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ABSTRACT

Vision-language alignment in multi-modal large language models (MLLMs) re-
lies on supervised fine-tuning (SFT) or reinforcement learning (RL). To align
multi-modal large language models (MLLMs) in the post-training stage, super-
vised fine-tuning (SFT) is a stable choice but requires human annotations and
lacks task generalizations, while Reinforcement Learning (RL) searches for better
answers from reward signals but suffers from computational overhead and insta-
bility. To achieve balance among scalability, efficiency, and alignment generaliza-
tions, we propose MergeMix, a unified paradigm that bridges SFT and RL with
an efficient Token Merge based Mixup augmentation. As for the Mixup policy,
we generate contextual aligned mixed images with the corresponding labels ac-
cording to the merged attention maps with cluster regions. Then, we enhance the
preference-driven paradigm for MLLMs by building preference pairs with raw
images and MergeMix-generated ones and optimizing the soft preference margin
with the mixed SimPO loss. Extensive experiments demonstrate that MergeMix
not only achieves dominant classification accuracy as an augmentation method but
also improves generalization abilities and alignment of MLLMs, providing a new
learning paradigm for preference alignment with training efficiency and stability.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) (Liu et al., 2024b; Bai et al., 2025; Tong et al.,
2024) have recently demonstrated remarkable capabilities in integrating visual and textual informa-
tion, enabling a wide range of applications from visual question answering to multi-modal reason-
ing. Since MLLMs are typically pre-trained on massive web-scale datasets, forcing them to possess
a wide range of knowledge and general reasoning capabilities, Supervised Fine-Tuning (SFT) and
Reinforcement Learning (RL)-based preference optimization (Yang et al., 2025c) have emerged as
two primary paradigms for aligning MLLMs with human preferences and specific task require-
ments. However, SFT depends on high-quality instruction–response annotations and optimizes the
likelihood of reference responses, which does not explicitly model relative preferences between out-
puts. RL-based methods such as RLHF are more preference-aware, but require an additional reward
model that may introduce bias or be exploited by the reward signal.

Due to the shortcomings of data quality and training efficiency, some works (Zhu et al., 2024; 2025;
Luo et al., 2024; Tan et al., 2025; Wang et al., 2024b) try to build performance pairs for optimiza-
tion. How to build the preference pair with control and high-quality data for model training is the
remaining open question. For example, SeVa (Zhu et al., 2024) proposed a preference optimization
method by building a loser through some classic augmentation (i.e., RandomCrop). Then, select the
different responses for optimizing the model by a DPO loss (Rafailov et al., 2023). However, these
methods have two drawbacks: the augmentations are highly random, and the DPO loss cannot be
related to the data, which means SeVa can only select useful training data. Those technical causes
SeVa can not control the quality of the loser, which is harmful for some visual question answering
tasks, and reduces the training data by selecting “hard negatives”. Hence, we investigate an inter-
esting question: Is it necessary to propose novel techniques rather than some classical machine
learning methods in the MLLM scenario?

In this paper, we revisit the mixup augmentation, which synthesizes mixed samples and correspond-
ing labels with given mixing ratios. However, two main challenges arise as illustrated in Figure 1:
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(a) Training Time vs. Accuracy (b) Epochs vs. Accuracy (c) LLaVA Benchmark

Epochs

MergeMix
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CutMix

TransMix

SMMix

MixPro

Figure 1: Efficiency and for MergeMix: (a) The training time vs. accuracy of mixup methods with
the DeiT-Small model. (b) The image classification Top-1 accuracy vs. training epochs of different
mixup methods on the CIFAR100 dataset with the DeiT-Tiny model. (c) The radar plot of the results
on part VQA tasks by LLaVA-7B, LLaVA with SFT, and MergeMix.

(1) achieving an optimal trade-off between efficiency and performance of mixup augmentations that
rely on saliency-based metrics, (2) extending the augmentation to MLLMs properly, from classi-
cal image corruptions to data-dependent samples. Motivated by these perspectives, we propose
a novel training framework called MergeMix, which builds preference pairs for MLLM training
through data augmentation methods and ranking loss, thereby bridging the gap between SFT and
RL. Figure 2 shows the two scenarios of MergeMix. (a) We introduce MergeMix, a novel data aug-
mentation that generates mixed samples through token merge techniques. A bipartite soft matching
strategy captures similarity information that preserves contextual features, ensuring the mask retains
useful information. Meanwhile, MergeMix links the merge ratio and mixing ratio, aligning mixed
images with the corresponding labels, enabling precise mixing data generation. (b) We propose a
preference-driven paradigm for MLLMs, where augmented samples are defined as non-preferred
responses (Loser) and clean samples as preferred responses (Winner). This paradigm facilitates
preference tuning via the mixed SimPO loss, and leverages the mixing ratio as the soft preference
margin to enable adaptive optimization. Altogether, Figure 1 shows these contributions yield an ef-
ficient and effective training strategy that achieves stronger alignment with human preferences while
preserving the stability and scalability of SFT. Since the optimization object has a direct relationship
with augmentation, it obtains a more robust ability in calibration. Extensive experiments show that
MergeMix, as a training-time augmentation paradigm, achieves competitive performance in both
image classification and MLLM benchmark with favorable efficiency.

Our contributions can be summarized as:

(a) We use token merging to obtain a local clustered attention map, enabling the generation of mixed
images with cluster regions, a label re-scaling strategy aligned the mixed images with their
corresponding labels, achieve well performance on both overhead and classification accuracy.

(b) We enhance the preference tuning paradigm for supervised fine-tuning of MLLMs, where mixed
images are treated as losers, the mixing ratio is used as a soft preference reward score, and
optimize the model adaptively via the mixed SimPO loss.

(c) We validate that our method achieves state-of-the-art on several image classification datasets and
benchmarks, along with the advantages of our training paradigm on several MLLM benchmarks.

2 RELATED WORK

In this section, we introduce the existing mixup approaches for image classification and token com-
pression approaches in multi-modal large language models for efficient training or inference.

Mixup Augmentations The Mixup method mitigates model overfitting by generating augmented
samples through mixing two different images within a mini-batch. Broadly, Mixup methods can
be categorized into two types: Static, which relies on human priors or randomness, and Adap-
tive, a data-dependent type that leverages certain metrics to guide the mixing process. (i) Static:
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MixUp (Zhang et al., 2017) generates mixed samples via linear interpolation with λ. CutMix (Yun
et al., 2019) extends this idea from the global pixel level to a local patch level by constructing a mask
of size proportional to λ to mix images. ResizeMix (Qin et al., 2020) ensures that features from at
least one class are always preserved in the mixed sample by resizing the source image before mixing.
Other methods, e.g., FMix (Harris et al., 2020), SmoothMix (Lee et al., 2020), GridMix (Baek et al.,
2021), and StarMix (Jin et al., 2024b), focus on improving the mask to obtain more suitable mixed
samples. (ii) Adaptive: SaliencyMix (Uddin et al., 2021) employs a saliency extractor to identify
informative patches in images for mixing. Attentive-CutMix (Walawalkar et al., 2020) and Super-
Mix (Dabouei et al., 2021) utilize a teacher model to guide mask generation. PuzzleMix (Kim et al.,
2020) and Co-Mix (Kim et al., 2021) generate appropriate masks based on gradient information ob-
tained from a forward pass of the samples. AutoMix (Liu et al., 2022) and AdAutoMix (Qin et al.,
2024a) adopt an end-to-end bi-optimization paradigm to produce mixed samples. TransMix (Chen
et al., 2022), SMMix (Chen et al., 2023), and MixPro (Zhao et al., 2023) specifically enhance ViTs
by computing attention scores from a forward pass to generate feature-aware masks and further re-
fine the label ratio through attention scores. DiffuseMix (Islam et al., 2024a; Islam & AKHTAR)
and GenMix (Islam et al., 2024b) generate mixed samples by a diffusion model for label preserving.

Token Compression in MLLMs Token Merging (Bolya et al., 2023) proposes to merge similar
tokens by Key similarity for ViT-based models to achieve efficiency and acceleration. In MLLMs,
images and texts will incur a significant number of tokens, which are often full of redundant in-
formation. Obvious researchers bring the token compression into MLLMs. Overall, we divide the
methods that reduce tokens into 2 types, Reduce in Encoder and Reduce in Decoder. (i) Reduce in
Encoder: MADTP (Cao et al., 2024) aims to achieve MLLM acceleration by purging visual tokens.
LLaVA-PruMerge (Shang et al., 2024) uses the attention of [CLS] token to select clustering centers
and then merges the remaining tokens with lower attention through a KNN clustering and weighted
clustering center updating mechanism. VisionZip (Yang et al., 2025b), instead, retains visual tokens
with high attention scores and subsequently merges the remaining tokens through clustering. Others,
such as TokenPacker (Li et al., 2025), AVG-LLaVA (Lan et al., 2025), MustDrop (Liu et al., 2024c),
and LLaVolta (Chen et al., 2024a), achieve acceleration by choosing a metric to sample TopK visual
tokens. FastVLM (Vasu et al., 2025) proposes an Efficient Vision Encoder to reduce visual tokens.
(ii) Reduce in Deocder: PyramidDrop (Xing et al., 2024) divides the token compression process in
LLM into multiple stages, which employs a pyramidal token drop to avoid losing too much visual
information in shallower layers. ATP-LLaVA (Ye et al., 2025) proposes an Adaptive Token Pruning
(ATP) module that reduces the number of tokens in the decoder layer. ZipVL (He et al., 2024) pro-
poses a dynamic ratio allocation strategy via the importance token, adaptively determined based on
the distribution of attention scores in a particular layer, rather than a fixed hyperparameter.

3 PRELIMINARIES

Reformulation of Mixup Augmentation. We define X to be the set of training samples and Y the
set of ground truth of the corresponding labels. For each sample pair (x, y), we randomly sample
two pairs in X and Y, with λ in Beta(α, α). The mixed images and labels are generated by applying
the optimized mask M and ratio λ̂, which come from a defined policy P(·, ·, ·) according to Eq. (1):

M, λ̂ = P
(
fθ(xi, xj), (yi, yj), λ

)
, (1)

x̂ = M⊙ xi + (1−M)⊙ xj ,

ŷ = λ̂ ∗ yi + (1− λ̂) ∗ yj ,
(2)

where the ⊙ denotes element-wise multiplication. Policy P(·, ·, ·) aims for the M to retain more
features in the mixed sample. The λ̂ keeps the initial sampling ratio when without optimization;
otherwise, the λ can be re-computed by some metrics (i.e., MergeMix uses the total mask values).

