
Guiding Explanation-based NLI through
Symbolic Inference Types

Anonymous ACL submission

Abstract

In this work, we investigate the localised, quasi-001
symbolic inference behaviours in distribu-002
tional representation spaces by focusing on the003
Explanation-based Natural Language Inference004
(NLI), exemplified by the syllogistic-deductive005
NLI, where two explanations (premises) are006
provided to derive a single conclusion. We007
first establish the connection between natural008
language and symbolic inferences by character-009
ising quasi-symbolic NLI behaviours, named010
symbolic inference types. Next, we establish011
the theoretical connection between distribu-012
tional and symbolic inferences by formalising013
the Transformer encoder-decoder NLI model014
as a latent variable model. We provide exten-015
sive experiments to reveal that the symbolic in-016
ference types can enhance model training and017
inference dynamics, and deliver localised, sym-018
bolic inference control. Based on these find-019
ings, we conjecture the different inference be-020
haviours are encoded as functionally separated021
subspaces in latent parametric space, as the fu-022
ture direction to probe the composition and gen-023
eralisation of symbolic inference behaviours in024
distributional representation spaces.025

1 Introduction026

Explanatory sentences (Jansen et al., 2018b), such027

as animal is a kind of living thing, can encode028

hierarchical, taxonomic, and causal relations be-029

tween concepts (Gardenfors and Zenker, 2015). By030

understanding and reasoning over these concepts031

expressed by explanations, humans can make in-032

tricate decisions, which is significant in scientific,033

cognitive, and AI domains. In this work, we cen-034

tre on the Explanation-based Natural Language035

Inference (NLI) task, exemplified by syllogistic-036

deductive NLI, where two explanations (premises)037

are provided to derive a single conclusion. Within038

this task, a central challenge involves achieving039

localised and (quasi-)symbolic inference behaviour.040

E.g., given the two premises: milk is a kind of041

ARG
substitution

Frame
conjunction

PRED 
substitution

Conditional
Frame

ARG
insertion...

neural NLI model

Premises
P1: milk is a kind of liquid
P2: liquid can flow

+
Inference types

T1: ARG-substitution

T2: Frame conjunction

Conclusion

C1: milk can flow

C2: milk is a kind of
liquid and can flow

Inference types as parametric subspaces

Figure 1: Conceptual visualisation for the proposed
Quasi-symbolic NLI Representation approach. Infer-
ence types can be encoded as functional subspaces,
which are separated or disentangled in parametric space.
Thus, by manipulating the inference types, we can de-
liver localised, symbolic inference control.

liquid and liquid can flow, one may derive the con- 042

clusion milk can flow by localising can flow and 043

substituting the concept liquid with milk. 044

A key question then arises: How can we train 045

current Transformer-based NLI models to learn and 046

generalise this quasi-symbolic behaviour in the dis- 047

tributional representation space? Investigating this 048

question allows us to shorten the gap between deep 049

latent semantics and formal linguistic representa- 050

tions (Gildea and Jurafsky, 2000; Banarescu et al., 051

2013), integrating the flexibility of distributional- 052

neural models with the properties of linguistically 053

grounded representations, facilitating both inter- 054

pretability and generative control. 055

Recent studies have demonstrated that the Ar- 056

gument Structure Theory (AST) representation 057

(Jackendoff, 1992) from explanations can be ef- 058

fectively represented, localised, and disentangled 059

in the latent space of Transformer-based models 060

(Zhang et al., 2024a,c). A particular instance of 061

an AST representation is the Abstract Meaning 062

Representation (AMR) (Banarescu et al., 2013), 063

which represents the relations between semantic 064

variables, allowing us to first establish the con- 065
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nection between natural and symbolic language066

inferences. Specifically, we leverage the AMR to067

systematically characterise quasi-symbolic infer-068

ence behaviours, named symbolic inference types,069

grounded on AMR symbolic graphs. Using the070

explanation-based NLI dataset (EntailmentBank,071

Dalvi et al. (2021)), we identify ten categories of072

symbolic transformations and provide annotations073

for 5,134 premise-conclusion pairs. Illustrative ex-074

amples are presented in Section 3 and Table 1.075

Next, we aim to establish the theoretical con-076

nection between distributional and symbolic infer-077

ences from the perspective of neural representation078

space (see Section 4). An ideal neuro-symbolic079

NLI model should demonstrate two core represen-080

tational capabilities: (i) the capacity to encode and081

utilise inference rules and (ii) the ability to extract082

semantic features.083

As for the former, we formalise the Transformer-084

based encoder-decoder NLI architecture (e.g., T5)085

as a latent variable NLI framework, in which the086

symbolic inference types are injected to guide the087

dynamics of symbolic inference behaviours within088

the latent parametric space. With respect to the089

latter, we introduce a feature space (i.e., sentence090

bottleneck) in the middle of the latent variable NLI091

architecture. Ideally, this low-dimensional feature092

space encodes sufficiently abstract, high-level se-093

mantic representations during inference.094

We provide extensive experiments to evaluate095

the training and inference dynamics (Section 5.1),096

localised inference control (Section 5.2), and fea-097

ture representation with explanation inference re-098

trieval task (Section 5.3). Experimental results re-099

veal that the symbolic inference type can assist100

model training, inference, and deliver localised in-101

ference control. Based on these observations, we102

conjecture that in Transformers, different inference103

behaviours are encoded as functional subspaces104

which are separated or disentangled in the latent105

parametric space.106

In summary, this work provides a complete ini-107

tial step in investigating the quasi-symbolic infer-108

ence over distributional semantic space, with the109

following contributions: (1) We first establish the110

connection between natural and symbolic language111

inferences from the perspective of linguistics by112

systematically characterising quasi-symbolic infer-113

ence behaviours, named symbolic inference types,114

grounded on the AMR graph. (2) We establish the115

distributional-symbolic connection from the per-116

spective of neural representation space: (3) We 117

frame the Transformer-based encoder-decoder NLI 118

model as a latent variable model where the dy- 119

namics of inference behaviours are guided via our 120

symbolic inference types in the latent space. (4) We 121

investigate the latent space for encoding abstract, 122

high-level features during inference. Experimental 123

results showed that the injected symbolic inference 124

type can improve model training dynamics, infer- 125

ence, and localisation. Based on those findings, 126

we conjecture that different inference types are en- 127

coded as functional subspaces which are separated 128

or disentangled in the parametric space, as a future 129

direction to probe the composition and generali- 130

sation of symbolic inference behaviours in distri- 131

butional representation spaces. The experimental 132

pipelines are released1. 133

2 Related Work 134

In this section, we review the related work around 135

two topics: neuro-symbolic representation and la- 136

tent variable model and control, to highlight the 137

current research limitation and elucidate the moti- 138

vation underlying our work. 139

Neuro-symbolic representation. A longstand- 140

ing goal in NLP is to blend the representational 141

strengths of neural networks with the interpretabil- 142

ity of symbolic systems to build more robust NLI 143

models. Current methods usually inject symbolic 144

behaviour through explicit symbolic representa- 145

tions, including graph (Khashabi et al., 2018; Khot 146

et al., 2017; Jansen et al., 2017; Kalouli et al., 147

2020; Thayaparan et al., 2021), linear program- 148

ming (Valentino et al., 2022b; Thayaparan et al., 149

2024), adopting iterative methods, using sparse en- 150

coding mechanisms (Valentino et al., 2020; Lin 151

et al., 2020), synthetic natural language expres- 152

sion (Clark et al., 2020; Yanaka et al., 2021; Fu 153

and Frank, 2024; Weir et al., 2024), symbolic- 154

refined LLMs (Olausson et al., 2023; Quan et al., 155

2024), etc. Those studies ignore the underlying 156

neuro-symbolic behaviour in neural representation 157

space. From the Explainable AI domain, many 158

studies have shown that neural networks can en- 159

code sparse neural-symbolic concepts without ex- 160

plicit symbolic injection across areas like image 161

embedding (Ren et al., 2022; Deng et al., 2021; Li 162

and Zhang, 2023), word embedding (Ethayarajh 163

et al., 2018; Allen et al., 2019; Ri et al., 2023), 164

1https://anonymous.4open.science/r/Inference_
type-5E07/
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contextual embedding (Gurnee et al., 2023; Nanda165

