
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POINCARENORM: RETHINKING OVER-SMOOTHING BE-
YOND DIRICHLET ENERGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Dirichlet energy is intuitive and commonly used to measure over-smoothing. How-
ever, Dirichlet energy can only capture information about the first-order derivative
of features. In light of this, we propose a series of node similarity measures which
are the energy of higher-order derivatives of features and generalize Dirichlet
energy. After we rigorously analyze the property of proposed measures and its
application to establish the sharp decay rate of Dirichlet energy under continuous
diffusion or discrete random walk which is closely related to the first nonzero eigen-
value of graph Laplacian. Lastly, to address over-smoothing with respect to these
measures, we propose a normalization termed PoincareNorm which generalizes
PairNorm to control our proposed measures. We consider the semi-supervised
node classification task in the scenario without missing features, PoincareNorm
outperforms existing normalization methods.

1 INTRODUCTION

Graph neural networks(GNNs) have emerged recently and successfully applied to many fields such
as protein prediction (Gligorijević et al., 2021) and social recommendation (Fan et al., 2022). Though
vanilla graph convolutional network(GCN) (Kipf and Welling, 2017), graph attention network(GAT)
(Veličković et al., 2018) and a class of neural networks following the paradigm of message passing
type (Gilmer et al., 2017) have achieved great success in many graph-based tasks, they suffer from
over-smoothing when stacking layers. Many works theoretically analyze the loss of expressive
power for attention-based mechanism (Wu et al., 2023) and graph convolutional network (Oono and
Suzuki, 2020)(Cai and Wang, 2020). Works are emerging to address over-smoothing such as residual
connection (Li et al., 2019) (Liu et al., 2020) (Chen et al., 2020)(Xu et al., 2018) originated from
(He et al., 2016), regularization such as dropout (Papp et al., 2021) (Rong et al., 2020)(Fang et al.,
2023). Nguyen et al. (2023) think that positive Ollivier-Ricci curvature will cause over-smoothing
and they delete edges with highly positive curvature. From the spectrum view over-smoothing is
closely related to the first nonzero eigenvalue of graph Laplacian (Jamadandi et al., 2024) (Giraldo
et al., 2023).

Simplified graph convolution(SGC) (Wu et al., 2019) separates transformation and propagation.
With propagation only they can stack layers and achieve competing performance with GCN, Wang
et al. (2021) further use heat kernel to propagate and Li et al. (2022) consider more propagation
kernel. Another mainstream to address over-smoothing is to consider different ordinary differential
equations(ODE) and partial differential equations(PDE) to change the dynamic system of GNNs.
Rusch et al. (2023b) use gradient gating to control the update of features. Kang et al. (2024) apply
fractional time derivative to evolving dynamic system. More equation-based GNNs such as Allen-
Cahn equation (Wang et al., 2023), reaction-diffusion equation (Choi et al., 2023). For more equation-
based graph neural networks we refer to (Rusch et al., 2022)(Maskey et al., 2023)(Behmanesh et al.,
2023)(Thorpe et al., 2022)(Chamberlain et al., 2021)(Xhonneux et al., 2020).

Normalization of features has also been proven successful in graph neural networks. a few works
are devoted to address over-smoothing such as PairNorm (Zhao and Akoglu, 2020) and GroupNorm
(Zhou et al., 2020). These works keep normalized features away from trivial under the measure of
over-smoothing. NodeNorm (Zhou et al., 2021a) think of degradation of graph convolutional network
as variance inflammation and normalize over feature dimension for every node similar to layernorm
(Ba et al., 2016), GraphNorm (Cai et al., 2021) think that usual instancenorm (Ulyanov et al., 2017)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

applied to GNN will cause loss of information due to standard shift, instead they normalize the feature
values across all nodes in each graph with a learnable shift.

Many measures are proposed to quantitively measure over-smoothing, among which Dirichlet energy
is intuitively and most commonly used (Rusch et al., 2022)(Zhou et al., 2021b), however, Dirichlet
energy can only capture information about the first-order derivative of features. Also, Dirichlet energy
based normalization PairNorm can not control the energy of higher-order derivatives well. Based on
this observation our contributions are as follows

• We propose a series of node similarity measures to measure over-smoothing more finely,
this measure generalizes Dirichlet energy. We prove that these node similarity measures
satisfy the condition of (Rusch et al., 2023a). Then we theoretically illustrate the relation
between proposed node similarity measures and use this relation to build up the decay rate of
Dirichlet energy under continuous heat diffusion and general discrete random walk. Results
of the decay rate will show that self-loop is a necessary condition for over-smoothing. Also,
the decay rate under continuous heat diffusion can give a more concrete analysis of over-
smoothing of the work (Wang et al., 2021) and indicate the relation between over-smoothing
and the first nonzero eigenvalues of graph Laplacian.

• In light of these measures, We use Poincare inequality to construct normalization termed
PoincareNorm to control measures proposed by us, we note that this normalization is a
generalization of PairNorm. We consider the semi-supervised node classification task in
the scenario without missing features, PoincareNorm outperforms existing normalization
methods.

2 PRELIMINARY AND NOTATION

We introduce the framework of weighted graphs and calculus on it, this framework is commonly
used when studying differential equations on graphs (Grigor’yan et al., 2016)(Sun and Wang, 2022),
we make use of this framework and show that attention-based GNNs can be generalized into this
framework. In this article all graphs are assmued to be finite and undirected. Let G = (V,E, ω, µ)
be a weighted graph, where V = {1, 2, ..., n} is the set of nodes, E ⊂ V × V is the set of edges,
ω is a function on E such that ωij = ω([i, j]) = ω([j, i]) > 0 for [i, j] ∈ E, µ is a function
on V such that µi = µ(i) > 0 for i ∈ V . Fixed i ∈ [n], Ni = {j ∈ [n] : ωij > 0, j ̸= i}
denotes node i’s neighborhood. Denote ωmax = maxi∈[n],j∈Ni

ωij , ωmin = mini∈[n],j∈Ni
ωij ,

µmax = maxi∈[n] µi, µmin = mini∈[n] µi, |V |µ =
∑

i∈[n] µi. Following we define the general
gradient and Laplacian of a vectored value function f .
Definition 2.1. Let G = (V,E, ω, µ) be a weighted graph and f : V → Rd is vector valued funtion
on the nodes,integration of f on V is defined as∫

V

fdµ =

n∑
i=1

f(i)µ(i)

The inner product of the gradient of f and the gradient of g is defined as∫
V

∇µf · ∇µgdµ =
∑
j∈Ni

ωij(f(j)− f(i)) · (g(j)− g(i))

2µi

Where · is dot product between vectors. General p-norm of a vector x = (x1, . . . , xk) is defined as

∥x∥p = (

k∑
i=1

|xi|p)
1
p

where p ≥ 1. p-norm of Gradient of f on V is defined as

∥∇µf∥p(i) = (
∑
j∈Ni

ωij∥f(j)− f(i)∥pp
2µ(i)

)
1
p

Laplacian of f on V is defined as

∆µf(i) =
∑
j∈Ni

ωij(f(j)− f(i))

µi

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The virtue of the above definition is that we can integrate by parts. This is a well-known result and
we give a proof for completeness. Proof of the following Theorem and all proof needed in this paper
will be left in the Appendix.
Theorem 2.1. Let G = (V,E, ω, µ) be a weighted graph and f, g : V → Rd are vector-valued
functions on the nodes, then we have integration by parts∫

V

∆µf · gdµ = −
∫
V

∇µf · ∇µgdµ =

∫
V

f ·∆µgdµ

Thus we can do calculus on graphs under the above general definition of gradient and Laplacian. Now
recall traditionally considered graph Laplacian, A ∈ Rn×n, D = diag(Di, . . . , Dn), Ã = A + I

and D̃ denotes adjacent matrix, degree matrix, adjacent matrix with self-loop and degree matrix of
Ã respectively. Ãsym = D̃− 1

2 ÃD̃− 1
2 and Ãrw = D̃−1Ã are denoted as symmetric normalization

and row normalization of Ã respectively. When there exist no isolated nodes, we can also define
Asym = D− 1

2AD− 1
2 and Arw = D−1A. Graph Laplacian with respect to A, Ã, Ãsym, Ãrw, Asym,

Arw and are defined as ∆adj = A−D, ∆̃adj = Ã−D̃, ∆̃sym−adj = Ãsym−I , ∆̃rw−adj = Ãrw−I ,
∆sym−adj = Asym − I and ∆rw−adj = Arw − I respectively. We give special cases of general
graph Laplacian when ∆ = ∆adj , ∆̃adj ,∆rw−adj or ∆̃rw−adj as follow

