IoA: Linking Collaborative Agent Efforts with the Internet of Agents

Anonymous ACL submission

Abstract

The rapid advancement of large language mod-
els (LLMs) has paved the way for the devel-
opment of highly capable autonomous agents.
However, existing multi-agent frameworks of-
ten struggle with integrating diverse capable
third-party agents due to reliance on agents de-
fined within their own ecosystems. They also
face challenges in simulating distributed en-
vironments, as most frameworks are limited
to single-device setups. Furthermore, these
frameworks often rely on hard-coded commu-
nication pipelines, limiting their adaptability
to dynamic task requirements. Inspired by the
concept of the Internet, we propose Internet of
Agents (IoA), a novel framework that addresses
these limitations by providing a flexible and
scalable platform for LLM-based multi-agent
collaboration. oA introduces an agent integra-
tion protocol, an instant-messaging-like archi-
tecture design, and dynamic mechanisms for
agent teaming and conversation flow control.
Through extensive experiments on general as-
sistant tasks, embodied Al tasks, and retrieval-
augmented generation benchmarks, we demon-
strate that [oA consistently outperforms state-
of-the-art baselines, showcasing its ability to
facilitate efficient collaboration among hetero-
geneous agents. IoA represents a step towards
linking diverse agents in an Internet-like envi-
ronment, where agents can seamlessly collab-
orate to achieve greater intelligence and capa-
bilities. We believe that this direction holds
potential for better multi-agent systems.

1 Introduction

The Internet has revolutionized the way people col-
laborate and share knowledge, connecting individ-
uals with diverse skills and backgrounds from all
around the world. This global network has enabled
the creation of remarkable collaborative projects,
such as Wikipedia' and the development of the

"https://www.wikipedia.org/

Linux operating system?, which would have been
impossible for any single person to achieve. The
Internet has greatly facilitated collaboration among
people, making the impossible possible and push-
ing the boundaries of human achievement.

The success of the Internet in enabling human
collaboration raises an intriguing question: can
we create a similar platform to facilitate collabo-
ration among autonomous agents? With the rapid
advancements in LLMs (OpenAl, 2023; Reid et al.,
2024), we now have autonomous agents capable
of achieving near-human performance on a wide
range of tasks. These LLM-based agents have
demonstrated the ability to break down complex
tasks into executable steps, leverage various tools,
and learn from feedback and experience (Qin et al.,
2023; Wang et al., 2023c; Shinn et al., 2023; Qian
et al., 2023b). As the capabilities of these agents
continue to grow, and with an increasing number of
third-party agents with diverse skills consistently
emerging (Chase, 2022; Team, 2023; Significant
Gravitas, 2023; Open Interpreter, 2023), it is cru-
cial to explore how we can effectively and effi-
ciently orchestrate their collaboration, just as the
Internet has done for humans.

To address this challenge, we propose the con-
cept of the Internet of Agents (IoA), a general
framework for agent communication and collabo-
ration inspired by the Internet. IoA aims to address
three fundamental limitations of existing multi-
agent frameworks (Chen et al., 2023; Wu et al.,
2023; Hong et al., 2023; Qian et al., 2023a): (1)
Ecosystem Isolation: Most frameworks only con-
sider agents defined within their own ecosystems,
potentially blocking the integration of various third-
party agents and limiting the diversity of agent ca-
pabilities and the platform’s generality; (2) Single-
Device Simulation: Nearly all multi-agent frame-
works simulate multi-agent systems on a single

2https://www.linux.org/

https://www.wikipedia.org/
https://www.linux.org/

S
)
> - e
s Team Formation Block %, Communication Block = [Agent Query|[i Group Setup |[<+ Message Routing
e | Goal: Calculate sqrt(9!) Group Chat Members: [& calcAgent "%+ AutoGPT — A

Query: capable agent ; ‘Agent Message from
-'g g Search: (‘ﬁableageﬂf 5., joined in __~ Math Masters { Agent ! 2 Team-up with AutoGPT! @ ication Block
G | = verifying calculation accuracy | 40 group 2 B | lortenttsuel LT | | = i
g Servers Agent Query Service Sender”: "CalcAgent”, Age"' Regist Il Group 10 voox
£ (B @ i~ 2 e T it
5 22 Agent Contact Block - Group Info Block || [] Task Management Block W Agent Registry Block || &) Session Management Block
E WeatherAgent *\, Tools Weather APT o
) ! ! (2) group_chat_id: 0 * sub_goal: Calculate 9! CalcAgent “\Tools: Calculator .
: Q Desc: Tt obtains the weather from... || o SOPECTE o))l €3 ;‘_9;; : Coleate 2 oo o] B+ Web-socket Connection 1
S AutoGPT *\ Tools: Browser; File System || . team_members: [...] ® task_status: ongoi AutoGPT * Tools: Browser, ..
g * /Desc: It is capable yet expensive... T chat_records: xxx 2 :Z:;sen xi):_ ngnisszgm; XX q*r ,Descr'vﬁom\lt is mpable«.r q%r_“ W= G £
$ [& Agent Integration Block][~ Data Infra Block][;.J Network Infra Block] & Security Block
2 9 9 Ag @ o Data Infra Block
e NV — | ! Register §J =
=K . o, gescooscoocsed becoosssosssss
S . B : -)
B : = & @ Agent Register [l Network Infra Block
- ; = Websocket
O :Custom Agents: Third-Party Agents: o0 EDSoLRe Rules
5
i

Client Side

Server Side

Figure 1: The illustration on the conceptual layered architecture on the design of IoA.

device, which differs significantly from real-world
scenarios where agents could be distributed across
multiple devices located in different places; (3)
Rigid Communication and Coordination: The
communication process, agent grouping, and state
transitions are mostly hard-coded, whereas in real
life, humans decide on teammates based on the task
at hand and dynamically switch between discussion
and task assignment or execution.

To address these limitations, we propose an
agent integration protocol that seamlessly incor-
porates third-party agents on different devices into
the framework for effective collaboration. We also
introduce an instant messaging app-like framework
for agent collaboration. This allows agents to
autonomously find potential collaborators, form
teams, and communicate within various group
chats. Inspired by Speech Act Theory (Searle,
1969) and its application in conventional multi-
agent systems (Finin et al., 1994; Labrou et al.,
1999), we abstract several conversation states
within each group chat. We provide a flexible
finite-state machine mechanism enabling agents
to autonomously manage conversation states, facil-
itating discussion and sub-task execution.

We demonstrate the effectiveness of IoA through
extensive experiments and comparisons with state-
of-the-art autonomous agents. By integrating Au-
toGPT (Significant Gravitas, 2023) and Open In-
terpreter (Open Interpreter, 2023), we show that
IoA achieves a 66 to 76% win rate in open-domain
task evaluations when compared with these agents
individually. Furthermore, with only a few ba-
sic ReAct agents integrated, oA outperforms pre-
vious works on the GAIA benchmark (Mialon
et al., 2023). In the retrieval-augmented generation
(RAG) question-answering domain, our framework

substantially surpasses existing methods, with a
GPT-3.5-based implementation achieving perfor-
mance close to or even exceeding GPT-4, and effec-
tively surpassing previous multi-agent framework.

The impressive performance of IoA across
various domains highlights the potential of this
paradigm for autonomous agents. As smaller
LLMs continue to advance (Mesnard et al., 2024,
Hu et al., 2024; Abdin et al., 2024), running agents
on PC or even mobile device is becoming increas-
ingly feasible. This trend opens up new opportu-
nities for deploying multi-agent systems in real-
world scenarios, where agents can be distributed
across multiple devices and collaborate to solve
complex problems. We believe that by further ex-
ploring and refining the IoA paradigm, more so-
phisticated and adaptable multi-agent systems can
be developed, ultimately pushing the boundaries of
what autonomous agents can achieve in problem-
solving and decision-making.

