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Abstract

In this work, we investigate the localised, quasi-
symbolic inference behaviours in distribu-
tional representation spaces by focusing on the
Explanation-based Natural Language Inference
(NLI), exemplified by the syllogistic-deductive
NLI, where two explanations (premises) are
provided to derive a single conclusion. We
first establish the connection between natural
language and symbolic inferences by character-
ising quasi-symbolic NLI behaviours, named
symbolic inference types. Next, we establish
the theoretical connection between distribu-
tional and symbolic inferences by formalising
the Transformer encoder-decoder NLI model
as a latent variable model. We provide exten-
sive experiments to reveal that the symbolic in-
ference types can enhance model training and
inference dynamics, and deliver localised, sym-
bolic inference control. Based on these find-
ings, we conjecture the different inference be-
haviours are encoded as functionally separated
subspaces in latent parametric space, as the fu-
ture direction to probe the composition and gen-
eralisation of symbolic inference behaviours in
distributional representation spaces.

1 Introduction

Explanatory sentences (Jansen et al., 2018b), such
as animal is a kind of living thing, can encode
hierarchical, taxonomic, and causal relations be-
tween concepts (Gardenfors and Zenker, 2015). By
understanding and reasoning over these concepts
expressed by explanations, humans can make in-
tricate decisions, which is significant in scientific,
cognitive, and Al domains. In this work, we cen-
tre on the Explanation-based Natural Language
Inference (NLI) task, exemplified by syllogistic-
deductive NLI, where two explanations (premises)
are provided to derive a single conclusion. Within
this task, a central challenge involves achieving
localised and (quasi-)symbolic inference behaviour.
E.g., given the two premises: milk is a kind of
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Figure 1: Conceptual visualisation for the proposed
Quasi-symbolic NLI Representation approach. Infer-
ence types can be encoded as functional subspaces,
which are separated or disentangled in parametric space.
Thus, by manipulating the inference types, we can de-
liver localised, symbolic inference control.

liquid and liquid can flow, one may derive the con-
clusion milk can flow by localising can flow and
substituting the concept liquid with milk.

A key question then arises: How can we train
current Transformer-based NLI models to learn and
generalise this quasi-symbolic behaviour in the dis-
tributional representation space? Investigating this
question allows us to shorten the gap between deep
latent semantics and formal linguistic representa-
tions (Gildea and Jurafsky, 2000; Banarescu et al.,
2013), integrating the flexibility of distributional-
neural models with the properties of linguistically
grounded representations, facilitating both inter-
pretability and generative control.

Recent studies have demonstrated that the Ar-
gument Structure Theory (AST) representation
(Jackendoff, 1992) from explanations can be ef-
fectively represented, localised, and disentangled
in the latent space of Transformer-based models
(Zhang et al., 2024a,c). A particular instance of
an AST representation is the Abstract Meaning
Representation (AMR) (Banarescu et al., 2013),
which represents the relations between semantic
variables, allowing us to first establish the con-



nection between natural and symbolic language
inferences. Specifically, we leverage the AMR to
systematically characterise quasi-symbolic infer-
ence behaviours, named symbolic inference types,
grounded on AMR symbolic graphs. Using the
explanation-based NLI dataset (EntailmentBank,
Dalvi et al. (2021)), we identify ten categories of
symbolic transformations and provide annotations
for 5,134 premise-conclusion pairs. Illustrative ex-
amples are presented in Section 3 and Table 1.

Next, we aim to establish the theoretical con-
nection between distributional and symbolic infer-
ences from the perspective of neural representation
space (see Section 4). An ideal neuro-symbolic
NLI model should demonstrate two core represen-
tational capabilities: (i) the capacity to encode and
utilise inference rules and (ii) the ability to extract
semantic features.

As for the former, we formalise the Transformer-
based encoder-decoder NLI architecture (e.g., T5)
as a latent variable NLI framework, in which the
symbolic inference types are injected to guide the
dynamics of symbolic inference behaviours within
the latent parametric space. With respect to the
latter, we introduce a feature space (i.e., sentence
bottleneck) in the middle of the latent variable NLI
architecture. Ideally, this low-dimensional feature
space encodes sufficiently abstract, high-level se-
mantic representations during inference.

We provide extensive experiments to evaluate
the training and inference dynamics (Section 5.1),
localised inference control (Section 5.2), and fea-
ture representation with explanation inference re-
trieval task (Section 5.3). Experimental results re-
veal that the symbolic inference type can assist
model training, inference, and deliver localised in-
ference control. Based on these observations, we
conjecture that in Transformers, different inference
behaviours are encoded as functional subspaces
which are separated or disentangled in the latent
parametric space.

In summary, this work provides a complete ini-
tial step in investigating the quasi-symbolic infer-
ence over distributional semantic space, with the
following contributions: (1) We first establish the
connection between natural and symbolic language
inferences from the perspective of linguistics by
systematically characterising quasi-symbolic infer-
ence behaviours, named symbolic inference types,
grounded on the AMR graph. (2) We establish the
distributional-symbolic connection from the per-

spective of neural representation space: (3) We
frame the Transformer-based encoder-decoder NLI
model as a latent variable model where the dy-
namics of inference behaviours are guided via our
symbolic inference types in the latent space. (4) We
investigate the latent space for encoding abstract,
high-level features during inference. Experimental
results showed that the injected symbolic inference
type can improve model training dynamics, infer-
ence, and localisation. Based on those findings,
we conjecture that different inference types are en-
coded as functional subspaces which are separated
or disentangled in the parametric space, as a future
direction to probe the composition and generali-
sation of symbolic inference behaviours in distri-
butional representation spaces. The experimental
pipelines are released’.

2 Related Work

In this section, we review the related work around
two topics: neuro-symbolic representation and la-
tent variable model and control, to highlight the
current research limitation and elucidate the moti-
vation underlying our work.

Neuro-symbolic representation. A longstand-
ing goal in NLP is to blend the representational
strengths of neural networks with the interpretabil-
ity of symbolic systems to build more robust NLI
models. Current methods usually inject symbolic
behaviour through explicit symbolic representa-
tions, including graph (Khashabi et al., 2018; Khot
et al., 2017; Jansen et al., 2017; Kalouli et al.,
2020; Thayaparan et al., 2021), linear program-
ming (Valentino et al., 2022b; Thayaparan et al.,
2024), adopting iterative methods, using sparse en-
coding mechanisms (Valentino et al., 2020; Lin
et al., 2020), synthetic natural language expres-
sion (Clark et al., 2020; Yanaka et al., 2021; Fu
and Frank, 2024; Weir et al., 2024), symbolic-
refined LLMs (Olausson et al., 2023; Quan et al.,
2024), etc. Those studies ignore the underlying
neuro-symbolic behaviour in neural representation
space. From the Explainable Al domain, many
studies have shown that neural networks can en-
code sparse neural-symbolic concepts without ex-
plicit symbolic injection across areas like image
embedding (Ren et al., 2022; Deng et al., 2021; Li
and Zhang, 2023), word embedding (Ethayarajh
et al., 2018; Allen et al., 2019; Ri et al., 2023),
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contextual embedding (Gurnee et al., 2023; Nanda
et al., 2023; Li et al., 2024), and LLM interpre-
tation (Park et al., 2024; Templeton et al., 2024).
To address this research gap, we draw on neuro-
symbolic NLI objectives within distributional neu-
ral models, employing AMR-grounded inference
types to integrate distributional and symbolic forms
of inference.