ωij = 1, µi = 1 when ∆ = ∆adj

ωij = 1, µi = 1 when ∆ = ∆̃adj

ωij = 1, µi = Di + 1 when ∆ = ∆̃rw−adj

ωij = 1, µi = Di when ∆ = ∆rw−adj

From theorem 2.1, −∆µ is a semi-positive symmetric operator on function space L2(V, dµ) = {f :
V → Rd :

∫
V
∥f∥22dµ < ∞}. we array its eigenvalues as follows

0 = λ0(−∆) < λ1(−∆µ) < . . . < λN (−∆µ)

where N ≥ 1. Denote µ1
i =

∑
j∈Ni

ωij , Mmax = maxi∈[n]

∑
j∈Ni

ωij

µi
= maxi∈[n]

µ1
i

µi
, then we

have an upper bound for λN as follows
Theorem 2.2. Given a weighted graph G = (V,E, ω, µ), then we have upper bound for λN

λN ≤ 2Mmax

If ∀i ∈ [n],
∑

j∈Ni
ωij ≤ µi, then Pµ = ∆µ + I is called random walk matrix associated with ∆µ,

we say that Pµ satisfies self-loop if ∀i ∈ [n],
∑

j∈Ni
ωij < µi. We have upper bound λN ≤ 2. We

recall that the layer of attention-based GNNs is as follows

X l+1 = ϕ(P lX lW l)

where ϕ is the activation function, W l is learnable matrix and P l is an aggregation operator in
message-passing. P l

ij denotes the i-th row and the j-th column element of Pn, usually P l
ij can be

expressed as

P l
ij =

exp(elij)

exp(elii) +
∑

k∈Ni
exp(elik)

where elij is weight in layer l between node i and j. This aggregation operator coincides with our
definition of random matrix if we specify edge weights ωij and node weights µ as follows

ωij = exp(eij), µi = exp(elii) +
∑
k∈Ni

exp(elik)

3 UNDERSTANDING OVER-SMOOTHING

In this work, we consider the semi-supervised node classification task on the graph. Every node i in
V is given features Xi. Only a subset of V are given labels. A training set Vtrain is a subset of V
with labels for training, the task aims to predict the labels of the nodes V \Vtrain from features.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 MEASURES OF OVER-SMOOTHING

There exists a variety of approaches to quantitatively measure the issue of over-smoothing. Kaixion
Zhou proposes a Group distance ratio to measure distances between different groups with the same
label and Instance information gain to measure dependency between node feature and representation.
Chen et al. (2019) propose mean-average distance to measure similarity between nodes. More lately
Wu et al. (2023) propose a new node similarity measure of the distance between features of nodes
and the mean feature as follows

EW (X) = ∥X − 1γX
∥22

where 1γX
=

∑
i∈[n] Xi

n . Dirichlet energy is also a commonly used measure as follows

ED(X) =
∑
i∈[n]

∑
j∈Ni

∥Xi −Xj∥22

Generally Rusch et al. (2023a) defines the following concept of node similarity measure and over-
smoothing
Definition 3.1. (Over-smoothing) Let G be an undirected, connected graph, and Xk ∈ Rn×m denote
the k-th layer hidden features of an N-layer GNN defined on G. Moreover, we call E : Rn×m → R≥0

a node similarity measure if it satisfies the following axioms:

• ∃c ∈ Rm with Xi = c for all nodes i ∈ V if and only if E(X) = 0 , for X ∈ Rn×m

• E(X + Y) ≤ E(X) + E(Y) , for all X,Y ∈ Rn×m

We then define over-smoothing with respect to µ as the layer-wise exponential convergence of the
node-similarity measure E to zero, that is for n = 0, . . . , N and some constants C1, C2 > 0

E(Xn) ≤ C1e
−C2n

If we suppose 1γX
= 0, then EW (X) = ∥X∥22, this is the energy of zero-order derivative of features.

Dirichlet energy can be considered as energy of the first-order derivative of features. Based on these
observations, existing measures only capture information on the low-order derivatives, we propose
a series of node similarity measures as follows to capture information on higher-order derivatives
which is a generalization of the two above measures and proves that attention-based GNNs are
over-smoothing under our proposed measure.
Theorem 3.1. G = (V,E, ω, µ) is a connected weighted graph, Given a vector-valued function f on
the graph, We define the energy of higher-order derivatives of f as follows

Ep
m(f) :=

∫
V

∥∇m
µ f∥ppdµ

where p ≥ 1,m ∈ N and higher-order derivatives of f is defined as follows

∥∇m
µ pf∥ =

{
∥(−∆µ)

m
2 f∥p if m is an even number

∥∇µ(−∆µ)
m−1

2 f∥p if m is an odd number

where (−∆µ)
of = lims→0+(−∆µ)

sf = f − 1
|V |µ

∫
V
fdµ, fractional Laplacian follows the defi-

nition in (Maskey et al., 2023). Then node similarities defined as γp
m(f) = (Ep

m(f))
1
p satisfy two

conditions of node-similarity measure. Also, EW and ED are all special cases of our proposed
measures.

3.2 ILLUSTRATION OF PROPOSED MEASURE

We claim that exactly Ep
m(f) are all equivalent if m ≥ 1. If additionally assume that the graph is

connected, then for all m ≥ 0, Ep
m(f) are all equivalent. Case m ≤ 1 is direct consequence of

Poincare inequality and will be left in next section. We give claim for m ≥ 1 as follows
Theorem 3.2. G = (V,E, ω, µ) is a weighted graph. Then for any function f on the graph, there
exist constants C1, C2, C3, C4 > 0 such that

C2

∫
∥∇µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C1

∫
∥∇µf∥ppdµ

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and

C3

∫
∥∇µ∆µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C4

∫
∥∇µ∆µf∥ppdµ

constants C2 will be λ1 when p = 2. Replace f by ∆m
µ g we can get the equivalence for all m ≥ 1.

This theorem implies directly that if GNNs are over-smooth with respect to one of these measures,
they will also be over-smooth with respect to other. Equivalence between Ep

m can be used to estimate
the rate of over-smoothing. Given a weighted graph G = (V,E, ω, µ), λ1(−∆µ) is closely related to
the trade-off between over-smoothing and over-squashing (Karhadkar et al., 2023). The higher λ1,
The less over-squashing and the more over-smoothing. Much work is devoted to analyzing relations
between λ1(−∆µ) and over-smoothing (Giraldo et al., 2023), However the existing results are not
satisfactory (Chung, 1996)(Cai and Wang, 2020), existing results of decay rate require condition
1− λ1(−∆µ) ≥ λN (−∆µ)− 1 or self-loop.

Usually, we think that the reason behind message-passing type GNNs is spatial propagation. SGC
removes the transformation operation in GCN and achieves competing performance with GCN. Its
structure is as follows

Y = softmax(ÃK
symXW)

where K is number of layers and W is learnable parameters. Wang et al. (2021) show that at the
stage of feature propagation Simplified graph convolution is equivalent to heat diffusion on the graph
with fixed step size ∆t = 1, it is known that features within each connected component propagated
by heat diffusion will converge to a constant vector, they control the time step size to address the
over-smoothing. However, existing simplified graph convolution-type methods and equation-based
methods do not analyze the decay rate. For simplicity and clarity, we only consider the propagation
of SGC with general kernel and heat kernel considered by (Wang et al., 2021) here and prove that for
a general weighted graph, over-smoothing of them are closely related to λ1(−∆µ).

Theorem 3.3. Let G = (V,E, ω, µ) be a weighted graph. If f is a solution of the heat equation

∂f

∂t
= ∆µf

with initial condition f(t = 0) = f0, then there exists constant C5 > 0 such that Dirichlet energy of
f will decay exponentially when t tends to infinity∫

V

∥∇µf∥22dµ ≤ C5e
−2λ1(−∆µ)t

∫
V

∥∇µf0∥22dµ

Suppose further ∀i ∈ [n],
∑

j∈Ni
ωij ≤ µi, Let random walk matrix be P = ∆µ + I , then for the

arbitrary function f on the graph, we have the decay rate as follows∫
V

∥∇µP
kf∥22dµ ≤

(
1−

(
2− λN (−∆µ)

)
λ1(−∆µ)

)k ∫
V

∥∇µf∥22dµ

where k ∈ N, k ≥ 1. also for Ãsym we specify ωij = 1, µi = Di + 1, we have decay rate∫
V

∥∇µ(D̃
− 1

2 Ãk
symf)∥22dµ ≤

(
1−
(
2−λN (−∆̃rw−adj)

)
λ1(−∆̃rw−adj)

)k ∫
V

∥∇µ(D̃
− 1

2 f)∥22dµ

We note that the decay rate on Theorem 3.3 is almost the best we can achieve. If λN (−∆µ) = 2,
then

∫
V
∥∇µPf∥22dµ possible equate

∫
V
∥∇µf∥22dµ. Consider bipartite graph K2,2 with nodes

V = {1, 2, 3, 4} and edges E = {(1, 3), (1, 4), (2, 3), (2, 4)}, given feature X such that X(1) =
X(2) = 1, X(3) = X(4) = 0, then

∫
V
∥∇µArwX∥22dµ =

∫
V
∥∇µX∥22dµ. In conclusion, self-loop

is a necessary condition for over-smoothing.