2 Framework Design of IoA

In this section, we present the instant-messaging-
app-like framework design of IoA, which facilitates
effective collaboration among autonomous agents.
The framework consists of two main components:
server and client. The server is responsible for
agent registration, discovery, and message rout-
ing, enabling agents running on different devices
and with varying capabilities to find each other
and communicate. The client acts as a wrapper
for different agents, providing the necessary com-
munication functionalities and adapting them to
the specified protocol. For agents not designed
for communication, an additional LLM within the
client handles the communication among agents.
The architecture of both the client and server in

IoA can be structured into three layers: Interac-
tion Layer, Data Layer, and Foundation Layer, as
shown in Fig. 1. Each layer has specific responsibil-
ities that contribute to the overall functionality and
efficiency of the system. The message protocol be-
tween the client and the server plays a crucial role
in defining the communication and collaboration
mechanisms among agents, enabling information
transmission and conversational state switch.

Interaction Layer. The Interaction Layer facil-
itates seamless communication and collaboration
between agents, enabling them to interact, respond
to ongoing tasks, and form teams as needed.

Data Layer. The Data Layer manages informa-
tion related to agents, group chats, and tasks, orga-
nizing and maintaining the data that agents need to
collaborate effectively within the framework.

Foundation Layer. The Foundation Layer pro-
vides the essential infrastructure for agent integra-
tion, data management, and network communica-
tion, ensuring seamless integration of agents into
the system and providing robust data and network
services to support their operations.

2.1 Client

The client side of IoA integrate and manage diverse
agents, ensuring they can collaborate and commu-
nicate effectively.

At the Interaction Layer, the client facilitates dy-
namic communication and team formation. The
Team Formation Block identifies suitable collabo-
rators for incoming tasks, streamlining the process
of forming effective teams. The Communication
Block manages all ongoing group chats related to
the current agent, ensuring relevant responses.

The Data Layer of the client handles critical in-
formation about agents, group chats, and tasks. The
Agent Contact Block functions like a contact list,
storing details about previously connected agents
and pertinent notes from past interactions. The
Group Info Block keeps detailed records of group
chats, including histories, member details, and ob-
jectives. The Task Management Block tracks the
status of all tasks within these group chats, provid-
ing agents with the necessary insights to monitor
progress and make informed decisions.

At the Foundation Layer, the client ensures ro-
bust infrastructure for agent integration and data
services. The Agent Integration Block outlines
the protocols and interfaces required for seam-
less integration of third-party agents, such as
run(task_desc) — task_id for task execution

and read_memory(task_id) — history for re-
trieving task-related memory. The Data Infra Block
supports data persistence, retrieval, and access con-
trol, while the Network Infra Block manages the
communication between the client and the server,
ensuring reliable and efficient data transmission.

2.2 Server

The server side of IoA manages the overall infras-
tructure, facilitating agent discovery, group setup,
and efficient message routing, while maintaining
robust data and network services.

In the Interaction Layer, the server enables
agents to discover each other, initiate group chats,
and communicate seamlessly. The Agent Query
Block allows agents to search for others based on
queried keywords, aiding effective team formation.
The Group Setup Block streamlines the creation of
group chats by allowing agents to specify desired
teammates. The Message Routing Block ensures
that messages from agents within different group
chats are correctly forwarded to the corect mem-
bers, maintaining the flow of communication.

The Data Layer of the server supports efficient
agent queries and group communications. The
Agent Registry Block stores detailed information
about agents, including their accessible tools, av-
erage costs, and capability descriptions, which is
crucial for the Agent Query Block to find suitable
agents. The Session Management Block maintains
active connection sessions between the server and
client agents, ensuring that messages can be routed
reliably, supporting continuous communication.

At the Foundation Layer, the server provides es-
sential infrastructure for data management, network
communication, and security. The Data Infra Block
and the Network Infra Block are similar to those in
the client. The Security Block plays a critical role
in authentication and authorization, ensuring that
only authorized agents can connect to the server
and participate in communications, maintaining the
integrity and security of the framework.

3 Key Mechanisms in IoA

In this section, we introduce the key mechanisms
implemented in IoA. IoA is built upon the concep-
tual design presented in Section 2 and incorporates
several key features that enable effective collabora-
tion among agents with diverse capabilities. These
features include Autonomous Nested Team For-
mation, Autonomous Conversation Flow Control,

Overall Goal: Create a Comprehensive
Market Analysis Report for iPhone 15.
Agents:

~

5 GoogleAgent,
Z-ReportWritingAgent

T

Sub-Task: Market Research Sub-Task: Data Analysis
and Data Collection and Visualization
Agents: Agents:
5GoogleAgent, Z.ReportWritingAgent,
“iMarketAPIAgent M CodingAgent

e

Sub-Task: Competitor Analysis Sub-Task: Customer Analysis
Agents: Agents:
5 GoogleAgent, 7/ MarketAPIAgent,

Sub-Task: Report Writing
Agents: Z:ReportWritingAgent

Figure 2: An example of nested team-up mechanism.

and Comprehensive Message Protocol Design. [oA
aims to facilitate the dynamic formation of agent
teams and streamline communication processes, ul-
timately enhancing the collective problem-solving
capabilities of multi-agent systems.

3.1 Autonomous Nested Team Formation

The primary motivation behind the autonomous
nested team formation mechanism is to enable
scalable and flexible task execution. Traditional
multi-agent systems often struggle with static team
compositions and limited scalability. By allowing
agents to autonomously form nested teams, oA can
dynamically adjust to the complexity and scope of
the task at hand, ensuring that agents with the ap-
propriate skills and resources are engaged, leading
to more efficient and effective problem-solving.

Mechanism Overview. Autonomous nested
team formation allows clients to dynamically form
and expand teams to tackle complex tasks effi-
ciently. This mechanism leverages the server’s
capabilities to discover and connect clients based
on their skills and characteristics.

Let C denote the set of all clients in the system.
For each client ¢; € C, a description d; of the in-
tegrated agent’s skills and capabilities is required
upon registration. When a task ¢ is assigned to
a client ¢;, it enters the Team Formation Block
with access to two tools: search_client and
launch_group_chat. The search_client tool
allows the client to discover other clients by query-
ing the server’s Agent Registry with a generated
list of desired characteristics L4 = [l1, 12, ..., lx].
The tool returns a subset of clients C; C C whose
descriptions d; match the desired characteristics.
The launch_group_chat tool enables the client to
initiate a group chat with the selected clients. The
LLM in the client decides which tool to call, con-
sidering the retrieved information from the server,
local information from the Agent Contact Block,
and the task requirements.

Nested Team Formation. In some cases, a sin-

Nested Team-Up Nested Team-Up
Team-Up
-

Async Task . . Sync Task
; Discussion .
Assig t Assignment

N

Conclusicn] [Pause & Trigger]

Figure 3: The state transition among different states.

Group Chat States

gle group may not be sufficient to complete a task.
During discussions, agents may realize they need
assistance from other agents with specific expertise.
To address this, IoA supports nested team forma-
tion, allowing agents to initiate sub-group chats for
sub-tasks. Fig. 2 presents a simple example.

Let ¢; be a sub-task assigned to client ¢; in group
chat g. If ¢; determines it cannot complete the task
alone, it can search for appropriate clients for ¢; and
initiate a new sub-group chat g;, inviting a subset
of other agents to collaborate on the sub-task. This
process can continue recursively, forming a tree-
like structure with the root representing the initial
group chat and branches representing sub-groups.

Furthermore, the nested team formation mech-
anism helps to manage the complexity of com-
munication within large agent teams. Assuming
that the communication graph within each group
chat is fully connected, the number of edges in the
graph represents the communication complexity.
By decomposing a task into sub-tasks and allocat-
ing them to sub-group chats, the total number of

lgl(lgl=1)
2

edges can be reduced from in the original

group chat to), M in the sub-group chats,
where |g| and |g;| are the numbers of clients for
task ¢ and ¢; respectively. This reduction in com-
munication complexity leads to more efficient and
focused collaboration among agents.