Latent variable models and control. Latent
variable models, such as VAE (Kingma and
Welling, 2013), have shown the capability of sym-
bolic representation, control, and interpretation
over the distributional space, which are widely
deployed in the NLP domain, such as disentan-
gled representation learning (Zhang et al., 2024a,c),
style-transfer (Liu et al., 2023; Gu et al., 2023;
Zhang et al., 2024b), etc. Thus, we establish the
connection between distributional and symbolic in-
ferences by formalising the neural NLI models as
latent variable models where the symbolic infer-
ence type label can guide the dynamics of latent
variables in parametric space. This guidance has
been widely investigated to improve training and
inference dynamics, such as Conditional VAE (Car-
valho et al., 2023), Diffusion (Dhariwal and Nichol,
2021; Ho and Salimans, 2022), normalising flow
(Rombach et al., 2020) etc.

In the next section, we start by defining the sym-
bolic inference types for semantically bridging the
natural language and symbolic inferences.

3 Defining Symbolic Inference Types

Valentino et al. (2021) has demonstrated that step-
wise explanation-based NLI cannot be directly
framed as pure logical reasoning. Explanatory
chains, while looking plausible at first inspection,
commonly have subtler incompleteness and consis-
tency problems from a logical point of view. Mean-
while, explanatory chains corresponding to defin-
able inference patterns and symbolic operations
can be localised over the sentence structure. Moti-
vated by this middle ground between logical repre-
sentations and lexico-semantic inference patterns,
we introduce granular inference types based on ex-
planatory sentences, using AMR to define the sym-
bolic operations involved in step-wise inference,
linking transformations from premises to conclu-
sions 2. Table 1 describes the AMR-grounded infer-

“Please note that AMR is not used as a representation
mechanism in the proposed architecture, but only to precisely
ground these symbolic operations within a well-defined se-

ence types and examples from the EntailmentBank
corpus. Next, we define each lexico-semantic infer-
ence type and the corresponding symbolic forms.

P1: a scar on the knee is a kind of scar

PR :mod @
7 Y

i

! s/scar |
\ 7
\

:location

P2: a scar is an acquired characteristic

s N

1 AY
siscar |

c/characteristic-02

c/characteristic-02 :ARG1-of

alacquire-01

Figure 2: AMR argument substitution: the inference
behaviour is defined as subgraph substitution.

The substitution category refers to obtaining a
conclusion by replacing a predicate/argument term
from one premise with a predicate/argument term
from the other premise. Possible variations of this
category include (1) argument (ARG) substitution,
(2) predicate (PRED) substitution, and (3) frame
(PRED+ARG) substitution. In this category, one
premise is used to connect two terms which are
usually connected by is a kind of, is a source of,
etc. Conceptualising the AMR representation as
a graph, this can be symbolically represented as a
subgraph substitution operation over the premise
graphs, as illustrated in Figure 2. The PRED sub-
stitution category works in a similar manner, but
replacing a predicate term. The two predicates are
usually linked by the following patterns: “v; is a
kind of v2”, “to v1 something means to vy some-
thing”, etc. The frame (PRED+ARG) substitution
category combines both previous categories by re-
placing a frame (predicate subgraph) of one of the
premises with one from the other premise.

mantic representation structure.



Original type Symbolic type Prop. Example entailment relation
ARG substitution Plf a §car on the kne.e is a kind of scar
19% P2: a scar is an acquired characteristic
(ARG-SUB) . . L
C: a scar on the knee is an acquired characteristic
o PRED substitution Plf food contains nutrients and energy for living th¥ngs
Substitution (PRED-SUB) 5%  P2: to contain something can mean to store something
C: food stores nutrients and energy for living things
I P1: the formation of diamonds requires intense pressure
Frame substitution : L ) R
(FRAME-SUB) 20% P2: the pressure s intense deep below earth ’s crust
C: the formation of diamonds occurs deep below the crust of the earth
Conditional frame P1: if something is renewable then that something is not a fossil
Inference from Rule insertion/substitution ~ 12%  P2: fuel wood is a renewable resource
(COND-FRAME) C: wood is not a fossil fuel
N P1: solar energy comes from the sun
A&%gjﬁé‘;n 18% P2: solar energy is a kind of energy
Further Specification P3: solar energy is a kind of energy that comes from the sun
or Conjunction Frame conjunction P1: phot_osypthesis stores energy
6%  P2: respiration releases energy
(FRAME-CONYJ) . . e -
C: photosynthesis stores energy and respiration releases energy
Infer Class ARG/PRED P1: rock is a hard material
f generalisation 1%  P2: granite is a hard material
from P
rom Properties (ARG/PRED-GEN) C: granite is a kind of rock
ARG substitution P1: blacktop is made of asphalt concrete
Property Inheritance ~ (Property Inheritance)  0.4% P2: asphalt has a smooth surface
(ARG-SUB-PROP) C: a blacktop has a smooth surface
an optical telescope requires visible light for human to use
Causal Expression Causality (IFT) 0.8% clouds / dusts block visible light
if there is clouds or dusts, then the optical telescope cannot be used
a shelter can be used for living in by raccoons
Example-based Inference Example (EXAMPLE) 0.9% some raccoons live in hollow logs

an example of a shelter is a raccoon living in a hollow log

Table 1: Examples of symbolic inference types, with their corresponding abbreviations provided in parentheses and
used consistently throughout the paper. The EntailmentBank utilised for this task comprises 5,134 instances, with
our annotations covering 84% of the (premises, conclusion) cases. These annotations are planned for public release.

The further specification or conjunction cate-
gory allows for obtaining a conclusion by joining
both premises. It includes (4) ARG insertion and
(5) frame conjunction. In the case of ARG inser-
tion, the conclusion is obtained by connecting an
argument from one of the premises to a frame of
the other. As for frame conjunction/disjunction,
the conclusion is obtained by joining the premises
graphs through a conjunction/disjunction node
(and) or (or).