4 ADDRESSING OVER-SMOOTHING

In this section, we introduce Poincare inequality on graphs and propose normalization termed
Poincarenorm which is a generalization of Pairnorm. Generally, we work on a weighted graph
G = (V,E, ω, µ) and a vector-valued function X : V → Rd is given,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.1 POINCARENORM

First, we recall that PairNorm considers total pairwise square distance(TPSD) as their measure of
over-smoothing

TPSD(X) =
∑

i,j∈[n]

∥X(i)−X(j)∥22

TPSD is a special case of Dirichlet energy assuming all nodes are connected. Then they propose
PairNorm composed of two steps: centering and scaling

Xc(i) = X(i)− 1
n

∑n
k=1 X(k)

X̃(i) = s Xc(i)√
1
n

∑n
i=1 ∥Xc(i)∥2

This normalization will make TPSD(X̃) a constant 2n2s2. This consideration has three limitations.
First making TPSD a constant will strictly constrain the performance of GNNs. The second limitation
is that consideration of TPSD violently assumes all nodes are connected, generally, we have ED(X) ≤
TPSD(X) but it is generally not true that TPSD(X) ≤ CED(X) for a constant C, so keeping TPSD
away from zero can not ensure that ED(X) is away from zero. The third limitation is that PairNorm
only considers Dirichlet energy type measure, It can not control the energy of higher-order derivatives.
To address the first limitation, we first propose a generalization of TPSD. we construct a new weighted
graph G̃ = (V, Ẽ, ω̃, µ̃) from G = (V,E, ω, µ), in G̃ all nodes are connected and ω̃ij = 2. We
propose a total pairwise distance of power p with p ≥ 1 as follows

TPDp(X) =

∫
V

∥∇µ̃X∥ppdµ̃ =
∑
i∈[n]

∑
j∈[n]

∥X(j)−X(i)∥pp

TPSD is a special case of TPDp when p = 2. Similar to previous work we consider normalization on
the graph to control TPDp. To control TPDp, we only need to guarantee TPDp bounded from below
and above. We first introduce Poincare inequality on the graph. The existence of Poincare inequality
on a graph is closely related to many properties on a graph such as estimation of heat kernel and
volume doubling property (Horn et al., 2019). Poincare inequality on a graph is stated as follows
Theorem 4.1. G = (V,E, ω, µ) is a weighted finite connected graph. Then there exist constants
C6, C7 > 0 such that for any vectored valued function f on a graph, we have the following Poincare
inequality with p ≥ 1 ∫

V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ ≤ C6

∫
V

∥∇µf∥ppdµ

particularly when p = 2, constant 1
C6

equates λ1(−∆µ). We also have the following inequalities∫
V

∥∇µf∥ppdµ ≤ C7

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ

thus Ep
0 is equivalent to Ep

1 .

Poincare inequality is a powerful tool. Notice that if the right-hand side of Poincare inequality is
divided by the left-hand side, then Dirichlet-type energy will be bounded from below and above by
Theorem 4.1. Based on this observation we define PoincareNorm as follows. Given a vector-valued
function X , we define the p-PoincareNorm0(X) of the input X with p ≥ 1 as follows

p-PoincareNorm0(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥X − 1

|V |µ̃

∫
V
Xdµ̃∥pdµ̃)

1
p

where s is the scaling hyperparameter and C is a centering constant which can be set to zero or
1

|V |
∫
V
Xdµ̃. Apparently, this normalization generalizes PairNorm, PairNorm is a special case that

µi = 1 for all i ∈ V , p = 2 and C = 1
|V |
∫
V
Xdµ̃. By the equivalence of Ep

0 and Ep
1 , we know that

1

C6
≤
∫
V

∥∇µ̃X̃∥ppdµ̃ ≤ C7

To address the second limitation and the third limitation, we first observe that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: Comparision of different normalization methods enhanced GCN with bias applied on Cora
with no missing features

Theorem 4.2. Given a weighted graph G = (V,E, ω, µ) and a new weighted graph G̃ = (V, Ẽ, ω̃, µ̃)

constructed from G where Ẽ assume all nodes are connected and ω̃ij = 2. Then there exist constants
C8, C9, C10, C11 such that we have the following inequalities

TPDp(∆µX) ≤ C8

∫
V

∥∆µX∥ppdµ ≤ C9

(
ED(X)

) p
2

and (
ED(X)

) p
2 ≤ C10

∫
V

∥∆µX∥ppdµ ≤ C11TPDp(∆µX)

Therefore to control ED(X) and Laplacian energy
∫
V
∥∆µX∥ppdµ, we need only to control

TPDp(∆µX), similar to previous analysis we define p-PonicareNorm1 as follows

p-PonicareNorm1(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥∆µX − 1

|V |µ̃

∫
V
∆µXdµ̃∥pdµ̃)

1
p

Under this normalization TPDp(∆µX) will have a fixed upper bound and lower bound. Generally,
we can define p-PonicareNormm of input X with m ∈ N as follows

p-PonicareNormm(X) = s|V |
1
p

µ̃

X − C

(
∫
V
∥∆m

µ X − 1
|V |µ̃

∫
V
∆m

µ Xdµ̃∥pdµ̃)
1
p

By previous analysis, we know that p-PonicareNormm can control the energy of higher-order deriva-
tives more finely than PairNorm.

4.2 ESTIMATION OF POINCARENORM

We term E2
2 (X) =

∑
i∈[n] ∥∆µX∥22(i)µi with ωij = 1 and µi = Di+1 as Laplacian energy. To test

the efficiency of p-PonicareNormm and its ability to control Laplacian energy, we simply here use
GCN with bias as the base model and apply different normalizations on dataset Cora. PoincareNorm
is set to be 8-PoincareNorm1. Parameters of other normalization methods are introduced in Appendix
A.3 and detailed experiment setups are introduced in Appendix A.5. We experiment in the scenario
with no missing features and vary layers from 1 to 30. Each experiment runs 1000 epochs 5 times.
We report average performance and the results are plotted in Figure 1, the left figure reports the mean
accuracy and the right figure reports the mean Laplacian energy of the output. As the results show,
The base model with normalization methods does not perform much better than the base model with
no normalization when the neural network is shallow. However, when the neural network goes deep,
PoincareNorm outperforms all normalizations and can control Laplacian energy better than others.

4.3 TIME COMPLEXITY

Suppose the number of nodes is n, the number of edges is e, given a feature X : V → Rd. For
p-PoincareNorm0, computational complexity of

∫
V
∥X− 1

|V |
∫
V
Xdµ̃∥ppdµ̃ is O(nd), therefore so is

p-PoincareNorm0. For p-PoincareNormm when m ≥ 1, computational complexity of
∫
V
∥∆m

µ X −
1

|V |
∫
V
∆m

µ Xdµ̃∥ppdµ̃ is O(mde), therefore so is p-PoincareNormm

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

In this section, we empirically evaluate the efficiency of our proposed normalization in enabling deep
GNN in the scenario with missing features.

5.1 EXPERIMENT SET UP

Datasets We conduct our model on three well-known datasets: Cora, Citeseer, and Pubmed(Yang
et al., 2016). We use the standard split of the training set and validation set, the remaining nodes are
the test set. Details of datasets are introduced in Appendix A.2.

Model Since the graph convolutional network with bias and the graph attention network with bias
are more practical compared to generic ones, we use the graph convolutional network with bias,
the graph attention network with bias, and simplified graph convolution as the backbone of neural
networks. Graph convolutional network with bias uses Ãrw as the kernel and SGC uses Ãsym as the
kernel. We implement GAT by torch geometric(Fey and Lenssen, 2019). Details of the base model
are introduced in Appendix A.4.

Baselines We compare our method with no normalization, PairNorm, GroupNorm, NodeNorm,
and GraphNorm.

Hyperparameter We set hidden features as 64 for GCN with bias and GAT with bias. Hyper-
parameters of baselines are specified in Appendix A.3. We use Adam optimizer (Kingma and Ba,
2017), the learning rate is 0.01, L2 regularization is 5e-4, and the dropout rate is 0.6. In the scenario
with the missing features, we apply GCN with bias and GAT with bias with varying layers from
{1, 2, . . . , 20, 25, 30}, SGC with varying layers from {1, 2, . . . , 10, 15, 20, . . . , 50}. the main hyper-
parameter in PoincareNorm is order of derivative m, power p, constant C, scale s, edge weight ωij

and node weights µi. We vary m from {0, 1} and p from {4, 8}. For all datasets we set all ωij = 1,
C = 1

|V |µ̃

∫
V
Xdµ̃, s = 1 for input X . For Cora and Pubmed we set µ̃i = µi =

∑
j∈Ni

ωij , for
Citeseer we setµ̃i = µi = 1 +

∑
j∈Ni

ωij .