et al., 2023; Li et al., 2024), and LLM interpre-166

tation (Park et al., 2024; Templeton et al., 2024).167

To address this research gap, we draw on neuro-168

symbolic NLI objectives within distributional neu-169

ral models, employing AMR-grounded inference170

types to integrate distributional and symbolic forms171

of inference.172

Latent variable models and control. Latent173

variable models, such as VAE (Kingma and174

Welling, 2013), have shown the capability of sym-175

bolic representation, control, and interpretation176

over the distributional space, which are widely177

deployed in the NLP domain, such as disentan-178

gled representation learning (Zhang et al., 2024a,c),179

style-transfer (Liu et al., 2023; Gu et al., 2023;180

Zhang et al., 2024b), etc. Thus, we establish the181

connection between distributional and symbolic in-182

ferences by formalising the neural NLI models as183

latent variable models where the symbolic infer-184

ence type label can guide the dynamics of latent185

variables in parametric space. This guidance has186

been widely investigated to improve training and187

inference dynamics, such as Conditional VAE (Car-188

valho et al., 2023), Diffusion (Dhariwal and Nichol,189

2021; Ho and Salimans, 2022), normalising flow190

(Rombach et al., 2020) etc.191

In the next section, we start by defining the sym-192

bolic inference types for semantically bridging the193

natural language and symbolic inferences.194

3 Defining Symbolic Inference Types195

Valentino et al. (2021) has demonstrated that step-196

wise explanation-based NLI cannot be directly197

framed as pure logical reasoning. Explanatory198

chains, while looking plausible at first inspection,199

commonly have subtler incompleteness and consis-200

tency problems from a logical point of view. Mean-201

while, explanatory chains corresponding to defin-202

able inference patterns and symbolic operations203

can be localised over the sentence structure. Moti-204

vated by this middle ground between logical repre-205

sentations and lexico-semantic inference patterns,206

we introduce granular inference types based on ex-207

planatory sentences, using AMR to define the sym-208

bolic operations involved in step-wise inference,209

linking transformations from premises to conclu-210

sions 2. Table 1 describes the AMR-grounded infer-211

2Please note that AMR is not used as a representation
mechanism in the proposed architecture, but only to precisely
ground these symbolic operations within a well-defined se-

ence types and examples from the EntailmentBank 212

corpus. Next, we define each lexico-semantic infer- 213

ence type and the corresponding symbolic forms. 214

c/characteristic-02

s/scar
:ARG1

a/acquire-01

:ARG1-of

k/kind 
:mod

:domain

:location

:ARG1

:ARG1-of

:location

P1: a scar on the knee is a kind of scar

P2: a scar is an acquired characteristic

C: a scar on the knee is an acquired characteristic

c/characteristic-02

a/acquire-01

s/scar k/knee 

k2/knee s2/scar

s/scar

Figure 2: AMR argument substitution: the inference
behaviour is defined as subgraph substitution.

215

The substitution category refers to obtaining a 216

conclusion by replacing a predicate/argument term 217

from one premise with a predicate/argument term 218

from the other premise. Possible variations of this 219

category include (1) argument (ARG) substitution, 220

(2) predicate (PRED) substitution, and (3) frame 221

(PRED+ARG) substitution. In this category, one 222

premise is used to connect two terms which are 223

usually connected by is a kind of, is a source of, 224

etc. Conceptualising the AMR representation as 225

a graph, this can be symbolically represented as a 226

subgraph substitution operation over the premise 227

graphs, as illustrated in Figure 2. The PRED sub- 228

stitution category works in a similar manner, but 229

replacing a predicate term. The two predicates are 230

usually linked by the following patterns: “v1 is a 231

kind of v2”, “to v1 something means to v2 some- 232

thing”, etc. The frame (PRED+ARG) substitution 233

category combines both previous categories by re- 234

placing a frame (predicate subgraph) of one of the 235

premises with one from the other premise. 236

mantic representation structure.
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Original type Symbolic type Prop. Example entailment relation

Substitution

ARG substitution
(ARG-SUB) 19%

P1: a scar on the knee is a kind of scar
P2: a scar is an acquired characteristic
C: a scar on the knee is an acquired characteristic

PRED substitution
(PRED-SUB) 5%

P1: food contains nutrients and energy for living things
P2: to contain something can mean to store something
C: food stores nutrients and energy for living things

Frame substitution
(FRAME-SUB) 20%

P1: the formation of diamonds requires intense pressure
P2: the pressure is intense deep below earth ’s crust
C: the formation of diamonds occurs deep below the crust of the earth

Inference from Rule
Conditional frame

insertion/substitution
(COND-FRAME)

12%
P1: if something is renewable then that something is not a fossil
P2: fuel wood is a renewable resource
C: wood is not a fossil fuel

Further Specification
or Conjunction

ARG insertion
(ARG-INS) 18%

P1: solar energy comes from the sun
P2: solar energy is a kind of energy
P3: solar energy is a kind of energy that comes from the sun

Frame conjunction
(FRAME-CONJ) 6%

P1: photosynthesis stores energy
P2: respiration releases energy
C: photosynthesis stores energy and respiration releases energy

Infer Class
from Properties

ARG/PRED
generalisation

(ARG/PRED-GEN)
1%

P1: rock is a hard material
P2: granite is a hard material
C: granite is a kind of rock

Property Inheritance
ARG substitution

(Property Inheritance)
(ARG-SUB-PROP)

0.4%
P1: blacktop is made of asphalt concrete
P2: asphalt has a smooth surface
C: a blacktop has a smooth surface

Causal Expression Causality (IFT) 0.8%
an optical telescope requires visible light for human to use
clouds / dusts block visible light
if there is clouds or dusts, then the optical telescope cannot be used

Example-based Inference Example (EXAMPLE) 0.9%
a shelter can be used for living in by raccoons
some raccoons live in hollow logs
an example of a shelter is a raccoon living in a hollow log

Table 1: Examples of symbolic inference types, with their corresponding abbreviations provided in parentheses and
used consistently throughout the paper. The EntailmentBank utilised for this task comprises 5,134 instances, with
our annotations covering 84% of the (premises, conclusion) cases. These annotations are planned for public release.

