanesh et al.,
2023)(Thorpe et al., 2022)(Chamberlain et al., 2021)(Xhonneux et al., 2020).

Normalization of features has also been proven successful in graph neural networks. a few works
are devoted to address over-smoothing such as PairNorm (Zhao and Akoglu, 2020) and GroupNorm
(Zhou et al., 2020). These works keep normalized features away from trivial under the measure of
over-smoothing. NodeNorm (Zhou et al., 2021a) think of degradation of graph convolutional network
as variance inflammation and normalize over feature dimension for every node similar to layernorm
(Ba et al., 2016), GraphNorm (Cai et al., 2021) think that usual instancenorm (Ulyanov et al., 2017)
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applied to GNN will cause loss of information due to standard shift, instead they normalize the feature
values across all nodes in each graph with a learnable shift.

Many measures are proposed to quantitively measure over-smoothing, among which Dirichlet energy
is intuitively and most commonly used (Rusch et al., 2022)(Zhou et al., 2021b), however, Dirichlet
energy can only capture information about the first-order derivative of features. Also, Dirichlet energy
based normalization PairNorm can not control the energy of higher-order derivatives well. Based on
this observation our contributions are as follows

• We propose a series of node similarity measures to measure over-smoothing more finely,
this measure generalizes Dirichlet energy. We prove that these node similarity measures
satisfy the condition of (Rusch et al., 2023a). Then we theoretically illustrate the relation
between proposed node similarity measures and use this relation to build up the decay rate of
Dirichlet energy under continuous heat diffusion and general discrete random walk. Results
of the decay rate will show that self-loop is a necessary condition for over-smoothing. Also,
the decay rate under continuous heat diffusion can give a more concrete analysis of over-
smoothing of the work (Wang et al., 2021) and indicate the relation between over-smoothing
and the first nonzero eigenvalues of graph Laplacian.

• In light of these measures, We use Poincare inequality to construct normalization termed
PoincareNorm to control measures proposed by us, we note that this normalization is a
generalization of PairNorm. We consider the semi-supervised node classification task in
the scenario without missing features, PoincareNorm outperforms existing normalization
methods.

2 PRELIMINARY AND NOTATION

We introduce the framework of weighted graphs and calculus on it, this framework is commonly
used when studying differential equations on graphs (Grigor’yan et al., 2016)(Sun and Wang, 2022),
we make use of this framework and show that attention-based GNNs can be generalized into this
framework. In this article all graphs are assmued to be finite and undirected. Let G = (V,E, ω, µ)
be a weighted graph, where V = {1, 2, ..., n} is the set of nodes, E ⊂ V × V is the set of edges,
ω is a function on E such that ωij = ω([i, j]) = ω([j, i]) > 0 for [i, j] ∈ E, µ is a function
on V such that µi = µ(i) > 0 for i ∈ V . Fixed i ∈ [n], Ni = {j ∈ [n] : ωij > 0, j ̸= i}
denotes node i’s neighborhood. Denote ωmax = maxi∈[n],j∈Ni

ωij , ωmin = mini∈[n],j∈Ni
ωij ,

µmax = maxi∈[n] µi, µmin = mini∈[n] µi, |V |µ =
∑

i∈[n] µi. Following we define the general
gradient and Laplacian of a vectored value function f .
Definition 2.1. Let G = (V,E, ω, µ) be a weighted graph and f : V → Rd is vector valued funtion
on the nodes,integration of f on V is defined as∫

V

fdµ =

n∑
i=1

f(i)µ(i)

The inner product of the gradient of f and the gradient of g is defined as∫
V

∇µf · ∇µgdµ =
∑
j∈Ni

ωij(f(j)− f(i)) · (g(j)− g(i))

2µi

Where · is dot product between vectors. General p-norm of a vector x = (x1, . . . , xk) is defined as

∥x∥p = (

k∑
i=1

|xi|p)
1
p

where p ≥ 1. p-norm of Gradient of f on V is defined as

∥∇µf∥p(i) = (
∑
j∈Ni

ωij∥f(j)− f(i)∥pp
2µ(i)

)
1
p

Laplacian of f on V is defined as

∆µf(i) =
∑
j∈Ni

ωij(f(j)− f(i))

µi
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The virtue of the above definition is that we can integrate by parts. This is a well-known result and
we give a proof for completeness. Proof of the following Theorem and all proof needed in this paper
will be left in the Appendix.
Theorem 2.1. Let G = (V,E, ω, µ) be a weighted graph and f, g : V → Rd are vector-valued
functions on the nodes, then we have integration by parts∫

V

∆µf · gdµ = −
∫
V

∇µf · ∇µgdµ =

∫
V

f ·∆µgdµ

Thus we can do calculus on graphs under the above general definition of gradient and Laplacian. Now
recall traditionally considered graph Laplacian, A ∈ Rn×n, D = diag(Di, . . . , Dn), Ã = A + I

and D̃ denotes adjacent matrix, degree matrix, adjacent matrix with self-loop and degree matrix of
Ã respectively. Ãsym = D̃− 1

2 ÃD̃− 1
2 and Ãrw = D̃−1Ã are denoted as symmetric normalization

and row normalization of Ã respectively. When there exist no isolated nodes, we can also define
Asym = D− 1

2AD− 1
2 and Arw = D−1A. Graph Laplacian with respect to A, Ã, Ãsym, Ãrw, Asym,

Arw and are defined as ∆adj = A−D, ∆̃adj = Ã−D̃, ∆̃sym−adj = Ãsym−I , ∆̃rw−adj = Ãrw−I ,
∆sym−adj = Asym − I and ∆rw−adj = Arw − I respectively. We give special cases of general
graph Laplacian when ∆ = ∆adj , ∆̃adj ,∆rw−adj or ∆̃rw−adj as follow

ωij = 1, µi = 1 when ∆ = ∆adj

ωij = 1, µi = 1 when ∆ = ∆̃adj

ωij = 1, µi = Di + 1 when ∆ = ∆̃rw−adj

ωij = 1, µi = Di when ∆ = ∆rw−adj

From theorem 2.1, −∆µ is a semi-positive symmetric operator on function space L2(V, dµ) = {f :
V → Rd :

∫
V
∥f∥22dµ < ∞}. we array its eigenvalues as follows

0 = λ0(−∆) < λ1(−∆µ) < . . . < λN (−∆µ)

where N ≥ 1. Denote µ1
i =

∑
j∈Ni

ωij , Mmax = maxi∈[n]

∑
j∈Ni

ωij

µi
= maxi∈[n]

µ1
i

µi
, then we

have an upper bound for λN as follows
Theorem 2.2. Given a weighted graph G = (V,E, ω, µ), then we have upper bound for λN

λN ≤ 2Mmax

If ∀i ∈ [n],
∑

j∈Ni
ωij ≤ µi, then Pµ = ∆µ + I is called random walk matrix associated with ∆µ,

we say that Pµ satisfies self-loop if ∀i ∈ [n],
∑

j∈Ni
ωij < µi. We have upper bound λN ≤ 2. We

recall that the layer of attention-based GNNs is as follows

X l+1 = ϕ(P lX lW l)

where ϕ is the activation function, W l is learnable matrix and P l is an aggregation operator in
message-passing. P l

ij denotes the i-th row and the j-th column element of Pn, usually P l
ij can be

expressed as

P l
ij =

exp(elij)

exp(elii) +
∑

k∈Ni
exp(elik)

where elij is weight in layer l between node i and j. This aggregation operator coincides with our
definition of random matrix if we specify edge weights ωij and node weights µ as follows

ωij = exp(eij), µi = exp(elii) +
∑
k∈Ni

exp(elik)

3 UNDERSTANDING OVER-SMOOTHING

In this work, we consider the semi-supervised node classification task on the graph. Every node i in
V is given features Xi. Only a subset of V are given labels. A training set Vtrain is a subset of V
with labels for training, the task aims to predict the labels of the nodes V \Vtrain from features.