Configurations We apply each normalization method after the graph convolutional layer and before
the nonlinear activation layer. For each normalization method, we run the experiment with 1000
epochs 5 times for each layer and report the average accuracy and standard variation of the layer
which achieve the best mean validation accuracy.

Table 1: Comparison of different normalization methods enhanced GCN with bias applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6512(0.0074) 0.3576(0.0079) 0.5396(0.0460)
PairNorm 0.7463(0.0379) 0.4330(0.0233) 0.7063(0.0054)
GroupNorm 0.6641(0.0326) 0.3855(0.0419) 0.5814(0.0134)
GraphNorm 0.7594(0.0169) 0.4587(0.0169) 0.6949(0.0238)
NodeNorm 0.7385(0.0060) 0.4487(0.0147) 0.5930(0.0080)

4-PoincareNorm0 0.7427(0.0273) 0.4389(0.0296) 0.6799(0.0213)
8-PoincareNorm0 0.7603(0.0083) 0.4328(0.0257) 0.6875(0.0222)
4-PoincareNorm1 0.7631(0.0073) 0.4602(0.0077) 0.7077(0.0156)
8-PoincareNorm1 0.7674(0.0060) 0.4572(0.0174) 0.6898(0.0094)

5.2 EXPERIMENTS RESULT

Scenario with missing features in common in the real world such as missing features of users on social
recommendation networks. This scenario is complex and require more layers to learn information of
larger neighborhood compared to the classical scenario with no missing features. More specifically,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Let M be a subset of a set of nodes V1, we remove features of nodes in M and set features as
zero. The fraction |M |

|V1| is called the missing rate, where |M | =
∑

i∈M 1. To study our proposed
normalization to enable neural networks to go deeper, we remove all features in the validation set and
test set of datasets and set them to zeros while keeping features in the training set original. Results are
reported in Table 1, Table 2, and Table 3 respectively. OOM represents that the experiment is out of
memory when GNNs are going deep. As the results show, our proposed normalization outperforms
in 6 experiments out of 9 experiments.

Table 2: Comparison of different normalization methods enhanced SGC applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.6701(0.0068) 0.3554(0.0232) 0.6581(0.0110)
PairNorm 0.7691(0.0012) 0.4656(0.0007) 0.6923(0.0054)
GroupNorm OOM OOM OOM
GraphNorm 0.7620(0.0063) OOM OOM
NodeNorm 0.7574(0.0159) 0.5317(0.0086) 0.7773(0.0023)

4-PoincareNorm0 0.7854(0.0012) 0.4926(0.0261) 0.7017(0.0150)
8-PoincareNorm0 0.7846(0.0015) 0.4834(0.0178) 0.7001(0.0048)
4-PoincareNorm1 0.7971(0.0035) 0.5039(0.0237) 0.7012(0.0125)
8-PoincareNorm1 0.7975(0.0016) 0.5229(0.0181) 0.6998(0.0041)

Table 3: Comparison of different normalization methods enhanced GAT with bias applied on datasets
Dataset Cora Citeseer Pubmed
Method Acc Acc Acc

None 0.7063(0.0086) 0.4096(0.0164) 0.5386(0.0353)
PairNorm 0.7073(0.0504) 0.4351(0.0278) 0.6469(0.0218)
GroupNorm 0.7242(0.0141) 0.4208(0.0363) 0.6183(0.0033)
GraphNorm 0.7351(0.0017) 0.4083(0.0149) 0.6183(0.0176)
NodeNorm 0.7477(0.0038) 0.4781(0.0176) 0.6240(0.0057)

4-PoincareNorm0 0.7297(0.0159) 0.3932(0.0234) 0.6504(0.0338)
8-PoincareNorm0 0.7095(0.0220) 0.4027(0.0300) 0.6477(0.0279)
4-PoincareNorm1 0.7507(0.0053) 0.4185(0.0154) 0.6440(0.0195)
8-PoincareNorm1 0.7443(0.0045) 0.4323(0.0104) 0.6460(0.0322)

6 CONCLUSION

In this work, we generalize some existing node similarity measures including Dirichlet energy, and
propose measures called the energy of higher-order derivatives. We rigorously establish relations
between the energy of higher-order derivatives. Using this relation we establish the decay rate of
Dirichlet energy of diffusion under heat kernel and discrete random walk, and we show that self-loop
is a necessary condition for over-smoothing. These results and techniques can also be easily used
to establish the decay rate for other dynamical systems. Future work can design GNNs in light of
these measures. To address over-smoothing in light of the energy of higher-order derivatives, we
propose a normalization termed PoincareNorm which is a generalization of PairNorm. PoincareNorm
outperforms existing normalizations on the semi-supervised node classification task in the scenario
with missing features and can control the energy of higher-order derivatives well.

REFERENCES

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

Behmanesh, M., Krahn, M., and Ovsjanikov, M. (2023). Tide: Time derivative diffusion for deep
learning on graphs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Cai, C. and Wang, Y. (2020). A note on over-smoothing for graph neural networks.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., and Wang, L. (2021). Graphnorm: A principled approach
to accelerating graph neural network training. In Meila, M. and Zhang, T., editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 1204–1215. PMLR.

Chamberlain, B. P., Rowbottom, J., Gorinova, M. I., Webb, S. D., Rossi, E., and Bronstein, M. M.
(2021). GRAND: Graph neural diffusion. In The Symbiosis of Deep Learning and Differential
Equations.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X. (2019). Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI Conference on
Artificial Intelligence.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020). Simple and deep graph convolutional
networks. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org.

Choi, J., Hong, S., Park, N., and Cho, S.-B. (2023). GREAD: Graph neural reaction-diffusion
networks. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 5722–5747. PMLR.

Chung, F. R. K. (1996). Spectral graph theory.

Fan, W., Ma, Y., Li, Q., Wang, J., Cai, G., Tang, J., and Yin, D. (2022). A graph neural network
framework for social recommendations. IEEE Transactions on Knowledge and Data Engineering,
34(5):2033–2047.

Fang, T., Xiao, Z., Wang, C., Xu, J., Yang, X., and Yang, Y. (2023). Dropmessage: Unifying random
dropping for graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
37(4):4267–4275.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org.

Giraldo, J. H., Skianis, K., Bouwmans, T., and Malliaros, F. D. (2023). On the trade-off between
over-smoothing and over-squashing in deep graph neural networks. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management, CIKM ’23, page
566–576, New York, NY, USA. Association for Computing Machinery.

Gligorijević, V., Renfrew, P. D., Kosciolek, T., Leman, J. K., Berenberg, D., Vatanen, T., Chandler, C.,
Taylor, B. C., Fisk, I. M., Vlamakis, H., et al. (2021). Structure-based protein function prediction
using graph convolutional networks. Nature communications, 12(1):3168.

Grigor’yan, A., Lin, Y., and Yang, Y. (2016). Yamabe type equations on graphs. Journal of Differential
Equations, 261(9):4924–4943.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Horn, P., Lin, Y., Liu, S., and Yau, S.-T. (2019). Volume doubling, poincaré inequality and gaussian
heat kernel estimate for non-negatively curved graphs. Journal für die reine und angewandte
Mathematik (Crelles Journal), 2019(757):89–130.

Jamadandi, A., Rubio-Madrigal, C., and Burkholz, R. (2024). Spectral graph pruning against
over-squashing and over-smoothing.

Kang, Q., Zhao, K., Ding, Q., Ji, F., Li, X., Liang, W., Song, Y., and Tay, W. P. (2024). Unleashing the
potential of fractional calculus in graph neural networks with FROND. In The Twelfth International
Conference on Learning Representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Karhadkar, K., Banerjee, P. K., and Montufar, G. (2023). FoSR: First-order spectral rewiring for
addressing oversquashing in GNNs. In The Eleventh International Conference on Learning
Representations.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations.

Li, G., Muller, M., Thabet, A., and Ghanem, B. (2019). Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

Li, M., Guo, X., Wang, Y., Wang, Y., and Lin, Z. (2022). G2CN: Graph Gaussian convolution
networks with concentrated graph filters. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 12782–12796. PMLR.

Liu, M., Gao, H., and Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20,
page 338–348, New York, NY, USA. Association for Computing Machinery.

Maskey, S., Paolino, R., Bacho, A., and Kutyniok, G. (2023). A fractional graph laplacian approach
to oversmoothing. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S., editors, Advances in Neural Information Processing Systems, volume 36, pages 13022–13063.
Curran Associates, Inc.

Nguyen, K., Nong, H., Nguyen, V., Ho, N., Osher, S., and Nguyen, T. (2023). Revisiting over-
smoothing and over-squashing using ollivier-ricci curvature. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23. JMLR.org.