3.2 Autonomous Conversation Flow Control

Effective communication is crucial for successful
collaboration among autonomous agents. Inspired
by the Speech Act Theory (Austin, 1975; Searle,
1969) and its application in conventional multi-
agent systems (Finin et al., 1994; Labrou et al.,
1999), we introduce an autonomous conversation
flow control mechanism in IoA that enables agents
to effectively coordinate their communication.
Sequential Speaking Mechanism. Since the
support for LLM interruption is still in its early
stages, IoA adopts a sequential speaking mecha-
nism, i.e., only one agent speaks at a time, pre-
venting confusion and maintaining a clear order

of communication. The simple and naive mecha-
nism, when combined with the following dynamic
features, leads to effective collaboration.

Finite State Machine for Group Chat States.
We formalize the conversation flow as a finite state
machine M = (S, %, 4, so, F'), where:

* S = {54, Ss, Sa, Sp, Sc} s the set of states rep-
resenting discussion, synchronous task assign-
ment, asynchronous task assignment, pause &
trigger, and conclusion, respectively.

* 3 is the input alphabet, which corresponds to
the possible actions or events in the conversa-
tion flow.

* §: 5 x X — Sis the transition function that
maps a state and an input to the next state.

* 50 = sq is the initial state, representing the start
of the conversation in the discussion phase.

o ' = {s.} is the set of final states, containing
only the conclusion state.

As illustrated in Fig. 3, these states represent
different phases of the collaboration process and
help agents navigate the conversation more effi-
ciently. The states are closely related to the speech
acts defined in the Speech Act Theory, such as as-
sertives (discussion), directives (task assignment),
commissives (pause & trigger), and declarations
(conclusion) (Searle, 1976).

The discussion allows general dialogue among
agents, while the synchronous and asynchronous
task assignment states enable task assignment with
or without interrupting the ongoing discussion. The
pause & trigger state introduces a mechanism for
pausing the group chat and awaiting completion of
specified asynchronous tasks, and the conclusion
state marks the end of the collaboration.

Autonomous State Transitions and Next
Speaker Selection. State transitions in the con-
versation flow are decided by the LLM in the client
based on the current context and the progress. The
LLM analyzes the messages exchanged and deter-
mines the most appropriate state to move the con-
versation forward, considering existing sub-tasks
and their statuses, the need for further discussion,
and the overall collaboration goal.

Let M; be the set of messages exchanged up
to time step ¢, and let fiym : My xS — S x A
be the decision function of the LLM that maps the
conversation history and current state to the next
state and the next speaker. The next state s,y and
the next speaker a;y1 are determined as follows:

(St41, at41) = fum(My, s¢).

The selection of the next speaker a;; ensures that
the most relevant agents are involved in the conver-
sation at the appropriate times, promoting efficient
information exchange and problem-solving.

3.3 Comprehensive Message Protocol Design

The effectiveness of the autonomous nested team
formation and conversation flow control mecha-
nisms in oA relies on a robust message protocol.
This protocol enables seamless communication and
collaboration among agents by encapsulating all
necessary information required for various mecha-
nisms to function properly.

Protocol Overview and Key Fields. The agent
message protocol in IoA is designed for extensibil-
ity and flexibility, facilitating effective multi-agent
collaboration. The protocol consists of two main
components: a header and a payload.

The header contains essential metadata about the
message, ensuring correct addressing and process-
ing. Key fields in the header include:

* sender: The unique identifier of the agent
sending the message.

* group_id: The identifier of the group chat to
which the message belongs.

The payload carries the main content of the mes-
sage, varying by message type. It can include:

* message_type: Indicates the purpose of the
message (e.g., discussion, task assignment,
pause & trigger).

e next_speaker: The identifier(s) of the
agent(s) expected to respond.

This structure contains other fields to support
the diverse functionalities of IoA effectively. A
detailed explanation and example of the message
protocol can be found in Appendix C.1.

To ensure seamless communication and coor-
dination, both the client and server components
of IoA implement the message protocol. When
a client sends a message, it encodes it according
to the protocol and transmits it to the server. The
server parses the message, extracts relevant infor-
mation from the header, and routes it to the appro-
priate group chat based on the group_id. Upon
receiving a message, the client decodes it and pro-
cesses it accordingly. This consistent implemen-
tation ensures that all agents can understand and
respond to messages correctly, regardless of their
roles or tasks, maintaining a coherent and efficient
collaboration process.

4 [Experiments

To demonstrate IoA’s effectiveness and versatil-
ity, we conducted extensive experiments on diverse
tasks, from general Al assistance tasks to embod-
ied agent and retrieval-augmented generation chal-
lenges. Our aim is to showcase its ability to facili-
tate collaboration among agents with different capa-
bilities and highlight its adaptability across various
problem domains. We compare loA’s performance
against state-of-the-art approaches in each task cat-
egory.® Due to page limits, we placed the RAG
question-answering experiment in Appendix B and
the analysis of team formation mechanisms and
IoA’s cost in Appendix A.

4.1 General AI Assistant Tasks

We present the results of IoA on two benchmarks
that challenge the framework’s ability to handle
diverse, real-world tasks: GAIA (Mialon et al.,
2023), which consists of a set of multi-step QA
tasks that require the use of tools, and a manually
crafted benchmark on non-QA tasks.

4.1.1 GAIA Benchmark

The GAIA benchmark (Mialon et al., 2023) is a
collection of real-world questions that assess an
Al system’s ability to solve complex tasks by com-
bining multiple skills, such as natural language
understanding, reasoning, and external knowledge
integration. The benchmark consists of three dif-
ficulty levels, each requiring a higher degree of
capability and collaboration among agents.
Setups. We integrate four basic ReAct agents
(Yao et al., 2023) into IoA, each has access to a
tool, including a web browser, a code interpreter, a
Wikidata searcher and a YouTube video transcript
downloader. We compare loA performance against
several state-of-the-art agent systems. Each frame-
work’s performance is assessed across the three
difficulty levels of the GAIA benchmark, as well
as an overall performance metric. Refer to Ap-
pendix C.4.1 for more implementation details.
Analysis. The results of our experiments on the
GAIA benchmark are presented in Table 1. IoA,
with only basic ReAct agents integrated, achieves
the highest overall performance, outperforming all
other approaches. Notably, IoA excels in the higher
difficulty levels (Level 2 and 3), where the tasks
require more advanced reasoning and collabora-

3Unless specified, we used the GPT-4-1106-preview with
temperature 0.1 in our experiments.

tion skills. This showcases the effectiveness of the
framework’s communication mechanisms and its
ability to facilitate collaboration among agents.

Compared to AutoGen, which also employs a
multi-agent approach, IoA demonstrates superior
performance across two out of three difficulty lev-
els without specific tuning on the framework’s
prompt on this task. This can be attributed to the
framework’s more advanced collaboration mecha-
nisms, such as the autonomous team-up and conver-
sation flow control. These features enable agents
to dynamically form teams and carry out sub-tasks
more effectively, leading to better overall perfor-
mance on complex tasks.

The GAIA benchmark results highlight the po-
tential of IoA as a powerful tool for orchestrating
diverse agents for solving real-world, multi-step
problems. By providing a flexible and efficient
platform for agent collaboration, IoA enables even
basic agents to achieve SOTA performance, sur-
passing more sophisticated standalone agents. This
underscores the importance of effective communi-
cation and coordination in multi-agent systems and
validates the design choices of I0A.

4.1.2 Open-Ended Instruction Benchmark

To further demonstrate the versatility and effective-
ness of IoA in handling a wide range of real-world
tasks, we curated a benchmark consisting of 153
open-ended instructions. These instructions are cat-
egorized into four main categories: search & report,
coding, math, and life assistance. Unlike the GAIA
benchmark, which primarily focuses on question-
answering tasks with deterministic answers, our
manually crafted benchmark includes a higher pro-
portion of non-QA tasks that require generative
responses. We believe this benchmark better re-
flects the diverse nature of real-world tasks that Al
assistants are expected to handle.