The further specification or conjunction cate-237

gory allows for obtaining a conclusion by joining238

both premises. It includes (4) ARG insertion and239

(5) frame conjunction. In the case of ARG inser-240

tion, the conclusion is obtained by connecting an241

argument from one of the premises to a frame of242

the other. As for frame conjunction/disjunction,243

the conclusion is obtained by joining the premises244

graphs through a conjunction/disjunction node245

(and) or (or).246

The inference from rule category from (Dalvi247

et al., 2021) encompasses a specific instance of248

insertion or substitution, identified as (6) condi-249

tional frame insertion/substitution. In this category,250

a frame is either inserted or replaced as an argu-251

ment of a premise, following a conditional pathway252

present in the other premise. This process is illus-253

trated in Figure 5.254

The inference type infer class from properties255

has been re-categorised as (7) ARG or PRED gen-256

eralisation, where a new :domain relation frame257

is created if both premise graphs differ by a single258

predicate/argument term. (8) Property inheritance,259

on the other hand, is a special case of ARG sub-260

stitution, where one of the premises describes a is 261

made of relationship between the entity in the other 262

premise and its replacement. 263

Finally, (9) Causal Expression and (10) Example- 264

based Inference categories are defined according 265

to the key lexical characteristic of the conclusion, 266

as systematic AMR transformations which could 267

be applied without rephrasing the underlying ex- 268

planatory sentences could not be determined. More 269

details about the annotation procedure are provided 270

in Appendix A. 271

Thus far, we have established a connection be- 272

tween natural and symbolic language inferences 273

from the perspective of semantic representations 274

through the AMR symbolic graph. In the next 275

section, we aim to establish the distributional- 276

symbolic NLI connection from the point of neural 277

representation space. 278

4 Latent Variable NLI Framework 279

Recent studies revealed that transformer-based lan- 280

guage models can linearly encode abstract-level 281

semantic concepts (latent variables, denoted by z) 282

(Park et al., 2023; Li et al., 2024; Wang et al., 2024; 283
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Jiang et al., 2024). Following prior studies, we284

frame gradient-based neural NLI models as condi-285

tional latent variable models that can realise quasi-286

symbolic inference dynamics. Assuming premises287

and conclusions share the same latent space where288

the explanatory entailment relation is computed in289

a probabilistic fashion, this allows for the fram-290

ing of the entailment determination as the prob-291

lem of learning a set of conditional probabilities292

among the latent variables. Figure 3 depicts an293

abstraction of the computational graph of the latent294

NLI/explanatory entailment framework.

z

x

pθ(x|z)

(a) Latent NLI model

πz

x

pθ(z|π)p
θ (x|z, π

)

(b) Conditional NLI model

Figure 3: Latent variable NLI framework, where x,
z, and π are the observation space, latent space, and
symbolic inference type label, respectively.

295

Latent variables and relations. We first propose
a set of latent variables based on prior studies of
Zhang et al. (2024a), which revealed that explana-
tory sentence semantics can be decomposed into
semantic role - word content sets (denoted by role-
content) according to Argument Structure Theory
(AST) (Jackendoff, 1992). E.g., the sentence, ‘an-
imals require oxygen for survival’, can be repre-
sented as:

animals︸ ︷︷ ︸
ARG0

⊕ require︸ ︷︷ ︸
PRED

⊕ oxygen︸ ︷︷ ︸
ARG1

⊕ for survival︸ ︷︷ ︸
ARGM−PRP

where ⊕ represents the composition operation un-296

der a compositional-distributional model (Clark297

et al., 2008). Each role-content set, such as298

ARG0-animals, is encoded as a convex cone in299

the latent space. Therefore, we consider each300

role-content as a latent variable. The latent rep-301

resentation of observed sentence x can be for-302

malised as a set of latent variables: x ↔ z(x) =303

{(c1, r1), . . . , (ci, ri), . . . } where↔ represent the304

deterministic mapping between x and z(x) through305

the embedding layer, ci ∈ C and ri ∈ R repre-306

sent the word content and semantic role at position307

i, C and R are the vocabularies of word content308

and semantic role category, predefined based on309

training corpus. Since an AMR representation is a310

particular instance of an AST representation, which311

represents the relation between latent variables, by 312

defining and manipulating the inference patterns 313

over the AMR representation in the context of in- 314

ference types, we can provide quasi-symbolic in- 315

terpretation and control to the latent NLI model. In 316

the next section, the targeted NLI task supported by 317

the AMR-grounded inference types is formalised 318

under a Bayesian inference framework. 319

Latent Bayesian inference. Given a 320

(premises, conclusion) explanatory sentence 321

pair < xp0 , xp1 , xc >, an inference type π ∈ Π 322

can be associated, if exists a transformation 323

amr(xp0), amr(xp1) → amr(xc) defined over 324

the set of transformations Π. The NLI pro- 325

cess can be described as a Bayesian inference: 326

P (xc|xp0 , xp1) = P (xc|z(xc))P (z(xc)|xp0 , xp1) 327

where P (z(xc)|xp0 , xp1) approximates the pos- 328

terior inference via the encoder. Specifically, it 329

first transform xp0 , xp1 into latent representations 330

zxp0 , zxp1 . Subsequently, inference behaviour 331

π is performed over the set of latent variables 332

(e.g., substitution over latent variables set). The 333

latent variables z(xc) are retained for generation 334

conclusion via decoder P (xc|z). To validate this 335

inference process, we propose Proposition 1. 336

Proposition 1: The inference behaviour is ma- 337

terialised during the posterior inference stage and 338

can be controlled by the injection of the associated 339

inference type labels, Π, into the posterior. That is 340

the conditional inference process: 341

P (xc|xp0 , xp1 , π)
= P (xc|z(xc))P (z(xc)|xp0 , xp1 , π)

342

The inference type can be injected into the model 343

at different points (e.g. at the encoder or de- 344

coder) and can be manipulated over different infer- 345

ence types to validate Proposition 1, as evaluated 346

in Section 5.1. Finally, optimising the language 347

modelling task approximates the latent variable 348

space Z. This can be formalised as: P (xc) = 349∏N
i=1 P (ci|ci−1, . . . , c1, Z) where ci represent the 350

i-th token. 351

Latent sentence space. To evaluate the feature 352

representation capability, we next describe the 353

methodological framework behind the construction 354

of the latent sentence-level feature space within 355

T5 (named T5 bottleneck). As for the encoding 356

stage, P (z|x1, x2), we calculate the mean of each 357

dimension on all token embeddings and feed the 358

resulting vector into a multi-layer perceptron 359
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to obtain the sentence embedding. As for the360

decoding stage, (xc|z), we reconstruct the token361

embeddings from a sentence representation with a362

linear MLP network and directly feed them into363

the cross-attention layers of the decoder: Ŷ =364

MultiHead
(
YW q,MLP(z)W k,MLP(z)W v

)
365

where Ŷ is the reconstruction of decoder input366

sequence Y = [y1, ..., yK ]. Here, we only describe367

the optimal setup. We provide a systematic way to368

choose the best setup in the Appendix B.369

5 Empirical Analysis370

The experiment is designed to address three key371

questions: Section 5.1: (i) Do symbolic inference372

types enhance model training and inference perfor-373

mance? Section 5.2: (ii) Can these inference types374

be utilised for prescriptive inference control? Sec-375

tion 5.3: (iii) Does the incorporation of a sentence376

bottleneck contribute to improved feature represen-377

tation? All experimental details are provided in378

Appendix B.379

5.1 Training and Inference Evaluation380

Firstly, we evaluate (i) if symbolic inference types381

enhance model training and inference performance.382

We consider three mechanisms to conditionally in-383

ject the symbolic inference types into the latent384

space, which are described below, where p1, p2,385

and con are the premises and conclusion, respec-386

tively, and </s> is a special token for sentence sep-387

aration.388

i. The inference type as the prefix for the389

premises at the Encoder: the inference type is390

[type] </s> p1 </s> p2 ii. The inference type as391

the prefix for the conclusion in the Decoder: </s>392

the inference type is [type]. con iii. The inference393

type at the end of the conclusion in the Decoder:394

</s> con. the inference type is [type]395

Training dynamics. We first quantitatively evalu-396

ate training performance based on five metrics: test397

loss (cross-entropy), perplexity (PPL), BLEURT398

(Sellam et al., 2020), BLEU (Papineni et al., 2002),399

and cosine similarity against sentenceT5 (Ni et al.,400

2021). We choose the T5, Bart (Lewis et al., 2019),401

GPT2 (Radford et al., 2019), our T5 bottleneck and402

Optimus (Li et al., 2020) with 768 latent dimen-403

sions as testbed. The performances are measured404

from the Entailment testset.405

As illustrated in Table 2, all baselines with in-406

ference types always have lower test losses and407

PPLs, which means the inference type can help the408

model training. Furthermore, across all baseline 409

models, incorporating inference types into the en- 410

coder consistently results in improved performance 411

as measured by BLEU, Cosine, and BLEURT met- 412

rics. This finding suggests that the conditionalisa- 413

tion on inference types can support the inference 414

representation, and the inference process has been 415

performed inside the encoder (Proposition1).