Oono, K. and Suzuki, T. (2020). Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations.

Papp, P. A., Martinkus, K., Faber, L., and Wattenhofer, R. (2021). Dropgnn: Random dropouts
increase the expressiveness of graph neural networks. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 21997–22009. Curran Associates, Inc.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph convolutional
networks on node classification. In International Conference on Learning Representations.

Rusch, T. K., Bronstein, M. M., and Mishra, S. (2023a). A survey on oversmoothing in graph neural
networks.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S., and Bronstein, M. (2022). Graph-coupled
oscillator networks. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S., editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 18888–18909. PMLR.

Rusch, T. K., Chamberlain, B. P., Mahoney, M. W., Bronstein, M. M., and Mishra, S. (2023b).
Gradient gating for deep multi-rate learning on graphs. In The Eleventh International Conference
on Learning Representations.

Sun, L. and Wang, L. (2022). Brouwer degree for kazdan-warner equations on a connected finite
graph. Advances in Mathematics, 404:108422.

Thorpe, M., Nguyen, T. M., Xia, H., Strohmer, T., Bertozzi, A., Osher, S., and Wang, B. (2022).
GRAND++: Graph neural diffusion with a source term. In International Conference on Learning
Representations.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). Instance normalization: The missing ingredient
for fast stylization.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
attention networks. In International Conference on Learning Representations.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. (2021). Dissecting the diffusion process in linear graph
convolutional networks. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors,
Advances in Neural Information Processing Systems.

Wang, Y., Yi, K., Liu, X., Wang, Y. G., and Jin, S. (2023). ACMP: Allen-cahn message passing with
attractive and repulsive forces for graph neural networks. In The Eleventh International Conference
on Learning Representations.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger, K. (2019). Simplifying graph
convolutional networks. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 6861–6871. PMLR.

Wu, X., Ajorlou, A., Wu, Z., and Jadbabaie, A. (2023). Demystifying oversmoothing in attention-
based graph neural networks. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M.,
and Levine, S., editors, Advances in Neural Information Processing Systems, volume 36, pages
35084–35106. Curran Associates, Inc.

Xhonneux, L.-P., Qu, M., and Tang, J. (2020). Continuous graph neural networks. In III, H. D. and
Singh, A., editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 10432–10441. PMLR.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018). Representation
learning on graphs with jumping knowledge networks. In Dy, J. and Krause, A., editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5453–5462. PMLR.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-supervised learning with
graph embeddings.

Zhao, L. and Akoglu, L. (2020). Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations.

Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H., and Feng, J. (2021a). Understanding and
resolving performance degradation in deep graph convolutional networks. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, CIKM ’21, page
2728–2737, New York, NY, USA. Association for Computing Machinery.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X. (2020). Towards deeper graph neural
networks with differentiable group normalization. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA. Curran
Associates Inc.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H., and Hu, X. (2021b). Dirichlet energy
constrained learning for deep graph neural networks. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 21834–21846. Curran Associates, Inc.

A APPENDIX

B EXPERIMENT DETAILS

B.1 RUNNING ENVIRONMENT

All our normalization methods and base models are implemented in PyTorch. Experiment that apply
GCN with bias with different normalization methods on dataset Cora with no missing features and
experiment that apply GAT with bias with different normalization methods on dataset Citeseer with
100% missing features are conducted on a machine with NVIDIA GeForce RTX 3070 Ti Laptop 16

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

GB GPU and 12th Gen Intel(R) Core(TM) i7-12700H CPU. Other experiments are conducted on a
machine with NVIDIA GeForce RTX 3080 Laptop 16 GB GPU and AMD Ryzen 9 5900HX with
Radeon Graphics CPU.

B.2 DATASET STATISTICS

Table 4: Dataset Statistics
Datasets Cora Citeseer Pubmed

Nodes 2708 3327 19717
Edges 5429 4732 44338
Features 1433 3703 500
Classes 7 6 3
Training Nodes 140 120 60
Validation Nodes 500 500 500
Test Nodes 2068 2707 19157
Label Rate 0.052 0.036 0.003

B.3 DETAILS OF BASELINE

We use the implementation released by authors to implement baseline

• GroupNorm:https://github.com/Kaixiong-Zhou/DGN
• PairNorm:https://github.com/LingxiaoShawn/PairNorm
• GraphNorm:https://github.com/lsj2408/GraphNorm
• NodeNorm:https://github.com/miafei/NodeNorm

We give details of each baseline and hyperparameter choice as follows

GroupNorm Given an input Hk ∈ Rn×d, then GroupNorm comprise of two steps. First differen-
tiable cluster nodes into l groups

Sk = softmax(HkUk)

where Uk ∈ Rd×l. Then generate l features

Hk
i = Sk[:, i] ◦Hk i = 1, . . . , l

and normalization with each group

H̃k
i = γi(

Hk
i − µi

σi
) + βi

where γi and βi are learnable parameters. µi and σi are mean and variation over nodes within the
same dimension of features. Finally, GroupNorm generates the final embedding

H̃k = Hk + λ

l∑
i=1

H̃k
i

For all experiments in this paper. The number of groups l in GroupNorm is 5 for Pubmed and 10 for
others, skip weight λ for GroupNorm is set to be 0.003.

NodeNorm Given an input Hk ∈ Rn×d, its i-th row and j-th column item is denoted as Hk
i,j .

NodeNorm can be expressed as

NodeNorm(Hk
i) =

Hk
i

(σi)p

where µi =
∑d

f=1 Hk
i,j

d and σ2
i =

∑n
j=1(H

k
i,j−µi)

2

d . For all experiments, we set p = 2.

13

https://github.com/Kaixiong-Zhou/DGN
https://github.com/LingxiaoShawn/PairNorm
https://github.com/lsj2408/GraphNorm
https://github.com/miafei/NodeNorm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

PairNorm Given an input H ∈ Rn×d, its i-th row vector is denoted as Hk
i . Then PairNorm can be

expressed as
Hc

i = Hi − 1
n

∑n
k=1 Hk

H̃i = s
Hc

i√
1
n

∑n
i=1 ∥Hc

i ∥2

For all experiments, we set s = 1.

GraphNorm Given an input Hk ∈ Rn×d, its i-th row and j-th column item is denoted as Hk
i,j .

Then GraphNorm can be expressed as

GraphNorm(Hk
i,j) = γj

Hk
i,j − αjµj

σj
+ βj

where γj , βj , αj are learnable parameters. µj =
∑n

i=1 Hk
i,j

n , σ2
j =

∑n
i=1(H

k
i,j−αjµj)

2

n

B.4 DETAILS OF BASE MODEL

Table 5: Graph convolutional layer of base models
Models aggregation function

GAT with bias Xk+1
i =

∑
j∈Ni∪i aijW

kXk
j + bk

GCN with bias Xk+1 = ÃrwX
kW k + bk

SGC Xk+1 = ÃsymXk

B.5 EXPERIMENT SET UP FOR ESTIMATION OF POINCARENORM

For parameters of PoincareNorm, we set m = 1, p = 8, ωij = 1, µ̃i = µi =
∑

j∈Ni
ωij , C =

1
|V |µ̃

∫
V
Xdµ̃ and s = 1. We use Adam optimizer(Kingma and Ba, 2017), the learning rate is 0.01,

L2 regularization is 5e-4, and the dropout rate is 0.6. All normalization methods are after the graph
convolutional layer and before the nonlinear activation layer.

C PROOFS OF THEOREMS

C.1 PROOF OF THEOREM 2.1

Given a weighted graph G = (V,E, ω, µ) and vectored-valued functions f, g : V → Rd. First, we
suppose d = 1, we have the following equality∑

i∈[n]

∑
j∈Ni

ωijf(i)g(i)

=
∑
i∼j

ωij

(
f(i)g(i) + f(j)g(j)

)
=
∑
i∈[n]

∑
j∈Ni

ωijf(j)g(j)

and ∑
i∈[n]

∑
j∈Ni

ωijf(j)g(i)

=
∑
i∼j

ωij

(
f(j)g(i) + f(i)g(j)

)
=
∑
i∈[n]

∑
j∈Ni

ωijf(i)g(j)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Combining above equalities we deduce

∫
V

∆µf · gdµ =

n∑
i=1

∑
j∈Ni

ωij

(
f(j)− f(i)

)
g(i)

=

n∑
i=1

∑
j∈Ni

(
ωijf(j)g(i)− ωijf(i)g(i)

)
=

n∑
i=1

∑
j∈Ni

(
ωijf(i)g(j)− ωijf(j)g(j)

)
=

n∑
i=1

∑
j∈Ni

ωij

(
f(i)− f(j)

)
g(j)

Thus adding the right-hand side of the first line and last line we get

∫
V

∆µf · gdµ =

n∑
i=1

∑
j∈Ni

ωij

2
(f(j)− f(i))(g(i)− g(j))

= −
∫
V

∇µf · ∇µg

Now suppose general d and f = (f1, . . . , fd)
T , g = (g1, . . . , gd)

T , then a direct calculation yield

∫
V

∆µf · gdµ

=

∫
V

∆µf1 · g1dµ+ · · ·+∆µfd · gddµ

= −
∫
V

∇µf1 · ∇µg1dµ− · · · − ∇µfd · ∇µgddµ

= −
∫
V

∇µf · ∇µgdµ

C.2 PROOF OF THEOREM 2.2

Suppose 0 = λ̃0 ≤ · · · ≤ λ̃n−1 are eigenvalues and v0, . . . , vn−1 are eigenvectors corresponding to
eigenvalues respectively such that

∫
V
∥vk∥22dµ = 1, ∀1 ≤ k ≤ n and

∫
V
vi · vjdµ = 0, ∀i ̸= j.