Preference Tuning for MLLMs. Preference optimization methods aim to align LLMs and
MLLMs with human feedback by contrasting preferred and dispreferred responses. A general pref-
erence loss can be abstractly defined as Eq. (3):

LPref = − log σ
(
πθ(x, y

+)− πθ(x, y
−)

)
, (3)
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(a) MergeMix for Image Classification (b) MergeMix for MLLM Understanding
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Figure 2: The overall of the two scenarios of MergeMix: (a) MergeMix for Image Classifi-
cation: The image is processed by the ToMe encoder, with Attention Score Recovery and TopK
sampling to generate the corresponding class prediction. (b) MergeMix for MLLM: Preference
pairs are encoded by the vision model with token merging, and the LLM decoder generates response
text for the loser and winner, optimized via a ranking loss.

where (x, y+) and (x, y−) denote the preferred and dispreferred responses respectively, and sθ is a
scoring function that reflects model preference. Different approaches (e.g., PPO (Schulman et al.,
2017), DPO (Rafailov et al., 2023)) instantiate πθ in various ways, but all share the same principle.

Unlike RL-based approaches, which require training a separate reward model, DPO provides a sim-
ple and stable alternative by directly optimizing the policy model using preference pairs. Formally,
the DPO loss is defined as Eq. (4):

LDPO = −E(x, y+, y−) ∼ D
[
log σ

(
β log

πθ(y
+|x)

πref(y+|x)
− β log

πθ(y
−|x)

πref(y−|x)
)]
, (4)

where πθ denotes the policy model (in our case, an MLLM such as LLaVA-v1.5 (Liu et al., 2024b) or
Qwen-VL (Bai et al., 2025)), and πref represents a frozen reference model used to preserve alignment
with the original pre-trained distribution. σ is the sigmoid function, and β > 0 is a temperature-like
scaling factor that controls the sharpness of preference separation. Intuitively, DPO encourages the
policy to assign a higher likelihood to preferred responses (y+) than to non-preferred ones (y−),
while maintaining proximity to the reference model.

4 MERGEMIX TRAINING PARADIGM

In this section, we present the implementation of MergeMix, an augmentation approach via token
merging for image mixing, not only for image classification, but also designed for multi-modal
large language models. Figure 3 shows the overall pipeline of MergeMix, and we describe in two
subsections in detail, which are from the input space to the loss objective for model training.

4.1 IMAGE MIXING VIA TOKEN MERGE

In MergeMix, we leverage the relationship between the merge ratio and mixing ratio. The merge
ratio measures the information of raw samples, while the mixing ratio balances the information
between mixing samples, thereby enabling precise data generation of mixed inputs and labels. In
this subsection, we first introduce MergeMix on the input space. Then we use the designed mixing
policy P(·, ·, ·) to obtain the mixed images x̂ with the mask M.

Image Policy with Token Merging. Unlike other mixup methods (Chen et al., 2022; 2023; Zhao
et al., 2023), we introduce a ViT-based model fθ(·) iteratively replace N attention layers with
ToMeAttention as ToMe (Bolya et al., 2023), Given the initial sequence ZL = fθ(x̂), then merges
tokens as Eq. (5):

S,AK , ZK = ToMeAttention(ZL, r), (5)

where AK denotes the attention map from the model, and ZK denotes the feature tokens for com-
puting one-hot loss. r denotes the number of merged tokens, which can reduce some high-similarity
semantic tokens and retain a condensed token sequence. Also, based on Token Merge, we obtained
a source map S for their spatial relationships between the raw token sequence ZL and the ZK .
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Generating Mixing Mask with Source Matrix. Since token merging aggregates non-similar to-
kens into compact representations ZK , the resulting matrix preserves local feature structures more
effectively. In contrast, the vanilla TopK selection adopts a greedy sampling strategy with linear
complexity O(N), which discards low-ranked tokens directly and thus loses spatial relationships.
Alternatively, the Bipartite Soft Matching (BSM) approach performs global pairwise matching with
quadratic complexity, yielding a more balanced and globally optimal merging of tokens. To recon-
struct the full-resolution attention map, we introduce a recovering function RK→L(·, ·) that expands
the merged attention map AK back to its original length AL, which shows in Fig 5 and according to
Eq. (6):

ÂL = RK→L(AK , S). (6)
Unlike discrete TopK sampling, our recovery mechanism propagates merged attention over the orig-
inal token topology guided by similarity S, restoring richer spatial dependencies and contextual
continuity, thus reducing information loss from hard selection. Based on the encoder with a token
merge and attention recovery. We can generate the binary M according to Eq. (7):

Mi =

{
1, if i ∈ TopK(ÂL, p),
0, otherwise,

(7)

where p denotes the selection number, p = ⌊λ ∗ L⌋, and i denotes the index of sequence. Finally,
we can mix the mini-batch and get the augmented data for fθ(·) training.

Dataset

ToMe Vision Encoder

LLM Decoder

Projection Tokenizer

<System> 
What is this animal?

MergeMix Generation

ToMe Vision Encoder

Attention Recovery
Source 
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Mask
0 0 1

1 1 1

1 0 0

1 1 0

0 0 0

0 1 1
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SFT Loss Ranking Loss
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Augmenter

It is a panda. It is a hound.

0.6
0.4

Mixed Image
as Loser

≻

sampled

Clean Image
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: Response
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the image and 

describe its features?

Raw Image 𝜆 = 0.5

Winner Loser

Winner Answer (λ = 1.0): The animal is 
Giant Panda, which has black-and-white 
coloration, round face, black eye patches, 
and small rounded ears.

Loser Answer (λ = 0.5): This image is 
primarily a Giant Panda with the black 
ears, and several visible patches reveal 
parts of the dog with brown patches in a 
mixed composition.

Ground-truth Answer: This animal is a 
Giant Panda with distinctive black-and-
white fur pattern, black patches around 
eyes and ears, and rounded face.

(a) MergeMix for MLLM Understanding (b) Case study of Preference Optimization

Figure 3: Overall illustration of MergeMix for MLLM. (a) MergeMix performs attention-based
mask mixing guided by the ToMe Vision Encoder, recovering token attention scores and generating
a mixed image through an augmenter. Specifically, Token Merging hierarchically merges visual
tokens via Bipartite Soft Matching (BSM) to enhance efficiency, which is trained with both the SFT
and ranking losses. (b) Case study of preference data generated by MergeMix with LLaVA-v1.5-7B.

4.2 A UNIFIED AUGMENTATION PARADIGM: FROM IMAGE CLASSIFICATION TO MLLMS

In this subsection, we describe the loss function L. For the classification task and visual understand-
ing, our final loss LTotal combines two losses: the main loss (one-hot cross entropy loss LCE and
LSFT) and the reformulated loss (mixup cross entropy loss LMCE and ranking loss LMix

SimPO). Figure 3
shows the pipeline of MergeMix for MLLM in detail.

Re-scaling Policy for Mixing Ratio. Under this optimization objective, the role of the mixing
ratio λ is to serve as a metric that quantifies the presence of feature information from the two sam-
ples. While this metric cannot directly reflect the true characteristics of the data, certain adaptive
methods can constrain the model to generate mixed samples where the mixing ratio progressively
approximates the target value (Jin et al., 2024a). Some works, like LUMix (Sun et al., 2022), Decou-
pleMix (Liu et al., 2023), and SUMix (Qin et al., 2024b), use a defined policy for some hand-crafted
mixup methods, and find that it is more efficient than optimizing a better mask way.

Since we introduce a token-merging technology that inherently enables information aggregation and
selection, the entire model training process must consider not only simple spatial ratios but also the
degree of information integration within the model. So, we proposed a Gaussian-based sampling
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to refine the ratio, where the merged tokens and the mask values jointly control the mean and std
as mean= K

L , and std= p∑L
i M . This smooth transition directly alleviates changes from linear

mapping and yields more robust augmentations, with its formulation given as:

λ̂ ∼ N (µ, σ), λ̂ = clip
( λ̂−min(λ̂)

max(λ̂)−min(λ̂) + τ
, 0, 1

)
, (8)

where the N (·, ·) denotes a Gaussian function, µ and σ represent the merged ratio and mixing ratio
repetitively. τ as a hyperparameter, set to 1e-5. Then, we obtain the re-scaled mixing ratio λ̂ with
spatial and ToMe model inherent features to optimize the model when training. In total, the loss of
mixup training as:

LTotal = LCE
(
fθ(x̂), yi

)
∗ λ̂+ LCE

(
fθ(x̂), yj

)
∗ (1− λ̂)︸ ︷︷ ︸

mce loss

+LCE
(
fθ(x), y

)︸ ︷︷ ︸
one-hot loss

.
(9)

Aggregating Mixing Ratio within Preference Loss. LLaVA (Liu et al., 2024b) uses a standard
conditional language modeling loss for SFT. In MLLMs, we are given an instruction–response pair
(x, y), where x denotes the multi-modal data, inducing vision and text, and y = (y1, y|y|) denotes
the target response. The SFT loss is defined as:

LSFT = −E(x,y)∼D

[ |y|∑
t=1

log πθ

(
yt | x, y<t

)]
. (10)

This objective needs to maximize the likelihood of GT responses, aiming to align the data. In
Section 3, we introduced the DPO loss, which can be decomposed into two components: the SFT
part and the ranking optimization part. In our approach, we replace the ranking component with
SimPO (Meng et al., 2024), where y denotes the target sequence (response) and |y| denotes its
length. Furthermore, since λ reflects information similarity between augmented and raw image
(interpreted as “loser degree” in MLLMs), we link it to γ → 1 − λ̂: larger λ represent higher
similarity and harder discrimination, reduces γ to avoid over-optimization on trivial differences;
smaller λ represent greater dissimilarity and easier tasks increases γ to strengthen constraints for
clearer preference distinction. The mixed SimPO loss replacement is Eq. (11):

LMix
SimPO = −E(x,x̂,y)∼D

[
log σ

( β

|y|
log πθ(y | x)− β

|y|
log πθ(y | x̂)− (1− λ̂)

)]
. (11)

This reformulated loss strictness with sample difficulty, enabling more robust preference optimiza-
tion. Finally, the total loss of our training paradigm is written as:

LTotal = LSFT + LMix
SimPO. (12)

5 EXPERIMENTS

5.1 STATE-OF-THE-ART METHODS.

Image classification. To evaluate the performance of MergeMix, we compared with some main-
stream mixup methods, i.e. Mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), FMix (Har-
ris et al., 2020), SmoothMix (Lee et al., 2020), GridMix (Baek et al., 2021), ResizeMix (Qin
et al., 2020), SaliencyMix (Uddin et al., 2021), Attentive-CutMix (Walawalkar et al., 2020), Puz-
zleMix (Kim et al., 2020), GuidedMixup (Kang & Kim, 2023), AutoMix (Liu et al., 2022) and
AdAutoMix (Qin et al., 2024a). DeiT (Touvron et al., 2021), TransMix (Chen et al., 2022), SM-
Mix (Chen et al., 2023), MixPro (Zhao et al., 2023) and TdAttenMix (Wang et al., 2025) for some
ViT-based methods. The training configures about datasets and methods follows the open-source
library OpenMixup (Li et al., 2022).