3
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3.1 MEASURES OF OVER-SMOOTHING

There exists a variety of approaches to quantitatively measure the issue of over-smoothing. Kaixion
Zhou proposes a Group distance ratio to measure distances between different groups with the same
label and Instance information gain to measure dependency between node feature and representation.
Chen et al. (2019) propose mean-average distance to measure similarity between nodes. More lately
Wu et al. (2023) propose a new node similarity measure of the distance between features of nodes
and the mean feature as follows

EW (X) = ∥X − 1γX
∥22

where 1γX
=

∑
i∈[n] Xi

n . Dirichlet energy is also a commonly used measure as follows

ED(X) =
∑
i∈[n]

∑
j∈Ni

∥Xi −Xj∥22

Generally Rusch et al. (2023a) defines the following concept of node similarity measure and over-
smoothing
Definition 3.1. (Over-smoothing) Let G be an undirected, connected graph, and Xk ∈ Rn×m denote
the k-th layer hidden features of an N-layer GNN defined on G. Moreover, we call E : Rn×m → R≥0

a node similarity measure if it satisfies the following axioms:

• ∃c ∈ Rm with Xi = c for all nodes i ∈ V if and only if E(X) = 0 , for X ∈ Rn×m

• E(X + Y ) ≤ E(X) + E(Y ) , for all X,Y ∈ Rn×m

We then define over-smoothing with respect to µ as the layer-wise exponential convergence of the
node-similarity measure E to zero, that is for n = 0, . . . , N and some constants C1, C2 > 0

E(Xn) ≤ C1e
−C2n

If we suppose 1γX
= 0, then EW (X) = ∥X∥22, this is the energy of zero-order derivative of features.

Dirichlet energy can be considered as energy of the first-order derivative of features. Based on these
observations, existing measures only capture information on the low-order derivatives, we propose
a series of node similarity measures as follows to capture information on higher-order derivatives
which is a generalization of the two above measures and proves that attention-based GNNs are
over-smoothing under our proposed measure.
Theorem 3.1. G = (V,E, ω, µ) is a connected weighted graph, Given a vector-valued function f on
the graph, We define the energy of higher-order derivatives of f as follows

Ep
m(f) :=

∫
V

∥∇m
µ f∥ppdµ

where p ≥ 1,m ∈ N and higher-order derivatives of f is defined as follows

∥∇m
µ pf∥ =

{
∥(−∆µ)

m
2 f∥p if m is an even number

∥∇µ(−∆µ)
m−1

2 f∥p if m is an odd number

where (−∆µ)
of = lims→0+(−∆µ)

sf = f − 1
|V |µ

∫
V
fdµ, fractional Laplacian follows the defi-

nition in (Maskey et al., 2023). Then node similarities defined as γp
m(f) = (Ep

m(f))
1
p satisfy two

conditions of node-similarity measure. Also, EW and ED are all special cases of our proposed
measures.

3.2 ILLUSTRATION OF PROPOSED MEASURE

We claim that exactly Ep
m(f) are all equivalent if m ≥ 1. If additionally assume that the graph is

connected, then for all m ≥ 0, Ep
m(f) are all equivalent. Case m ≤ 1 is direct consequence of

Poincare inequality and will be left in next section. We give claim for m ≥ 1 as follows
Theorem 3.2. G = (V,E, ω, µ) is a weighted graph. Then for any function f on the graph, there
exist constants C1, C2, C3, C4 > 0 such that

C2

∫
∥∇µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C1

∫
∥∇µf∥ppdµ

4
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and

C3

∫
∥∇µ∆µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C4

∫
∥∇µ∆µf∥ppdµ

constants C2 will be λ1 when p = 2. Replace f by ∆m
µ g we can get the equivalence for all m ≥ 1.

This theorem implies directly that if GNNs are over-smooth with respect to one of these measures,
they will also be over-smooth with respect to other. Equivalence between Ep

m can be used to estimate
the rate of over-smoothing. Given a weighted graph G = (V,E, ω, µ), λ1(−∆µ) is closely related to
the trade-off between over-smoothing and over-squashing (Karhadkar et al., 2023). The higher λ1,
The less over-squashing and the more over-smoothing. Much work is devoted to analyzing relations
between λ1(−∆µ) and over-smoothing (Giraldo et al., 2023), However the existing results are not
satisfactory (Chung, 1996)(Cai and Wang, 2020), existing results of decay rate require condition
1− λ1(−∆µ) ≥ λN (−∆µ)− 1 or self-loop.

Usually, we think that the reason behind message-passing type GNNs is spatial propagation. SGC
removes the transformation operation in GCN and achieves competing performance with GCN. Its
structure is as follows

Y = softmax(ÃK
symXW )

where K is number of layers and W is learnable parameters. Wang et al. (2021) show that at the
stage of feature propagation Simplified graph convolution is equivalent to heat diffusion on the graph
with fixed step size ∆t = 1, it is known that features within each connected component propagated
by heat diffusion will converge to a constant vector, they control the time step size to address the
over-smoothing. However, existing simplified graph convolution-type methods and equation-based
methods do not analyze the decay rate. For simplicity and clarity, we only consider the propagation
of SGC with general kernel and heat kernel considered by (Wang et al., 2021) here and prove that for
a general weighted graph, over-smoothing of them are closely related to λ1(−∆µ).

Theorem 3.3. Let G = (V,E, ω, µ) be a weighted graph. If f is a solution of the heat equation

∂f

∂t
= ∆µf

with initial condition f(t = 0) = f0, then there exists constant C5 > 0 such that Dirichlet energy of
f will decay exponentially when t tends to infinity∫

V

∥∇µf∥22dµ ≤ C5e
−2λ1(−∆µ)t

∫
V

∥∇µf0∥22dµ

Suppose further ∀i ∈ [n],
∑

j∈Ni
ωij ≤ µi, Let random walk matrix be P = ∆µ + I , then for the

arbitrary function f on the graph, we have the decay rate as follows∫
V

∥∇µP
kf∥22dµ ≤

(
1−

(
2− λN (−∆µ)

)
λ1(−∆µ)

)k ∫
V

∥∇µf∥22dµ

where k ∈ N, k ≥ 1. also for Ãsym we specify ωij = 1, µi = Di + 1, we have decay rate∫
V

∥∇µ(D̃
− 1

2 Ãk
symf)∥22dµ ≤

(
1−
(
2−λN (−∆̃rw−adj)

)
λ1(−∆̃rw−adj)

)k ∫
V

∥∇µ(D̃
− 1

2 f)∥22dµ

We note that the decay rate on Theorem 3.3 is almost the best we can achieve. If λN (−∆µ) = 2,
then

∫
V
∥∇µPf∥22dµ possible equate

∫
V
∥∇µf∥22dµ. Consider bipartite graph K2,2 with nodes

V = {1, 2, 3, 4} and edges E = {(1, 3), (1, 4), (2, 3), (2, 4)}, given feature X such that X(1) =
X(2) = 1, X(3) = X(4) = 0, then

∫
V
∥∇µArwX∥22dµ =

∫
V
∥∇µX∥22dµ. In conclusion, self-loop

is a necessary condition for over-smoothing.