The inference from rule category from (Dalvi
et al., 2021) encompasses a specific instance of
insertion or substitution, identified as (6) condi-
tional frame insertion/substitution. In this category,
a frame is either inserted or replaced as an argu-
ment of a premise, following a conditional pathway
present in the other premise. This process is illus-
trated in Figure 5.

The inference type infer class from properties
has been re-categorised as (7) ARG or PRED gen-
eralisation, where a new :domain relation frame
is created if both premise graphs differ by a single
predicate/argument term. (8) Property inheritance,
on the other hand, is a special case of ARG sub-

stitution, where one of the premises describes a is
made of relationship between the entity in the other
premise and its replacement.

Finally, (9) Causal Expression and (10) Example-
based Inference categories are defined according
to the key lexical characteristic of the conclusion,
as systematic AMR transformations which could
be applied without rephrasing the underlying ex-
planatory sentences could not be determined. More
details about the annotation procedure are provided
in Appendix A.

Thus far, we have established a connection be-
tween natural and symbolic language inferences
from the perspective of semantic representations
through the AMR symbolic graph. In the next
section, we aim to establish the distributional-
symbolic NLI connection from the point of neural
representation space.

4 Latent Variable NLI Framework

Recent studies revealed that transformer-based lan-
guage models can linearly encode abstract-level
semantic concepts (latent variables, denoted by z)
(Park et al., 2023; Li et al., 2024; Wang et al., 2024;



Jiang et al., 2024). Following prior studies, we
frame gradient-based neural NLI models as condi-
tional latent variable models that can realise quasi-
symbolic inference dynamics. Assuming premises
and conclusions share the same latent space where
the explanatory entailment relation is computed in
a probabilistic fashion, this allows for the fram-
ing of the entailment determination as the prob-
lem of learning a set of conditional probabilities
among the latent variables. Figure 3 depicts an
abstraction of the computational graph of the latent
NLI/explanatory entailment framework.

po(zl2)

(a) Latent NLI model (b) Conditional NLI model

Figure 3: Latent variable NLI framework, where x,
z, and 7 are the observation space, latent space, and
symbolic inference type label, respectively.

Latent variables and relations. We first propose
a set of latent variables based on prior studies of
Zhang et al. (2024a), which revealed that explana-
tory sentence semantics can be decomposed into
semantic role - word content sets (denoted by role-
content) according to Argument Structure Theory
(AST) (Jackendoff, 1992). E.g., the sentence, ‘an-
imals require oxygen for survival’, can be repre-
sented as:

animals @ require @ oxygen & for survival
—_—  —— = —

ARGO

PRED ARG1 ARGM—-PRP

where & represents the composition operation un-
der a compositional-distributional model (Clark
et al., 2008). Each role-content set, such as
ARGO-animals, is encoded as a convex cone in
the latent space. Therefore, we consider each
role-content as a latent variable. The latent rep-
resentation of observed sentence x can be for-
malised as a set of latent variables: z > z(®) =
{(c1,71),...,(ciy7i),...} where <> represent the
deterministic mapping between z and z(*) through
the embedding layer, ¢; € C and r; € R repre-
sent the word content and semantic role at position
i, C and R are the vocabularies of word content
and semantic role category, predefined based on
training corpus. Since an AMR representation is a
particular instance of an AST representation, which

represents the relation between latent variables, by
defining and manipulating the inference patterns
over the AMR representation in the context of in-
ference types, we can provide quasi-symbolic in-
terpretation and control to the latent NLI model. In
the next section, the targeted NLI task supported by
the AMR-grounded inference types is formalised
under a Bayesian inference framework.

Latent Bayesian inference. Given a
(premises, conclusion) explanatory sentence
pair < Ty, Tp,, T >, an inference type m € II
can be associated, if exists a transformation
amr(zyp, ), amr(xzy,) — amr(x.) defined over
the set of transformations II. The NLI pro-
cess can be described as a Bayesian inference:
P(zclwpy, zp,) = P($C‘Z(IC))P(Z(IC)|xPO?:Upl)
where P(2\%¢)|2,,,x,,) approximates the pos-
terior inference via the encoder. Specifically, it
first transform x,,,, x,, into latent representations
z%ro, z%r1. Subsequently, inference behaviour
7 is performed over the set of latent variables
(e.g., substitution over latent variables set). The
latent variables z(*<) are retained for generation
conclusion via decoder P(z.|z). To validate this
inference process, we propose Proposition 1.

Proposition 1: The inference behaviour is ma-
terialised during the posterior inference stage and
can be controlled by the injection of the associated
inference type labels, 11, into the posterior. That is
the conditional inference process:

P($C|xpo7 xm ’ 77)

= P(zc|2")) (20 |2y, 2y, )

The inference type can be injected into the model
at different points (e.g. at the encoder or de-
coder) and can be manipulated over different infer-
ence types to validate Proposition 1, as evaluated
in Section 5.1. Finally, optimising the language
modelling task approximates the latent variable
space Z. This can be formalised as: P(z.) =
Hﬁil P(cilei—1, ..., c1, Z) where ¢; represent the
t-th token.

Latent sentence space. To evaluate the feature
representation capability, we next describe the
methodological framework behind the construction
of the latent sentence-level feature space within
T5 (named TS5 bottleneck). As for the encoding
stage, P(z|z1, z2), we calculate the mean of each
dimension on all token embeddings and feed the
resulting vector into a multi-layer perceptron



to obtain the sentence embedding. As for the
decoding stage, (z.|z), we reconstruct the token
embeddings from a sentence representation with a
linear MLP network and directly feed them into
the cross-attention layers of the decoder: Y =
MultiHead (Y W7, MLP(z)W* MLP(z)W")
where Y is the reconstruction of decoder input
sequence Y = [y1, ..., yx|. Here, we only describe
the optimal setup. We provide a systematic way to
choose the best setup in the Appendix B.

5 Empirical Analysis

The experiment is designed to address three key
questions: Section 5.1: (i) Do symbolic inference
types enhance model training and inference perfor-
mance? Section 5.2: (ii) Can these inference types
be utilised for prescriptive inference control? Sec-
tion 5.3: (iii) Does the incorporation of a sentence
bottleneck contribute to improved feature represen-
tation? All experimental details are provided in
Appendix B.