MLLMs. To evaluate the training paradigm that we proposed, we compare with three different
system-level baselines: (1) SFT with different training paradigms on LLaVA, including LLaVA-
NeXT-7/13B (Liu et al., 2024a), SeVa-7B (Zhu et al., 2024), SIMA (Wang et al., 2024b), and
nSFT (Zhu et al., 2025). (2). Token reduction on LLaVA, including LLaVA-PruMerge+ (Shang
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Table 1: Top-1 accuracy (%) of mixup methods training
200 epochs on CIFAR100 dataset with different model sizes,
T/S/B/L denotes Tiny, Small, Base, and Large, respectively.
The full results of training 600 epochs are in Table A1.

Method DeiT-T DeiT-S ViT-S ViT-B ViT-L
Vanilla 64.70 65.81 62.64 63.33 61.83
MixUp 69.47 69.98 68.67 69.66 67.90
CutMix 75.98 74.21 69.67 72.18 68.97
FMix 72.73 70.41 68.41 68.62 66.12
GridMix 71.54 68.86 70.15 66.63 63.20
ResizeMix 69.42 68.54 67.86 63.72 63.48
SaliencyMix 69.83 69.78 70.14 68.75 67.12
PuzzleMix 73.40 73.60 70.92 71.13 69.77
AutoMix 72.91 76.24 68.44 73.40 72.10
AdAutoMix 72.83 72.63 69.66 71.43 69.69

DeiT 74.01 75.92 72.96 72.15 69.23
TransMix 75.31 76.17 74.15 72.87 71.40
SMMix 73.84 74.09 73.50 70.87 71.38
MixPro 74.78 75.26 73.49 73.18 72.28
TdAttenMix 73.63 73.32 73.11 72.19 72.12

MergeMix 77.46 78.68 77.02 75.75 76.19

Table 2: Top-1 accuracy (%) of mixup
methods on the Stanford-Cars dataset.
Full results of the CUB200 and FGVC-
Aircrafts dataset in Table A2.

Method α DeiT-S ViT-B
Vanilla − 86.77 91.31
MixUp 1.0 87.73 91.36
CutMix 0.2 88.37 91.53
SmoothMix 0.2 86.39 90.88
FMix 0.2 87.18 91.36
GridMix 0.2 87.58 91.31
ResizeMix 1.0 87.45 91.59
Attentive-CutMix 2.0 87.35 90.29
SaliencyMix 0.2 87.94 91.47
PuzzleMix 1.0 88.60 91.83
GuidedMixap 1.0 86.99 90.40

DeiT 0.2 88.72 92.17
TransMix 1.0 88.38 91.66
SMMix 1.0 88.76 91.93
MixPro 1.0 88.38 91.48
TdAttenMix 1.0 88.78 91.68

MergeMix 1.0 89.42 92.20

et al., 2024), VisionZip (Yang et al., 2025b), VisPrunner (Zhang et al., 2024b), VScan (Zhang et al.,
2025a), and LLaVA-Mini (Zhang et al., 2025b). (3). RL training on Qwen2.5-VL-Instruction (Bai
et al., 2025), including VisionThink (Yang et al., 2025c).

For all classification results, we report the top-1 test accuracy in the last 10 training epochs for
each trial. To facilitate comparison, we mark the best and second best results in bold and cyan.
For the LLaVA benchmark, we use the LLaVA official code, and for the Qwen2.5-VL-Instruction
benchmark. We use lmms-eval (Zhang et al., 2024a) for evaluation.

5.2 DATASETS

Table 3: The ImageNet-1K dataset classification
results on Top1 Accuracy (Acc), Dynamic For-
ward, Throughput (TP/s) and FLOPs (G) in a
NVIDIA A100. ForwardDy. denotes the metric
through forward with dynamic.

Method DeiT-Small

ForwardDy. TP/s FLOPs (G) Acc (%)

Vanilla ✗ 1375.80 4.24 75.66
MixUp ✗ 1374.54 4.24 77.80
CutMix ✗ 1374.61 4.24 80.13
DeiT ✗ 1374.20 4.24 79.80
TransMix ✗ 1375.17 4.24 80.44
SMMix ✗ 1373.93 4.24 79.36
MixPro ✗ 1373.62 4.24 79.33

MergeMix ✓ 1591.66 3.56 80.71

In our paper, we mainly divided into 2 scenar-
ios: Image Classification and MLLM Bench-
mark. The detailed information about datasets
is described in Appendix B.1. For the im-
age classification datasets, we choose 5 pub-
lic classification datasets, including the small-
scale dataset of CIFAR100 (Krizhevsky et al.,
2009), the large-scale dataset of ImageNet-
1K (Russakovsky et al., 2015), and the fine-
grained datasets of CUB200 dataset (Wah et al.,
2011), FGVC-Aircrafts dataset (Maji et al.,
2013), and Stanford-Cars dataset (Krause et al.,
2013). For the MLLM datasets, we choose
16 datasets, including visual question answer-
ing (VQAv2 (Goyal et al., 2017), GQA (Hud-
son & Manning, 2019), VizWiz (Gurari et al.,
2018), ScienceVQAI (Lu et al., 2022), TextVQA (Singh et al., 2019), MME-RealWorldQA (Zhang
et al., 2025c)), understanding (MME (Perception) (Yin et al., 2023), MMBench (Liu et al., 2025),
MMBenchCN, MMBenchCC, POPE (F1 score) (Li et al., 2023b), SEEDI (Li et al., 2023a), MM-
Star (Chen et al., 2024b)), and reasoning (MMMU (Yue et al., 2024a), MMMU-Pro Standard
(MMMU-Pros) (Yue et al., 2024b), MathVista (Lu et al., 2024)).

5.3 IMPLEMENTATIONS

In this subsection, we briefly introduce the implementations on the classification task and the MLLM
benchmark. The full description is in Appendix B.2. For the CIFAR100, images are resized to
224 × 224 for ViT-based models (e.g., DeiT) and trained with AdamW (weight decay 0.05), batch
size 100, for 200 or 600 epochs. We use RandomFlip and RandomCrop, plus RandAugment (Cubuk
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Table 4: Full system-level comparison results in LLaVA. Compared with their counterparts.
AVG denotes the average of the nine benchmarks for comprehensive comparison, except for MME,
underline denotes MME with the sum of Perception and Cognition. Tokeni denotes training with
the token number. Full results in Table A10, Table A11 and Table A12.

Models Tokeni Image Question Answering Benchmarks AVG Gain
VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

LLaVA Variants

LLaVA-7B Full 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.87 66.19 65.57 −
LLaVA-NeXT-7B Full 81.8 64.2 57.6 70.1 64.9 1519.0 67.4 60.6 86.5 70.2 69.3 −
LLaVA-NeXT-13B Full 82.8 65.4 60.5 73.6 67.1 1575.0 70.0 64.4 86.2 71.9 71.3 −
SeVa-7B Full − 60.7 − 67.5 56.2 1450 65.6 59.2 86.7 65.8 − −
SIMA Full − 62.2 54.4 68.1 58.3 1507.7 64.9 59.0 86.5 65.9 − −
nSFT Full − 62.9 − 68.5 58.7 1531 67.1 61.0 86.8 66.2 − −

LLaVA with Token Compressions

LLaVA-PruMerge+ 144 76.8 − − 68.3 57.1 1462.4 64.9 − 84.0 − − −
VisionZip 192 77.4 60.1 − 68.2 57.8 1834.0 63.4 − 84.9 57.1 − −
VisPrunner 128 75.8 58.2 52.7 69.1 57.0 1461.4 62.7 57.3 84.6 − − −
VScan 192 77.8 60.6 50.4 68.6 57.7 1806.0 63.9 57.4 86.2 − − −
LLaVA-Mini 1 77.6 60.9 56.2 70.4 57.0 1466.0 65.6 − 84.4 58.5 − −

LLaVA with Augmentations & Ranking Loss

SFT Vision Full 79.32 62.98 47.45 70.05 57.17 1490.88 66.26 60.05 86.18 67.32 66.31 +0.74
+ MixUp Full 79.27 62.58 44.95 69.41 57.39 1483.20 65.72 58.24 86.27 66.73 65.62 +0.05
+ CutMix Full 79.18 62.40 45.04 70.60 57.06 1452.31 66.32 58.24 86.47 67.22 65.84 +0.27
+ ResizeMix Full 77.78 61.66 44.43 68.91 55.11 1436.09 63.91 55.41 86.01 63.91 64.13 -1.44
+ MergeMix Full 79.24 62.44 47.69 69.86 57.56 1479.97 66.58 60.65 86.10 67.47 66.40 +0.83

SFT Vision 288 78.6 62.47 48.15 69.51 56.41 1486.24 66.32 57.98 87.37 66.75 65.95 +0.38
+ MixUp 288 78.51 62.07 51.1 68.47 56.54 1459.06 65.63 59.53 86.86 66.06 66.08 +0.51
+ CutMix 288 78.58 62.39 50.53 70.2 55.95 1414.72 66.92 59.53 86.56 66.2 66.31 +0.74
+ ResizeMix 288 76.39 61.05 45.48 68.07 54.60 1447.35 63.31 51.97 86.57 62.54 63.33 -2.24
+ MergeMix 288 78.61 62.18 52.14 69.61 56.85 1453.97 66.58 59.02 86.47 66.63 66.45 +0.88

Table 5: Full system-level comparison results in Qwen2.5-VL-Instruction (Qwen2.5-VL-Ins).
AVG denotes the average of the nine benchmarks for comprehensive comparison.
Models MMStar MMBench MMBenchCN MMBenchCC POPE RWQA MMMU MMMU-Pros MathVista AVG Gain

Qwen2.5-VL-Ins-7B 62.42 84.02 80.41 62.94 86.38 68.63 50.3 36.42 19.2 61.19 −
VisionThink-7B 61.00 82.73 81.01 64.5 87.65 69.28 51.0 37.27 23.8 62.03 +0.84

SFT Vision 62.66 83.41 81.01 63.52 87.69 68.63 50.89 36.7 38.4 63.66 +1.47
+ MergeMix 62.92 84.19 81.18 64.31 87.28 70.46 51.0 37.46 37.8 64.07 +2.88

et al., 2020). Learning rates are 1e-3 (DeiT-Tiny/Small, cosine schedule), 5e-4 (ViT-Small/Base),
and 2e-4 (ViT-Large). For ImageNet-1K, we adopt the same settings but use a 1e-3 learning rate,
batch size 1024, and 300 epochs for DeiT-Tiny/Small. For fine-grained datasets (CUB200, FGVC-
Aircrafts, Stanford-Cars), we fine-tune DeiT-Small and ViT-Base for 200 epochs, batch size 16,
learning rate 1e-5, using PyTorch pretrained weights (Paszke et al., 2019).