4 ADDRESSING OVER-SMOOTHING

In this section, we introduce Poincare inequality on graphs and propose normalization termed
Poincarenorm which is a generalization of Pairnorm. Generally, we work on a weighted graph
G = (V,E, ω, µ) and a vector-valued function X : V → Rd is given,

5
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4.1 POINCARENORM

First, we recall that PairNorm considers total pairwise square distance(TPSD) as their measure of
over-smoothing

TPSD(X) =
∑

i,j∈[n]

∥X(i)−X(j)∥22

TPSD is a special case of Dirichlet energy assuming all nodes are connected. Then they propose
PairNorm composed of two steps: centering and scaling

Xc(i) = X(i)− 1
n

∑n
k=1 X(k)

X̃(i) = s Xc(i)√
1
n

∑n
i=1 ∥Xc(i)∥2

This normalization will make TPSD(X̃) a constant 2n2s2. This consideration has three limitations.
First making TPSD a constant will strictly constrain the performance of GNNs. The second limitation
is that consideration of TPSD violently assumes all nodes are connected, generally, we have ED(X) ≤
TPSD(X) but it is generally not true that TPSD(X) ≤ CED(X) for a constant C, so keeping TPSD
away from zero can not ensure that ED(X) is away from zero. The third limitation is that PairNorm
only considers Dirichlet energy type measure, It can not control the energy of higher-order derivatives.
To address the first limitation, we first propose a generalization of TPSD. we construct a new weighted
graph G̃ = (V, Ẽ, ω̃, µ̃) from G = (V,E, ω, µ), in G̃ all nodes are connected and ω̃ij = 2. We
propose a total pairwise distance of power p with p ≥ 1 as follows

TPDp(X) =

∫
V

∥∇µ̃X∥ppdµ̃ =
∑
i∈[n]

∑
j∈[n]

∥X(j)−X(i)∥pp

TPSD is a special case of TPDp when p = 2. Similar to previous work we consider normalization on
the graph to control TPDp. To control TPDp, we only need to guarantee TPDp bounded from below
and above. We first introduce Poincare inequality on the graph. The existence of Poincare inequality
on a graph is closely related to many properties on a graph such as estimation of heat kernel and
volume doubling property (Horn et al., 2019). Poincare inequality on a graph is stated as follows
Theorem 4.1. G = (V,E, ω, µ) is a weighted finite connected graph. Then there exist constants
C6, C7 > 0 such that for any vectored valued function f on a graph, we have the following Poincare
inequality with p ≥ 1 ∫

V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ ≤ C6

∫
V

∥∇µf∥ppdµ

particularly when p = 2, constant 1
C6

equates λ1(−∆µ). We also have the following inequalities∫
V

∥∇µf∥ppdµ ≤ C7

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ

thus Ep
0 is equivalent to Ep

1 .

Poincare inequality is a powerful tool. Notice that if the right-hand side of Poincare inequality is
divided by the left-hand side, then Dirichlet-type energy will be bounded from below and above by
Theorem 4.1. Based on this observation we define PoincareNorm as follows. Given a vector-valued
function X , we define the p-PoincareNorm0(X) of the input X with p ≥ 1 as follows

p-PoincareNorm0(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥X − 1

|V |µ̃

∫
V
Xdµ̃∥pdµ̃)

1
p

where s is the scaling hyperparameter and C is a centering constant which can be set to zero or
1

|V |
∫
V
Xdµ̃. Apparently, this normalization generalizes PairNorm, PairNorm is a special case that

µi = 1 for all i ∈ V , p = 2 and C = 1
|V |
∫
V
Xdµ̃. By the equivalence of Ep

0 and Ep
1 , we know that

1

C6
≤
∫
V

∥∇µ̃X̃∥ppdµ̃ ≤ C7

To address the second limitation and the third limitation, we first observe that

6
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Figure 1: Comparision of different normalization methods enhanced GCN with bias applied on Cora
with no missing features

Theorem 4.2. Given a weighted graph G = (V,E, ω, µ) and a new weighted graph G̃ = (V, Ẽ, ω̃, µ̃)

constructed from G where Ẽ assume all nodes are connected and ω̃ij = 2. Then there exist constants
C8, C9, C10, C11 such that we have the following inequalities

TPDp(∆µX) ≤ C8

∫
V

∥∆µX∥ppdµ ≤ C9

(
ED(X)

) p
2

and (
ED(X)

) p
2 ≤ C10

∫
V

∥∆µX∥ppdµ ≤ C11TPDp(∆µX)

Therefore to control ED(X) and Laplacian energy
∫
V
∥∆µX∥ppdµ, we need only to control

TPDp(∆µX), similar to previous analysis we define p-PonicareNorm1 as follows

p-PonicareNorm1(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥∆µX − 1

|V |µ̃

∫
V
∆µXdµ̃∥pdµ̃)

1
p

Under this normalization TPDp(∆µX) will have a fixed upper bound and lower bound. Generally,
we can define p-PonicareNormm of input X with m ∈ N as follows

p-PonicareNormm(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥∆m

µ X − 1
|V |µ̃

∫
V
∆m

µ Xdµ̃∥pdµ̃)
1
p

By previous analysis, we know that p-PonicareNormm can control the energy of higher-order deriva-
tives more finely than PairNorm.

4.2 ESTIMATION OF POINCARENORM

We term E2
2 (X) =

∑
i∈[n] ∥∆µX∥22(i)µi with ωij = 1 and µi = Di+1 as Laplacian energy. To test

the efficiency of p-PonicareNormm and its ability to control Laplacian energy, we simply here use
GCN with bias as the base model and apply different normalizations on dataset Cora. PoincareNorm
is set to be 8-PoincareNorm1. Parameters of other normalization methods are introduced in Appendix
A.3 and detailed experiment setups are introduced in Appendix A.5. We experiment in the scenario
with no missing features and vary layers from 1 to 30. Each experiment runs 1000 epochs 5 times.
We report average performance and the results are plotted in Figure 1, the left figure reports the mean
accuracy and the right figure reports the mean Laplacian energy of the output. As the results show,
The base model with normalization methods does not perform much better than the base model with
no normalization when the neural network is shallow. However, when the neural network goes deep,
PoincareNorm outperforms all normalizations and can control Laplacian energy better than others.

4.3 TIME COMPLEXITY

Suppose the number of nodes is n, the number of edges is e, given a feature X : V → Rd. For
p-PoincareNorm0, computational complexity of

∫
V
∥X− 1

|V |
∫
V
Xdµ̃∥ppdµ̃ is O(nd), therefore so is

p-PoincareNorm0. For p-PoincareNormm when m ≥ 1, computational complexity of
∫
V
∥∆m

µ X −
1

|V |
∫
V
∆m

µ Xdµ̃∥ppdµ̃ is O(mde), therefore so is p-PoincareNormm

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we empirically evaluate the efficiency of our proposed normalization in enabling deep
GNN in the scenario with missing features.

5.1 EXPERIMENT SET UP

Datasets We conduct our model on three well-known datasets: Cora, Citeseer, and Pubmed(Yang
et al., 2016). We use the standard split of the training set and validation set, the remaining nodes are
the test set. Details of datasets are introduced in Appendix A.2.