5.1 Training and Inference Evaluation

Firstly, we evaluate (i) if symbolic inference types
enhance model training and inference performance.
We consider three mechanisms to conditionally in-
ject the symbolic inference types into the latent
space, which are described below, where pl, p2,
and con are the premises and conclusion, respec-
tively, and </s> is a special token for sentence sep-
aration.

i. The inference type as the prefix for the
premises at the Encoder: the inference type is
[type] </s> pl </s> p2 ii. The inference type as
the prefix for the conclusion in the Decoder: </s>
the inference type is [type]. con iii. The inference
type at the end of the conclusion in the Decoder:
</s> con. the inference type is [type]

Training dynamics. We first quantitatively evalu-
ate training performance based on five metrics: test
loss (cross-entropy), perplexity (PPL), BLEURT
(Sellam et al., 2020), BLEU (Papineni et al., 2002),
and cosine similarity against sentenceT5 (Ni et al.,
2021). We choose the T5, Bart (Lewis et al., 2019),
GPT?2 (Radford et al., 2019), our TS5 bottleneck and
Optimus (Li et al., 2020) with 768 latent dimen-
sions as testbed. The performances are measured
from the Entailment testset.

As illustrated in Table 2, all baselines with in-
ference types always have lower test losses and
PPLs, which means the inference type can help the

model training. Furthermore, across all baseline
models, incorporating inference types into the en-
coder consistently results in improved performance
as measured by BLEU, Cosine, and BLEURT met-
rics. This finding suggests that the conditionalisa-
tion on inference types can support the inference
representation, and the inference process has been
performed inside the encoder (Propositionl).

Baseline INJ BLEU Cosine BLEURT Loss| PPL ]
seq2seqLM: encoder-decoder architecture
TS DE 055 0.96 0.30 0.53 1.44
original DP  0.59 0.96 0.34 0.58 1.57
(small) EP  0.65 0.97 0.45 0.52 141
NO 0.54 0.96 0.22 0.69 222
DE 046 0.96 0.23 0.49 1.33

Ori;"nal DP 053 096 025 051 138
(base) EP 061 097 039 045 1.22
NO 057 096 033 061 165

DE 044 094 003 055 149

Bart DP 038 093  -042 048 1.30

(base) EP  0.57 0.96 0.23 0.58 1.57
NO 054 096 017 063 171

DE 060 097 046 040 149

Oﬁgfnal DP 064 097 044 046 158
(large) EP 067 097 050 059 1.0
NO 057 096 031 061 184

DE 001 073  -134 691 102

Flan-TS  DP 001 073  -134 700 154
(large) EP 021 08  -104 130  3.66
NO 020 087  -L14 134 381

DE 060 096 044 068 197

Ori;snal DP 066 096 049 065 191

(3b) EP  0.70 0.97 0.57 0.51 1.66
NO 0.68 0.97 0.55 0.63 1.87
CausalLM: decoder only architecture

GPT2 DE 0.02 0.87 -1.15 0.73 2.07
(large) DP  0.08 0.90 -0.91 0.73 2.07
NO 0.07 0.90 -0.93 0.76 2.06
DE 020 0.88 -1.10 0.63 1.87
G&i[)? DP 0.28 0.91 -0.90 0.60 1.82
NO 0.27 0.90 -0.97 0.68 1.97

seq2seqLM with sentence bottleneck
DE 035 0.91 -0.15 0.84 2.31
bott DP 039 091  -013 086 236

ottleneck

(base) EP 042 0.92 -0.07 1.23 3.42
NO 0.35 0.91 -0.20 1.24 3.45
DE 0.26 0.80 -1.11 0.87 2.38
Optimus DP 0.25 0.79 -1.14 0.85 2.33
(BERT-GPT2) EP  0.09 0.74 -1.17 1.11 3.03
NO 0.07 0.74 -1.20 1.13 3.09

Table 2: Quantitative evaluation on testset, where best
results are highlighted in bold. Specification for ab-
breviation. INJ: ways for injecting the information of
inference types into the model, it includes DE: decoder
end, DP: decoder prefix, EP: encoder prefix, NO: no
inference type. PPL is perplexity, Loss is cross entropy.

In-context learning. Next, we quantitatively
evaluate the symbolic inference types within in-
context learning (ICL) in contemporary large lan-
guage models (LLMs). As illustrated in Table 3,
prompting with inference types can improve the
performance of ICL in both seq2seq and causal
LLMs. Besides, within the context of causal LLMs,



an increase in few shot examples®, improves the
performance.

Baseline INJ Num BLEU Cosine
Seq2seqLLM: encoder-decoder architecture
Yes 10 0.51 0.97 0.39
CoT-T5 (11b) Yes 5 0.51 0.97 0.39
(Kimetal.,2023) Yes 0 050 097 0.36

BLEURT

NO 0 046  0.96 031
Yes 10 049 096 0.40
Yes 5 048 096 0.39
Flan-T5 (x]) Yes 0 052 09 0.39
NO 0 044 095 0.24
Yes 10 051 097 041
Yes 5 053 097 0.43
Flan-T5 (xx1) Yes 0 050 096 0.37

NO 0 0.48 0.96 0.36
CausalLLM: decoder only architecture

Yes 10 0.52 0.96 0.40

Yes 5 0.48 0.96 0.35

GPT-3.5-turbo-0125 Yes 0 046 0.96 031

NO 0 042 096 033
Yes 10 053 097 0.50

Yes 5 052 097 047

GPT-4-0613 Yes 0 0.52 0.97 0.50
NO 0 047 096 0.40

Yes 10 048 096 033

Yes 5 045 096 0.32

llama3-8b-8192 ¢ 0 037 095 022
NO 0 034 095 0.19

Yes 10 054 097 0.54

Yes 5 052 097 0.52

llama3-70b-8192 v 0 051 097 047
NO 0 044 096 0.40

Table 3: ICL evaluation of test cases, where worst re-
sults are highlighted in bold. The prompt is “performing
natural language inference [where the inference type is
type, description], [pl;p2; c|snum- p1, p2, what is the
conclusion?". num is the number of examples. The
description is based on the definition of inference types
in Section 3.

5.2 Quasi-symbolic Inference Evaluation

Secondly, we evaluate (ii) if these inference types
can be utilised for prescriptive inference control.

Qualitative evaluation. We qualitatively eval-
uate the quasi-symbolic inference control on the
generation of conclusions by systematically inter-
vening on the inference type prior to the encoder.
As illustrated in Table 4, we can observe that the as-
sociated linguistic properties of the conclusion can
be controlled consistently with the inference type
modifications, which indicates that the represen-
tation mechanisms can improve inference control
with regard to symbolic/lexico-semantic properties.
For example, when the type is ARG substitution

3We randomly sample the examples with the same infer-

ence type as the current test example from the training set. We
perform ten times and calculate the average for each metric.

(ARG-SUB), the model can generate the blacktop
is made of a smooth surface by replacing the argu-
ment asphalt concrete with smooth surface. The
conclusions are changed to asphalt and blacktop
have the same surface when the inference type is
the conjunction (FRAME-CONJ). More examples
are provided in Table 13.