Baseline INJ BLEU Cosine BLEURT Loss ↓ PPL ↓
seq2seqLM: encoder-decoder architecture

T5
original
(small)

DE 0.55 0.96 0.30 0.53 1.44
DP 0.59 0.96 0.34 0.58 1.57
EP 0.65 0.97 0.45 0.52 1.41
NO 0.54 0.96 0.22 0.69 2.22

T5
original
(base)

DE 0.46 0.96 0.23 0.49 1.33
DP 0.53 0.96 0.25 0.51 1.38
EP 0.61 0.97 0.39 0.45 1.22
NO 0.57 0.96 0.33 0.61 1.65

Bart
(base)

DE 0.44 0.94 0.03 0.55 1.49
DP 0.38 0.93 -0.42 0.48 1.30
EP 0.57 0.96 0.23 0.58 1.57
NO 0.54 0.96 0.17 0.63 1.71

T5
original
(large)

DE 0.60 0.97 0.46 0.40 1.49
DP 0.64 0.97 0.44 0.46 1.58
EP 0.67 0.97 0.50 0.59 1.80
NO 0.57 0.96 0.31 0.61 1.84

Flan-T5
(large)

DE 0.01 0.73 -1.34 6.91 10.2
DP 0.01 0.73 -1.34 7.00 15.4
EP 0.21 0.87 -1.04 1.30 3.66
NO 0.20 0.87 -1.14 1.34 3.81

T5
original

(3b)

DE 0.60 0.96 0.44 0.68 1.97
DP 0.66 0.96 0.49 0.65 1.91
EP 0.70 0.97 0.57 0.51 1.66
NO 0.68 0.97 0.55 0.63 1.87

CausalLM: decoder only architecture

GPT2
(large)

DE 0.02 0.87 -1.15 0.73 2.07
DP 0.08 0.90 -0.91 0.73 2.07
NO 0.07 0.90 -0.93 0.76 2.06

GPT2
(xl)

DE 0.20 0.88 -1.10 0.63 1.87
DP 0.28 0.91 -0.90 0.60 1.82
NO 0.27 0.90 -0.97 0.68 1.97
seq2seqLM with sentence bottleneck

T5
bottleneck

(base)

DE 0.35 0.91 -0.15 0.84 2.31
DP 0.39 0.91 -0.13 0.86 2.36
EP 0.42 0.92 -0.07 1.23 3.42
NO 0.35 0.91 -0.20 1.24 3.45

Optimus
(BERT-GPT2)

DE 0.26 0.80 -1.11 0.87 2.38
DP 0.25 0.79 -1.14 0.85 2.33
EP 0.09 0.74 -1.17 1.11 3.03
NO 0.07 0.74 -1.20 1.13 3.09

Table 2: Quantitative evaluation on testset, where best
results are highlighted in bold. Specification for ab-
breviation. INJ: ways for injecting the information of
inference types into the model, it includes DE: decoder
end, DP: decoder prefix, EP: encoder prefix, NO: no
inference type. PPL is perplexity, Loss is cross entropy.

416

In-context learning. Next, we quantitatively 417

evaluate the symbolic inference types within in- 418

context learning (ICL) in contemporary large lan- 419

guage models (LLMs). As illustrated in Table 3, 420

prompting with inference types can improve the 421

performance of ICL in both seq2seq and causal 422

LLMs. Besides, within the context of causal LLMs, 423
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an increase in few shot examples3, improves the424

performance.

Baseline INJ Num BLEU Cosine BLEURT
Seq2seqLLM: encoder-decoder architecture

CoT-T5 (11b)
(Kim et al., 2023)

Yes 10 0.51 0.97 0.39
Yes 5 0.51 0.97 0.39
Yes 0 0.50 0.97 0.36
NO 0 0.46 0.96 0.31

Flan-T5 (xl)

Yes 10 0.49 0.96 0.40
Yes 5 0.48 0.96 0.39
Yes 0 0.52 0.96 0.39
NO 0 0.44 0.95 0.24

Flan-T5 (xxl)

Yes 10 0.51 0.97 0.41
Yes 5 0.53 0.97 0.43
Yes 0 0.50 0.96 0.37
NO 0 0.48 0.96 0.36

CausalLLM: decoder only architecture

GPT-3.5-turbo-0125

Yes 10 0.52 0.96 0.40
Yes 5 0.48 0.96 0.35
Yes 0 0.46 0.96 0.31
NO 0 0.42 0.96 0.33

GPT-4-0613

Yes 10 0.53 0.97 0.50
Yes 5 0.52 0.97 0.47
Yes 0 0.52 0.97 0.50
NO 0 0.47 0.96 0.40

llama3-8b-8192

Yes 10 0.48 0.96 0.33
Yes 5 0.45 0.96 0.32
Yes 0 0.37 0.95 0.22
NO 0 0.34 0.95 0.19

llama3-70b-8192

Yes 10 0.54 0.97 0.54
Yes 5 0.52 0.97 0.52
Yes 0 0.51 0.97 0.47
NO 0 0.44 0.96 0.40

Table 3: ICL evaluation of test cases, where worst re-
sults are highlighted in bold. The prompt is “performing
natural language inference [where the inference type is
type, description], [p1; p2; c]×num. p1, p2, what is the
conclusion?". num is the number of examples. The
description is based on the definition of inference types
in Section 3.

425

5.2 Quasi-symbolic Inference Evaluation426

Secondly, we evaluate (ii) if these inference types427

can be utilised for prescriptive inference control.428

Qualitative evaluation. We qualitatively eval-429

uate the quasi-symbolic inference control on the430

generation of conclusions by systematically inter-431

vening on the inference type prior to the encoder.432

As illustrated in Table 4, we can observe that the as-433

sociated linguistic properties of the conclusion can434

be controlled consistently with the inference type435

modifications, which indicates that the represen-436

tation mechanisms can improve inference control437

with regard to symbolic/lexico-semantic properties.438

For example, when the type is ARG substitution439

3We randomly sample the examples with the same infer-
ence type as the current test example from the training set. We
perform ten times and calculate the average for each metric.

(ARG-SUB), the model can generate the blacktop 440

is made of a smooth surface by replacing the argu- 441

ment asphalt concrete with smooth surface. The 442

conclusions are changed to asphalt and blacktop 443

have the same surface when the inference type is 444

the conjunction (FRAME-CONJ). More examples 445

are provided in Table 13.