Setups. For this experiment, we integrate
two state-of-the-art third-party agents, Auto-
GPT (Significant Gravitas, 2023) and Open Inter-
preter (Open Interpreter, 2023), into oA, see Ap-
pendix C.4.2 for the integration details. By in-
tegrating these capable agents into IoA, we aim
to showcase the framework’s ability to facilitate
collaboration among diverse, independently de-
veloped agents. Given the high agreement be-
tween GPT and humans in judging response quality
demonstrated in previous work (Chiang et al., 2023;
Zheng et al., 2023a; Chan et al., 2023), we employ
GPT-4-1106-preview as the judge. For each task

Models Agent Type Levell Level2 Level3 Overall
GPT-4 - 1509 233 0.00 6.06
GPT-4-Turbo - 20.75 5.81 0.00 9.70
AutoGPT-4 (Significant Gravitas, 2023) & 13.21 0.00 3.85 4.85
GPT-4 + Plugins (Mialon et al., 2023) - 30.30 9.70 0.00 14.60
FRIDAY (Wu et al., 2024) - 45.28 34.88 11.54 34.55
AutoGen (Wu et al., 2023) o 54.72 38.37 11.54 39.39
IoA ‘as 50.94 40.70 15.38 40.00
Table 1: The performance on the validation set of GAIA benchmark.
10A vs AutoGPT 10A vs Open Interpreter
Search & Report 84.6% 11.5% 67.3% 19.2% 13.5%

> Life Assistance 56.1% 26.8% 17.1% 63.4% 19.5% 17.1% win

o

2 Coding 83.3% 13.3% 53.3% 16.7% 30.0% tie

8 Math 83.3% 16.7% 66.7% 16.7% 16.7% lose

Overall 76.5% 17.0%

20 40 60 80

Percentage (%)

100 0

63.4% 18.3% 18.3%

40 60 80 100

Percentage (%)

Figure 4: Win rates on the open-ended instruction benchmark between IoA, AutoGPT, and Open Interpreter.

in the benchmark, we compare the quality of the
final answer generated by IoA with the answers
provided by AutoGPT and Open Interpreter inde-
pendently. Following Zheng et al. (2023a), we alter
the order of responses in the prompt when using
GPT-4 to determine the preference between two
provided answers. Only when one competitor is
consistently determined as better than the other
across both orderings, the response is counted as
a “win". This helps to mitigate potential biases
introduced by the order of presentation.

Analysis. The results of this experiment, pre-
sented in Fig. 4, demonstrate that when orchestrat-
ing AutoGPT and Open Interpreter with IoA, it
consistently outperforms both agents alone across
all four categories, achieving win rates ranging
from 56.1% to 84.6%. 1oA’s superior performance
can be attributed to its ability to enable effective
collaboration among the integrated agents, lever-
aging their complementary strengths to generate
high-quality responses. Overall, IoA achieves a
win rate of 76.5% against AutoGPT and 63.4%
against Open Interpreter, highlighting its capability
to efficiently gather and synthesize information and
facilitate collaborative coding tasks.

The ability of IoA to seamlessly integrate di-
verse, independently developed agents holds great
potential for creating more capable and versatile
agent systems. By leveraging the strengths of ex-
isting agents and enabling them to collaborate ef-
fectively, IoA can tackle a wider range of tasks and
generate higher-quality responses compared to in-

Model Metric Cabinet Sweep Sandwich Sort Rope
Central Plan Success 0.90 1.00 0.96 0.70 0.50
(oracle) usep 4.0 8.4 8.8 86 23
ROCO Success 0.75 0.70 0.70 0.70 0.70
Dialog seep 4.7 7.9 9.1 54 24
oA Success 1.00 0.80 1.00 1.00 0.70
#Step 4.6 8.5 8.9 58 26

Table 2: Average success rate and the number of steps
on different tasks from RoCoBench.

dividual agents. This highlights the importance of
developing flexible and efficient platforms for agent
collaboration, as they can significantly enhance the
performance of Al assistants across various do-
mains. As more advanced and specialized agents
emerge, the potential of IoA to integrate them and
facilitate their collaboration grows, paving the way
for the development of increasingly sophisticated
and user-centric Al solutions.

4.2 Embodied Agent Tasks

Embodied Al aims to develop agents that can per-
ceive, understand, and interact with their physical
environment. To evaluate the performance of IoA
in embodied agent tasks, we conduct experiments
on RoCoBench (Mandi et al., 2023), a recently
proposed benchmark for assessing the collabora-
tion and communication capabilities of embodied
agents. RoCoBench consists of six collaborative
tasks, each requiring two agents with partial ob-
servation of the environment to work together to
achieve a common goal.

Setups. We compare IoA against two baselines

from Mandi et al. (2023): Central Plan and Roco
Dialog. Central Plan assumes a central agent has
access to complete information of the environment
and can control the two embodied agents. Roco
Dialog is a multi-agent framework designed specif-
ically for this task, where two agents communicate,
and make decisions independently.

As RoCoBench does not require agents to inter-
act with tools but instead expects them to output
action plans in a specific format, we do not inte-
grate external agents into IoA. Instead, we provide
the environment observations to the two clients
and extract their action plans from their discussion.
The implementation details can be found in Ap-
pendix C.4.3. To ensure a fair comparison, we run
both IoA and Roco Dialog with the same GPT-4-
1106-preview model for 10 runs on each task and
report the average success rate and the number of
steps taken. The results for Central Plan are di-
rectly taken from Mandi et al. (2023). Note that
the Pack Grocery task in RoCoBench is discarded
due to the errors in the released benchmark.

Analysis. Table 2 presents the average success
rate and the number of steps required to complete
each task. Despite not being specifically designed
for embodied tasks, oA outperforms Roco Dialog,
a multi-agent framework tailored for this bench-
mark, on four out of five tasks in terms of success
rate. IoA achieves perfect scores on the Cabinet,
Sandwich, and Sort tasks, demonstrating the ef-
fectiveness of its communication and collabora-
tion mechanisms in enabling embodied agents to
work together towards a common goal. Remark-
ably, IoA’s performance is superior or comparable
to the Central Plan baseline, which assumes access
to oracle information and full observability of the
environment. However, IoA generally consumes
slightly more decision steps to complete the tasks.
Still, the number of steps is fairly close to Roco Di-
alog and Central Plan on all the tasks. Considering
that IoA is a general multi-agent framework and
not specifically designed for this task, we think the
increase in the number of steps is acceptable.

5 Related Work

LLM-based Agents Recent advancements in
LLMs, such as GPT (OpenAl, 2023), Claude (An-
thropic, 2024), and Gemini (Reid et al., 2024), have
led to the development of highly capable Al agents.
These agents engage in natural language interac-
tions and perform diverse tasks. Researchers have

enhanced LLM-based agents by integrating exter-
nal tools and knowledge sources (Nakano et al.,
2021; Yao et al., 2023; Schick et al., 2023; Shen
et al., 2023). Advances agents like OS-Copilot fa-
cilitate generalist interactions across web browsers
and code terminals (Wu et al., 2024), while Open-
Devin focuses on autonomous software develop-
ment tasks (OpenDevin Team, 2024). Other no-
table developments include XAgent, AutoGPT and
Open Interpreter for complex task solving (Team,
2023; Significant Gravitas, 2023; Open Interpreter,
2023), and Voyager for open-ended embodied tasks
in Minecraft (Wang et al., 2023a). These advance-
ments have laid the foundation for more sophisti-
cated and versatile LLM-based agents.