Quasi-symbolic NLI control

P1: blacktop is made of asphalt concrete
P2: asphalt has a

ARG-SUB: the blacktop is made of

ARG-SUB-PROP: blacktop has a
ARG/PRED-GEN: a blacktop is a kind of asphalt
ARG-INS: asphalt concrete blacktop has a

FRAME-CON: asphalt and blacktop have the same
surface

IFT: if the asphalt has a
blacktop will have a

then the

Table 4: Controllable generation over original T5 (base)
(ARG-SUB: argument substitution, ARG/PRED-GEN:
argument/predicate generalisation. ARG-SUB-PROP:
property inheritance. ARG-INS: argument insertion,
FRAME-CON: frame conjunction, IFT: casual expres-
sion.). The example of the T5 bottleneck is provided in
Table 11.

Quantitative evaluation. Next, we perform a
quantitative evaluation using a large language
model (LLM) evaluator, specifically ChatGPT4o.
For each pair of premises in the EntailmentBank
test set, we apply various inference types to gen-
erate a diverse set of conclusions using the fine-
tuned TS5 (base) model. We then assess the result-
ing (premises, conclusion, inference type) tuples
based on two criteria: (i) whether the generated con-
clusion contradicts the premises, and (ii) whether
the (premises, conclusion) pair is consistent with
the specified inference type. Utilising the prompt
detailed in Table 14, we report the accuracy for
each criterion. As illustrated in Table 5, the T5
(base) model with controlled symbolic inference
types achieves accuracies exceeding 60% for both
evaluation dimensions.

Evaluators
ChatGPT4o0

logicality
67%

alignment
63%

Table 5: Quantitative evaluation via ChatGPT4o.



5.3 Latent Feature Space Evaluation

Finally, we evaluate (iii) whether the incorpora-
tion of feature space (i.e., sentence bottleneck) con-
tributes to improved feature representation.

Explanation-based NLI. We quantitatively eval-
uate the NLI performance of different baselines
on the Entailment testset. We specifically choose
the VAE baselines, including the Transformer VAE
model: Optimus (Li et al., 2020) and Della (Hu
et al., 2022) with two different sentence dimen-
sions (32 and 768), and five LSTM language au-
toencoders with 768 latent dimensions: denoising
AE (Vincent et al. (2008), DAE), 5-VAE (Hig-
gins et al., 2016), adversarial AE (Makhzani et al.
(2015), AAE), label adversarial AE (Rubenstein
et al. (2018), LAAE), and denoising adversarial
autoencoder (Shen et al. (2020), DAAE). In Table
6 (bottom), we can observe that our T5 bottleneck
can outperform all baselines on BLEU, BLEURT,
and cosine similarity from pre-trained sentence T5.

Test: EntailmentBank
Metrics BLEU Cosine BLEURT Loss] PPL|
Optimus(32) 0.07 0.74 -1.20 1.13 2.31
Optimus(768)  0.08 0.74 -1.21 0.82 2.27
DELLA(32) 0.08 0.85 -1.23 1.69 5.41
DELLA(768)  0.09 0.87 -1.09 1.54 4.66
DAE(768) 0.15 0.89 -0.95 1.33 3.78

AAE(768) 0.11 0.88 -0.95 1.35 3.85
LAAE(768) 0.09 0.74 -1.12 1.38 3.97
DAAE(768) 0.07 0.74 -1.20 1.43 4.17
B-VAE(768) 0.07 0.74 -1.20 1.43 4.17
TS bottleneck ~ 0.35 0.91 -0.20 1.24 3.45

Table 6: Comparison of different baselines on Entail-
mentBank testset, TS5 bottleneck has 768 dimensions.

Explanation inference retrieval. We next eval-
uate the sentence embedding using as an as-
sociated explanation retrieval task (explanation-
regeneration - i.e. retrieving the associated ex-
planatory facts relevant to a claim) (Valentino et al.,
2022a). Given a question-and-answer pair, it recon-
structs the entailment tree by searching the expla-
nations from a fact bank (i.e., WorldTree (Jansen
et al., 2018a)) in an iterative fashion using a dense
sentence encoder. In this framework, we can re-
place the dense sentence encoder with the proposed
TS5 bottleneck baseline to evaluate its sentence em-
beddings. We compare the TS5 bottleneck with sen-
tence VAEs: Optimus and five LSTM VAEs, and
evaluate them via mean average precision (MAP).
As illustrated in Table 7, the T5 bottleneck outper-

forms all baselines, indicating that it can deliver a
better representation of explanatory sentences and
entailment relations in a retrieval setting.

depth =1 =2 =3 =4
DAE(768) 3027 3174 30.65 30.74
AAE(768) 29.13 3047 29.33 29.14
LAAE(768) 19.13 2086 1832 18.01
DAAE(768) 13.16 1542 1430 13.97
B-VAE(768) 10.03 10.07 10.05 10.05
Optimus(768)  28.21 29.35 2835 28.27
TS bottleneck(768) 34.47 3528 34.50 34.47

Table 7: Explanatory inference retrieval task where t
represents the depth of entailment tree.

6 Conclusion and Future Work

This study serves as a foundational step in explor-
ing quasi-symbolic inference within distributional
semantic spaces. We establish the connection be-
tween natural and symbolic language inferences
by (1) characterizing quasi-symbolic inference be-
haviours, termed symbolic inference types, based
on the AMR graph. From a neural representation
perspective, we introduce parameter and feature
spaces to bridge distributional and symbolic in-
ferences. Specifically, (2) we model Transformer-
based encoder-decoder NLI systems as latent vari-
able models, using symbolic inference types to
guide latent space dynamics, and (3) explore the
feature space for encoding abstract, high-level fea-
tures. Experimental results reveal that integrating
symbolic inference types enhances training dynam-
ics, inference precision, and explanation retrieval,
suggesting the potential for neuro-symbolic NLI.

Building upon these findings, we hypothesise
that distinct inference types can be represented as
functional subspaces that are either separated or dis-
entangled within the parametric space. During the
training phase, different inference types result in
divergent training trajectories, thereby enhancing
both model training and inference dynamics. Fur-
thermore, by manipulating various inference types
during the inference stage, semantic features are
integrated into specific parametric subspaces corre-
sponding to each inference type, thereby enabling
precise inference control.

In future research, we will examine this hypoth-
esis and investigate the composition and general-
ization of symbolic inference behaviours within
distributional representation spaces to develop an
explainable and controllable NLI model.