For any vector-valued function f : V → Rd, suppose f = c0v0 + · · ·+ cn−1vn−1, then we have

∫
V

∥∇µf∥22dµ =

∫
V

−∆µf · fdµ

= λ̃0c
2
0v0 + · · ·+ λ̃n−1c

2
n−1vn−1

≤ λN (c20v0 + · · ·+ c2n−1vn−1)

= λN

∫
V

∥f∥22

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Obviously we have
∫
V
∥∇µvn−1∥22dµ = λN

∫
V
∥vn−1∥22. We compute that for all vector-valued

function g : V → Rd ∫
V

∥∇µg∥22dµ =
∑
i∈[n]

(
∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥22)

≤
∑
i∈[n]

(
∑
j∈Ni

ωij(∥g(j)∥22 + ∥g(i)∥22))

= 2
∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥22µi

≤ 2Mmax

∫
V

∥g∥22dµ

Therefore we have λN ≤ 2Mmax

C.3 PROOF OF THEOREM 3.1

(1) Suppose X : V → Rd is a constant vector-valued function on the connected graph G =
(V,E, ω, µ), we wish to prove that Ep

m(X) = 0. Case m ≤ 1 is well known. For Case m ≥ 2, we
compute that

∆µX(i) =
ωij

(
X(j)−X(i)

)
µi

= 0

Therefore if m is even, Ep
m(X) =

∫
V
∥∆

m
2
µ X∥ppdµ = 0. If m is odd, Ep

m(X) =∫
V
∥∇µ∆

m−1
2

µ X∥ppdµ = 0. Now Suppose that for some m, p, Ep
m(X) = 0. we prove induc-

tively that X is a constant vector on the graph. First, suppose d = 1 , case m = 1 is obvious. If
m = 2, then ∆µX = 0. Suppose X attains its maximum at node i, then we have

0 = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

From this we know that for all j ∈ Ni, X(j) = X(i). Because G is connected, we conclude that for
all k ∈ V , Xk = Xi. thus X is a constant. If m = 3, then ∆µX is a constant, suppose ∆µX = c. If
c > 0, then similarly we suppose X attains its maximum at node i, then

c = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

this is a contradiction. If c < 0, then similarly we suppose X attains its minimum at node i, then

c = ∆µX(i) =
∑
j∈Ni

ωij

µI

(
X(j)−X(i)

)
≤ 0

this is also a contradiction. Thus c = 0, from the analysis when m = 2 we know that X is a constant.
For general m, if m is even, then ∆

m
2
µ X = 0, using results when m = 2, 3 inductively we conclude

X is a constant vector. If m is odd, then ∆
m−1

2
µ X is a constant vector, using results when m = 2, 3,

we conclude that X is a constant.

Now suppose for general dimension d, X = (X1, . . . , Xd)
T . Then for arbitrary m, if m is even.

∆
m
2
µ X = (∆

m
2
µ X1, . . . ,∆

m
2
µ Xd)

T = 0. Therefore for all k, ∆
m
2
µ Xk = 0, thus Xk is a constant, so

X is a constant vector. If m is odd, the proof is similar.

(2) For arbitrary m, p we wish to prove

γp
m(X1 +X2) ≤ γp

m(X1) + γp
m(X2)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For m = 0, we compute by Minkowski inequality

γp
0 (X

1 +X2) = (

∫
V

∥(X1 +X2)− 1

|V |µ

∫
V

(X1 +X2)dµ∥ppdµ)
1
p

= (
∑
i∈[n]

∑
1≤k≤d

|X1
k − 1

|V |µ

∫
V

X1
kdµ+X2

k − 1

|V |µ

∫
V

X2
kdµ|pµi)

1
p

≤ (
∑
i∈[n]

∑
1≤k≤d

(|X1
k − 1

|V |µ

∫
V

X1
kdµ|+ |X2

k − 1

|V |µ

∫
V

X2
kdµ|)pµi)

1
p

≤ (
∑
i∈[n]

∑
1≤k≤d

(|X1
k − 1

|V |µ

∫
V

X1
kdµ|)pµi)

1
p + (

∑
i∈[n]

∑
1≤k≤d

(|X2
k − 1

|V |µ

∫
V

X2
kdµ|)pµi)

1
p

= γp
0 (X

1) + γp
0 (X

2)

For m = 1, we compute by Minkowski inequality

γp
1 (X

1 +X2) = (

∫
V

∥∇µ(X
1 +X2)∥ppdµ)

1
p

= (
∑
i∈[n]

∑
j∈Ni

∑
1≤k≤d

ωij

2
|X1

k(j)−X1
k(i) +X2

k(j)−X2
k(i)|pµi)

1
p

≤
(∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X1

k(j)−X1
k(i)|+ (

ωij

2
)

1
p |X2

k(j)−X2
k(i)|

)p
µi

) 1
p

≤
(∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X1

k(j)−X1
k(i)|

)p
µi

) 1
p

+
(∑

i∈[n]

∑
j∈Ni

∑
1≤k≤d

(
(
ωij

2
)

1
p |X2

k(j)−X2
k(i)|

)p
µi

) 1
p

= γp
1 (X

1) + γp
1 (X

2)

For m = 2, we compute by Minkowski inequality

γp
2 (X

1 +X2) = (

∫
V

∥∆µ(X
1 +X2)∥ppdµ)

1
p

=
(∑
i∈[n]

∥∆µX
1(i) + ∆µX

2(i)∥ppµi

) 1
p

=
(∑
i∈[n]

∑
1≤k≤d

|∆µX
1
k(i) + ∆µX

2
k(i)|ppµi

) 1
p

=
(∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
1
k(i) + µ

1
p

i ∆µX
2
k(i)|p

) 1
p

≤
(∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
1
k(i)|p

) 1
p +

(∑
i∈[n]

∑
1≤k≤d

|µ
1
p

i ∆µX
2
k(i)|p

) 1
p

= γp
2 (X

1) + γp
2 (X

2)

For general m ≥ 3, if m is an even number, then

γp
m(X1 +X2) = (

∫
V

∥∆
m
2
µ (X1 +X2)∥ppdµ)

1
p

= (

∫
V

∥∆µ(∆
m
2 −1
µ X1 +∆

m
2 −1
µ X2)∥ppdµ)

1
p

≤ (

∫
V

∥∆µ(∆
m
2 −1
µ X1)∥ppdµ)

1
p + (

∫
V

∥∆µ(∆
m
2 −1
µ X2)∥ppdµ)

1
p

= γp
m(X1) + γp

m(X2)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

If m is an odd number, then

γp
m(X1 +X2) =

(∫
V

∥∇µ∆
m−1

2
µ (X1 +X2)∥ppdµ

) 1
p

=
(∫

V

∥∇µ(∆
m−1

2
µ X1 +∆

m−1
2

µ X2)∥ppdµ
) 1

p

≤
(∫

V

∥∇µ(∆
m−1

2
µ X1)∥ppdµ

) 1
p +

(∫
V

∥∇µ(∆
m−1

2
µ X2)∥ppdµ

) 1
p

= γp
m(X1) + γp

m(X2)

C.4 PROOF OF THEOREM 3.2

We assume G = (V,E, ω, µ) is connected first and prove following lemma
Lemma C.1. Given a weighted graph G = (V,E, ω, µ) and any vector-valued function g : V → Rd,
there exits constants C12, C13, C14, C15 such that the following inequalities hold

C12(

∫
V

∥g∥ppdµ)
1
p ≤ (

∫
V

∥g∥22dµ)
1
2 ≤ C13(

∫
V

∥g∥ppdµ)
1
p (1)

C14(

∫
V

∥∇µg∥ppdµ)
1
p ≤ (

∫
V

∥∇µg∥22dµ)
1
2 ≤ C15(

∫
V

∥∇µg∥ppdµ)
1
p (2)

Proof. Suppose g = (g1, . . . , gd)
T . For inequalities (1), if p > 2, for the right-hand side of inequality,

we compute that ∫
V

∥g∥22dµ =
∑
i∈[n]