LLM-based Multi-Agent Systems Building on
the success of individual LLLM-based agents, re-
searchers have explored multi-agent systems com-
posed of these agents. Early works demonstrated
using LLMs to simulate multi-agent interactions
and emergent behaviors (Park et al., 2023). Frame-
works like AgentVerse (Chen et al., 2023) and
AutoGen (Wu et al., 2023) provide infrastructure
for agent collaboration. In software development,
systems like ChatDev (Qian et al., 2023a) and
MetaGPT (Hong et al., 2023) automate coding,
testing, and debugging processes. Despite these
advancements, significant limitations remain, such
as the lack of support for integrating diverse third-
party agents, the inability to support distributed
multi-agent systems, and the reliance on hard-
coded communication protocols and state transi-
tions. IoA aims to address these limitations, offer-
ing a flexible and scalable platform for LLM-based
multi-agent collaboration to tackle complex real-
world problems effectively.

6 Conclusion

In this paper, we introduce IoA, a novel frame-
work for LLM-based multi-agent collaboration in-
spired by the Internet. IoA addresses limitations
of existing frameworks by providing a scalable
platform for integrating diverse agents, enabling
distributed collaboration, and introducing dynamic
mechanisms for teaming and conversation control.
Our experiments show IoA consistently outper-
forms state-of-the-art baselines. We believe IoA
will serve as a foundation for future research, en-
abling integration of diverse, specialized agents and
opening new possibilities for multi-agent systems.

Limitations

While IoA demonstrates significant potential for
enabling effective collaboration among heteroge-
neous agents, there are several limitations to be
addressed in future work. Firstly, since there is no
existing benchmark requiring a large-scale agent
team, the effectiveness of the nested team forma-
tion mechanism has not yet been comprehensively
evaluated.

Secondly, further research is needed to investi-
gate the performance and adaptability of IoA in
more diverse and realistic settings, such as multi-
modal communication, adversarial environments,
and more realistic partially observable scenarios
(RocoBench is partially observable, but it operates
within a simulated environment). Additionally, the
long-term stability and robustness of the frame-
work in extended collaboration sessions remain to
be evaluated.

Despite these limitations, IoA represents a sig-
nificant step towards realizing the vision of an Inter-
net of Agents, and we believe that addressing these
challenges will pave the way for more advanced
and practical multi-agent systems.

References

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

Anthropic. 2024. Introducing the next generation of
claude. Accessed: 2024-06-14.

John Langshaw Austin. 1975. How to do things with
words, volume 88. Oxford university press.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2023. Chateval: Towards better llm-based evaluators
through multi-agent debate. CoRR, abs/2308.07201.

Harrison Chase. 2022. LangChain.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, et al. 2023. Agentverse:
Facilitating multi-agent collaboration and exploring
emergent behaviors. In The Twelfth International
Conference on Learning Representations.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Timothy W. Finin, Richard Fritzson, Donald P. McKay,
and Robin McEntire. 1994. KQML as an agent com-
munication language. In Proceedings of the Third
International Conference on Information and Knowl-
edge Management (CIKM’94), Gaithersburg, Mary-
land, USA, November 29 - December 2, 1994, pages
456-463. ACM.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
ga dataset for comprehensive evaluation of reasoning
steps. Preprint, arXiv:2011.01060.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, and Chenglin Wu. 2023. Metagpt:
Meta programming for multi-agent collaborative
framework. CoRR, abs/2308.00352.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He,
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang,
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un-
veiling the potential of small language models with
scalable training strategies. CoRR, abs/2404.06395.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. Preprint, arXiv:1705.03551.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.48550/ARXIV.2308.07201
https://doi.org/10.48550/ARXIV.2308.07201
https://doi.org/10.48550/ARXIV.2308.07201
https://github.com/langchain-ai/langchain
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2308.00352
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551

Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc V. Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering

research. Transactions of the Association for Compu-
tational Linguistics, 7:453-466.

Yannis Labrou, Tim Finin, and Yun Peng. 1999. Agent
communication languages: the current landscape.
IEEE Intell. Syst., 14(2):45-52.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. CAMEL:
communicative agents for "mind" exploration of large
language model society. In Advances in Neural In-
formation Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Zhao Mandi, Shreeya Jain, and Shuran Song. 2023.
Roco: Dialectic multi-robot collaboration with large
language models. CoRR, abs/2307.04738.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love,
Pouya Tafti, Léonard Hussenot, Aakanksha Chowdh-
ery, Adam Roberts, Aditya Barua, Alex Botev, Alex
Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea
Tacchetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Cristian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al.
2024. Gemma: Open models based on gemini re-
search and technology. CoRR, abs/2403.08295.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. GAIA: a benchmark for general Al assistants.
CoRR, abs/2311.12983.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Open Interpreter. 2023. Open Interpreter.

10

OpenAl. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.
OpenDevin Team. 2024. OpenDevin: An Open

Platform for AI Software Developers as Gener-
alist Agents. https://github.com/OpenDevin/
OpenDevin. Accessed: ENTER THE DATE YOU
ACCESSED THE PROJECT.

Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai,
Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. 2023. Generative agents: Interactive simu-
lacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software
and Technology, UIST 2023, San Francisco, CA, USA,
29 October 2023- 1 November 2023, pages 2:1-2:22.
ACM.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. 2023a. Communicative agents for software de-
velopment. CoRR, abs/2307.07924.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Weize
Chen, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2023b. Experiential co-learning of software-
developing agents. CoRR, abs/2312.17025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
CoRR, abs/2307.16789.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan
Firat, Julian Schrittwieser, [oannis Antonoglou, Ro-
han Anil, Sebastian Borgeaud, Andrew M. Dai, Katie
Millican, Ethan Dyer, Mia Glaese, Thibault Sotti-
aux, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, James Molloy, Jilin Chen, Michael
Isard, Paul Barham, Tom Hennigan, Ross Mcll-
roy, Melvin Johnson, Johan Schalkwyk, Eli Collins,
Eliza Rutherford, Erica Moreira, Kareem Ayoub,
Megha Goel, Clemens Meyer, Gregory Thornton,
Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives,
James Keeling, Karel Lenc, Salem Haykal, Siamak
Shakeri, Pranav Shyam, Aakanksha Chowdhery, Ro-
man Ring, Stephen Spencer, Eren Sezener, and et al.
2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. CoRR,
abs/2403.05530.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:86611921
https://doi.org/10.1109/5254.757631
https://doi.org/10.1109/5254.757631
https://doi.org/10.1109/5254.757631
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a3621ee907def47c1b952ade25c67698-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2307.04738
https://doi.org/10.48550/ARXIV.2307.04738
https://doi.org/10.48550/ARXIV.2307.04738
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2311.12983
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://github.com/OpenInterpreter/open-interpreter
https://doi.org/10.48550/ARXIV.2303.08774
https://github.com/OpenDevin/OpenDevin
https://github.com/OpenDevin/OpenDevin
https://github.com/OpenDevin/OpenDevin
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.1145/3586183.3606763
https://doi.org/10.48550/ARXIV.2307.07924
https://doi.org/10.48550/ARXIV.2307.07924
https://doi.org/10.48550/ARXIV.2307.07924
https://doi.org/10.48550/ARXIV.2312.17025
https://doi.org/10.48550/ARXIV.2312.17025
https://doi.org/10.48550/ARXIV.2312.17025
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2307.16789
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
https://doi.org/10.48550/ARXIV.2403.05530
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html

John R. Searle. 1969. Speech Acts: An Essay in the Phi-
losophy of Language. Cambridge University Press.

John R Searle. 1976. A classification of illocutionary
actsl. Language in society, 5(1):1-23.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving Al tasks with chatgpt and its friends in
hugging face. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Significant Gravitas. 2023. AutoGPT.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. CoRR,
abs/2305.16291.