Model Since the graph convolutional network with bias and the graph attention network with bias
are more practical compared to generic ones, we use the graph convolutional network with bias,
the graph attention network with bias, and simplified graph convolution as the backbone of neural
networks. Graph convolutional network with bias uses Ãrw as the kernel and SGC uses Ãsym as the
kernel. We implement GAT by torch geometric(Fey and Lenssen, 2019). Details of the base model
are introduced in Appendix A.4.

Baselines We compare our method with no normalization, PairNorm, GroupNorm, NodeNorm,
and GraphNorm.

Hyperparameter We set hidden features as 64 for GCN with bias and GAT with bias. Hyper-
parameters of baselines are specified in Appendix A.3. We use Adam optimizer (Kingma and Ba,
2017), the learning rate is 0.01, L2 regularization is 5e-4, and the dropout rate is 0.6. In the scenario
with the missing features, we apply GCN with bias and GAT with bias with varying layers from
{1, 2, . . . , 20, 25, 30}, SGC with varying layers from {1, 2, . . . , 10, 15, 20, . . . , 50}. the main hyper-
parameter in PoincareNorm is order of derivative m, power p, constant C, scale s, edge weight ωij

and node weights µi. We vary m from {0, 1} and p from {4, 8}. For all datasets we set all ωij = 1,
C = 1

|V |µ̃

∫
V
Xdµ̃, s = 1 for input X . For Cora and Pubmed we set µ̃i = µi =

∑
j∈Ni

ωij , for
Citeseer we setµ̃i = µi = 1 +

∑
j∈Ni

ωij .

Configurations We apply each normalization method after the graph convolutional layer and before
the nonlinear activation layer. For each normalization method, we run the experiment with 1000
epochs 5 times for each layer and report the average accuracy and standard variation of the layer
which achieve the best mean validation accuracy.

Table 1: Comparison of different normalization methods enhanced GCN with bias applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6512(0.0074) 0.3576(0.0079) 0.5396(0.0460)
PairNorm 0.7463(0.0379) 0.4330(0.0233) 0.7063(0.0054)
GroupNorm 0.6641(0.0326) 0.3855(0.0419) 0.5814(0.0134)
GraphNorm 0.7594(0.0169) 0.4587(0.0169) 0.6949(0.0238)
NodeNorm 0.7385(0.0060) 0.4487(0.0147) 0.5930(0.0080)

4-PoincareNorm0 0.7427(0.0273) 0.4389(0.0296) 0.6799(0.0213)
8-PoincareNorm0 0.7603(0.0083) 0.4328(0.0257) 0.6875(0.0222)
4-PoincareNorm1 0.7631(0.0073) 0.4602(0.0077) 0.7077(0.0156)
8-PoincareNorm1 0.7674(0.0060) 0.4572(0.0174) 0.6898(0.0094)

5.2 EXPERIMENTS RESULT

Scenario with missing features in common in the real world such as missing features of users on social
recommendation networks. This scenario is complex and require more layers to learn information of
larger neighborhood compared to the classical scenario with no missing features. More specifically,
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Let M be a subset of a set of nodes V1, we remove features of nodes in M and set features as
zero. The fraction |M |

|V1| is called the missing rate, where |M | =
∑

i∈M 1. To study our proposed
normalization to enable neural networks to go deeper, we remove all features in the validation set and
test set of datasets and set them to zeros while keeping features in the training set original. Results are
reported in Table 1, Table 2, and Table 3 respectively. OOM represents that the experiment is out of
memory when GNNs are going deep. As the results show, our proposed normalization outperforms
in 6 experiments out of 9 experiments.

Table 2: Comparison of different normalization methods enhanced SGC applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6701(0.0068) 0.3554(0.0232) 0.6581(0.0110)
PairNorm 0.7691(0.0012) 0.4656(0.0007) 0.6923(0.0054)
GroupNorm OOM OOM OOM
GraphNorm 0.7620(0.0063) OOM OOM
NodeNorm 0.7574(0.0159) 0.5317(0.0086) 0.7773(0.0023)

4-PoincareNorm0 0.7854(0.0012) 0.4926(0.0261) 0.7017(0.0150)
8-PoincareNorm0 0.7846(0.0015) 0.4834(0.0178) 0.7001(0.0048)
4-PoincareNorm1 0.7971(0.0035) 0.5039(0.0237) 0.7012(0.0125)
8-PoincareNorm1 0.7975(0.0016) 0.5229(0.0181) 0.6998(0.0041)

Table 3: Comparison of different normalization methods enhanced GAT with bias applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.7063(0.0086) 0.4096(0.0164) 0.5386(0.0353)
PairNorm 0.7073(0.0504) 0.4351(0.0278) 0.6469(0.0218)
GroupNorm 0.7242(0.0141) 0.4208(0.0363) 0.6183(0.0033)
GraphNorm 0.7351(0.0017) 0.4083(0.0149) 0.6183(0.0176)
NodeNorm 0.7477(0.0038) 0.4781(0.0176) 0.6240(0.0057)

4-PoincareNorm0 0.7297(0.0159) 0.3932( 0.0234) 0.6504(0.0338)
8-PoincareNorm0 0.7095(0.0220) 0.4027(0.0300) 0.6477(0.0279)
4-PoincareNorm1 0.7507(0.0053) 0.4185(0.0154) 0.6440(0.0195)
8-PoincareNorm1 0.7443(0.0045) 0.4323(0.0104) 0.6460(0.0322)

6 CONCLUSION

In this work, we generalize some existing node similarity measures including Dirichlet energy, and
propose measures called the energy of higher-order derivatives. We rigorously establish relations
between the energy of higher-order derivatives. Using this relation we establish the decay rate of
Dirichlet energy of diffusion under heat kernel and discrete random walk, and we show that self-loop
is a necessary condition for over-smoothing. These results and techniques can also be easily used
to establish the decay rate for other dynamical systems. Future work can design GNNs in light of
these measures. To address over-smoothing in light of the energy of higher-order derivatives, we
propose a normalization termed PoincareNorm which is a generalization of PairNorm. PoincareNorm
outperforms existing normalizations on the semi-supervised node classification task in the scenario
with missing features and can control the energy of higher-order derivatives well.
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A APPENDIX

B EXPERIMENT DETAILS

B.1 RUNNING ENVIRONMENT

All our normalization methods and base models are implemented in PyTorch. Experiment that apply
GCN with bias with different normalization methods on dataset Cora with no missing features and
experiment that apply GAT with bias with different normalization methods on dataset Citeseer with
100% missing features are conducted on a machine with NVIDIA GeForce RTX 3070 Ti Laptop 16
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GB GPU and 12th Gen Intel(R) Core(TM) i7-12700H CPU. Other experiments are conducted on a
machine with NVIDIA GeForce RTX 3080 Laptop 16 GB GPU and AMD Ryzen 9 5900HX with
Radeon Graphics CPU.