Following LLaVA-v1.5, we adopt Vicuna-v1.5 7B (Chiang et al., 2023) as the language decoder
and use a pre-trained 2-layer MLP projection to align visual and textual modalities, trained for
one epoch on LCS-558K. The vision encoder is a pre-trained CLIP model that extracts image
representations. During SFT, we train for one epoch on llava-v1.5-mix665k with a 2e-5
learning rate, batch size 64, and AdamW optimizer, using a 0.03 warmup ratio and cosine scheduler.
Unlike LLaVA, we unfreeze the vision encoder during training. For Qwen2.5-VL-Instruction, we
post training within the official checkpoints and the llava-v1.5-mix665k dataset for 0.1 epoch
under similar optimization settings. The learning rates for the vision encoder, LLM decoder, and
merger are set to 2e-6, 1e-5, and 1e-5, respectively.

5.4 RESULTS OF IMAGE CLASSIFICATION

We did the experiments on three classification datasets on a small-scale dataset (CIFAR100), a
large-scale dataset (ImageNet-1K), and a fine-grained dataset (Stanford-Cars). (1) CIFAR100: Ta-
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Figure 4: The confidence plots of mixup variants and MergeMix on the CIFAR100 dataset using
DeiT-Tiny and ViT-Small. The red line indicates the expected prediction tendency.

Table 6: The calibration results of LLaVA-v1.5-
7B on POPE, ScienceVQAI , GQA & SEEDI . rl
denotes training with ranking loss.

Method GQA POPE SEEDI ScienceVQAI

Baseline 14.57 13.16 33.79 28.09

Training with Full Vision Tokens
SFT Vision 8.52 12.82 32.67 21.66
+MixUprl 6.09 12.72 33.26 21.51
+CutMixrl 6.74 12.62 32.77 24.71
+ResizeMixrl 12.53 13.17 36.08 24.58
+MergeMixrl 6.50 12.91 32.52 23.66

Training with 50% Vision Tokens
SFT Vision 18.13 12.67 34.41 24.28
+MixUprl 13.40 12.74 33.60 22.61
+CutMixrl 10.48 12.67 33.83 20.63
+ResizeMixrl 12.60 12.97 37.41 23.74
+MergeMixrl 10.34 12.76 33.37 25.22

CAM for 2nd Class

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

CAM for 1st Class

Raw Image 147 Tokens 98 Tokens 49 Tokens 19 Tokens

ToMe Source maps (implicit clustering)

Figure 5: Visualization of MergeMix on differ-
ent mixing ratios, including mixed images, Grad-
CAM of top-2 logits, and ToMe source maps.

ble 1 and Table A1 shows the part and full classification results respectively. MergeMix brings
the +2.15%, +2.51% gains compared with TranMix on DeiT models. Gains +2.87%, +2.88% and
+4.79% on ViT models. All the results in Table 1 are trained for 200 epochs on the CIFAR100
dataset. (2) Stanford-Cars: Table 2 shows the fine-grain classification results on Stanford-Cars
dataset. MergeMix achieves the 88.42% and 92.20% accuracy compared with other mixup meth-
ods. About the results of the CUB200 dataset and the FGVC-Aircrafts dataset in Table A2. (3)
ImageNet-1k: Table 3 shows the results of accuracy, throughput, and flops on the ImageNet-1K
dataset. It is notable that MergeMix brings a +0.27% gains and reduces -0.68G Flops compared
with TransMix, and can also see other mixups with less throughput since they bring extra cost, but
MergeMix has a high throughput of 1591.66 TP/s.

5.5 RESULTS OF MLLM BENCHMARKS

We chose two mainstream MLLMs for our experiments on the VQA tasks and reasoning. Table 4
shows the results of LLaVA benchmarks, with different vision tokens for training. With the setting of
full vision tokens on the training stage, our method achieves an average gain of +0.83%. When re-
ducing the vision token to 288, our method still performs well compared with SFT. A full comparison
of results in Table A10, Table A11, and Table A12. In those different settings, MergeMix achieves
an average performance of 66.84%, improving over the LLaVA baseline by +1.27%. Table 5 shows
the results of some VQA tasks and reasoning with Qwen2.5-VL-Instruction. MergeMix achieves an
average gain of +2.88% over Qwen2.5-VL-Instruction. For the MathVista reasoning task, we re-
ported the results without LLM-as-the-judge-eval. For the MMMU and MMMU-Pro tasks,
we can achieve results on par with methods targeting reasoning improvements.
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(a) Token Merge Ratio (b)  Feature Layer

Hyperparameter Sensitivity Analysis

Figure 6: Sensitivity analysis study of 2 hyperparame-
ters of MergMix. Left: Different merge ratios of back-
bones. Right: Attention score obtained from feature
layer. Those results are from training for 200 epochs.

Table 7: Ablation study of MergeMix on
classification trained 200 epochs.

Module DeiT-Small ViT-Small

Vanilla 65.81 62.64
+ TopK 75.80 75.19
+ ToMe 76.45 76.46
+ Re-Scaling λ 78.68 77.02

Table 8: Ablation study of MLLM training
paradigm on LLaVA benchmark.

Method VizWiz SciVQAI MMBench

LLaVA-v1.5-7B 50.0 66.8 64.3
+ ToMe 50.45 68.86 62.8
+ SFT 48.15 69.51 66.32
+ MergeMixrl 52.14 69.61 66.58

5.6 RESULTS OF CALIBRATION

DNNs are prone to overconfidence in classification tasks. Mainfold Mixup (Verma et al., 2019)
found that the mixup methods can effectively alleviate this problem. To this end, we compute the
Expected Calibration Error (ECE (Guo et al., 2017)) of various mixup approaches on the CIFAR100
dataset for image classification. Also, to further analyze the calibration of MLLMs, we imple-
ment four short answer tasks, POPE, GQA, ScienceVQA, and SEED. Figure 4 shows the results
of DeiT-Tiny and ViT-Small models trained for 200 epochs, showing that MergeMix obtains the
best calibration of 6.7% and 9.7% in those ViT-specific mixup methods. (i.e., TransMix, SMMix,
and MixPro). Table 6 shows the results of the LLaVA baseline, LLaVA with SFT, and LLaVA with
our approach. SFT reduces the ECE when tuning the vision encoder, with augmentation and ranking
loss, which can be better since we bring in the reward signal for the model. The more comprehensive
results of CIFAR100 and MLLM benchmark we plot in Table A3 and Table A9.

5.7 ABLATION STUDY

The ablation study mainly focuses on three things. (a) Token merge module and optimized mixing
ratio, whether efficient for image classification task; (b) Exploring the ability of vision encoder and
the proposed training paradigm. For the image classification scenario, Table 7 shows that compared
with TopK sampling, our token merge can improve performance with +0.55%, +1.27% gains re-
spectively, which means token merge smooths the discrete attention score. The re-scaling mixing
ratio further gains +2.23%, +0.56% on the CIFAR100 dataset. For the paradigm, we validate the
token merge for the LLaVA-v1.5 7B model, further explore the training with an unfrozen vision
encoder, and the ranking loss. Table 8 shows that, compared with vanilla Token Merge, unfreezing
the vision encoder can perform better than freezing. The augmentation and ranking loss bring more
performance than only the SFT loss; (c) For further exploring the performance of hyperparameters.
We also evaluated the sensitivity of hyperparameters on MergeMix, i.e., merged tokens and feature
layer for better performance. Figure 6 shows the results of those hyperparameters.

6 CONCLUSION

This paper presents MergeMix, a unified augmentation for both image classification and MLLM
alignment with token merge, also bridging the SFT and RL by building the preference pairs. Op-
timizing models through the mixed image and the raw image via a ranking loss. Extensive experi-
ments demonstrate that MergeMix not only improves the performance on classic image classification
tasks but also achieves a beneficial alignment and generalization on MLLM benchmarks. MergeMix
provides a promising step toward a scalable, robust training paradigm for the multi-modal system.

Future Works There remain limitations in MergeMix for MLLMs. In future work, we will ad-
dress them from two directions: (1) Data level: MergeMix currently enhances only the image modal-
ity, while text remains untouched. Extending mixup to the text modality could provide more fine-
grained optimization. (2) Model level: The token-merging policy is static and unlearned. Making it
learnable may further improve the mixing capability.
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A DECLARATION OF LLM USAGE

We use the Large Language Models (LLMs) for this paper to serve one purpose: to aid and polish
the paper writing. We use the LLMs in a very limited capacity, restricted to minor editing of gram-
mar, phrasing, and readability. We do not involve the LLMs in designing the method, developing
theoretical results, and conducting experiments.

B DETAIL INFORMATION

B.1 DATASETS

In this subsection, we will describe the datasets we chose in detail.

Image Classification. We choose five mainstream classification datasets: (i) CIFAR100
dataset (Krizhevsky et al., 2009) consists of 100 classes of color images with a resolution of 32 ×
32 pixels, containing 50,000 training images and 10,000 test images. (ii) ImageNet-1k dataset (Rus-
sakovsky et al., 2015) consists of 1,000 classes with varied image resolutions commonly cropped
to 224 × 224 pixels, containing 1,281,167 training images and 50,000 test images. (iii) CUB200
dataset (Wah et al., 2011) contains 200 bird species, including total 11,788 images, we divided 5,994
images as training images and 5,794 images as test images, (iv) FGVC-Aircrafts dataset (Maji et al.,
2013) contains 100 aircraft model classes, including 6,667 training images and 3,333 test images, (v)
Stanford-Cars dataset (Krause et al., 2013) contains 196 car model classes, including 8,144 training
images and 8,041 test images. All the fine-grained datasets we used set the resolution as 224 × 224
pixels for training and testing.

MLLM Benchmark. we conducted various experiments on LLaVA Benchmark and lmms-
eval (Zhang et al., 2024a), which based on 16 datasets: (i) VQAv2 dataset (Goyal et al., 2017)
contains 204,721 training images, 22,000 validation images, and 40,504 test images, (ii) GQA
dataset (Hudson & Manning, 2019) focuses on graph-based reasoning with 220,000 training im-
ages and 150,000 validation/test questions, (iii) VizWiz dataset (Gurari et al., 2018) images are
captured by mobile devices with questions from visually impaired users (31,173 training images),
(iv) ScienceVQA dataset (Lu et al., 2022), (v) TextVQA dataset (Singh et al., 2019), and (vi) SEED
dataset (Li et al., 2023a) contain 21,208, 28,408, and 15,000 training images, respectively, empha-
sizing scientific reasoning, text understanding, and multi-modal reasoning. (vii) MME dataset (Yin
et al., 2023) and (viii) MMBench dataset (Liu et al., 2025) provide general multi-modal evalua-
tion, (ix) MMBenchCN dataset as the Chinese version of MMbench, (x) MMBenchCC dataset as
the Cross Check version of MMbench. (xi) POPE dataset (Li et al., 2023b) evaluates performance
on prompt-driven tasks with zero-shot and few-shot settings. (xii) & (xiii) MMMU & MMMU-
Pro datasets (Yue et al., 2024a;b) are a multi-modal reasoning benchmark with college-level exam
questions, (xiv) MME-RealWorldQA dataset (Zhang et al., 2025c) emphasizes real-world, long-tail
visual understanding in everyday scenarios. (xv) MMStar dataset (Chen et al., 2024b) uses test-
ing star-level multi-modal reasoning across diverse tasks. (xvi) MathVista dataset (Lu et al., 2024)
for the visual mathematical reasoning by involving geometry, algebra, and charts. For the LLaVA
benchmark, all images are typically cropped or resized to 336 × 336 pixels for training and evalu-
ation since the CLIP (Radford et al., 2021) is the vision encoder. For the Qwen2.5-VL-Instruction
benchmark, the images are dynamically scaled by the Qwen-VL model.