Quasi-symbolic NLI control

P1: blacktop is made of asphalt concrete
P2: asphalt has a smooth surface

ARG-SUB: the blacktop is made of smooth
surface
ARG-SUB-PROP: blacktop has a smooth surface
ARG/PRED-GEN: a blacktop is a kind of asphalt
ARG-INS: asphalt concrete blacktop has a smooth
surface
FRAME-CON: asphalt and blacktop have the same
surface
IFT: if the asphalt has a smooth surface then the
blacktop will have a smooth surface

Table 4: Controllable generation over original T5 (base)
(ARG-SUB: argument substitution, ARG/PRED-GEN:
argument/predicate generalisation. ARG-SUB-PROP:
property inheritance. ARG-INS: argument insertion,
FRAME-CON: frame conjunction, IFT: casual expres-
sion.). The example of the T5 bottleneck is provided in
Table 11.

446

Quantitative evaluation. Next, we perform a 447

quantitative evaluation using a large language 448

model (LLM) evaluator, specifically ChatGPT4o. 449

For each pair of premises in the EntailmentBank 450

test set, we apply various inference types to gen- 451

erate a diverse set of conclusions using the fine- 452

tuned T5 (base) model. We then assess the result- 453

ing (premises, conclusion, inference type) tuples 454

based on two criteria: (i) whether the generated con- 455

clusion contradicts the premises, and (ii) whether 456

the (premises, conclusion) pair is consistent with 457

the specified inference type. Utilising the prompt 458

detailed in Table 14, we report the accuracy for 459

each criterion. As illustrated in Table 5, the T5 460

(base) model with controlled symbolic inference 461

types achieves accuracies exceeding 60% for both 462

evaluation dimensions.

Evaluators logicality alignment
ChatGPT4o 67% 63%

Table 5: Quantitative evaluation via ChatGPT4o.
463
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5.3 Latent Feature Space Evaluation464

Finally, we evaluate (iii) whether the incorpora-465

tion of feature space (i.e., sentence bottleneck) con-466

tributes to improved feature representation.467

Explanation-based NLI. We quantitatively eval-468

uate the NLI performance of different baselines469

on the Entailment testset. We specifically choose470

the VAE baselines, including the Transformer VAE471

model: Optimus (Li et al., 2020) and Della (Hu472

et al., 2022) with two different sentence dimen-473

sions (32 and 768), and five LSTM language au-474

toencoders with 768 latent dimensions: denoising475

AE (Vincent et al. (2008), DAE), β-VAE (Hig-476

gins et al., 2016), adversarial AE (Makhzani et al.477

(2015), AAE), label adversarial AE (Rubenstein478

et al. (2018), LAAE), and denoising adversarial479

autoencoder (Shen et al. (2020), DAAE). In Table480

6 (bottom), we can observe that our T5 bottleneck481

can outperform all baselines on BLEU, BLEURT,482

and cosine similarity from pre-trained sentence T5.483

Test: EntailmentBank
Metrics BLEU Cosine BLEURT Loss ↓ PPL ↓

Optimus(32) 0.07 0.74 -1.20 1.13 2.31
Optimus(768) 0.08 0.74 -1.21 0.82 2.27
DELLA(32) 0.08 0.85 -1.23 1.69 5.41

DELLA(768) 0.09 0.87 -1.09 1.54 4.66
DAE(768) 0.15 0.89 -0.95 1.33 3.78
AAE(768) 0.11 0.88 -0.95 1.35 3.85

LAAE(768) 0.09 0.74 -1.12 1.38 3.97
DAAE(768) 0.07 0.74 -1.20 1.43 4.17
β-VAE(768) 0.07 0.74 -1.20 1.43 4.17
T5 bottleneck 0.35 0.91 -0.20 1.24 3.45

Table 6: Comparison of different baselines on Entail-
mentBank testset, T5 bottleneck has 768 dimensions.

484

Explanation inference retrieval. We next eval-485

uate the sentence embedding using as an as-486

sociated explanation retrieval task (explanation-487

regeneration - i.e. retrieving the associated ex-488

planatory facts relevant to a claim) (Valentino et al.,489

2022a). Given a question-and-answer pair, it recon-490

structs the entailment tree by searching the expla-491

nations from a fact bank (i.e., WorldTree (Jansen492

et al., 2018a)) in an iterative fashion using a dense493

sentence encoder. In this framework, we can re-494

place the dense sentence encoder with the proposed495

T5 bottleneck baseline to evaluate its sentence em-496

beddings. We compare the T5 bottleneck with sen-497

tence VAEs: Optimus and five LSTM VAEs, and498

evaluate them via mean average precision (MAP).499

As illustrated in Table 7, the T5 bottleneck outper-500

forms all baselines, indicating that it can deliver a 501

better representation of explanatory sentences and 502

entailment relations in a retrieval setting.

depth t=1 t=2 t=3 t=4
DAE(768) 30.27 31.74 30.65 30.74
AAE(768) 29.13 30.47 29.33 29.14

LAAE(768) 19.13 20.86 18.32 18.01
DAAE(768) 13.16 15.42 14.30 13.97
β-VAE(768) 10.03 10.07 10.05 10.05

Optimus(768) 28.21 29.35 28.35 28.27
T5 bottleneck(768) 34.47 35.28 34.50 34.47

Table 7: Explanatory inference retrieval task where t
represents the depth of entailment tree.

503

6 Conclusion and Future Work 504

This study serves as a foundational step in explor- 505

ing quasi-symbolic inference within distributional 506

semantic spaces. We establish the connection be- 507

tween natural and symbolic language inferences 508

by (1) characterizing quasi-symbolic inference be- 509

haviours, termed symbolic inference types, based 510

on the AMR graph. From a neural representation 511

perspective, we introduce parameter and feature 512

spaces to bridge distributional and symbolic in- 513

ferences. Specifically, (2) we model Transformer- 514

based encoder-decoder NLI systems as latent vari- 515

able models, using symbolic inference types to 516

guide latent space dynamics, and (3) explore the 517

feature space for encoding abstract, high-level fea- 518

tures. Experimental results reveal that integrating 519

symbolic inference types enhances training dynam- 520

ics, inference precision, and explanation retrieval, 521

suggesting the potential for neuro-symbolic NLI. 522

Building upon these findings, we hypothesise 523

that distinct inference types can be represented as 524

functional subspaces that are either separated or dis- 525

entangled within the parametric space. During the 526

training phase, different inference types result in 527

divergent training trajectories, thereby enhancing 528

both model training and inference dynamics. Fur- 529

thermore, by manipulating various inference types 530

during the inference stage, semantic features are 531

integrated into specific parametric subspaces corre- 532

sponding to each inference type, thereby enabling 533

precise inference control. 534

In future research, we will examine this hypoth- 535

esis and investigate the composition and general- 536

ization of symbolic inference behaviours within 537

distributional representation spaces to develop an 538

explainable and controllable NLI model. 539

8



Limitations540

This study empirically explores quasi-symbolic in-541

ference behaviours within distributional semantic542

spaces. Our findings indicate that symbolic in-543

ference types can enhance model training, facili-544

tate inference processes, and enable localised in-545

ference control. However, we have not yet pro-546

vided a formal explanation for these observations.547

We hypothesise that quasi-symbolic inference be-548

haviour arises from the segregation of inference549

types within the parametric space. This hypothesis550

may be linked to the results presented in Ortiz-551

Jimenez et al. (2023), which demonstrated that dif-552

ferent tasks are disentangled in the visual embed-553

ding space of CLIP (Radford et al., 2021). Future554

research will address this hypothesis by examining555

the geometric properties of the parametric space556

with the target of better composition, generalisa-557

tion, and interpretation in the neuro-symbolic NLI558

domain.559

Moreover, while the work focuses on the sym-560

bolic control of explanatory inference, complemen-561

tary methods need to be employed to deliver more562

strict safety guarantees. While we conduct a quan-563

titative assessment of the logical consistency of the564

deduction process using ChatGPT4o, this evalu-565

ation may be unreliable due to the limited profi-566

ciency of large language models in logical reason-567

ing. It is essential that control and safety mecha-568

nisms remain distinct and are implemented through569

independent processes.570
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A Annotation Details906