Haotian Wang, Xiyuan Du, Weijiang Yu, Qianglong
Chen, Kun Zhu, Zheng Chu, Lian Yan, and Yi Guan.
2023b. Apollo’s oracle: Retrieval-augmented reason-
ing in multi-agent debates. ArXiv, abs/2312.04854.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2023c. MINT:
evaluating llms in multi-turn interaction with tools
and language feedback. CoRR, abs/2309.10691.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023d. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484-13508. Association for Computational
Linguistics.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Autogen: En-
abling next-gen LLM applications via multi-agent
conversation framework. CoRR, abs/2308.08155.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards general-
ist computer agents with self-improvement. CoRR,
abs/2402.07456.

11

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. Preprint, arXiv:1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023b. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

A Analysis

A.1 Team Formation Precision

Evaluating the precision of the autonomous team
formation mechanism is crucial for IoA, which is
designed to tackle complex tasks by forming ef-
fective teams of agents. However, existing bench-
marks do not provide a suitable environment for
large-scale agent experiments. To address this lim-
itation, we develop a team formation benchmark
using GPT-4, consisting of 625 diverse tasks, each
paired with at least two different agents, resulting
in a total of 1500 agents. These dummy agents
(with only a description, and no actual implemen-
tation) are registered to IoA’s server to assess the
accuracy of the autonomous team formation mech-
anism. Detailed data construction processes can be
found in Appendix E.

Setups. We report the recall of team members,
measuring the proportion of labeled agents in-
cluded in the group chat. Given the large agent
pool, recruited agents may not always be in the
labeled set but can still be highly relevant to the
task. To account for this, we calculate the cosine
similarity between the description embeddings of
non-retrieved labeled agents and recruited agents.
Specifically, we examine whether any recruited
agent is within the top 10 most similar agents to a

http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://github.com/Significant-Gravitas/AutoGPT
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2305.16291
https://api.semanticscholar.org/CorpusID:266149845
https://api.semanticscholar.org/CorpusID:266149845
https://api.semanticscholar.org/CorpusID:266149845
https://doi.org/10.48550/ARXIV.2309.10691
https://doi.org/10.48550/ARXIV.2309.10691
https://doi.org/10.48550/ARXIV.2309.10691
https://doi.org/10.48550/ARXIV.2309.10691
https://doi.org/10.48550/ARXIV.2309.10691
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2308.08155
https://doi.org/10.48550/ARXIV.2402.07456
https://doi.org/10.48550/ARXIV.2402.07456
https://doi.org/10.48550/ARXIV.2402.07456
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

Figure 5: Recall of the agents on our team formation
benchmark.

Recall
w/o similarity 0.414
w/ similarity ~ 0.751

non-retrieved labeled agent. If true, it is counted as
successfully recalled.

Analysis. The results shown in Fig. 5 indicate
that the team formation mechanism achieves a
recall rate of 41.4% without similarity matching.
This recall rate serves as a lower bound on perfor-
mance, as many recruited agents, while not identi-
cal to the labeled agents, are still highly relevant to
the tasks. Incorporating similarity matching en-
hances the recall rate to 75.1%, indicating that
the mechanism can effectively identify and recruit
agents with semantically similar capabilities. It is
important to recognize that top 10 matching still
does not perfectly reflect the accuracy of team for-
mation, as agents not in the top 10 most similar can
still be highly relevant to the task.

The high recall rate with similarity matching
underscores the capability of IoA to form precise
and effective teams. This precision is critical for
addressing complex tasks requiring a combination
of skills and knowledge from various agents. By
leveraging semantic similarity, IoA ensures that the
formed teams closely align with task requirements,
thereby maintaining the integrity and effectiveness
of the team formation process.

A.2 Cost and Sub-Optimal Communication
Pattern Analysis

To evaluate the economic feasibility and potential
for optimization of the IoA, we conduct a cost anal-
ysis on the open-ended instruction benchmark (Sec-
tion 4.1.2), where AutoGPT and Open Interpreter
are integrated. We compare the average cost per
task for these agents when operating individually
and when integrated into the IoA.

As shown in Fig. 6, when integrated into oA,
the costs of both agents are decreased due to the
task decomposition for each task. However, the
IoA introduces an additional communication cost
of $0.53 per task, resulting in an overall cost of
$0.99.

During our analysis, we observed unexpected
and suboptimal communication patterns that con-

12

Figure 6: Cost analysis of standalone agents and IoA-
integrated agents on the open-ended instruction bench-
mark.

Setting Cost per Task
AutoGPT (Standalone) $0.39
Open Interpreter (Standalone) $0.16
AutoGPT (in IoA) $0.33
Open Interpreter (in IoA) $0.13
IoA Communication $0.53
IoA Communication (Dedup.) $0.28
ToA Overall $0.99
IoA Overall (Dedup.) $0.74
a Py N

Math Masters @

Given the current situation, we need to reassess
our strategy for achieving the goal. Since ...

e

1. Simply Rephrase! |

writing python code, it seems we need to

Given the challenges we've encountered with
explore alternative methods. Since ...

\.

Figure 7: An example of the repeated communication.

tributed to the high communication cost. One
notable pattern was the repetition of information,
where the LLMs in the clients would repeat or
rephrase previous chats from themselves or oth-
ers, leading to a stagnation in progress. This phe-
nomenon was particularly prevalent after several
asynchronous task assignments. Although each
task assignment did not require immediate waiting,
as the conversation progressed, new decisions had
to be made based on the conclusions from previ-
ously assigned and not yet completed asynchronous
tasks. Despite providing the client LL.Ms with the
option to switch the group chat state to pause &
trigger, they sometimes fail to switch, as illustrated
in Fig. 7. This drawback in LLM is also observed
in other multi-agent work (Li et al., 2023; Mandi
et al., 2023).

To quantify the impact of this suboptimal com-
munication pattern, we manually removed the rep-
etitions and recalculated the token numbers and
corresponding costs. Surprisingly, this resulted in
a nearly 50% reduction in communication costs, as
shown in the "Dedup." rows of Fig. 6. This find-
ing aligns with observations from other multi-agent
communication frameworks, suggesting that while
modern LLMs are well-aligned to be effective chat-

bot assistants, they may not be optimally aligned to
be efficient communicating agents. Agents should
not only complete the given tasks accurately but
also communicate effectively with others, under-
standing conversation states and making proper
decisions. This insight raises new research ques-
tions regarding the agent alignment of LLMs and
highlights the need for further investigation in this
area.

Despite the current cost overhead and subopti-
mal communication patterns, the IoA demonstrates
significant potential for enabling effective collab-
oration among heterogeneous agents. By address-
ing these challenges through prompt optimization,
protocol refinement, and the development of more
sophisticated frameworks under the concept of IoA,
we believe that the cost of communication can be
significantly reduced. As research progresses, [oA
and similar approaches will become increasingly
attractive and economically viable solutions for
complex multi-agent systems.

B Retrieval-Augmented Generation
Experiment

We further evaluate the communication effective-
ness of IoA on retrieval-augmented generation
(RAG) tasks (Lewis et al., 2021). In RAG tasks,
agents need to retrieve relevant information and
communicate with each other to arrive at the cor-
rect answer, making it another ideal testbed for
assessing communication effectiveness.

Setups. Following the setup in Apollo’s Ora-
cle (Wang et al., 2023b), we use GPT-3.5-turbo-
0125 as the LLLM in the clients and provide
clients with two evidence pools: Wikipedia and
Google. We design three scenarios: one with two
clients having access to different evidence pools
(marked as Partial), requiring them to communi-
cate and exchange information gathered from dif-
ferent sources; and two scenarios where all agents
have access to both evidence pools, with one sce-
nario involving two clients and the other involving
three clients. We evaluate IoA on four datasets:
TriviaQA (Joshi et al., 2017), Natural Questions
(NQ) (Kwiatkowski et al., 2019), HotpotQA (Yang
et al., 2018), and 2WikiMultiHopQA (Ho et al.,
2020). From each dataset, we randomly sample
250 question-answer pairs. Implementation details
can be found in Appendix C.4.4.