B.2 IMPLEMENTATIONS

Classification tasks: (i) For the CIFAR100 dataset, aiming to be suitable for training ViT-based
approaches, e.g., DeiT, we resize images to 224 × 224 and train them with the AdamW optimizer
with weight decay of 0.05, batch size of 100, and total training of 200 epochs and 600 epochs.
Uses RandomFlip and RandomCrop as basic augmentations, and additionally, we use RandAug-
ment (Cubuk et al., 2020). For DeiT-Tiny and DeiT-Small, we use the learning rate of 1e-3 with a
dynamic cosine scheduler. For ViT-Small and ViT-Base models, we set the learning rate to 5e-4,
the learning rate of ViT-Large up to 2e-4, all dynamically adjusted by a cosine scheduler. (ii) For
the ImageNet-1K dataset, the dataset settings are the same as CIFAR100, but we use the learning
rate as 1e-3, batch size of 1024, and a total training of 300 epochs for DeiT-Tiny and DeiT-Small
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Table A1: Top-1 accuracy (%) of mixup methods on CIFAR-100 dataset under DeiT-Tiny/Small,
ViT-Small/Base/Large different model sizes. The α parameter of the Beta distribution follows the
setting in OpenMixup (Li et al., 2022) setting.

Method DeiT-Tiny DeiT-Small ViT-Small ViT-Base ViT-Large

200 epochs 600 epochs 200 epochs 600 epochs 200 epochs 600 epochs 200 epochs 600 epochs 200 epochs

Vanilla 64.70 66.70 65.81 68.50 62.64 66.32 63.33 66.47 61.83
MixUp 69.47 73.06 69.98 76.35 68.67 73.57 69.66 73.90 67.90
CutMix 75.98 79.60 74.21 79.54 69.67 76.66 72.18 71.94 68.97
FMix 72.73 77.24 70.41 74.31 68.41 72.55 68.62 71.10 66.12
GridMix 71.54 76.23 68.86 74.96 70.15 68.23 66.63 68.49 63.20
ResizeMix 69.42 72.98 68.54 71.95 67.86 69.09 63.72 69.33 63.48
SaliencyMix 69.83 75.45 69.78 76.60 70.14 74.09 68.75 75.50 67.12
PuzzleMix 73.40 79.96 73.60 81.01 70.92 78.44 71.13 79.49 69.77
AutoMix 72.91 81.16 76.24 80.91 68.44 77.73 73.40 − 72.10
AdAutoMix 72.83 77.97 72.63 78.94 69.66 − 71.43 − 69.69

DeiT 74.01 79.90 75.92 79.54 72.96 77.60 72.15 76.26 69.23
TransMix 75.31 80.66 76.17 79.33 74.15 78.27 72.87 77.89 71.40
SMMix 73.84 78.62 74.09 79.84 73.50 79.65 70.87 78.18 71.38
MixPro 74.78 80.19 75.26 79.55 73.49 80.02 73.18 78.69 72.28
MergeMix 77.46 81.20 78.68 80.39 77.02 81.44 75.75 79.59 76.19

Table A2: Top-1 accuracy (%) of mixup methods on Fine-Grained datasets: CUB200, FGVC-
Aircrafts, and Stanford-Cars.

Method α
CUB200 FGVC-Aircrafts Stanford-Cars

DeiT-Small ViT-Base DeiT-Small ViT-Base DeiT-Small ViT-Base

Vanilla − 82.05 88.00 77.59 80.86 86.77 91.31
MixUp 1.0 84.31 88.75 78.52 82.18 87.73 91.36
CutMix 0.2 81.69 87.76 75.67 80.08 88.37 91.53
SmoothMix 0.2 83.87 87.02 75.31 76.72 86.39 90.88
FMix 0.2 82.64 88.68 77.08 79.33 87.18 91.36
GridMix 0.2 82.34 87.23 75.85 78.49 87.58 91.31
ResizeMix 1.0 82.15 87.61 74.59 77.62 87.45 91.59
Attentive-CutMix 2.0 82.83 87.47 75.04 76.06 87.35 90.29
SaliencyMix 0.2 82.34 87.92 77.98 79.81 87.94 91.47
PuzzleMix 1.0 84.39 88.23 78.28 81.27 88.60 91.83
GuidedMixap 1.0 84.71 88.26 77.05 79.24 86.99 90.40

DeiT 0.2 84.04 88.47 75.89 81.07 88.72 92.17
TransMix 1.0 83.34 88.10 75.73 77.77 88.38 91.66
SMMix 1.0 82.88 88.35 76.42 78.40 88.76 91.93
MixPro 1.0 82.31 86.93 75.25 75.97 88.38 91.48

MergeMix 1.0 85.40 88.40 80.92 81.97 89.42 92.20

with AdamW optimizer with weight decay of 0.05. (iii) For all fine-grain datasets, i.e., CUB-200
dataset, FGVC-Aircrafts dataset, and Stanford-Cars dataset, we fine-tune the DeiT-Small and ViT-
Base model for 200 epochs with a batch size of 16, learning rate of 1e-5, loading the pre-trained
model weight from PyTorch (Paszke et al., 2019).

MLLM benchmark: Following the LLaVA-v1.5 settings, we use a pre-trained Vicuna-v1.5
7B (Chiang et al., 2023) as the language decoder, which uses a pre-trained 2 × MLP as the pro-
jection for aligning the vision and text modistes, which was trained for one epoch on LCS-558K.
For the vision encoder, we use a pre-trained CLIP encoder and extract the visual representation from
the input images. For SFT, the learning rate was set as 2e-5, the batch size was 64, and training one
epoch on llava-v1.5-mix665k dataset, uses AdamW optimizer with (0.9, 0.999) betas and
epsilon of 1e-8, warmup ratio of 0.03 with a cosine scheduler. The difference from LLaVA is that
we unfreeze the vision encoder during training. About Qwen2.5-VL-Instruction, we fine-tune with
llava-v1.5-mix665k dataset for 0.1 epoch, uses AdamW optimizer with (0.9, 0.999) betas
and epsilon of 1e-8 like LLaVA, warmup with 0.03 ratio. The learning rate of the vision encoder,
LLM decoder, and merger were set to 2e-6, 1e-5, and 1e-5, respectively.
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Algorithm 1 MergeMix for Image Classification
# Inputs: vision model fθ(·),
training parameters θ of model,
dataset D, mixup parameter α;
output: updated fθ(·)
# sample a paired mini-batch from
D (two images and labels)
1: for (xi, yi), (xj , yj) in
DataLoader(D):
# sample mixup ratio λ (shared
with Alg.2)
2: λ ∼ Beta(α, α)

3: M, λ̂ = P(xi, xj , λ)
# lines 3--4: MergeMix
augmentation (same core as Alg.2)
4: x̂ = M⊙ x i+ (1−M)⊙ x j
5: logits = fθ(x̂)
# main supervised loss on mixed
sample (parallels LSFT in Alg.2)
6: LMCE = λ̂ · LCE(logits, yi) + (1 − λ̂) ·
LCE(logits, yj)
# optional regularizer for
augmentation consistency
7: LCE = fθ(x, y)
8: LTotal = LMCE + LCE

9: LTotal.backward()
10: optimizer.step()
11: optimizer.zero grad()

Algorithm 2 MergeMix for MLLM Alignment
# Inputs: MLLM πθ(·), learnable
parameters θ of model, dataset D of
(x, q, T ); output: updated πθ(·)
# iterate over triples
1: for (x, q, T ) in DataLoader(D):
# sample an auxiliary image xi

(mirrors mix partner in Alg.1)
2: (xi, ) = randomSample(D)
3: M = P(x, xi)
# lines 3--4: same MergeMix
augmentation core as Alg.1
4: x̂ = M⊙ x+ (1−M)⊙ xi

# winner (raw) vs. loser (mixed)
outputs for the same prompt
5: Yw = πθ(x, q)
6: Yl = πθ(x̂, q)
# supervised fine-tuning loss
(analogous to LCE in Alg.1)
7: LSFT = LCE(Yw, T )
8: sw = AvgLogProb(Yw, T )
9: sl = AvgLogProb(Yl, T )
# preference loss (SimPO) that
prefers winner over loser
10: LMix

SimPO = − log σ(sw − sl − λ)
11: LTotal = LSFT + LMix

SimPO

12: LTotal.backward()
13: optimizer.step()
14: optimizer.zero grad()

B.3 ALGORITHMS

Algorithm 1 and Algorithm 2 show the pseudo codes for MergeMix on both image classification and
preference tuning.

B.4 FUTURE WORK

There are still some shortcomings in MergeMix for MLLMs. In future work, we will explore this
from two levels: (1) From the data perspective: MergeMix focuses on the enhancement of the im-
age modality during training, while text inputs still remain raw. How to extend mixup to the text
modality in MLLM tasks needs to be solved, as this can provide more fine-grained optimization
guidelines. (2) From the model perspective: The token merging is still static and unlearned. Im-
proving the merging strategy to make it learnable via metrics or backpropagation could enhance the
token merging ability for mixing.

C IMAGE CLASSIFICATION

C.1 EXTENSIVE RESULTS

DeiT-Tiny on CIFAR100 DeiT-Small on ImageNet-1K

To
p-

1 
Ac

cu
ra

cy
 (%

)

Occlusion Ratio (%) Occlusion Ratio (%)

Figure A1: Robustness against image occlusion classifi-
cation results with different occlusion ratios for different
mixup methods based on DeiT-Tiny (left) and DeiT-Small
(right) on CIFAR100 and ImageNet-1K datasets.

Table A1 shows the full results of
200 epochs and 600 epochs train-
ing on the CIFAR100 dataset us-
ing different ViT models. Table A2
shows the three fine-grain datasets,
i.e., CUB200, FGVC-Aircrafts, and
Stanford-Cars. It is easily found that
MergeMix can achieve the SOTA on
lots of models. Also, the speed of
overfitting is a significant improve-
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Table A3: The calibration results of ViT-based mixup methods on CIFAR-100 & ImageNet-1K, with
training 200 and 300 epochs respectively. tome denotes inference with token merging.