B.2 DATASET STATISTICS

Table 4: Dataset Statistics
Datasets Cora Citeseer Pubmed

Nodes 2708 3327 19717
Edges 5429 4732 44338
Features 1433 3703 500
Classes 7 6 3
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 2068 2707 19157
Label Rate 0.052 0.036 0.003

B.3 DETAILS OF BASELINE

We use the implementation released by authors to implement baseline

• GroupNorm:https://github.com/Kaixiong-Zhou/DGN
• PairNorm:https://github.com/LingxiaoShawn/PairNorm
• GraphNorm:https://github.com/lsj2408/GraphNorm
• NodeNorm:https://github.com/miafei/NodeNorm

We give details of each baseline and hyperparameter choice as follows

GroupNorm Given an input Hk ∈ Rn×d, then GroupNorm comprise of two steps. First differen-
tiable cluster nodes into l groups

Sk = softmax(HkUk)

where Uk ∈ Rd×l. Then generate l features

Hk
i = Sk[:, i] ◦Hk i = 1, . . . , l

and normalization with each group

H̃k
i = γi(

Hk
i − µi

σi
) + βi

where γi and βi are learnable parameters. µi and σi are mean and variation over nodes within the
same dimension of features. Finally, GroupNorm generates the final embedding

H̃k = Hk + λ

l∑
i=1

H̃k
i

For all experiments in this paper. The number of groups l in GroupNorm is 5 for Pubmed and 10 for
others, skip weight λ for GroupNorm is set to be 0.003.

NodeNorm Given an input Hk ∈ Rn×d, its i-th row and j-th column item is denoted as Hk
i,j .

NodeNorm can be expressed as

NodeNorm(Hk
i ) =

Hk
i

(σi)p

where µi =
∑d

f=1 Hk
i,j

d and σ2
i =

∑n
j=1(H

k
i,j−µi)

2

d . For all experiments, we set p = 2.
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PairNorm Given an input H ∈ Rn×d, its i-th row vector is denoted as Hk
i . Then PairNorm can be

expressed as
Hc

i = Hi − 1
n

∑n
k=1 Hk

H̃i = s
Hc

i√
1
n

∑n
i=1 ∥Hc

i ∥2

For all experiments, we set s = 1.

GraphNorm Given an input Hk ∈ Rn×d, its i-th row and j-th column item is denoted as Hk
i,j .

Then GraphNorm can be expressed as

GraphNorm(Hk
i,j) = γj

Hk
i,j − αjµj

σj
+ βj

where γj , βj , αj are learnable parameters. µj =
∑n

i=1 Hk
i,j

n , σ2
j =

∑n
i=1(H

k
i,j−αjµj)

2

n

B.4 DETAILS OF BASE MODEL

Table 5: Graph convolutional layer of base models
Models aggregation function

GAT with bias Xk+1
i =

∑
j∈Ni∪i aijW

kXk
j + bk

GCN with bias Xk+1 = ÃrwX
kW k + bk

SGC Xk+1 = ÃsymXk

B.5 EXPERIMENT SET UP FOR ESTIMATION OF POINCARENORM

For parameters of PoincareNorm, we set m = 1, p = 8, ωij = 1, µ̃i = µi =
∑

j∈Ni
ωij , C =

1
|V |µ̃

∫
V
Xdµ̃ and s = 1. We use Adam optimizer(Kingma and Ba, 2017), the learning rate is 0.01,

L2 regularization is 5e-4, and the dropout rate is 0.6. All normalization methods are after the graph
convolutional layer and before the nonlinear activation layer.

C PROOFS OF THEOREMS

C.1 PROOF OF THEOREM 2.1

Given a weighted graph G = (V,E, ω, µ) and vectored-valued functions f, g : V → Rd. First, we
suppose d = 1, we have the following equality∑

i∈[n]

∑
j∈Ni

ωijf(i)g(i)

=
∑
i∼j

ωij

(
f(i)g(i) + f(j)g(j)

)
=
∑
i∈[n]

∑
j∈Ni

ωijf(j)g(j)

and ∑
i∈[n]

∑
j∈Ni

ωijf(j)g(i)

=
∑
i∼j

ωij

(
f(j)g(i) + f(i)g(j)

)
=
∑
i∈[n]

∑
j∈Ni

ωijf(i)g(j)
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Combining above equalities we deduce

∫
V

∆µf · gdµ =

n∑
i=1

∑
j∈Ni

ωij

(
f(j)− f(i)

)
g(i)

=

n∑
i=1

∑
j∈Ni

(
ωijf(j)g(i)− ωijf(i)g(i)

)
=

n∑
i=1

∑
j∈Ni

(
ωijf(i)g(j)− ωijf(j)g(j)

)
=

n∑
i=1

∑
j∈Ni

ωij

(
f(i)− f(j)

)
g(j)

Thus adding the right-hand side of the first line and last line we get

∫
V

∆µf · gdµ =

n∑
i=1

∑
j∈Ni

ωij

2
(f(j)− f(i))(g(i)− g(j))

= −
∫
V

∇µf · ∇µg

Now suppose general d and f = (f1, . . . , fd)
T , g = (g1, . . . , gd)

T , then a direct calculation yield

∫
V

∆µf · gdµ

=

∫
V

∆µf1 · g1dµ+ · · ·+∆µfd · gddµ

= −
∫
V

∇µf1 · ∇µg1dµ− · · · − ∇µfd · ∇µgddµ

= −
∫
V

∇µf · ∇µgdµ

C.2 PROOF OF THEOREM 2.2

Suppose 0 = λ̃0 ≤ · · · ≤ λ̃n−1 are eigenvalues and v0, . . . , vn−1 are eigenvectors corresponding to
eigenvalues respectively such that

∫
V
∥vk∥22dµ = 1, ∀1 ≤ k ≤ n and

∫
V
vi · vjdµ = 0, ∀i ̸= j.

For any vector-valued function f : V → Rd, suppose f = c0v0 + · · ·+ cn−1vn−1, then we have

∫
V

∥∇µf∥22dµ =

∫
V

−∆µf · fdµ

= λ̃0c
2
0v0 + · · ·+ λ̃n−1c

2
n−1vn−1

≤ λN (c20v0 + · · ·+ c2n−1vn−1)

= λN

∫
V

∥f∥22
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Obviously we have
∫
V
∥∇µvn−1∥22dµ = λN

∫
V
∥vn−1∥22. We compute that for all vector-valued

function g : V → Rd ∫
V

∥∇µg∥22dµ =
∑
i∈[n]

(
∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥22)

≤
∑
i∈[n]

(
∑
j∈Ni

ωij(∥g(j)∥22 + ∥g(i)∥22))

= 2
∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥22µi

≤ 2Mmax

∫
V

∥g∥22dµ

Therefore we have λN ≤ 2Mmax

C.3 PROOF OF THEOREM 3.1

(1) Suppose X : V → Rd is a constant vector-valued function on the connected graph G =
(V,E, ω, µ), we wish to prove that Ep

m(X) = 0. Case m ≤ 1 is well known. For Case m ≥ 2, we
compute that

∆µX(i) =
ωij

(
X(j)−X(i)

)
µi

= 0

Therefore if m is even, Ep
m(X) =

∫
V
∥∆

m
2
µ X∥ppdµ = 0. If m is odd, Ep

m(X) =∫
V
∥∇µ∆

m−1
2

µ X∥ppdµ = 0. Now Suppose that for some m, p, Ep
m(X) = 0. we prove induc-

tively that X is a constant vector on the graph. First, suppose d = 1 , case m = 1 is obvious. If
m = 2, then ∆µX = 0. Suppose X attains its maximum at node i, then we have

0 = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

From this we know that for all j ∈ Ni, X(j) = X(i). Because G is connected, we conclude that for
all k ∈ V , Xk = Xi. thus X is a constant. If m = 3, then ∆µX is a constant, suppose ∆µX = c. If
c > 0, then similarly we suppose X attains its maximum at node i, then

c = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

this is a contradiction. If c < 0, then similarly we suppose X attains its minimum at node i, then

c = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

this is also a contradiction. Thus c = 0, from the analysis when m = 2 we know that X is a constant.
For general m, if m is even, then ∆

m
2
µ X = 0, using results when m = 2, 3 inductively we conclude

X is a constant vector. If m is odd, then ∆
m−1

2
µ X is a constant vector, using results when m = 2, 3,

we conclude that X is a constant.