(d∑
k=1

g2k(i)
)
µi

≤
∑
i∈[n]

(d∑
k=1

|gk(i)|p
) 2

p d
p−2
p µi

≤ (dn)
p−2
p

(∑
i∈[n]

(d∑
k=1

|gk(i)|p
)
µ

p
2
i

) 2
p

≤ (nd)
p−2
p (µmax)

p
2−1
(∑

i∈[n]

(d∑
k=1

|gk(i)|p
)
µi

) 2
p

= (nd)
p−2
p (µmax)

p
2−1(

∫
V

∥g∥ppdµ)
2
p

The second line and the third line are from Holder inequality. For the left-hand side of inequality, we
compute that ∫

V

∥g∥ppdµ =
∑
i∈[n]

(d∑
k=1

|gk(i)|p
)
µi

≤
∑
i∈[n]

(d∑
k=1

|gk(i)|2
)
µi ×max

j,i

(
|gj(i)|p−2

)
=

∫
V

∥g∥22dµ×max
j,i

(
|gj(i)|p−2

)
≤ 1

(µmax)
p−2
2

∫
V

∥g∥22dµ× (

∫
V

∥g∥22dµ)
p−2
2

=
1

(µmax)
p−2
2

(

∫
V

∥g∥22dµ)
p
2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof for case p < 2 is similar. For inequalities (2), if p > 2, for the right-hand side , suppose the
maximal degree is Dmax = maxi Di, then we directly compute that

∫
V

∥∇µg∥22dµ =
∑
i∈[n]

∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥22

=
∑
i∈[n]

∑
j∈Ni

1

2
ωij

(∑
1≤k≤d

(
gk(j)− gk(i)

)2)
≤
∑
i∈[n]

∑
j∈Ni

1

2
ωij

(∑
1≤k≤d

|gk(j)− gk(i)|p
) 2

p d
p−2
p

≤ 1

2

∑
i∈[n]

(∑
j∈Ni

ω
p
2
ij

(∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dDmax)
p−2
p

≤ 1

2

(∑
i∈[n]

∑
j∈Ni

ω
p
2
ij

(∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dnDmax)
p−2
p

≤ 2
2
p−1
(∑

i∈[n]

∑
j∈Ni

1

2
ωij

(∑
1≤k≤d

|gk(j)− gk(i)|p
)) 2

p

(dnDmaxωmax)
p−2
p

= 2
2
p−1(dnDmaxωmax)

p−2
p (

∫
V

∥∇µg∥ppdµ)
2
p

The third line and the fifth line are from Holder inequality. For the left-hand side we directly compute
that

∫
V

∥∇µg∥ppdµ =
∑
i∈[n]

∑
j∈Ni

1

2
ωij∥g(j)− g(i)∥pp

=
∑
i∈[n]

∑
j∈Ni

1

2
ωij

(∑
1≤k≤d

|gk(j)− gk(i)|p
)

≤
∑
i∈[n]

∑
j∈Ni

1

2
ωij

(∑
1≤k≤d

|gk(j)− gk(i)|2
)
× max

i∈[n],j∈Ni

|gk(j)− gk(i)|p−2

≤
∫
V

∥∇µg∥22dµ× (

∫
V

∥∇µg∥22dµ)
p−2
2 (

1

2
ωmax)

− p−2
2

= (
1

2
ωmax)

− p−2
2 (

∫
V

∥∇µg∥22dµ)
p
2

case 1 ≤ p < 2 is similar.

We continue the proof of Theorem 3.2. The proof requires Theorem 4.1 so we assume Theorem 4.1
is correct first for clarity. One can also see the proof of Theorem 4.1 first. Given a weighted graph
G = (V,E, ω, µ) and a vector-valued function f : V → Rd, First we wish to prove

C2

∫
∥∇µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C1

∫
∥∇µf∥ppdµ (3)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

By lemma B.1 we only need to prove for the case p = 2. First, we suppose d = 1, for the right-hand
side of inequality we directly compute that∫

V

∥∆µf∥22dµ =
∑
i∈[n]

(ωij

(
f(j)− f(i)

)
µi

)2
µi

=
∑
i∈[n]

(ωij

(
f(j)− f(i)

)
µ1
i

)2 (µ1
i)

2

µi

≤
∑
i∈[n]

ωij

(
f(j)− f(i)

)2µ1
i

µi

≤ 2Mmax

∫
V

∥∇µf∥22dµ

The third line is from Jenson inequality. For the left-hand side, we have∫
V

∥∇µf∥22dµ =

∫
V

∥∇µ(f − 1

|V |µ

∫
V

fdµ)∥22dµ

= −
∫
V

∆µ(f − 1

|V |µ

∫
V

fdµ) · (f − 1

|V |µ

∫
V

fdµ)dµ

≤

√∫
V

∥∆µf∥22dµ

√∫
V

∥f − 1

|V |µ

∫
V

fdµ∥22dµ

≤

√∫
V

∥∆µf∥22dµ

√
C6

∫
V

∥∇µf∥22dµ

The third Line is from Holder inequality. Therefore we have∫
V

∥∇µf∥22dµ ≤ C6

∫
V

∥∆µf∥22dµ

For general dimension d, suppose f = (f1, . . . , fd)
T , then by Jenson inequality we have∫

V

∥∆µf∥22dµ =
∑
i∈[n]

(∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µi

)2)
µi

=
∑
i∈[n]

(∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µ1
i

)2) (µ1
i)

2

µi

≤
∑
i∈[n]

(∑
1≤k≤d

∑
j∈Ni

ωij

(
fk(j)− fk(i)

)2
µ1
i

) (µ1
i)

2

µi

=
(µ1

i)
2

µi

∫
V

∥∇µf∥22dµ

and ∫
V

∥∆µf∥22dµ =
∑
i∈[n]

(∑
1≤k≤d

∑
j∈Ni

(ωij

(
fk(j)− fk(i)

)
µi

)2)
µi

≥ 1

C6

∑
1≤k≤d

∫
V

∥∇µfk∥22dµ

=
1

C6

∫
V

∥∇µf∥22dµ

Thus the proof of (3) is over. When p = 2, 1
C6

= λ1(−∆µ), therefore C2 = λ1(−∆µ). After we
wish to prove

C3

∫
∥∇µ∆µf∥ppdµ ≤

∫
∥∆µf∥ppdµ ≤ C4

∫
∥∇µ∆µf∥ppdµ (4)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For the right-hand side of (4), we first notice that∫
V

∆µfdµ =

∫
V

f∆µ1dµ = 0

Hence by Poincare inequality, we have∫
∥∆µf∥ppdµ =

∫
∥∆µf − 1

|V |µ

∫
V

∆µfdµ∥ppdµ

≤ C6

∫
∥∇µ∆µf∥ppdµ

For the left-hand side of (4), we notice that for any vector-valued function g, we have∫
∥∇µg∥22dµ =

∑
i∈[n]

∑
j∈Ni

ωij

2
∥g(j)− g(i)∥22

≤
∑
i∈[n]

∑
j∈Ni

ωij(∥g(j)∥22 + ∥g(i)∥22)

= 2
∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥22µi

≤ 2Mmax

∫
V

∥g∥22dµ

Replace g by ∆µf we have the left-hand side of (4). Now suppose G = (V,E, ω, µ) is not connected
and has connected components V1, . . . , Vl, then for the right-hand side of (3) we have∫

V

∥∆µf∥ppdµ =
∑

1≤k≤l

∫
Vk

∥∆µf∥ppdµ

≤ C1

∑
1≤k≤l

∫
Vk

∥∇µf∥ppdµ

= C1

∫
V

∥∇µf∥ppdµ

Other cases are similar. In the end we show that EW and ED are special cases of Ep
m. EW is a special

cases of Ep
m such that

m = 0, p = 2, µi = 1 ∀i ∈ [n]

ED is a special cases of Ep
m such that

m = 1, p = 2, ωij = 2, µi = 1 ∀i ∈ [n], j ∈ Ni

C.5 PROOF OF THEOREM 3.3

(1) Suppose f is a solution to the heat equation with initial condition f(t = 0) = f0, then

∂
∫
V
∥∇µf∥22dµ
∂t

= 2

∫
V

∇µf · ∇µ∂tfdµ

= −2

∫
V

∆µf · ∂tfdµ

= −2

∫
V

∥∆µf∥22dµ

≤ −2λ1(−∆µ)

∫
V

∥∇µf∥22dµ

Thus we have
∂(e2λ1(−∆µ)t

∫
V
∥∇µf∥22dµ)