Limitations

This study empirically explores quasi-symbolic in-
ference behaviours within distributional semantic
spaces. Our findings indicate that symbolic in-
ference types can enhance model training, facili-
tate inference processes, and enable localised in-
ference control. However, we have not yet pro-
vided a formal explanation for these observations.
We hypothesise that quasi-symbolic inference be-
haviour arises from the segregation of inference
types within the parametric space. This hypothesis
may be linked to the results presented in Ortiz-
Jimenez et al. (2023), which demonstrated that dif-
ferent tasks are disentangled in the visual embed-
ding space of CLIP (Radford et al., 2021). Future
research will address this hypothesis by examining
the geometric properties of the parametric space
with the target of better composition, generalisa-
tion, and interpretation in the neuro-symbolic NLI
domain.

Moreover, while the work focuses on the sym-
bolic control of explanatory inference, complemen-
tary methods need to be employed to deliver more
strict safety guarantees. While we conduct a quan-
titative assessment of the logical consistency of the
deduction process using ChatGPT4o, this evalu-
ation may be unreliable due to the limited profi-
ciency of large language models in logical reason-
ing. It is essential that control and safety mecha-
nisms remain distinct and are implemented through
independent processes.
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A Annotation Details

Annotation procedure. Annotation was per-
formed manually for 5134 entailment triples (two
premises, one conclusion) from the Entailment-
Bank (Dalvi et al., 2021), according to Algorithm
1. Graph subset relations and root matching are re-
laxed for non-argument (: ARG*, op*) edges, mean-
ing relations such as :manner or :time can be ig-
nored for this purpose. Two independent annota-
tors with post-graduate level backgrounds in Com-
putational Linguistics were used in this process,
on a consensus-based annotation scheme where a
first annotator defined the transformations and a
second annotator verified and refined the annota-
tion scheme, in two iterations. The annotation of
the AMR graph is based on an off-the-shelf parser
(Damonte et al., 2017). The descriptions for each
inference type category are as follows:

ARG-SUB (Figure 2): the conclusion is ob-
tained by replacing one argument with another ar-
gument.

PRED-SUB: the conclusion is obtained by re-
placing one verb with another verb.

FRAME-SUB: the conclusion is obtained by
replacing a frame of one of the premises with one
from the other premise.

COND-FRAM (Figure 5): the conclusion is
obtained according to the conditional premise with
keyword “if".

ARG-INS (Figure 4): the conclusion is ob-
tained by connecting an argument from one of the
premises to a frame of the other.

FRAME-CONJ: the conclusion is obtained by
using connectives to connect two premises.

ARG/PRED-GEN (Figure 6): a new :domain
relation frame is created in the conclusion if
both premise graphs differ by a single predi-
cate/argument term.

ARG-SUB-PROP (Figure 7): one of the
premises describes a “is made of ™ relationship be-
tween the entity in the other premise and its re-
placement.

IFT: the conclusion should be a conditional sen-
tence.

EXAMPLE: the conclusion should contain the
keyword “example”.

Unknown (UNK) category. In this work, our
annotation occupies 84% based on the Entailment-
Bank corpus. As for other unknown categories, we
do not further specify them, as they either require
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P1: energy comes from food

P2: healing requires energy

Figure 4: AMR argument insertion (ARG-INS).

P1: inventing paper allows paper to be used

something might increase

P2: if something is allowed to be used then the use of that i

/ N ARGL S v
"~ u2luse-01 ¢
i alallow-01 " ;
\ /

,

i
!

iiincrease-01

Figure 5: AMR conditional frame insertion (COND-
FRAME).

knowledge outside of the scope of the premises or
do not have a consistent symbolic transformation
expression. An additional subtype called premise
copy was included for the cases where the conclu-
sion has the same graph as one of the premises.



P1: rock is a hard material

P2: granite is a hard material

hhard-04

:domain

Figure 6: AMR argument generalisation (ARG-GEN).

P1: blacktop is made of asphalt concrete

b/blacktop

al/asphalt

s2/smooth-04

C: a blacktop has a smooth surface

b/blacktop

s2/smooth-04

Figure 7: AMR argument substitution (property inheri-
tance) (ARG-SUB-PROP).

B Experimental Details

B.1 Dataset

Table 8 describes the statistical information of
the corpus used in the experiment. For experi-
ments: Section 5.1, 5.2, and 5.3, the Entailment-
Bank dataset is split into train 60%, valid 20%,
and test 20% sets. For the explanation inference
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retrieval task in Section 5.3, we follow the same
experimental setup provided online. *

Corpus Num data.  Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65
EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8:  Statistics from explanations datasets.
WorldTree is used in the Explanation Inference Retrieval
task.

B.2 TS5 Bottleneck Architecture

Figure 8 shows the architecture of the TS5 bottle-
neck for learning latent sentence space. It includes
two stages: sentence embedding and decoder con-
nection. The sentence embedding aims to trans-
form token embeddings into a sentence (single)
embedding. Decoder connection aims to connect
the encoder and decoder.

Latent sentence space: P(z|x1,x2). While de-
signing the sentence bottleneck, we compare the
four most frequently used mechanisms to transform
token embeddings into sentence embeddings:

(1) Mean pooling: calculating the mean of
each dimension on all token embeddings and feed-
ing the resulting vector into a multi-layer per-
ceptron to obtain the sentence embedding. (2)
multi-layer perceptron (MLP): applying an MLP
to reduce the dimensionality of token embed-
dings, and the resulting embeddings are con-
catenated to form a single sentence embedding:

concat [MLPl(acl); o MLPT(CBT):|

MLP;(z;) represents the i-th neural network for
input representation of token x;, z is the latent
sentence representation, and 7" is the maximum to-
ken length for a sentence. (3) multi-head attention:
feeding each token embedding into the multi-head
attention and considering the first output embed-
ding as the sentence embedding (Montero et al.,
2021): z = MultiHead (XW7, XWk, XW") [0]
where X = [x1, ..., 27| and W9, W, and W are
the weights for learning ¢, k, v embeddings in self-
attention, respectively. (4) Sentence T5: re-loading
the pre-trained sentence T5 (S-T5, Ni et al. (2021)).

z where

Conditional generation: P(z.|z). Next, we
consider four strategies to inject sentence em-
beddings into the decoder. (1) Cross-attention
input embedding (CA Input): reconstructing
the token embeddings from a sentence repre-
sentation and directly feeding them into the

*https://github.com/ai-systems/hybrid_
autoregressive_inference
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cross-attention layers of the decoder: Y
MultiHead (Y W7, MLP(z)W* MLP(z)W")
where Y is the reconstruction of decoder input
sequence Y = [y1,...,yx]|. (2) Cross-attention
KV embedding (CA KV): instead of recon-
structing the token embeddings, it consists of
directly learning the Key and Value (Hu et al.,,
2022; Li et al., 2020), which is formalised as
Y = MultiHead (YWq, MLP,(z), MLP, (z)),
where MLP; and MLP, are neural layers for
learning k£ v embeddings. (3) Non-cross-attention
input connection (NCA Input): reconstructing
the token embeddings and element-wisely adding
them with the input embeddings of the decoder
(Fang et al.,, 2021). (4) Non-cross-attention
output connection (NCA Output): adding the
reconstructed token embeddings to the output
embedding of the decoder.