Now suppose for general dimension d, X = (X1, . . . , Xd)
T . Then for arbitrary m, if m is even.

∆
m
2
µ X = (∆

m
2
µ X1, . . . ,∆

m
2
µ Xd)

T = 0. Therefore for all k, ∆
m
2
µ Xk = 0, thus Xk is a constant, so

X is a constant vector. If m is odd, the proof is similar.

(2) For arbitrary m, p we wish to prove

γp
m(X1 +X2) ≤ γp

m(X1) + γp
m(X2)
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For m = 0, we compute by Minkowski inequality

γp
0 (X

1 +X2) = (

∫
V

∥(X1 +X2)− 1

|V |µ

∫
V

(X1 +X2)dµ∥ppdµ)
1
p

= (
∑
i∈[n]

∑
1≤k≤d

|X1
k − 1

|V |µ

∫
V

X1
kdµ+X2

k − 1

|V |µ

∫
V

X2
kdµ|pµi)

1
p

≤ (
∑
i∈[n]

∑
1≤k≤d

(|X1
k − 1

|V |µ

∫
V

X1
kdµ|+ |X2

k − 1

|V |µ

∫
V

X2
kdµ|)pµi)

1
p

≤ (
∑
i∈[n]

∑
1≤k≤d

(|X1
k − 1

|V |µ

∫
V

X1
kdµ|)pµi)

1
p + (

∑
i∈[n]

∑
1≤k≤d

(|X2
k − 1

|V |µ

∫
V

X2
kdµ|)pµi)

1
p

= γp
0 (X

1) + γp
0 (X

2)

For m = 1, we compute by Minkowski inequality

γp
1 (X

1 +X2) = (

∫
V

∥∇µ(X
1 +X2)∥ppdµ)

1
p

= (
∑
i∈[n]

∑
j∈Ni

∑
1≤k≤d

ωij

2
|X1

k(j)−X1
k(i) +X2

k(j)−X2
k(i)|pµi)

1
p

≤
( ∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X1

k(j)−X1
k(i)|+ (

ωij

2
)

1
p |X2

k(j)−X2
k(i)|

)p
µi

) 1
p

≤
( ∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X1

k(j)−X1
k(i)|

)p
µi

) 1
p

+
( ∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X2

k(j)−X2
k(i)|

)p
µi

) 1
p

= γp
1 (X

1) + γp
1 (X

2)

For m = 2, we compute by Minkowski inequality

γp
2 (X

1 +X2) = (

∫
V

∥∆µ(X
1 +X2)∥ppdµ)

1
p

=
( ∑
i∈[n]

∥∆µX
1(i) + ∆µX

2(i)∥ppµi

) 1
p

=
( ∑
i∈[n]

∑
1≤k≤d

|∆µX
1
k(i) + ∆µX

2
k(i)|ppµi

) 1
p

=
( ∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
1
k(i) + µ

1
p

i ∆µX
2
k(i)|p

) 1
p

≤
( ∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
1
k(i)|p

) 1
p +

( ∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
2
k(i)|p

) 1
p

= γp
2 (X

1) + γp
2 (X

2)

For general m ≥ 3, if m is an even number, then

γp
m(X1 +X2) = (

∫
V

∥∆
m
2
µ (X1 +X2)∥ppdµ)

1
p

= (

∫
V

∥∆µ(∆
m
2 −1
µ X1 +∆

m
2 −1
µ X2)∥ppdµ)

1
p

≤ (

∫
V

∥∆µ(∆
m
2 −1
µ X1)∥ppdµ)

1
p + (

∫
V

∥∆µ(∆
m
2 −1
µ X2)∥ppdµ)

1
p

= γp
m(X1) + γp

m(X2)
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If m is an odd number, then

γp
m(X1 +X2) =

( ∫
V

∥∇µ∆
m−1

2
µ (X1 +X2)∥ppdµ

) 1
p

=
( ∫

V

∥∇µ(∆
m−1

2
µ X1 +∆

m−1
2

µ X2)∥ppdµ
) 1

p

≤
( ∫

V

∥∇µ(∆
m−1

2
µ X1)∥ppdµ

) 1
p +

( ∫
V

∥∇µ(∆
m−1

2
µ X2)∥ppdµ

) 1
p

= γp
m(X1) + γp

m(X2)

C.4 PROOF OF THEOREM 3.2

We assume G = (V,E, ω, µ) is connected first and prove following lemma
Lemma C.1. Given a weighted graph G = (V,E, ω, µ) and any vector-valued function g : V → Rd,
there exits constants C12, C13, C14, C15 such that the following inequalities hold

C12(

∫
V

∥g∥ppdµ)
1
p ≤ (

∫
V

∥g∥22dµ)
1
2 ≤ C13(

∫
V

∥g∥ppdµ)
1
p (1)

C14(

∫
V

∥∇µg∥ppdµ)
1
p ≤ (

∫
V

∥∇µg∥22dµ)
1
2 ≤ C15(

∫
V

∥∇µg∥ppdµ)
1
p (2)

Proof. Suppose g = (g1, . . . , gd)
T . For inequalities (1), if p > 2, for the right-hand side of inequality,

we compute that ∫
V

∥g∥22dµ =
∑
i∈[n]

( d∑
k=1

g2k(i)
)
µi

≤
∑
i∈[n]

( d∑
k=1

|gk(i)|p
) 2

p d
p−2
p µi

≤ (dn)
p−2
p

( ∑
i∈[n]

( d∑
k=1

|gk(i)|p
)
µ

p
2
i

) 2
p

≤ (nd)
p−2
p (µmax)

p
2−1
( ∑

i∈[n]

( d∑
k=1

|gk(i)|p
)
µi

) 2
p

= (nd)
p−2
p (µmax)

p
2−1(

∫
V

∥g∥ppdµ)
2
p

The second line and the third line are from Holder inequality. For the left-hand side of inequality, we
compute that ∫

V

∥g∥ppdµ =
∑
i∈[n]

( d∑
k=1

|gk(i)|p
)
µi

≤
∑
i∈[n]

( d∑
k=1

|gk(i)|2
)
µi ×max

j,i

(
|gj(i)|p−2

)
=

∫
V

∥g∥22dµ×max
j,i

(
|gj(i)|p−2

)
≤ 1

(µmax)
p−2
2

∫
V

∥g∥22dµ× (

∫
V

∥g∥22dµ)
p−2
2

=
1

(µmax)
p−2
2

(

∫
V

∥g∥22dµ)
p
2
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Proof for case p < 2 is similar. For inequalities (2), if p > 2, for the right-hand side , suppose the
maximal degree is Dmax = maxi Di, then we directly compute that

∫
V

∥∇µg∥22dµ =
∑
i∈[n]

∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥22

=
∑
i∈[n]

∑
j∈Ni

1

2
ωij

( ∑
1≤k≤d

(
gk(j)− gk(i)

)2)
≤
∑
i∈[n]

∑
j∈Ni

1

2
ωij

( ∑
1≤k≤d

|gk(j)− gk(i)|p
) 2

p d
p−2
p

≤ 1

2

∑
i∈[n]