Annotation procedure. Annotation was per-907

formed manually for 5134 entailment triples (two908

premises, one conclusion) from the Entailment-909

Bank (Dalvi et al., 2021), according to Algorithm910

1. Graph subset relations and root matching are re-911

laxed for non-argument (:ARG*, op*) edges, mean-912

ing relations such as :manner or :time can be ig-913

nored for this purpose. Two independent annota-914

tors with post-graduate level backgrounds in Com-915

putational Linguistics were used in this process,916

on a consensus-based annotation scheme where a917

first annotator defined the transformations and a918

second annotator verified and refined the annota-919

tion scheme, in two iterations. The annotation of920

the AMR graph is based on an off-the-shelf parser921

(Damonte et al., 2017). The descriptions for each922

inference type category are as follows:923

ARG-SUB (Figure 2): the conclusion is ob-924

tained by replacing one argument with another ar-925

gument.926

PRED-SUB: the conclusion is obtained by re-927

placing one verb with another verb.928

FRAME-SUB: the conclusion is obtained by929

replacing a frame of one of the premises with one930

from the other premise.931

COND-FRAM (Figure 5): the conclusion is932

obtained according to the conditional premise with933

keyword “if".934

ARG-INS (Figure 4): the conclusion is ob-935

tained by connecting an argument from one of the936

premises to a frame of the other.937

FRAME-CONJ: the conclusion is obtained by938

using connectives to connect two premises.939

ARG/PRED-GEN (Figure 6): a new :domain940

relation frame is created in the conclusion if941

both premise graphs differ by a single predi-942

cate/argument term.943

ARG-SUB-PROP (Figure 7): one of the944

premises describes a “is made of ” relationship be-945

tween the entity in the other premise and its re-946

placement.947

IFT: the conclusion should be a conditional sen-948

tence.949

EXAMPLE: the conclusion should contain the950

keyword “example".951

Unknown (UNK) category. In this work, our952

annotation occupies 84% based on the Entailment-953

Bank corpus. As for other unknown categories, we954

do not further specify them, as they either require955

P1: energy comes from food P2: healing requires energy

C: energy for healing comes from food

c/come-01

e/energy 
:ARG1

f/food

:ARG3 r/require-01

h/heal-01
:ARG0

e/energy

:ARG1

e/energy
:ARG1

f/food
:ARG2

h/heal-01 :purpose

c/come-03

Figure 4: AMR argument insertion (ARG-INS).

P1: inventing paper allows paper to be used

P2: if something is allowed to be used then the use of that 
something might increase

C: inventing paper might increase the use of paper

a/allow-01

ii/invent-01
:ARG0

u/use-01

:ARG1

p/paper 
:ARG1

:ARG1
p2/paper 

p/possible-01

ii/increase-01
:ARG1

:condition

u/use-01 
:ARG1

s/something

:ARG1

:ARG1 

:ARG1

u2/use-01 
a/allow-01

:ARG1

ii2/invent-01
:ARG0

:ARG1

p2/paper 
:ARG1

:ARG1

ii/increase-01p/possible-01

u/use-01 p3/paper 

Figure 5: AMR conditional frame insertion (COND-
FRAME).

knowledge outside of the scope of the premises or 956

do not have a consistent symbolic transformation 957

expression. An additional subtype called premise 958

copy was included for the cases where the conclu- 959

sion has the same graph as one of the premises. 960
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Figure 6: AMR argument generalisation (ARG-GEN).

P1: blacktop is made of asphalt concrete

P2: asphalt has a smooth surface

C: a blacktop has a smooth surface

:ARG0

:ARG1

:ARG1-of

m/make-01

b/blacktop
:ARG1

c/concrete

:ARG2

a/asphalt:mod

h/have-03

a/asphalt
:ARG0

s/surface

:ARG1

s2/smooth-04
:ARG1-of

s/surface

b/blacktop

s2/smooth-04

h/have-03

Figure 7: AMR argument substitution (property inheri-
tance) (ARG-SUB-PROP).

B Experimental Details961

B.1 Dataset962

Table 8 describes the statistical information of963

the corpus used in the experiment. For experi-964

ments: Section 5.1, 5.2, and 5.3, the Entailment-965

Bank dataset is split into train 60%, valid 20%,966

and test 20% sets. For the explanation inference967

retrieval task in Section 5.3, we follow the same 968

experimental setup provided online. 4

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8: Statistics from explanations datasets.
WorldTree is used in the Explanation Inference Retrieval
task.

969

B.2 T5 Bottleneck Architecture 970

Figure 8 shows the architecture of the T5 bottle- 971

neck for learning latent sentence space. It includes 972

two stages: sentence embedding and decoder con- 973

nection. The sentence embedding aims to trans- 974

form token embeddings into a sentence (single) 975

embedding. Decoder connection aims to connect 976

the encoder and decoder. 977

Latent sentence space: P (z|x1, x2). While de- 978

signing the sentence bottleneck, we compare the 979

four most frequently used mechanisms to transform 980

token embeddings into sentence embeddings: 981

(1) Mean pooling: calculating the mean of 982

each dimension on all token embeddings and feed- 983

ing the resulting vector into a multi-layer per- 984

ceptron to obtain the sentence embedding. (2) 985

multi-layer perceptron (MLP): applying an MLP 986

to reduce the dimensionality of token embed- 987

dings, and the resulting embeddings are con- 988

catenated to form a single sentence embedding: 989

z = concat
[
MLP1(x1); ...;MLPT (xT )

]
where 990

MLPi(xi) represents the i-th neural network for 991

input representation of token xi, z is the latent 992

sentence representation, and T is the maximum to- 993

ken length for a sentence. (3) multi-head attention: 994

feeding each token embedding into the multi-head 995

attention and considering the first output embed- 996

ding as the sentence embedding (Montero et al., 997

2021): z = MultiHead
(
XW q, XW k, XW v

)
[0] 998

where X = [x1, ..., xT ] and W q, W k, and W v are 999

the weights for learning q, k, v embeddings in self- 1000

attention, respectively. (4) Sentence T5: re-loading 1001

the pre-trained sentence T5 (S-T5, Ni et al. (2021)). 1002

Conditional generation:P (xc|z). Next, we 1003

consider four strategies to inject sentence em- 1004

beddings into the decoder. (1) Cross-attention 1005

input embedding (CA Input): reconstructing 1006

the token embeddings from a sentence repre- 1007

sentation and directly feeding them into the 1008

4https://github.com/ai-systems/hybrid_
autoregressive_inference
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cross-attention layers of the decoder: Ŷ =1009

MultiHead
(
YW q,MLP(z)W k,MLP(z)W v

)
1010

where Ŷ is the reconstruction of decoder input1011

sequence Y = [y1, ..., yK ]. (2) Cross-attention1012

KV embedding (CA KV): instead of recon-1013

structing the token embeddings, it consists of1014

directly learning the Key and Value (Hu et al.,1015

2022; Li et al., 2020), which is formalised as1016

Ŷ = MultiHead
(
YW q,MLPk(z),MLPv(z)

)
,1017

where MLPk and MLPv are neural layers for1018

learning k v embeddings. (3) Non-cross-attention1019

input connection (NCA Input): reconstructing1020

the token embeddings and element-wisely adding1021

them with the input embeddings of the decoder1022

(Fang et al., 2021). (4) Non-cross-attention1023

output connection (NCA Output): adding the1024

reconstructed token embeddings to the output1025

embedding of the decoder.1026

Train: architecture

Decoder Connection
CA

Input
CA
KV

NCA
Input

NCA
Output

Sentence
Embedding

Pooling 1.41 1.44 1.86 2.42
MLP 1.71 1.94 2.09 2.62
MHA 1.51 2.24 2.31 3.03
S-T5 1.24 1.42 1.81 2.22

Table 9: Comparison of different setups on test loss
via cross-entropy (CA: cross-attention, NCA: non-cross-
attention), bottom: comparison of different baselines on
EntailmentBank testset.