Train: architecture

CA CA NCA NCA

Decoder Connection Input KV Input Output
Pooling 141 144 186 242
Sentence MLP 1.71  1.94 209 2.62
Embedding  MHA 151 224 231 3.03
S-T5 1.24 142 1.81 222

Table 9: Comparison of different setups on test loss
via cross-entropy (CA: cross-attention, NCA: non-cross-
attention), bottom: comparison of different baselines on
EntailmentBank testset.

B.3 Implementation Details

Hyper-parameters. 1. Size of Sentence Repre-
sentation: in this work, we consider 768 as the size
of the sentence embedding. Usually, the perfor-
mance of the model improves as the size increases.
2. Multi-head Attention (MHA): in the experiment,
MHA consists of 8 layers, each layer containing 12
heads. The dimensions of Query, Key, and Value
are 64 in each head. The dimension of token em-
bedding is 768. Training hyperparameters are: 3.
For all models, the max epoch: 40, learning rate:
5e-5. During fine-tuning the TS5 bottleneck, we
first freeze the pre-trained parameters in the first
epoch and fine-tune all parameters for the remain-
ing epochs. 4. All models are trained on a single
A6000 GPU device.

Baselines. In the experiment, we implement five
LSTM-based autoencoders, including denoising
AE (Vincent et al. (2008), DAE), 5-VAE (Hig-
gins et al., 2016), adversarial AE (Makhzani et al.
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(2015), AAE), label adversarial AE (Rubenstein
et al. (2018), LAAE), and denoising adversarial
autoencoder (Shen et al. (2020), DAAE). Their im-
plementation relies on the open-source codebase
available at the URL °. As for transformer-based
VAEs, we implement Optimus (Li et al., 2020)°
and Della (Hu et al., 2022)”. All baseline models
undergo training and evaluation with the hyper-
parameters provided by their respective sources.
A latent dimension of 768 is specified to ensure a
uniform and equitable comparative analysis.

Metrics. To evaluate the generated conclusions
against the reference conclusions, we employ
BLEU scores for 1- to 3-gram overlaps and report
the average score. Additionally, to assess seman-
tic similarity, we calculate the cosine similarity
between the generated and reference conclusions
by encoding both using the pretrained Sentence-T5
model® and computing the cosine similarity of their
resulting embeddings.

C Complementary Results

Remove T5 BLEU BLEURT Cosine Loss | PPL |
FRAME- small 0.50 0.19 095 095 258
SUB  pase 060 033 096 072 195
small 0.54 027 095 0.82 222
ARG-INS base 0.63 046 097 0.64 1.73
FRAME- small 0.53 026 096 0.84 228
CONJ  pase 060 035 096 065 1.76
COND- small 0.55 025 096 0.88 239
FRAME pase 059 036 096 069 1.87
Ung Small 055023 095 053 144
base 0.62 0.40 096 0.58 1.57

No small 054 022 096 0.69 222
No  base 057 033 096 0.61 1.65

Table 10: Ablation study over inference type (No: no
inference types are removed).

Ablation studies. We remove the inference types
from the dataset and evaluate the TS5 model per-
formance using the same metrics. In this case, we
can compare the model performance trained with
or without that inference-type. From Table 10, we
can observe that the baselines (T5 small and base)
achieve higher BLEU and BLEURT scores with-
out the data with ARG-INS, COND-FRAME, and

5https://github.com/shentianxiao/
text-autoencoders

®https://github.com/ChunyuanLI/Optimus

7https://github.com/OpenVLG/DELLA

8https://huggingface.co/sentence-transformers/
sentence-t5-base
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TYPE: ARG/PRED-GEN

P1: blacktop is made of asphalt
P2: asphalt has smooth surface
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Stage 1: sentence embedding

Stage 2: decoder connection

Figure 8: The architectural configuration of T5 bottleneck, it consists of two stages: sentence embedding and

decoder connection.

UNK inference type, respectively. This result indi-
cates that the T5 cannot generalize well over those
inference types. Also, removing the UNK infer-
ence type from data can achieve lower loss and
PPL, which indicates that it has a negative impact
on model training.

More controllable inference examples. We pro-
vide more controlled examples based on both the
Original TS and TS5 bottleneck in Table 11, 12, and
13. All examples reveal that the inference type
can provide quasi-symbolic inference control to
language models.

Quasi-symbolic NLI control

Pl: a contains seeds
P2: fruit contains seeds

Original T5:
ARG-INS: a fruit in a
FRAME-CONIJ: a
seeds

FRAME-SUB: fruit is a kind of

TS5 bottleneck:
ARG-INS: fruit is a part of

contains seeds
and fruit both contains

that contains

seeds
FRAME-CONI: a fruit contains seeds
FRAME-SUB: a is a kind of plant

Table 11: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).
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Quasi-symbolic NLI control

P1: eating something has a negative impact on

that something

P2: some animals eat cacti

ARG-INS: some animals have a negative impact on
cacti by eating cacti

PRED-SUB: some animals may have a negative
impact on cacti

FRAME-SUB: eating cacti has a negative impact on
that cacti

ARG-INS: some animals have a negative impact on
cacti by eating cacti

PRED-SUB: animals have a negative impact on cacti
FRAME-SUB: eating cacti has a negative impact on
that cacti

Table 12: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).



Premises

Inference Type

Original TS

P1: a pumpkin contains seeds ARG-INS
P2: fruit contains seeds
IFT

EXAMPLE

ARG/PRED-GEN

ARG-SUB
UNK

FRAME-SUB

FRAME-CONJ

a fruit in a pumpkin contains seeds

a pumpkin and fruit both contain seeds

if a pumpkin contains fruit then the fruit may contain seeds
fruit is an example of pumpkins being sown

a pumpkin is a kind of fruit

fruit can contain pumpkin seeds
a pumpkin can contain seeds
fruit is a kind of pumpkin

P1: sunlight is a kind of solar en- ARG-INS
ergy

P2: water and sunlight are re- FRAME-CONIJ

solar energy is a kind of resource for plants that uses water

water and sunlight are resources for plants and are kinds of solar

sources for plants energy
UNK the resources for plants include water and solar energy
ARG-SUB water and solar energy are resources for plants