Models Dataset Epochs MixUp CutMix TransMix DeiT SMMix MixPro MergeMix MergeMixtome

DeiT-Tiny CIFAR100 200 8.64 11.42 14.52 12.24 11.80 10.68 7.08 6.73
ViT-Small CIFAR100 200 13.89 14.43 14.22 15.76 12.41 10.65 9.69 10.14
ViT-Large CIFAR100 200 4.76 7.36 16.44 6.71 7.70 6.22 4.65 4.70
DeiT-Tiny CIFAR100 600 6.44 6.01 7.56 8.53 8.35 6.38 5.45 5.46
ViT-Small CIFAR100 600 9.01 6.45 9.12 10.22 9.55 7.42 5.50 6.04
DeiT-Small ImageNet-1K 300 5.66 4.19 7.57 8.24 6.53 5.17 6.00 4.52

Table A4: The Top-1 accuracy of DeiT-Tiny trained by various Mixup approaches on the CIFAR100
dataset with different occlusion ratios. tome denotes inference with token merging.

Method DeiT-Tiny Trained 200 epochs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Vanilla 66.68 64.54 62.57 60.20 56.96 51.41 40.32 27.75 13.25 4.99
MixUp 73.06 70.52 68.45 65.39 61.27 53.55 42.80 29.77 16.01 5.01
CutMix 79.58 78.64 77.10 75.83 72.96 70.25 64.40 54.39 35.82 14.08
FMix 77.14 76.01 74.62 73.33 71.27 67.72 63.17 56.18 42.12 17.32
GridMix 76.13 73.79 71.94 69.36 66.36 62.34 56.02 47.30 32.52 14.35
ResizeMix 72.93 71.82 70.53 69.67 67.77 65.22 59.87 50.26 31.26 9.72
SaliencyMix 75.41 74.63 73.57 72.14 69.47 65.05 58.08 44.82 24.14 7.03
Attentive-CutMix 80.27 79.13 77.94 76.98 75.45 71.01 57.75 33.10 12.03 4.02
PuzzleMix 79.97 78.18 77.36 76.04 73.74 70.74 65.83 56.75 40.43 19.41
AutoMix 81.12 78.37 78.40 78.16 77.65 77.09 74.63 71.64 67.52 55.61
TransMix 80.66 79.77 75.33 73.60 70.98 69.95 63.20 40.02 25.28 9.77
DeiT 79.80 78.20 77.29 75.83 74.59 72.31 69.05 60.18 38.55 12.53
SMMix 78.62 77.78 76.51 74.78 71.25 64.17 47.28 24.72 7.12 2.19
MixPro 80.14 79.61 78.78 77.06 74.81 71.18 64.25 50.75 26.80 5.19
MergeMix 80.88 75.19 69.71 68.72 69.33 70.17 69.36 68.20 63.49 51.72
MergeMixtome 81.12 79.49 78.96 78.57 77.81 76.65 74.89 72.58 67.24 58.32

ment over other methods, which means the token merge can gather useful information and reduce
some redundant tokens.

Table A5: The Top-1 accuracy of ViT-Small trained by various Mixup approaches on the CIFAR100
dataset with different occlusion ratios. tome denotes inference with token merging.

Method ViT-Samll Trained 200 epochs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Vanilla 66.24 62.51 60.37 58.59 56.68 53.61 49.70 39.70 22.60 7.55
MixUp 73.67 71.84 70.80 69.07 66.75 63.52 58.21 48.68 28.72 8.01
CutMix 76.13 73.77 72.93 71.92 70.32 68.32 65.48 59.30 43.11 17.04
FMix 71.27 68.52 66.49 65.78 65.00 62.31 57.80 48.98 30.09 6.19
GridMix 67.99 66.48 65.60 64.21 62.54 60.40 56.98 50.02 34.62 9.74
ResizeMix 66.69 66.90 62.80 58.15 47.00 36.15 36.49 33.07 10.97 2.06
SaliencyMix 73.50 72.12 71.88 71.21 69.97 67.62 63.03 53.12 33.27 11.06
Attentive-CutMix 78.26 72.49 67.52 63.83 60.76 54.93 38.05 27.75 32.20 31.66
PuzzleMix 78.01 76.42 75.54 74.61 73.99 71.46 68.23 63.24 51.51 26.25
AutoMix 77.52 76.74 75.14 72.95 69.71 66.76 62.59 59.00 49.01 27.45

TransMix 78.37 76.29 75.86 75.58 74.79 73.19 70.81 68.18 62.29 51.09
DeiT 77.50 75.99 75.80 74.57 73.80 71.73 67.23 58.40 43.49 19.94
SMMix 79.32 77.84 76.60 75.41 73.00 68.10 58.89 45.07 23.25 4.59
MixPro 79.91 78.37 75.36 72.08 68.37 57.48 37.08 21.62 11.87 3.69
MergeMix 81.29 75.38 73.41 69.36 61.02 51.73 52.52 62.14 64.83 57.21
MergeMixtome 81.66 77.45 78.25 78.26 74.85 72.02 69.70 67.81 67.80 60.56

C.2 ROBUSTNESS EXPERIMENTS OF MIXUP AUGMENTATIONS

Calibration of mixup augmentations Table A3 shows the results of calibration on seven mixup
augmentations. We evaluated with two public datasets by DeiT-Tiny, ViT-Small, and ViT-Large on
the CIFAR100 dataset, by models trained with 200 epochs, DeiT-Tiny and ViT-Small trained with
600 epochs, and DeiT-Small on the ImageNet-1K dataset, trained with 300 epochs.
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Table A6: The Top-1 accuracy of DeiT-Small trained by various Mixup approaches on the ImageNet-
1K dataset with different occlusion ratios. tome denotes inference with token merging.

Method DeiT-Samll Trained 300 epochs

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Vanilla 75.46 74.03 72.85 71.36 69.91 67.94 64.71 60.42 51.65 34.08
MixUp 78.74 78.17 77.11 76.21 74.31 71.85 68.13 62.40 51.45 33.08
CutMix 80.16 79.23 78.20 76.87 75.21 72.92 69.24 64.63 55.95 39.69

TransMix 80.36 79.47 78.24 77.00 75.40 73.31 70.17 65.78 57.79 42.44
DeiT 80.27 79.03 77.92 76.39 74.65 72.25 68.31 63.53 54.57 38.81
SMMix 79.32 78.56 77.70 76.17 73.76 70.25 64.95 58.94 48.69 34.37
MixPro 79.25 78.83 78.01 77.24 76.02 74.26 71.48 67.44 58.49 39.47
MergeMix 80.70 80.38 79.95 78.97 78.08 76.21 74.08 70.71 65.57 51.98
MergeMixtome 79.67 79.57 79.01 78.60 77.68 76.11 73.99 70.56 64.84 51.80

Table A7: Classification results of CAFormer small (CAFormer-S12) with different mxiup augmen-
tations, training 200 epochs with 100 batch size on CIFAR100 dataset.

Model Dataset Epochs Vanila MixUp CutMix DeiT TransMix MergeMix

CAFormer-S12 CIFAR100 200 74.95 81.64 84.69 83.60 83.70 84.30

Results of occlusion robustness The full results of occlusion robustness classification on
MergeMix and other mixup methods. Figure A1 shows the curve of MergeMix and other mixup
methods on the CIFAR100 dataset and ImageNet-1K dataset. Table A4 and Table A5 show the ac-
curacy results on the CIFAR100 dataset by vanilla and 14 different mixup approaches. Table A6
shows the results of 8 different methods on the ImageNet-1K dataset.

C.3 FURTHER RESULTS ON DIFFERENT BACKBONE AND DATA MODALITY.

Table A8: Supervised fine-tuning on HuBERT-
Base model on ESC-50 and UbranSound8K
datasets.

HuBERT-Base ESC-50 UbranSound8K

Vanilla 75.12±1.07 84.14±0.45
MixUp 75.86±0.83 85.02±0.26
TransMix 76.27±1.14 85.33±0.57
MergeMix 76.51±0.95 85.69±0.42

For further exploring the effectiveness of
MergeMix, we applied our approach on a
hyper-model MetaFormer (CAFormer) (Yu
et al., 2022) and two audio datasets for clas-
sification by HuBERT-Base (Hsu et al., 2021).
ESC-50 (Piczak, 2015) consisted of 50 classes,
with 1,200 training samples and 400 validation
samples, and a maximum duration of 3 seconds.
UrbanSound8k (Salamon et al., 2014) is a clas-
sification dataset consisting of 10 classes, with
a maximum duration of 4 seconds, containing 7,079 training samples and 816 validation samples.
Following the USB experimental setup, we fine-tuned the model for 100 epochs using the AdamW
optimizer. The base learning rate was set to 1e-4, texttt5e-4, with a batch size of 32 and a weight
decay coefficient of 5e-4. Both the compared shuffling methods and our proposed MergeMix can be
directly transferred to audio data (treated as one-dimensional sequences). Table A8 below shows our
reproduced comparison results on two audio datasets. Compared to the MixUp and TransMix base-
lines, MergeMix achieves significant performance improvements over multiple shuffling baseline
models. For CAFormer-S12, we train for 200 epochs on the CIFAR100 dataset with the same set-
tings as DeiT-Tiny. Table A7 shows that MergeMix obtained a second-best result, since CAFormer
only has with Attention module of 2 stages (8 layers).
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D VISUAL UNDERSTANDING

D.1 CALIBRATION RESULTS OF MLLM

Table A9: The calibration results of LLaVA on
POPE, ScienceVQAI , GQA & SEEDI .

Method GQA POPE SEEDI ScienceVQAI

Baseline 14.57 13.16 33.79 28.09

Training with Full Vision Tokens
SFT Vision 8.52 12.82 32.67 21.66
+MixUprl 6.09 12.72 33.26 21.51
+CutMixrl 6.74 12.62 32.77 24.71
+ResizeMixrl 12.53 13.17 36.08 24.58
+MergeMixrl 6.50 12.91 32.52 23.66

Training with 50% Vision Tokens
SFT Vision 18.13 12.67 34.41 24.28
+MixUprl 13.40 12.74 33.60 22.61
+CutMixrl 10.48 12.67 33.83 20.63
+ResizeMixrl 12.60 12.97 37.41 23.74
+MergeMixrl 10.34 12.76 33.37 25.22

Training with 25% Vision Tokens
SFT Vision 13.32 12.51 34.97 18.86
+MixUprl 12.97 12.66 34.89 19.33
+CutMixrl 12.23 13.10 34.85 20.70
+ResizeMixrl 10.66 14.17 38.77 17.27
+MergeMixrl 12.55 12.17 34.87 17.70

To explore MLLM calibration, we selected
4 tasks with short responses across different
token-reduction settings. We evaluate three
scenarios: using full vision tokens, 50% to-
kens, and 25% tokens, and compare various
data augmentation strategies (MixUp, CutMix,
ResizeMix, MergeMix) trained with ranking
loss (denoted as rl). Table A9 shows that
with unfreezing the vision encoder, the ECE
can be better than freezing. With the vi-
sion tokens reduced in training. Overall, to-
ken reduction leads to a moderate drop in
calibration accuracy, but effective augmenta-
tion strategies significantly mitigate this degra-
dation. In the full-token setting, CutMixrl
achieves the lowest GQA calibration error
(6.09), while ResizeMixrl shows the best
SEED result (36.08). When reducing tokens to
50%, CutMixrl and MergeMixrl remain com-
petitive, maintaining strong calibration across
tasks despite reduced visual information. Even
with 25% tokens, CutMixrl continues to yield
relatively balanced performance, indicating that appropriate augmentation enhances robustness un-
der token compression. These results suggest that MLLM calibration remains an open question,
especially in environments that require a reliable answer.