Analysis. As shown in Table 3, [oA significantly
improves upon various baselines and achieves per-

13

formance surpassing or comparable to Apollo’s Or-
acle, the previous multi-agent framework specific
to this task. IoA with 3 clents consistently out-
performs GPT-3.5 with different prompting strate-
gies and surpasses Apollo’s Oracle on three out
of four datasets. This highlights the effectiveness
of the multi-agent collaboration facilitated by IoA,
enabling agents to leverage their collective knowl-
edge and reasoning abilities to generate accurate
responses.

Notably, IoA with 2 agents and complete access
to evidence pools achieves the best performance
on the HotpotQA and 2WikiMultiHopQA datasets,
surpassing both Apollo’s Oracle and IoA with 3
agents. This suggests that the optimal number of
agents may vary depending on the complexity and
nature of the task, and that more agents do not
always guarantee better performance. The compar-
ison between the partial and complete scenarios in
IoA with 2 agents demonstrates the importance of
effective communication. Even when agents have
access to different knowledge sources, simulating
an information-asymmetric scenario, IoA achieves
remarkable performance, outperforming Apollo’s
Oracle on two out of four datasets. This suggests
that the framework’s communication mechanisms
enable agents to effectively exchange and synthe-
size information from diverse sources, compensat-
ing for the lack of complete information in individ-
ual agents.

These results underscore the generalizability and
adaptability of IoA, as it can facilitate effective
collaboration among client agents in various set-
tings, even without the integration of specialized
third-party agents. The framework’s ability to en-
able agents to leverage their collective knowledge
and communicate effectively, even in information-
asymmetric scenarios, positions it as a powerful
tool for enhancing the performance of multi-agent
systems in retrieval-augmented generation tasks
and beyond.

C Implementation Details of IoA

In this appendix, we provide a comprehensive
overview of the implementation details for each
module in the client and server layers of IoA.

C.1 Message Protocol

To support the functionalities of IoA introduced in
Section 3, we have designed a comprehensive agent
message protocol that facilitates efficient communi-

Model TriviaQA NQ HotpotQA 2WikiMultiHopQA

GPT 4 0.902 0.692 0.566 0.284
GPT 3.5 Turbo 0.778 0.532 0.384 0.210
+ Zero-Shot CoT 0.772 0.588 0.410 0.190
+ Self Consistency 0.818 0.622 0.408 0.206
+ Reflxion 0.762 0.586 0.378 0.254
+ Multi-Agent Debatel 0.798 0.648 0.394 0.186
+ Multi-Agent Debate2 0.756 0.576 0.450 0.334
Apollo’s Oracle 0.834 0.662 0.542 0.350
IoA + 2 Agents (Partial) 0.803 0.708 0.478 0.449
IoA + 2 Agents (Complete) 0.820 0.671 0.586 0.530
IoA + 3 Agents (Complete) 0.908 0.682 0.575 0.519

Table 3: All the comparative test results. IoA based on GPT-3.5 exceeds GPT4 on some datasets. Excluding the
GPT4 results, we highlight the best results in bold, and the second best results in underlined. Partial indicates that
different agents have access to different evidence pool, while Complete means all evidence pool are accessible to all

agents.
Header Autonomous Team Formation
sender: str goal: str
state: enum team_members: list[str]
comm_id: str team_up_depth: int

max_turns: int
Pause & Trigger

triggers: list[str]
22 il Task Assignment

Discussion task_id: str
content: str task_desc: str
type: enum task_conclusion: str
next_speaker: list[str] task_abstract: str

Figure 8: Fields in the IoA message protocol.

cation and coordination among agents. The proto-
col, as illustrated in Fig. 8, consists of several fields
that cater to the specific requirements of various
mechanisms within the framework.

Firstly, the protocol includes the following
header for all message types:

* sender (str): The name or unique identifier of
the agent sending the message.

* state (enum): The current state of the group
chat associated with the message, which can be
either team formation or communication.

e comm_id (str): The unique identifier of the
group chat to which the message belongs.

To support the autonomous team formation
mechanism, the protocol incorporates the following
fields:

* goal (str): The objective or task that the current
group chat aims to accomplish.

* team_members (list[str]): The names or unique
identifiers of the agents required for the current

group chat.
team_up_depth (int): The depth of the current
nested team formation, used to determine if the
maximum allowed depth has been reached.
max_turns (int): The maximum number of dis-
cussion turns allowed for the current group chat.
If exceeded, the group chat will be forced into
the conclusion phase.

For facilitating the discussion phase, the protocol

includes the following fields:

content (str): The actual content of the current
message.
type (enum): Specifies the next dialogue state,
which can be discussion, task assignment, or
conclusion.
next_speaker (list[str]): The name(s) or
unique identifier(s) of the agent(s) expected
to speak next. In the discussion state,
next_speaker is limited to a single agent,
while in the task assignment state, it can include
multiple agents, indicating that the current mes-
sage contains multiple task assignments.

To support the task assignment mechanism, the

protocol incorporates the following fields:

14

task_id (str): The automatically generated
unique identifier for the current task.
task_desc (str): The description of the task
assigned to the client, extracted from the chat.
task_conclusion (str): The conclusion or re-
sult provided by the client after completing the
assigned task.

task_abstract (str): A concise summary of

the completed task.

Lastly, to support the pause & trigger mecha-
nism, the protocol includes the following field:

e triggers (list[str]): A list of task IDs that

require a trigger to be set.

By adhering to this comprehensive agent mes-
sage protocol for sending and receiving messages,
clients within IoA can effectively achieve au-
tonomous team formation and conversation flow
control. The protocol ensures that all necessary
information is communicated among agents, en-
abling seamless collaboration and coordination in
various task scenarios.

C.2 Client

The client component of IoA plays a crucial role in
enabling the integration and collaboration of het-
erogeneous agents. It consists of three layers: the
Foundation Layer, the Data Layer, and the Interac-
tion Layer. Each layer comprises several modules
that work together to facilitate efficient communi-
cation, data management, and agent coordination.
In this subsection, we provide a detailed overview
of the implementation of each module within the
client’s layers.

C.2.1 Foundation Layer

Network Infrastructure Module In IoA, all
clients maintain a persistent connection to the
server using the WebSocket protocol, similar to
an instant messaging application. When a client
sends a message, it is transmitted to the server,
which parses the comm_id field in the message and
forwards it to the other clients in the corresponding
group chat via their respective WebSocket connec-
tions. The real-time nature of WebSocket ensures
that messages are delivered promptly, enabling
clients to receive and respond to messages with-
out delay.

Data Infrastructure Module To support the data
storage and retrieval requirements of the upper-
level Data Layer modules, we employ SQLite as
the primary database solution. SQLite provides a
lightweight and efficient means of persisting and
accessing data related to agent contacts, group in-
formation, and task management. By leveraging
SQLite, the client can store and retrieve informa-
tion about encountered agents, group chat details,
and task assignments, ensuring data consistency
and availability throughout the collaboration pro-
cess.

15

Agent Integration Module The Agent Integra-
tion Module defines the protocol that third-party
agents must adhere to in order to seamlessly inte-
grate with IoA. Currently, the agent integration pro-
tocol in IoA requires agents to implement a func-
tion def run(task_desc: str) -> str, which
accepts a task description as input and returns a
summary of the task completion. This simple yet
effective protocol allows diverse agents to be in-
corporated into the framework, enabling them to
contribute their unique capabilities to the collab-
oration process. As IoA evolves, the integration
protocol can be extended to support more advanced
functionalities and interaction patterns.

C.2.2 Data Layer

Agent Contact Module The Agent Contact Mod-
ule is responsible for maintaining a record of the
clients that the current client has previously col-
laborated with. It stores information such as the
names and descriptions of these clients, provid-
ing a valuable reference for future collaborations.
The module aims to support the client in evaluat-
ing and storing collaboration outcomes after each
task, allowing it to make informed decisions when
forming teams for subsequent tasks. During the
team formation process, the information stored in
this module is included in the prompt to assist the
client in selecting the most suitable partners based
on prior experiences.