( ∑
j∈Ni

ω
p
2
ij

( ∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dDmax)
p−2
p

≤ 1

2

( ∑
i∈[n]

∑
j∈Ni

ω
p
2
ij

( ∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dnDmax)
p−2
p

≤ 2
2
p−1
( ∑

i∈[n]

∑
j∈Ni

1

2
ωij

( ∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dnDmaxωmax)
p−2
p

= 2
2
p−1(dnDmaxωmax)

p−2
p (

∫
V

∥∇µg∥ppdµ)
2
p

The third line and the fifth line are from Holder inequality. For the left-hand side we directly compute
that

∫
V

∥∇µg∥ppdµ =
∑
i∈[n]

∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥pp

=
∑
i∈[n]

∑
j∈Ni

1

2
ωij

( ∑
1≤k≤d

|gk(j)− gk(i)|p
)

≤
∑
i∈[n]

∑
j∈Ni

1

2
ωij

( ∑
1≤k≤d

|gk(j)− gk(i)|2
)
× max

i∈[n],j∈Ni

|gk(j)− gk(i)|p−2

≤
∫
V

∥∇µg∥22dµ× (

∫
V

∥∇µg∥22dµ)
p−2
2 (

1

2
ωmax)

− p−2
2

= (
1

2
ωmax)

− p−2
2 (

∫
V

∥∇µg∥22dµ)
p
2

case 1 ≤ p < 2 is similar.

We continue the proof of Theorem 3.2. The proof requires Theorem 4.1 so we assume Theorem 4.1
is correct first for clarity. One can also see the proof of Theorem 4.1 first. Given a weighted graph
G = (V,E, ω, µ) and a vector-valued function f : V → Rd, First we wish to prove

C2

∫
∥∇µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C1

∫
∥∇µf∥ppdµ (3)
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By lemma B.1 we only need to prove for the case p = 2. First, we suppose d = 1, for the right-hand
side of inequality we directly compute that∫

V

∥∆µf∥22dµ =
∑
i∈[n]

(ωij

(
f(j)− f(i)

)
µi

)2
µi

=
∑
i∈[n]

(ωij

(
f(j)− f(i)

)
µ1
i

)2 (µ1
i )

2

µi

≤
∑
i∈[n]

ωij

(
f(j)− f(i)

)2µ1
i

µi

≤ 2Mmax

∫
V

∥∇µf∥22dµ

The third line is from Jenson inequality. For the left-hand side, we have∫
V

∥∇µf∥22dµ =

∫
V

∥∇µ(f − 1

|V |µ

∫
V

fdµ)∥22dµ

= −
∫
V

∆µ(f − 1

|V |µ

∫
V

fdµ) · (f − 1

|V |µ

∫
V

fdµ)dµ

≤

√∫
V

∥∆µf∥22dµ

√∫
V

∥f − 1

|V |µ

∫
V

fdµ∥22dµ

≤

√∫
V

∥∆µf∥22dµ

√
C6

∫
V

∥∇µf∥22dµ

The third Line is from Holder inequality. Therefore we have∫
V

∥∇µf∥22dµ ≤ C6

∫
V

∥∆µf∥22dµ

For general dimension d, suppose f = (f1, . . . , fd)
T , then by Jenson inequality we have∫

V

∥∆µf∥22dµ =
∑
i∈[n]

( ∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µi

)2)
µi

=
∑
i∈[n]

( ∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µ1
i

)2) (µ1
i )

2

µi

≤
∑
i∈[n]

( ∑
1≤k≤d

∑
j∈Ni

ωij

(
fk(j)− fk(i)

)2
µ1
i

) (µ1
i )

2

µi

=
(µ1

i )
2

µi

∫
V

∥∇µf∥22dµ

and ∫
V

∥∆µf∥22dµ =
∑
i∈[n]

( ∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µi

)2)
µi

≥ 1

C6

∑
1≤k≤d

∫
V

∥∇µfk∥22dµ

=
1

C6

∫
V

∥∇µf∥22dµ

Thus the proof of (3) is over. When p = 2, 1
C6

= λ1(−∆µ), therefore C2 = λ1(−∆µ). After we
wish to prove

C3

∫
∥∇µ∆µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C4

∫
∥∇µ∆µf∥ppdµ (4)
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For the right-hand side of (4), we first notice that∫
V

∆µfdµ =

∫
V

f∆µ1dµ = 0

Hence by Poincare inequality, we have∫
∥∆µf∥ppdµ =

∫
∥∆µf − 1

|V |µ

∫
V

∆µfdµ∥ppdµ

≤ C6

∫
∥∇µ∆µf∥ppdµ

For the left-hand side of (4), we notice that for any vector-valued function g, we have∫
∥∇µg∥22dµ =

∑
i∈[n]

∑
j∈Ni

ωij

2
∥g(j)− g(i)∥22

≤
∑
i∈[n]

∑
j∈Ni

ωij(∥g(j)∥22 + ∥g(i)∥22)

= 2
∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥22µi

≤ 2Mmax

∫
V

∥g∥22dµ

Replace g by ∆µf we have the left-hand side of (4). Now suppose G = (V,E, ω, µ) is not connected
and has connected components V1, . . . , Vl, then for the right-hand side of (3) we have∫

V

∥∆µf∥ppdµ =
∑

1≤k≤l

∫
Vk

∥∆µf∥ppdµ

≤ C1

∑
1≤k≤l

∫
Vk

∥∇µf∥ppdµ

= C1

∫
V

∥∇µf∥ppdµ

Other cases are similar. In the end we show that EW and ED are special cases of Ep
m. EW is a special

cases of Ep
m such that

m = 0, p = 2, µi = 1 ∀i ∈ [n]

ED is a special cases of Ep
m such that

m = 1, p = 2, ωij = 2, µi = 1 ∀i ∈ [n], j ∈ Ni

C.5 PROOF OF THEOREM 3.3

(1) Suppose f is a solution to the heat equation with initial condition f(t = 0) = f0, then

∂
∫
V
∥∇µf∥22dµ
∂t

= 2

∫
V

∇µf · ∇µ∂tfdµ

= −2

∫
V

∆µf · ∂tfdµ

= −2

∫
V

∥∆µf∥22dµ

≤ −2λ1(−∆µ)

∫
V

∥∇µf∥22dµ

Thus we have
∂(e2λ1(−∆µ)t

∫
V
∥∇µf∥22dµ)

∂t
≤ 0
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Therefore
e2λ1(−∆µ)t

∫
V

∥∇µf∥22dµ|t=t ≤ (e2λ1(−∆µ)t

∫
V

∥∇µf∥22dµ)|t=0

In conclusion, we have ∫
V

∥∇µf∥22dµ ≤ e−2λ1(−∆µ)t

∫
V

∥∇µf0∥22dµ

(2) Suppose f : V → Rd is an arbitrary vector-valued function on the graph. Then by the proof of
Theorem 2.2, we directly compute that∫

V

∥∇µPf∥22dµ =

∫
V

∇µPf · ∇µPfdµ

= −
∫
V

∆µPf · Pfdµ

= −
∫
V

∆µ(∆µ + I)f · (∆µ + I)fdµ

= −
∫
V

∆2
µf ·∆µfdµ−

∫
V

∆2
µf · fdµ−

∫
V

∥∆µf∥22dµ−
∫
V

∆µf · fdµ

=

∫
V

∥∇µ∆µf∥22dµ− 2

∫
V

∥∆µf∥22dµ+

∫
V

∥∇µf∥22dµ

≤ λN (−∆µ)

∫
V

∥∆µf∥22dµ− 2

∫
V

∥∆µf∥22dµ+

∫
V

∥∇µf∥22dµ

≤
(
λN (−∆µ)− 2

)
λ1(−∆µ)

∫
V

∥∇µf∥22dµ+

∫
V

∥∇µf∥22dµ

=
(
1 +

(
λN (−∆µ)− 2

)
λ1(−∆µ)

)∫
V

∥∇µf∥22dµ

Therefore we have∫
V

∥∇µP
kf∥22dµ ≤

(
1 +

(
λN (−∆µ)− 2

)
λ1(−∆µ)

)k ∫
V

∥∇µf∥22dµ

For Ãsym, we specify P = Ãrw, ωij = 1, µi = Di + 1 and notice that Ãsym = D̃
1
2 ÃrwD̃

− 1
2 .