D.2 RELATIONSHIP BETWEEN MIXING RATIOS AND REWARDS

Mixing ratio

R
ew

ar
d

 S
co

re

Figure A2: LLM-as-the-Judge results for dif-
ferent mixing ratios. Higher mixing ratios con-
sistently yield higher reward scores across strong
MLLMs. MergeMix aligns closely with these
models, showing that the mixing ratio provides a
meaningful preference signal.

To understand how the proposed ranking
loss on synthetic mixed pairs approximates
human preference learning, we conduct a
LLM-as-the-judge-eval evaluation in
which strong MLLMs score the mixed pairs
generated with different mixing ratios λ.
Specifically, we query a diverse set of fron-
tier MLLMs, including Grok-3, Doubao-Seed-
1.6 (Guo et al., 2025), Doubao-Seed-1.6-CoT,
Qwen3-VL-Plus-32B (Yang et al., 2025a),
Qwen2.5-VL-72B (Bai et al., 2025), Gemini-
2.5 (Team et al., 2023), and a human-expert
baseline, to assign reward scores to each mixed
pair. As shown in Figure A2, we found that the
reward consistently increases with larger mix-
ing ratios, and this trend holds across nearly
all evaluators. The strong monotonic corre-
lation suggests that λ provides a reliable and
well-behaved control signal for modeling pref-
erence strength. This observation validates our
use of λ as an interpretable proxy for pref-
erence supervision and highlights its potential
as a lightweight alternative to explicit human-
annotated reward signals.
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Table A10: Different token merge ratios of inference comparison results with augmentations.
AVG: The average of the nine benchmarks for comprehensive comparison, except for MME.

LLaVA-7b Train Image Question Answering Benchmarks AVG Gain
v1.5 Ratio VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

Inference Full Vision Token

Vanilla − 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.87 66.19 65.57 −
SFT Vision 100% 79.32 62.98 47.45 70.05 57.17 1490.88 66.26 60.05 86.18 67.32 66.31 +0.74
+ MixUp 100% 79.27 62.58 44.95 69.41 57.39 1483.20 65.72 58.24 86.27 66.73 65.62 +0.05
+ CutMix 100% 79.18 62.40 45.04 70.60 57.06 1452.31 66.32 58.24 86.47 67.22 65.84 +0.27

+ ResizeMix 100% 77.78 61.66 44.43 68.91 55.11 1436.09 63.91 55.41 86.01 63.91 64.13 -1.44
+ MergeMix 100% 79.24 62.44 47.69 69.86 57.56 1479.97 66.58 60.65 86.10 67.47 66.40 +0.83

Inference 75% Vision Token

Vanilla − 77.24 59.65 50.86 68.42 55.66 1460.88 63.05 57.9 85.60 65.21 64.84 −
SFT Vision 100% 77.62 59.73 46.57 70.15 54.83 1454.99 65.03 59.36 85.60 65.90 64.98 +0.14
+ MixUp 100% 77.66 59.37 44.15 69.91 56.18 1457.98 64.77 57.73 85.15 65.28 64.47 -0.37
+ CutMix 100% 77.67 59.21 44.25 69.66 54.84 1400.49 65.03 57.98 85.91 65.66 64.47 -1.09

+ ResizeMix 100% 76.45 59.65 43.31 68.82 53.14 1426.75 63.91 55.15 85.29 63.04 63.20 -1.64
+ MergeMix 100% 77.71 59.32 47.46 70.70 54.85 1440.50 65.37 58.93 85.04 65.98 65.04 +0.20

Inference 50% Vision Token

Vanilla − 76.65 59.33 50.45 68.86 55.33 1452.18 62.8 56.87 86.53 64.09 64.55 −
SFT Vision 100% 77.07 59.05 46.19 70.35 54.40 1436.79 64.60 58.93 85.62 65.12 64.59 +0.04
+ MixUp 100% 77.11 58.96 44.39 69.36 54.41 1422.28 64.34 57.90 86.16 64.29 64.10 -0.45
+ CutMix 100% 77.15 58.66 44.00 69.31 54.78 1428.21 64.94 59.02 86.42 64.80 64.34 -0.21

+ ResizeMix 100% 75.90 59.46 42.99 69.31 52.83 1444.13 63.23 54.20 85.77 62.07 62.86 -1.69
+ MergeMix 100% 77.13 59.02 47.46 70.55 54.54 1461.63 65.03 58.84 85.70 65.25 64.84 +0.29

Inference 25% Vision Token

Vanilla − 74.63 58.76 52.71 68.67 55.32 1398.24 60.65 54.03 86.54 62.05 63.71 −
SFT Vision 100% 75.02 58.43 46.36 69.06 52.32 1376.88 62.37 55.84 85.64 63.63 63.19 -0.52
+ MixUp 100% 75.45 58.63 44.82 68.02 52.13 1384.31 62.28 60.65 85.54 62.97 63.39 -0.32
+ CutMix 100% 75.39 58.61 43.85 68.67 52.69 1330.99 62.71 56.01 86.30 63.02 63.03 -0.68

+ ResizeMix 100% 74.08 59.02 43.40 68.96 51.40 1377.96 61.08 53.09 86.53 59.85 61.93 -1.78
+ MergeMix 100% 75.50 58.60 48.14 69.86 52.01 1439.44 63.05 57.56 85.53 63.72 63.77 +0.06

D.3 RESULTS OF DIFFERENT VISION TOKEN RATIOS ON INFERENCE

In this subsection, we validate the different ratios of vision tokens on the LLaVA benchmark. Ta-
ble A10, Table A11 and Table A12 show the fully results with full, 75%, 50% and 25% ratios on
inference, respectively. Those results give a full comparison of the influence on the vision tokens.
Significantly shown in Table A10, MergMix always brings gains in different merge ratios, from
+0.83 to +0.06. Other methods, since they are highly random, cause performance instability.

From the results shown in Table A11, when the training stage uses the token merge, it can achieve
an average gain of 66.84%, which improves 0.43% over training and inference without token
merge training and inference, with an improvement of +1.27% than the average performance of
the original LLaVA model. Figure A3 shows the average accuracy on the LLaVA benchmark for
the LLaVA-v1.5-7B model trained and evaluated under different vision token-merging ratios. The
results demonstrate that MergeMix maintains strong performance across a wide range of settings,
outperforming or matching other baselines.

D.4 RESULTS OF DIFFERENT RANKING LOSS

To understand the effectiveness of ranking loss on preference tuning, we conducted an ablation
study for LMix

SimPo. Table A13 shows that compared with vanilla SimPO, our approach can bring more
improvement.
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Table A11: Different token merge ratios of inference comparison results with augmentations.
AVG: The average of the nine benchmarks for comprehensive comparison, except for MME.

LLaVA-7b Train Image Question Answering Benchmarks AVG Gain
v1.5 Ratio VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

Inference Full Vision Token

Vanilla − 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.87 66.19 65.57 −
SFT Vision 50% 78.6 62.47 48.15 69.51 56.41 1486.24 66.32 57.98 87.37 66.75 65.95 +0.38
+ MixUp 50% 78.51 62.07 51.1 68.47 56.54 1459.06 65.63 59.53 86.86 66.06 66.08 +0.51
+ CutMix 50% 78.58 62.39 50.53 70.2 55.95 1414.72 66.92 59.53 86.56 66.2 66.31 +0.74

+ ResizeMix 50% 76.39 61.05 45.48 68.07 54.60 1447.35 63.31 51.97 86.57 62.54 63.33 -2.24
+ MergeMix 50% 78.61 62.18 52.14 69.61 56.85 1453.97 66.58 59.02 86.47 66.63 66.45 +0.88

Inference 75% Vision Token

Vanilla − 77.24 59.65 50.86 68.42 55.66 1460.88 63.05 57.90 85.60 65.21 64.84 −
SFT Vision 50% 78.75 62.82 48.02 70.65 56.33 1486.24 66.40 59.02 86.93 67.17 66.23 +1.39
+ MixUp 50% 78.87 62.32 51.01 69.11 56.62 1480.04 65.63 59.53 86.86 66.06 66.22 +1.38
+ CutMix 50% 78.73 62.42 49.85 70.50 56.12 1418.07 67.61 59.87 85.96 66.44 66.39 +1.55

+ ResizeMix 50% 76.79 61.12 44.85 68.37 54.24 1475.27 64.26 52.66 85.67 63.30 63.47 -1.37
+ MergeMix 50% 78.81 62.50 52.31 69.56 56.51 1455.81 66.66 59.10 85.76 67.12 66.48 +1.64

Inference 50% Vision Token

Vanilla − 76.65 59.33 50.45 68.86 55.33 1452.18 62.80 56.87 86.53 64.09 64.55 −
SFT Vision 50% 78.49 63.39 46.69 70.25 55.68 1468.38 66.83 57.76 86.47 66.48 65.78 +1.23
+ MixUp 50% 78.54 61.91 51.01 69.61 55.76 1468.14 65.63 59.87 86.51 66.39 66.14 +1.59
+ CutMix 50% 78.50 62.18 48.79 70.50 55.83 1431.32 67.18 59.02 86.00 66.27 66.03 +1.48

+ ResizeMix 50% 76.55 60.79 44.20 68.32 54.21 1470.22 63.31 52.66 86.23 62.73 63.22 -1.33
+ MergeMix 50% 78.51 62.09 51.01 70.10 56.03 1464.00 66.75 59.45 86.05 66.39 66.26 +1.71

Inference 25% Vision Token

Vanilla − 74.63 58.76 52.71 68.67 55.32 1398.24 60.65 54.03 86.54 62.05 63.71 −
SFT Vision 50% 77.30 61.77 46.33 70.55 54.19 1411.01 65.72 58.07 86.34 65.46 65.08 +1.37
+ MixUp 50% 77.28 61.56 48.77 69.56 54.10 1419.71 66.32 56.27 86.57 65.32 65.08 +1.37
+ CutMix 50% 77.20 61.52 49.00 71.24 53.96 1372.66 66.49 58.76 86.38 65.24 65.53 +1.82

+ ResizeMix 50% 75.06 59.88 43.12 67.13 52.34 1445.26 61.51 51.63 86.03 61.59 62.03 -1.68
+ MergeMix 50% 77.20 61.81 51.66 70.35 54.47 1401.58 66.83 59.10 85.92 65.44 66.84 +3.13
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Figure A3: The plots of the LLaVA-v1.5-7B model under different inference time merge ratios
for various methods (Baseline, SFT, MixUp, CutMix, ResizeMix, and MergeMix) demonstrate that
MergeMix maintains robust performance across a wide range of configurations.