P1: to move something can mean ~ARG-SUB flowing can mean to transfer energy

to transfer something
P2: flowing is akind of movement  INF
for energy

FRAME-CONJ

ARG-INS

ARG/PRED-GEN

if something flows, then that energy will flow

moving can transfer energy and mean flowing
flowing can be a kind of transfer of energy to another entity

transferring energy with flowing can be seen as transferring energy

P1: if a pot is exposed to a stove ~ COND-FRAME
then that pot may become hot
P2: the pot is exposed to a stove =~ EXAMPLE

the pot will become hot

an example of hot pot is a pot exposed to a stove

P1: eating something has a nega- FRAME-SUB

tive impact on that something

eating cacti has a negative impact on that cacti

P2: some animals eat cacti PRED-SUB some animals may have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by eating cacti
EXAMPLE cooking cacti is an example of a negative impact on a cactus
INF if a cactus has a negative impact on an animal, that cactus could

be devoured

P1: seeing requires light ARG-SUB reading requires light

P2: reading requires seeing ARG-INS light is a kind of requirement for reading
INF if light is moving then reading may be taken
EXAMPLE a light bulb will be used for reading
UNK light will help you read

Premises

Inference Type

TS bottleneck

P1: a pumpkin contains seeds ARG-INS fruit is part of a pumpkin that contains seeds
P2: fruit contains seeds FRAME-CONJ a fruit contains seeds
FRAME-SUB a pumpkin is a kind of plant
P1: sunlight is a kind of solar energy ARG-INS water is a kind of resource that is used by plants
for growth
P2: water and sunlight are resources for plants FRAME-CONJ plants and water are resources that require water
and energy
ARG-SUB plants use water and sunlight to produce energy
P1: to move something can mean to transfer some- ARG-SUB flowing can mean to transfer energy
thing
P2: flowing is a kind of movement for energy INF if something flows, then that energy will flow
FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of something

ARG/PRED-GEN

transferring energy with flowing can be seen as
transferring energy

P1: if a pot is exposed to a stove then that pot may
become hot
P2: the pot is exposed to a stove

COND-FRAME

ARG/PRED-GEN

the pot may become hot

the pot may be a source of heat

P1: eating something has a negative impact on ~FRAME-SUB eating cacti has a negative impact on that cacti
that something
P2: some animals eat cacti PRED-SUB animals have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by
eating cacti
P1: seeing requires light ARG-SUB reading requires light
P2: reading requires seeing FRAME-CONIJ reading and feeling can both be used
INF if something is visible then that something will be

seen

Table 13: controllable NLI via inference type (Top: original TS5, bottom: TS5 bottleneck).
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Algorithm 1 Annotation procedure

—_
— O

12:

25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

43:
44
45:
46:
47:

R e A A R ey

Find premise P, most similar to the conclusion C, P; being the other premise.
G.zc <+ AMR graphof P, P;, C, respectively.

—————————— common ARG-SUB, PRED-SUB - - - - - - - - - - oo oo m o e oo o

if G, = G. or Gz = G then
type = PREM-COPY # Comment: no reasoning happen.
else if P, and C differ by one word w then # Comment: common ARG(PRED)-SUB.
if w is a verb then
type = PRED-SUB

else

type = ARG-SUB

end if
else

-------- COND-FRAME, FRAME-SUB, ARG-SUB-PROP - - - - - = === = - - - -

Get AMR graphs G1, G, G, for Py, P> and C respectively. P, — G.
if 3:ARG*(x,a) € C and a € P; then
if 3 :condition(root(Gy), root(Gz)) then
# Comment: see Figure 5, two root nodes are connected by :condition edge
type = COND-FRAME
else if root(a) is a noun then
if root(Gz) = “make-01” and 3 :ARG*(root(G3z), a) then
# Comment: “make” as a trigger to classify ARG-SUB and property inheritance.

type = ARG-SUB-PROP

else

type = ARG-SU B # ARG-SUB that was not caught by the simpler rule on line 10,

due to Px differing from C by more than a single word
end if

else

type = FRAME-SUB

end if

—————————— Further-specification and Conjunction - - - - = - == == == - == == == - - - -

else if G, C G.and Gz C G¢ then
type = FRAME-CONJ
else if Jz,y :domain(root(G;), z) and :domain(root(Gz, y) and :op*(“and”, z) € G, and
:op*(“and”, y) € G, then # Comment: using connectives ‘and’ to connect two premises
type = FRAME-CONJ
else if G, C G then
d+ G.— Gy
if root(d) is a noun then
type = ARG-IN S # Comment: inserting an argument.

else

type = FRAME-IN S # Comment: inserting a phase (also annotated as ARG-INS).

end if

——————————— ARG/PRED-GEN and Others - - - - - - === - -----c-momoooomon

else if 3 :domain(root(G.), y) and (root(G.) € Gy andy € Gz) or (root(G.) € Gz andy € Gy)

then

type = ARG/PRED-GEN

else

type=UNK

end if
end if
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Prompts for automatic evaluation

Logicality:

You are a scoring expert in natural language reasoning. Given two premises and a conclusion, your goal is to evaluate
whether the conclusion violates the premises. During your inference process, please only consider the information from
the premises.

you can directly give your score (0 or 1) based on the following criteria:

0: the conclusion violates the premises.

1: the conclusion doesn’t violate the premises.

The output format is just the score. You don’t need to analyse the reasoning process.

Alignment:
You are a scoring expert. Given two premises, a conclusion, and an inference type, your goal is to evaluate whether the
(premises, conclusion) pair is aligned with the inference type.

The following is the description of 10 inference types:

1. ARG-SUB: the conclusion is obtained by replacing one argument with another argument.

2. PRED-SUB: the conclusion is obtained by replacing one verb with another verb.

3. FRAME-SUB: the conclusion is obtained by replacing a frame of one of the premises with one from the other
premise.

4. COND-FRAM: the conclusion is obtained according to the conditional premise with keyword “if”.

5. ARG-INS: the conclusion is obtained by connecting an argument from one of the premises to a frame of the other.
6. FRAME-CONI: the conclusion is obtained by using connectives to connect two premises.

7. ARG/PRED-GEN: a new “:domain” relation frame is created in the conclusion if both premise graphs differ by a
single predicate/argument term.

8. ARG-SUB-PROP: one of the premises describes a “is made of” relationship between the entity in the other premise
and its replacement.

9. IFT: the conclusion should be a conditional sentence.

10. EXAMPLE: the conclusion should contain the keyword “example”.

When evaluating, some premises might not be able to deduce more than one conclusions. You can ignore
those cases.

Finally, you can directly give your score (0 or 1) based on the following criteria:
0: the (premises, conclusion) pair is not aligned with the inference type.
1: the (premises, conclusion) pair is aligned with the inference type.

The output format is just the score. You don’t need to analyse the reasoning process.

Table 14: Empirically designed prompt for automatically evaluating the controllability in Section 5.2.
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