B.3 Implementation Details1027

Hyper-parameters. 1. Size of Sentence Repre-1028

sentation: in this work, we consider 768 as the size1029

of the sentence embedding. Usually, the perfor-1030

mance of the model improves as the size increases.1031

2. Multi-head Attention (MHA): in the experiment,1032

MHA consists of 8 layers, each layer containing 121033

heads. The dimensions of Query, Key, and Value1034

are 64 in each head. The dimension of token em-1035

bedding is 768. Training hyperparameters are: 3.1036

For all models, the max epoch: 40, learning rate:1037

5e-5. During fine-tuning the T5 bottleneck, we1038

first freeze the pre-trained parameters in the first1039

epoch and fine-tune all parameters for the remain-1040

ing epochs. 4. All models are trained on a single1041

A6000 GPU device.1042

Baselines. In the experiment, we implement five1043

LSTM-based autoencoders, including denoising1044

AE (Vincent et al. (2008), DAE), β-VAE (Hig-1045

gins et al., 2016), adversarial AE (Makhzani et al.1046

(2015), AAE), label adversarial AE (Rubenstein 1047

et al. (2018), LAAE), and denoising adversarial 1048

autoencoder (Shen et al. (2020), DAAE). Their im- 1049

plementation relies on the open-source codebase 1050

available at the URL 5. As for transformer-based 1051

VAEs, we implement Optimus (Li et al., 2020)6 1052

and Della (Hu et al., 2022)7. All baseline models 1053

undergo training and evaluation with the hyper- 1054

parameters provided by their respective sources. 1055

A latent dimension of 768 is specified to ensure a 1056

uniform and equitable comparative analysis. 1057

Metrics. To evaluate the generated conclusions 1058

against the reference conclusions, we employ 1059

BLEU scores for 1- to 3-gram overlaps and report 1060

the average score. Additionally, to assess seman- 1061

tic similarity, we calculate the cosine similarity 1062

between the generated and reference conclusions 1063

by encoding both using the pretrained Sentence-T5 1064

model8 and computing the cosine similarity of their 1065

resulting embeddings. 1066

C Complementary Results 1067

Remove T5 BLEU BLEURT Cosine Loss ↓ PPL ↓
FRAME-

SUB
small 0.50 0.19 0.95 0.95 2.58
base 0.60 0.33 0.96 0.72 1.95

ARG-INS
small 0.54 0.27 0.95 0.82 2.22
base 0.63 0.46 0.97 0.64 1.73

FRAME-
CONJ

small 0.53 0.26 0.96 0.84 2.28
base 0.60 0.35 0.96 0.65 1.76

COND-
FRAME

small 0.55 0.25 0.96 0.88 2.39
base 0.59 0.36 0.96 0.69 1.87

UNK
small 0.55 0.23 0.95 0.53 1.44
base 0.62 0.40 0.96 0.58 1.57

No small 0.54 0.22 0.96 0.69 2.22
No base 0.57 0.33 0.96 0.61 1.65

Table 10: Ablation study over inference type (No: no
inference types are removed).

Ablation studies. We remove the inference types 1068

from the dataset and evaluate the T5 model per- 1069

formance using the same metrics. In this case, we 1070

can compare the model performance trained with 1071

or without that inference-type. From Table 10, we 1072

can observe that the baselines (T5 small and base) 1073

achieve higher BLEU and BLEURT scores with- 1074

out the data with ARG-INS, COND-FRAME, and 1075

5https://github.com/shentianxiao/
text-autoencoders

6https://github.com/ChunyuanLI/Optimus
7https://github.com/OpenVLG/DELLA
8https://huggingface.co/sentence-transformers/

sentence-t5-base
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input
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token
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token

input
Embedding
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linear

(1) cross-
attention

(2) non-cross-
attention token

(1) add to output

token
(1) input of cross attention

K, V
(2) K, V

sentence

(1) pooling

(2) MLP

(3) MHA

(4) sentence T5 (Google)

Stage 1: sentence embedding Stage 2: decoder connection

bottleneck

k v
cross

attention

TYPE: ARG/PRED-GEN
P1: blacktop is made of asphalt
P2: asphalt has smooth surface 

(2) add to input

c: blacktop has smooth surface 

Figure 8: The architectural configuration of T5 bottleneck, it consists of two stages: sentence embedding and
decoder connection.

UNK inference type, respectively. This result indi-1076

cates that the T5 cannot generalize well over those1077

inference types. Also, removing the UNK infer-1078

ence type from data can achieve lower loss and1079

PPL, which indicates that it has a negative impact1080

on model training.1081

More controllable inference examples. We pro-1082

vide more controlled examples based on both the1083

Original T5 and T5 bottleneck in Table 11, 12, and1084

13. All examples reveal that the inference type1085

can provide quasi-symbolic inference control to1086

language models.

Quasi-symbolic NLI control

P1: a pumpkin contains seeds
P2: fruit contains seeds

Original T5:
ARG-INS: a fruit in a pumpkin contains seeds
FRAME-CONJ: a pumpkin and fruit both contains
seeds
FRAME-SUB: fruit is a kind of pumpkin

T5 bottleneck:
ARG-INS: fruit is a part of pumpkin that contains
seeds
FRAME-CONJ: a fruit contains seeds
FRAME-SUB: a pumpkin is a kind of plant

Table 11: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).

1087

Quasi-symbolic NLI control

P1: eating something has a negative impact on
that something
P2: some animals eat cacti
ARG-INS: some animals have a negative impact on
cacti by eating cacti
PRED-SUB: some animals may have a negative
impact on cacti
FRAME-SUB: eating cacti has a negative impact on
that cacti

ARG-INS: some animals have a negative impact on
cacti by eating cacti
PRED-SUB: animals have a negative impact on cacti
FRAME-SUB: eating cacti has a negative impact on
that cacti

Table 12: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).
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Premises Inference Type Original T5
P1: a pumpkin contains seeds ARG-INS a fruit in a pumpkin contains seeds
P2: fruit contains seeds FRAME-CONJ a pumpkin and fruit both contain seeds

IFT if a pumpkin contains fruit then the fruit may contain seeds
EXAMPLE fruit is an example of pumpkins being sown
ARG/PRED-GEN a pumpkin is a kind of fruit
ARG-SUB fruit can contain pumpkin seeds
UNK a pumpkin can contain seeds
FRAME-SUB fruit is a kind of pumpkin

P1: sunlight is a kind of solar en-
ergy

ARG-INS solar energy is a kind of resource for plants that uses water

P2: water and sunlight are re-
sources for plants

FRAME-CONJ water and sunlight are resources for plants and are kinds of solar
energy