E EFFICIENCY

E.1 RESULTS OF DIFFERENT VISION TOKEN RATIOS ON INFERENCE

To further validate the inference efficiency gains achieved by Token Merge in MergeMix, we con-
ducted experiments on both image classification models and multi-modal large models. As shown
in Table A14, increasing the merging ratio r of the ViT-L model significantly reduces FLOPs (from
59.57G to 34.93G) while throughput improves from 122.83 to 201.07 (+63.7%). Moreover, the
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Table A12: Different token merge ratios of inference comparison results with augmentations.
AVG: The average of the nine benchmarks for comprehensive comparison, except for MME.

LLaVA-7b Train Image Question Answering Benchmarks AVG Gain
v1.5 Ratio VQAv2 GQA VizWiz SciVQAI TextVQA MME MMBench MMBenchCN POPE SEEDI

Inference Full Vision Token

Vanilla − 78.5 62.0 50.0 66.8 58.2 1510.7 64.3 58.3 85.87 66.19 65.57 −
SFT Vision 25% 77.92 62.01 50.30 69.11 55.03 1420.69 64.17 56.09 86.82 65.04 65.17 -0.40
+ MixUp 25% 77.89 62.01 52.53 70.20 55.90 1444.45 64.29 57.73 86.94 65.77 65.92 +0.35
+ CutMix 25% 77.92 61.57 51.02 69.21 55.43 1408.18 64.23 57.13 86.09 65.19 65.31 -0.26

+ ResizeMix 25% 75.38 59.77 41.38 66.78 53.45 1430.64 62.37 51.54 85.26 61.26 61.91 -3.66
+ MergeMix 25% 77.86 61.54 50.50 69.56 55.40 1458.49 64.86 57.98 87.22 65.10 65.56 -0.01

Inference 75% Vision Token

Vanilla − 77.24 59.65 50.86 68.42 55.66 1460.88 63.05 57.9 85.60 65.21 64.84 −
SFT Vision 25% 78.09 62.11 49.67 69.86 55.03 1423.27 64.94 57.47 85.86 65.77 65.42 +0.58
+ MixUp 25% 77.97 61.23 53.13 69.46 56.17 1466.33 66.06 58.67 86.14 65.67 66.06 +1.22
+ CutMix 25% 78.11 61.85 50.46 69.71 56.08 1420.67 67.52 59.19 85.14 65.42 65.94 +1.1

+ ResizeMix 25% 76.01 59.95 41.94 66.63 53.75 1459.84 63.48 52.92 84.99 62.08 62.42 -2.42
+ MergeMix 25% 78.07 61.42 50.17 70.2 55.96 1483.82 66.58 59.45 86.18 65.49 65.95 +1.11

Inference 50% Vision Token

Vanilla − 76.65 59.33 50.45 68.86 55.33 1452.18 62.8 56.87 86.53 64.09 64.55 −
SFT Vision 25% 77.99 61.77 48.79 70.10 54.91 1443.02 64.69 57.38 86.21 65.41 65.25 +0.7
+ MixUp 25% 77.89 61.68 50.85 70.05 56.0 1448.62 66.92 58.07 86.44 65.54 65.94 +1.39
+ CutMix 25% 77.32 61.62 48.86 69.96 55.97 1428.02 67.01 59.02 85.89 65.57 65.69 +1.14

+ ResizeMix 25% 75.78 59.95 40.82 67.33 53.44 1456.66 63.4 53.09 85.57 61.65 62.34 -2.21
+ MergeMix 25% 77.91 61.56 48.86 70.5 56.0 1477.47 66.15 58.76 86.41 65.19 65.71 +1.16

Inference 25% Vision Token

Vanilla − 74.63 58.76 52.71 68.67 55.32 1398.24 60.65 54.03 86.54 62.05 63.71 −
SFT Vision 25% 76.97 61.43 49.79 70.0 53.56 1405.86 64.94 56.7 86.81 64.51 64.97 +1.26
+ MixUp 25% 76.84 61.15 49.31 69.66 53.98 1409.16 65.8 57.81 86.72 64.49 65.08 +1.37
+ CutMix 25% 76.89 61.3 48.21 69.32 53.99 1370.27 66.32 57.98 86.42 64.21 64.96 +1.25

+ ResizeMix 25% 75.01 59.72 40.82 66.78 51.66 1418.27 62.45 52.66 85.87 60.54 61.72 -1.99
+ MergeMix 25% 76.91 61.0 48.79 70.2 54.51 1441.07 66.06 58.24 86.57 64.2 65.16 +1.45

Table A13: Ablation study of different ranking loss on LLaVA-v1.5-7B.
Models SciVQAI TextVQA VizWiz MMBench Avg. Gains

LLaVA-v1.5-7B 66.8 58.2 50.0 64.3 59.82 −
mDOP (Wang et al., 2024a) 67.53 57.90 50.04 64.60 60.02 +0.20
Re-Align (Xing et al., 2025) 68.10 58.55 50.06 64.69 60.35 +0.53
vanilla SimPO 69.86 56.62 49.26 66.24 60.49 +0.67
+ MergeMix 69.86 57.56 47.69 66.58 61.29 +1.47

additional overhead of Token Merge itself is extremely low (only 0.97 ms at r = 0.75), far below
the computational cost of pre-layering. This demonstrates that Token Merge can efficiently com-
press visual tokens while maintaining negligible overhead. For multi-modal inference, Table A15
shows the effectiveness of Token Merge on LLaVA-v1.5-7B. As r increases, the model’s overall
throughput improves, while TTFT decreases significantly. The optimal trade-off is achieved at r =
0.5, boosting throughput from 45.96 to 47.28 and reducing TTFT from 86.44 ms to 66.74 ms. When
r = 0.75, TTFT further decreases to 62.25 ms. This demonstrates that Token Merge effectively ac-
celerates multi-modal inference without compromising image-text alignment quality. These results
collectively show that Token Merge can efficiently reduce the number of visual tokens in MergeMix,
thereby lowering FLOPs and inference latency in both visual models and MLLMs. This validates
the necessity and advantages of introducing Token Merge into our methodology.

F VISUALIZATION AND CASE STUDY

In this section, we provide a visualization of the case study of augmentation samples with corre-
sponding performance reward scores and an extensive visualization of mixing samples and ToMe
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Table A14: Results of throughput, FLOPs
(G), overhead of pre-layer and ToMe by ViT-L
model with different merged ratios, evaluated
on an Nvidia A100 GPU.

Ratios Throughput ↑ FLOPs (G) Overhead
Layer ToMe

Baseline 122.83 59.57 10.19 −
r = 0.1 130.45 56.29 9.82 3.72
r = 0.25 145.98 49.37 8.23 3.14
r = 0.5 167.54 42.65 5.52 1.79
r = 0.75 201.07 34.93 3.23 0.97

Table A15: Results of throughput and Time-To-
First-Token (TTFT) in ms on LLaVA-v1.5-7B with
different merged ratios r, which is evaluated on a
Nvidia A100 GPU.

Ratios Throughput ↑ TTFT (ms)

LLaVA-V1.5 45.96 86.44
r = 0.1 43.94 89.32
r = 0.25 46.99 83.65
r = 0.5 47.28 66.74
r = 0.75 46.92 62.25

source maps. Firstly, we provide a case of different degrees of augmentation in Figure A4. Then, we
plot some visualizations of token merge with different merge ratios, mixed samples with different λ
in Figure A5 and Figure A6. For every three rows in Figure A5 and Figure A6, the first and second
rows of source maps could directly capture the important regions of the raw images, where a large
merge ratio enables better grouping of the similar regions. Based on the source maps, when the
mixing ratio λ grows from small to large, MergeMix could keep the most distinguishable tokens
of the first image while gradually expanding more tokens from less important regions, which en-
ables MergeMix to generate reliable mixing samples with no more computational costs. Moreover,
we provide GradCAM (Selvaraju et al., 2019) visualization of the top-1 and top-2 classes with the
mixed samples of MergeMix on ImageNet-1K, as shown in Figure A7 and Figure A6.

Raw Image λ = 0.75 λ = 0.5 λ = 0.25

Question: 
What is the general landscape 
of the image, and how are the 
elephants interacting with it?

Raw Image Answer (with λ = 1.0): The image features a group of elephants walking through a grassy 
area with trees in the background. The elephants are interacting with the landscape by walking and standing 
in the grass, possibly grazing or exploring their surroundings.

Mixed Image Answer with λ = 0.75: The image features a group of elephants walking across a dirt road, 
with a forest in the background. The elephants are interacting with the landscape by crossing the road and 
moving through the forest.

Mixed Image Answer with λ = 0.5: The image features a group of elephants standing on a dirt road, with 
trees in the background. The elephants are interacting with the landscape by walking along the road, possibly 
moving from one location to another.

Mixed Image Answer with λ = 0.25: The image features a group of elephants walking down a road or a 
dirt path, surrounded by trees and hills. The elephants are interacting with the landscape by moving along the 
path, possibly in search of food or water, or simply following their natural migratory patterns. The presence of 
trees and hills in the background adds to the natural setting of the scene, emphasizing the wild and serene 
environment where these majestic creatures are found.

Ground-truth Answer: The general landscape of the image is a forest area with a dirt road. The elephants 
- a herd consisting of five adults and a baby - are crossing the dirt road as they pass through the wilderness.

Figure A4: The visualization of the visual question answers with different mixing ratios by LLaVA-
v1.5-7B model. Note that the blue texts denote the core question and the corresponding correct
answers, while the green texts denote the wrong answer to the question. The raw image denotes
without any augmentations, and other images denote with different mixing ratios λ. Ground-truth
Answer denotes the raw labels for this case. With the mixing degree improving, the answer comes
out more wrong or unrelated to the question, as shown in green color.
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Raw Image 147 Tokens 98 Tokens 49 Tokens 19 Tokens

Raw Image 147 Tokens 98 Tokens 49 Tokens 19 Tokens

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

Figure A5: Visualization of mixed samples with source maps of ToMe with different mixing ratios
λ and various merge ratios on ImageNet-1K.
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Raw Image 147 Tokens 98 Tokens 49 Tokens 19 Tokens

Raw Image 147 Tokens 98 Tokens 49 Tokens 19 Tokens

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

Figure A6: Visualization of mixed samples with source maps of ToMe with different mixing ratios
λ and various merge ratios on ImageNet-1K.
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CAM for 2nd Class

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

CAM for 1st Class

Figure A7: Visualization of mixed samples and corresponding GradCAM (Selvaraju et al., 2019) of
the top-1/2 class with MergeMix on ImageNet-1K.

CAM for 2nd Class

λ = 0.25λ = 0.0 λ = 0.5 λ = 0.75 λ = 1.0

CAM for 1st Class

Figure A8: Visualization of mixed samples and corresponding GradCAM (Selvaraju et al., 2019) of
the top-1/2 class with MergeMix on ImageNet-1K.
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