∂t
≤ 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Therefore
e2λ1(−∆µ)t

∫
V

∥∇µf∥22dµ|t=t ≤ (e2λ1(−∆µ)t

∫
V

∥∇µf∥22dµ)|t=0

In conclusion, we have ∫
V

∥∇µf∥22dµ ≤ e−2λ1(−∆µ)t

∫
V

∥∇µf0∥22dµ

(2) Suppose f : V → Rd is an arbitrary vector-valued function on the graph. Then by the proof of
Theorem 2.2, we directly compute that∫

V

∥∇µPf∥22dµ =

∫
V

∇µPf · ∇µPfdµ

= −
∫
V

∆µPf · Pfdµ

= −
∫
V

∆µ(∆µ + I)f · (∆µ + I)fdµ

= −
∫
V

∆2
µf ·∆µfdµ−

∫
V

∆2
µf · fdµ−

∫
V

∥∆µf∥22dµ−
∫
V

∆µf · fdµ

=

∫
V

∥∇µ∆µf∥22dµ− 2

∫
V

∥∆µf∥22dµ+

∫
V

∥∇µf∥22dµ

≤ λN (−∆µ)

∫
V

∥∆µf∥22dµ− 2

∫
V

∥∆µf∥22dµ+

∫
V

∥∇µf∥22dµ

≤
(
λN (−∆µ)− 2

)
λ1(−∆µ)

∫
V

∥∇µf∥22dµ+

∫
V

∥∇µf∥22dµ

=
(
1 +

(
λN (−∆µ)− 2

)
λ1(−∆µ)

)∫
V

∥∇µf∥22dµ

Therefore we have∫
V

∥∇µP
kf∥22dµ ≤

(
1 +

(
λN (−∆µ)− 2

)
λ1(−∆µ)

)k ∫
V

∥∇µf∥22dµ

For Ãsym, we specify P = Ãrw, ωij = 1, µi = Di + 1 and notice that Ãsym = D̃
1
2 ÃrwD̃

− 1
2 .

Therefore we have∫
V

∥∇µD̃
− 1

2 Ãk
sym(D̃

1
2 f)∥22dµ ≤

(
1 +

(
λN (−∆̃rw−adj)− 2

)
λ1(−∆̃rw−adj)

)k ∫
V

∥∇µf∥22dµ

Replace f by D̃− 1
2 g we get desired results.

C.6 PROOF OF THEOREM 4.1

Given a weighted connected graph G = (V,E, ω, µ) and a vector-valued function f : V → Rd,
Suppose that every pair of nodes i, j can be connected by a path that has no more than r edges. First,
we suppose d = 1, Given node i and node j, suppose node i and node j can be connected by a path
with no more than r edges, the path is denoted by P = [i0i1 . . . ik] with i0 = i and ik = j. then we
have an estimation

|f(i)− f(j)|p ≤
(
|f(i)− f(i1)|+ · · ·+ |f(ik)− f(j)|

)p
=
(|f(i)− f(i1)|+ · · ·+ |f(ik)− f(j)|

k + 1

)p
(k + 1)p

≤ |f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

k + 1
(k + 1)p

= (k + 1)p−1
(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
≤ rp−1

(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Using this result we directly compute that

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ =
∑
i∈[n]

|
∑
j∈[n]

(f(i)− f(j))µj

|V |µ
|pµi

≤
∑
i∈[n]

∑
j∈[n]

(
|f(i)− f(j)|p

)
µj

|V |µ
µi

≤
∑
i∈[n]

∑
j∈[n]

(
|f(i)− f(i1)|p + · · ·+ |f(ik)− f(j)|p

)
rp−1µj

|V |µ
µi

≤ n2rpµ2
max

|V |µ
max

i∈[n],j∈Ni

|f(i)− f(j)|p

≤
∑
i∈[n]

∑
j∈Ni

n2rpµ2
max

ωmin|V |µ
ωij |f(j)− f(i)|p

=
2n2rpµ2

max

ωmin|V |µ

∫
V

∥∇µf∥ppdµ

The second line is from Jenson inequality. If p = 2, Suppose 0 = λ̃0 ≤ · · · ≤ λ̃n−1 are eigenvalues
and v0, . . . , vn−1 are eigenvectors corresponding to eigenvalues respectively such that

∫
V
∥vk∥22dµ =

1, ∀1 ≤ k ≤ n and
∫
V
vi · vjdµ = 0, ∀i ̸= j. Since the graph is connected, the multiplicity of 0 is

1. Then we have

∫
V

∥∇µf∥22dµ = −
∫
V

∆µf · fdµ

=
∑

1≤k≤N

λ̃kc
2
kvk

≥ λ̃1

∑
1≤k≤N

c2kvk

= λ̃1

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥22dµ

Thus when p = 2, 1
C6

= λ̃1 = λ1 For general dimension d we have

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ

=

∫
V

(∥f1 −
1

|V |µ

∫
V

f1dµ∥pp + · · ·+ ∥fd −
1

|V |µ

∫
V

fddµ∥pp)dµ

≤ C6(

∫
V

∥∇µf1∥pp + · · ·+ ∥∇µfd∥ppdµ)

= C6

∫
V

∥∇µf∥ppdµ

Next, we wish to prove

∫
V

∥∇µf∥ppdµ ≤ C7

∫
V

∥f − 1

|V |µ

∫
V

fdµ∥ppdµ

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We directly compute that∫
V

∥∇µg∥ppdµ =
∑
i∈[n]

∑
j∈Ni

ωij

2
∥g(j)− g(i)∥pp

=
∑
i∈[n]

∑
j∈Ni

ωij

2

(∑
1≤k≤d

|gk(j)− gk(i)|p
)

≤
∑
i∈[n]

∑
j∈Ni

ωij2
p−2
(∑

1≤k≤d

(
|gk(j)|p + |gk(i)|p

))
= 2p−1

∑
i∈[n]

(

∑
j∈Ni

ωij

µi
)∥g(i)∥ppµi

≤ 2p−1Mmax

∫
V

∥g∥ppdµ

Replace g by f − 1
|V |
∫
V
fdµ we have the desired result.

C.7 PROOF OF THEOREM 4.2

First, we wish to prove that there exist constants C8, C9 such that we have the following inequalities

TPDp(∆µX) ≤ C8

∫
V

∥∆µX∥ppdµ ≤ C9

(
ED(X)

) p
2 (5)

For the left-hand side of (5), we directly compute

TPDp(∆µX) =
∑

i,j∈[n]

∥∆µX(j)−∆µX(i)∥pp

≤ 2p−1
∑

i,j∈[n]

(∥∆µX(j)∥pp + ∥∆µX(i)∥pp)

≤ 2pn

µmin

∫
V

∥∆µX∥ppdµ

For the right-hand side of (5), by the proof Theorem 3.2, we have∫
V

∥∆µX∥ppdµ

≤ C1

∫
V

∥∇µX∥ppdµ

≤ C1

Cp
12

(

∫
V

∥∇µX∥22dµ)
p
2

=
C1

Cp
12

(∑
i∈[n]

∑
j∈Ni

ωij

2
∥X(j)−X(i)∥22

) p
2

≤ C1ω
p
2
max

2
p
2Cp

12

(∑
i∈[n]

∑
j∈Ni

∥X(j)−X(i)∥22
) p

2

=
C1ω

p
2
max

Cp
12

(
ED(X)

) p
2

After, we wish to prove that there exist constants C10, C11 such that we have the following inequalities(
ED(X)

) p
2 ≤ C10

∫
V

∥∆µX∥ppdµ ≤ C11TPDp(∆µX) (6)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For the right-hand side of (6), we have∫
V

∥∆µX∥ppdµ

≤ C4

∫
V

∥∇µ∆µX∥ppdµ

=
C4

2

∑
i∈[n]

∑
j∈Ni

ωij∥∆µX(j)−∆µX(i)∥pp

≤ C4ωmax

2

∑
i∈[n]

∑
j∈Ni

∥∆µX(j)−∆µX(i)∥pp

≤ C4ωmax

2

∑
i∈[n]

∑
j∈[n]

∥∆µX(j)−∆µX(i)∥pp

=
C4ωmax

2
TPDp(∆µX)

For the left-hand side of (6), we have

ED(X) =
∑
i∈[n]

∑
j∈Ni

∥X(j)−X(i)∥22

≤ 1

ωmin

∑
i∈[n]

∑
j∈Ni

ωij∥X(j)−X(i)∥22

=
2

ωmin

∫
V

∥∇µX∥22dµ

≤ 2C2
15

ωmin
(

∫
V

∥∇µX∥ppdµ)
2
p

25

	Introduction
	Preliminary and Notation
	Understanding over-smoothing
	Measures of over-smoothing
	Illustration of proposed measure

	Addressing over-smoothing
	PoincareNorm
	Estimation of PoincareNorm
	Time complexity

	Experiments
	Experiment set up
	Experiments result

	Conclusion
	Appendix
	Experiment details
	Running Environment
	Dataset Statistics
	Details of baseline
	Details of base model
	Experiment set up for estimation of PoincareNorm

	Proofs of theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2