Therefore we have∫
V

∥∇µD̃
− 1

2 Ãk
sym(D̃

1
2 f)∥22dµ ≤

(
1 +

(
λN (−∆̃rw−adj)− 2

)
λ1(−∆̃rw−adj)

)k ∫
V

∥∇µf∥22dµ

Replace f by D̃− 1
2 g we get desired results.

C.6 PROOF OF THEOREM 4.1

Given a weighted connected graph G = (V,E, ω, µ) and a vector-valued function f : V → Rd,
Suppose that every pair of nodes i, j can be connected by a path that has no more than r edges. First,
we suppose d = 1, Given node i and node j, suppose node i and node j can be connected by a path
with no more than r edges, the path is denoted by P = [i0i1 . . . ik] with i0 = i and ik = j. then we
have an estimation

|f(i)− f(j)|p ≤
(
|f(i)− f(i1)|+ · · ·+ |f(ik)− f(j)|

)p
=
( |f(i)− f(i1)|+ · · ·+ |f(ik)− f(j)|

k + 1

)p
(k + 1)p

≤ |f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

k + 1
(k + 1)p

= (k + 1)p−1
(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
≤ rp−1

(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
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Using this result we directly compute that

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ =
∑
i∈[n]

|
∑
j∈[n]

(f(i)− f(j))µj

|V |µ
|pµi

≤
∑
i∈[n]

∑
j∈[n]

(
|f(i)− f(j)|p

)
µj

|V |µ
µi

≤
∑
i∈[n]

∑
j∈[n]

(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
rp−1µj

|V |µ
µi

≤ n2rpµ2
max

|V |µ
max

i∈[n],j∈Ni

|f(i)− f(j)|p

≤
∑
i∈[n]

∑
j∈Ni

n2rpµ2
max

ωmin|V |µ
ωij |f(j)− f(i)|p

=
2n2rpµ2

max

ωmin|V |µ

∫
V

∥∇µf∥ppdµ

The second line is from Jenson inequality. If p = 2, Suppose 0 = λ̃0 ≤ · · · ≤ λ̃n−1 are eigenvalues
and v0, . . . , vn−1 are eigenvectors corresponding to eigenvalues respectively such that

∫
V
∥vk∥22dµ =

1, ∀1 ≤ k ≤ n and
∫
V
vi · vjdµ = 0, ∀i ̸= j. Since the graph is connected, the multiplicity of 0 is

1. Then we have

∫
V

∥∇µf∥22dµ = −
∫
V

∆µf · fdµ

=
∑

1≤k≤N

λ̃kc
2
kvk

≥ λ̃1

∑
1≤k≤N

c2kvk

= λ̃1

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥22dµ

Thus when p = 2, 1
C6

= λ̃1 = λ1 For general dimension d we have

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ

=

∫
V

(∥f1 −
1

|V |µ

∫
V

f1dµ∥pp + · · ·+ ∥fd −
1

|V |µ

∫
V

fddµ∥pp)dµ

≤ C6(

∫
V

∥∇µf1∥pp + · · ·+ ∥∇µfd∥ppdµ)

= C6

∫
V

∥∇µf∥ppdµ

Next, we wish to prove

∫
V

∥∇µf∥ppdµ ≤ C7

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ
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We directly compute that∫
V

∥∇µg∥ppdµ =
∑
i∈[n]

∑
j∈Ni

ωij

2
∥g(j)− g(i)∥pp

=
∑
i∈[n]

∑
j∈Ni

ωij

2

( ∑
1≤k≤d

|gk(j)− gk(i)|p
)

≤
∑
i∈[n]

∑
j∈Ni

ωij2
p−2
( ∑

1≤k≤d

(
|gk(j)|p + |gk(i)|p

))
= 2p−1

∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥ppµi

≤ 2p−1Mmax

∫
V

∥g∥ppdµ

Replace g by f − 1
|V |
∫
V
fdµ we have the desired result.

C.7 PROOF OF THEOREM 4.2

First, we wish to prove that there exist constants C8, C9 such that we have the following inequalities

TPDp(∆µX) ≤ C8

∫
V

∥∆µX∥ppdµ ≤ C9

(
ED(X)

) p
2 (5)

For the left-hand side of (5), we directly compute

TPDp(∆µX) =
∑

i,j∈[n]

∥∆µX(j)−∆µX(i)∥pp

≤ 2p−1
∑

i,j∈[n]

(∥∆µX(j)∥pp + ∥∆µX(i)∥pp)

≤ 2pn

µmin

∫
V

∥∆µX∥ppdµ

For the right-hand side of (5), by the proof Theorem 3.2, we have∫
V

∥∆µX∥ppdµ

≤ C1

∫
V

∥∇µX∥ppdµ

≤ C1

Cp
12

(

∫
V

∥∇µX∥22dµ)
p
2

=
C1

Cp
12

( ∑
i∈[n]

∑
j∈Ni

ωij

2
∥X(j)−X(i)∥22

) p
2

≤ C1ω
p
2
max

2
p
2Cp

12

( ∑
i∈[n]

∑
j∈Ni

∥X(j)−X(i)∥22
) p

2

=
C1ω

p
2
max

Cp
12

(
ED(X)

) p
2

After, we wish to prove that there exist constants C10, C11 such that we have the following inequalities(
ED(X)

) p
2 ≤ C10

∫
V

∥∆µX∥ppdµ ≤ C11TPDp(∆µX) (6)
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For the right-hand side of (6), we have∫
V

∥∆µX∥ppdµ

≤ C4

∫
V

∥∇µ∆µX∥ppdµ

=
C4

2

∑
i∈[n]

∑
j∈Ni

ωij∥∆µX(j)−∆µX(i)∥pp

≤ C4ωmax

2

∑
i∈[n]

∑
j∈Ni

∥∆µX(j)−∆µX(i)∥pp

≤ C4ωmax

2

∑
i∈[n]

∑
j∈[n]

∥∆µX(j)−∆µX(i)∥pp

=
C4ωmax

2
TPDp(∆µX)

For the left-hand side of (6), we have

ED(X) =
∑
i∈[n]

∑
j∈Ni

∥X(j)−X(i)∥22

≤ 1

ωmin

∑
i∈[n]

∑
j∈Ni

ωij∥X(j)−X(i)∥22

=
2

ωmin

∫
V

∥∇µX∥22dµ

≤ 2C2
15

ωmin
(

∫
V

∥∇µX∥ppdµ)
2
p
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