UNK the resources for plants include water and solar energy
ARG-SUB water and solar energy are resources for plants

P1: to move something can mean
to transfer something

ARG-SUB flowing can mean to transfer energy

P2: flowing is a kind of movement
for energy

INF if something flows, then that energy will flow

FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of energy to another entity
ARG/PRED-GEN transferring energy with flowing can be seen as transferring energy

P1: if a pot is exposed to a stove
then that pot may become hot

COND-FRAME the pot will become hot

P2: the pot is exposed to a stove EXAMPLE an example of hot pot is a pot exposed to a stove
P1: eating something has a nega-
tive impact on that something

FRAME-SUB eating cacti has a negative impact on that cacti

P2: some animals eat cacti PRED-SUB some animals may have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by eating cacti
EXAMPLE cooking cacti is an example of a negative impact on a cactus
INF if a cactus has a negative impact on an animal, that cactus could

be devoured
P1: seeing requires light ARG-SUB reading requires light
P2: reading requires seeing ARG-INS light is a kind of requirement for reading

INF if light is moving then reading may be taken
EXAMPLE a light bulb will be used for reading
UNK light will help you read

Premises Inference Type T5 bottleneck
P1: a pumpkin contains seeds ARG-INS fruit is part of a pumpkin that contains seeds
P2: fruit contains seeds FRAME-CONJ a fruit contains seeds

FRAME-SUB a pumpkin is a kind of plant
P1: sunlight is a kind of solar energy ARG-INS water is a kind of resource that is used by plants

for growth
P2: water and sunlight are resources for plants FRAME-CONJ plants and water are resources that require water

and energy
ARG-SUB plants use water and sunlight to produce energy

P1: to move something can mean to transfer some-
thing

ARG-SUB flowing can mean to transfer energy

P2: flowing is a kind of movement for energy INF if something flows, then that energy will flow
FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of something
ARG/PRED-GEN transferring energy with flowing can be seen as

transferring energy
P1: if a pot is exposed to a stove then that pot may
become hot

COND-FRAME the pot may become hot

P2: the pot is exposed to a stove ARG/PRED-GEN the pot may be a source of heat
P1: eating something has a negative impact on
that something

FRAME-SUB eating cacti has a negative impact on that cacti

P2: some animals eat cacti PRED-SUB animals have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by

eating cacti
P1: seeing requires light ARG-SUB reading requires light
P2: reading requires seeing FRAME-CONJ reading and feeling can both be used

INF if something is visible then that something will be
seen

Table 13: controllable NLI via inference type (Top: original T5, bottom: T5 bottleneck).
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Algorithm 1 Annotation procedure
1: Find premise Px most similar to the conclusion C, Px̄ being the other premise.
2: Gx,x̄,C ← AMR graph of Px, Px̄, C, respectively.
3: # - - - - - - - - - - - - - - - - - - - common ARG-SUB, PRED-SUB - - - - - - - - - - - - - - - - - - - - - - - - - -
4: if Gx = Gc or Gx̄ = Gc then
5: type = PREM -COPY # Comment: no reasoning happen.
6: else if Px and C differ by one word w then # Comment: common ARG(PRED)-SUB.
7: if w is a verb then
8: type = PRED-SUB
9: else

10: type = ARG-SUB
11: end if
12: else
13: # - - - - - - - - - - - - - - - - - COND-FRAME, FRAME-SUB, ARG-SUB-PROP - - - - - - - - - - - - - -
14: Get AMR graphs G1, G2, Gc for P1, P2 and C respectively. Px → Gx.
15: if ∃ :ARG*(x, a) ∈ C and a ∈ Px̄ then
16: if ∃ :condition(root(Gx), root(Gx̄)) then
17: # Comment: see Figure 5, two root nodes are connected by :condition edge
18: type = COND-FRAME
19: else if root(a) is a noun then
20: if root(Gx̄) = “make-01” and ∃ :ARG*(root(Gx̄), a) then
21: # Comment: “make” as a trigger to classify ARG-SUB and property inheritance.
22: type = ARG-SUB-PROP
23: else
24: type = ARG-SUB # ARG-SUB that was not caught by the simpler rule on line 10,

due to Px differing from C by more than a single word
25: end if
26: else
27: type = FRAME-SUB
28: end if
29: # - - - - - - - - - - - - - - - - - - - Further-specification and Conjunction - - - - - - - - - - - - - - - - - - - - - - -
30: else if Gx ⊂ Gc and Gx̄ ⊂ GC then
31: type = FRAME-CONJ
32: else if ∃x, y :domain(root(Gx), x) and :domain(root(Gx̄, y) and :op*(“and”, x) ∈ Gc and

:op*(“and”, y) ∈ Gc then # Comment: using connectives ‘and’ to connect two premises
33: type = FRAME-CONJ
34: else if Gx ⊂ Gc then
35: d← Gc −Gx

36: if root(d) is a noun then
37: type = ARG-INS # Comment: inserting an argument.
38: else
39: type = FRAME-INS # Comment: inserting a phase (also annotated as ARG-INS).
40: end if
41: # - - - - - - - - - - - - - - - - - - - - ARG/PRED-GEN and Others - - - - - - - - - - - - - - - - - - - - - - - - - - -
42: else if ∃ :domain(root(Gc), y) and (root(Gc) ∈ Gx and y ∈ Gx̄) or (root(Gc) ∈ Gx̄ and y ∈ Gx)

then
43: type = ARG/PRED-GEN
44: else
45: type = UNK
46: end if
47: end if
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Prompts for automatic evaluation

Logicality:
You are a scoring expert in natural language reasoning. Given two premises and a conclusion, your goal is to evaluate
whether the conclusion violates the premises. During your inference process, please only consider the information from
the premises.
you can directly give your score (0 or 1) based on the following criteria:
0: the conclusion violates the premises.
1: the conclusion doesn’t violate the premises.

The output format is just the score. You don’t need to analyse the reasoning process.

Alignment:
You are a scoring expert. Given two premises, a conclusion, and an inference type, your goal is to evaluate whether the
(premises, conclusion) pair is aligned with the inference type.

The following is the description of 10 inference types:
1. ARG-SUB: the conclusion is obtained by replacing one argument with another argument.
2. PRED-SUB: the conclusion is obtained by replacing one verb with another verb.
3. FRAME-SUB: the conclusion is obtained by replacing a frame of one of the premises with one from the other
premise.
4. COND-FRAM: the conclusion is obtained according to the conditional premise with keyword “if”.
5. ARG-INS: the conclusion is obtained by connecting an argument from one of the premises to a frame of the other.
6. FRAME-CONJ: the conclusion is obtained by using connectives to connect two premises.
7. ARG/PRED-GEN: a new “:domain” relation frame is created in the conclusion if both premise graphs differ by a
single predicate/argument term.
8. ARG-SUB-PROP: one of the premises describes a “is made of” relationship between the entity in the other premise
and its replacement.
9. IFT: the conclusion should be a conditional sentence.
10. EXAMPLE: the conclusion should contain the keyword “example”.

When evaluating, some premises might not be able to deduce more than one conclusions. You can ignore
those cases.

Finally, you can directly give your score (0 or 1) based on the following criteria:
0: the (premises, conclusion) pair is not aligned with the inference type.
1: the (premises, conclusion) pair is aligned with the inference type.

The output format is just the score. You don’t need to analyse the reasoning process.

Table 14: Empirically designed prompt for automatically evaluating the controllability in Section 5.2.
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