Group Info Module The Group Info Module
manages all group chat-related information, includ-
ing the following fields:

e comm_id (str): The unique identifier of the
group chat.

* goal (str): The objective or task that the group
chat aims to accomplish.

* team_members (str): The list of agents partic-
ipating in the group chat.

* state (str): The current state of the group
chat (e.g., team formation, discussion, task
assignment, conclusion).

e conclusion (str | None): The final outcome
or conclusion reached by the group chat.

* team_up_depth (int): The depth of the nested
team formation within the group chat.

e max_turns (int): The maximum number of
communication turns allowed in the group
chat.

By organizing and persisting this information,
the Group Info Module enables clients to maintain
a coherent view of the ongoing collaborations and
their progress.

Task Management Module The Task Manage-
ment Module is responsible for storing and track-
ing the tasks assigned within each group chat. It
maintains the following fields for each task:

task_id (str): The unique identifier of the
task.

task_desc (str): The detailed description of
the task.

task_abstract (str): A concise summary of
the task.

assignee (str): The agent assigned to com-
plete the task.

status (enum): The current status of the task
(e.g., pending, in progress, completed).

conclusion (str | None): The final result or
outcome of the task.

By keeping track of task-related information, the
Task Management Module enables clients to moni-
tor the progress of assigned tasks and ensures that
all task-related data is readily available for refer-
ence and decision-making purposes.

C.2.3 Interaction Layer

Team Formation Module As briefly intro-
duced in Section 3.1, when a client re-
ceives a task, it is equipped with two essen-
tial tools: search_agent(desc: list[str])
-> list[agent] and team_up(team_members:
list[str] | None) -> comm_id. The client must
decide whether to utilize the search_agent tool
to find agents on the server that match the spec-
ified description, or to directly call the team_up
tool based on the discovered agents and histori-
cal collaboration information. If the client invokes
team_up without specifying any agents, it implies
that the task will be completed by a single agent. To
prevent infinite loops, IoA imposes a limit on the
maximum number of tool calls, set to 10 by default.
If the client reaches this limit without successfully
launching a group chat, it is forced to invoke the
team_up tool to initiate the collaboration process.

16

Communication Module The Communication
Module handles the core functionalities of message
generation and message reception. When a client
generates a message, IoA processes it according to
the agent message protocol. If the message type is
conclusion, the client enters the conclusion phase,
where it provides a final answer to the group chat
goal based on the accumulated chat records and
task completion information. In the case of a pause
& trigger message, the framework prompts the
client to generate the task IDs that require trig-
gers and broadcasts them to all group members.
For discussion or task assignment messages,
they are directly broadcast to all participants in the
group chat.

Upon receiving a message, the client parses it
according to the agent message protocol. If the
next_speaker field does not include the current
client, the message is simply added to the group
chat history. However, if the client is designated as
the next speaker, it must take appropriate actions
based on the message type. For discussion mes-
sages, the client generates a response to continue
the conversation. In the case of sync or async
task assignment messages, the client extracts its
assigned task from the chat record, summarizes it,
and specifies the relevant information to be passed
to the integrated agent. The agent then executes the
task based on the summarized description and rele-
vant chat messages, returning the result upon com-
pletion. If the message type is pause & trigger,
the client updates the corresponding task triggers
in the Task Management Module.

The Communication Module, in conjunction
with the other modules in the Interaction Layer and
Data Layer, enables seamless and structured col-
laboration among agents. By adhering to the well-
defined agent message protocol and leveraging the
functionalities provided by the various modules,
clients can effectively participate in discussions, as-
sign tasks, and coordinate their actions to achieve
the desired goals.

C.3 Server

The server component of IoA serves as the cen-
tral hub for agent coordination, communication,
and management. It comprises three layers: the
Foundation Layer, the Data Layer, and the Interac-
tion Layer. Each layer contains modules that work
together to facilitate agent registration, discovery,
and message routing. In this subsection, we pro-
vide a detailed description of the implementation

of each module within the server’s layers.

C.3.1 Foundation Layer

Network Infrastructure Module and Data In-
frastructure Module The Network Infrastruc-
ture Module and Data Infrastructure Module in the
server are largely similar to their counterparts in
the client. However, the server’s Data Infrastruc-
ture Module incorporates the use of the Milvus
vector database to support the construction and
maintenance of the Agent Registry. Milvus enables
efficient similarity search and retrieval of agent in-
formation based on their characteristics, allowing
the server to provide clients with the functionality
to discover and match agents effectively.

Security Module While the Security Module is
not extensively utilized in the current implementa-
tion of IoA, we acknowledge its crucial role in en-
suring the integrity and reliability of the framework
in real-world deployments. This module is respon-
sible for verifying and controlling the integration of
third-party agents into the clients, preventing mali-
cious agents from compromising the entire frame-
work. As IoA evolves, the Security Module will be
enhanced to provide robust authentication, autho-
rization, and monitoring mechanisms, safeguarding
the collaborative environment from potential secu-
rity threats.

C.3.2 Data Layer

Agent Registry Module The Agent Registry
Module maintains a comprehensive record of all
clients integrated into the server. When a client
connects to the server, it is required to provide a de-
tailed description of the integrated agent, including
its name and capability description. This infor-
mation is stored in the Agent Registry, enabling
similarity matching based on agent characteristics.
The Agent Registry serves as a central repository
for agent information, facilitating agent discovery
and team formation processes.

Session Management Module The Session Man-
agement Module is responsible for managing the
WebSocket connections of all online agents and
keeping track of the group chats they participate in.
It maintains a mapping between agents and their re-
spective WebSocket connections, as well as the as-
sociations between agents and group chats. When
a client sends a message, the Session Management
Module ensures that the message is properly routed
to all clients involved in the corresponding group

17

chat, guaranteeing reliable and efficient communi-
cation within the collaborative environment.

C.3.3 Interaction Layer

Agent Query Module The Agent Query Module
handles incoming requests from clients seeking to
discover and match agents based on specific charac-
teristics. Upon receiving a query request, the mod-
ule converts the provided characteristics into vector
representations and performs similarity matching
against the agents stored in the Agent Registry. The
implementation of this module can vary depending
on the specific requirements and scalability needs
of the framework. For instance, techniques such as
BM25 or other information retrieval methods can
be employed to enhance the matching process and
improve the relevance of the returned agent results.

Group Setup Module The Group Setup Mod-
ule is responsible for handling client requests to
create new group chats. When a client submits
a request to set up a group chat, specifying the
desired team members, the Group Setup Module
processes the request and initializes a new group
chat instance. It assigns a unique comm_id to the
newly created group chat and notifies all participat-
ing clients about their inclusion in the chat. The
Group Setup Module works in conjunction with
the Session Management Module to ensure that the
necessary WebSocket connections and mappings
are established for efficient communication within
the group chat.

Message Routing Module The Message Routing
Module plays a critical role in facilitating commu-
nication between clients within group chats. When
a client sends a message, the Message Routing
Module receives the message and parses it accord-
ing to the agent message protocol. Based on the
comm_id specified in the message, the module iden-
tifies the corresponding group chat and forwards
the message to all clients associated with that chat.
The Message Routing Module leverages the infor-
mation maintained by the Session Management
Module to ensure accurate and timely delivery of
messages to the intended recipients.

The server component of IoA, with its carefully
designed modules and interactions, provides a ro-
bust and efficient infrastructure for agent coordina-
tion, communication, and management. By leverag-
ing the capabilities of the Foundation Layer, Data
Layer, and Interaction Layer, the server enables
seamless agent discovery, team formation, and mes-

sage exchange, fostering a collaborative environ-
ment where diverse agents can work together to
achieve common goals.

As IoA continues to evolve, the server compo-
nent will be further enhanced to incorporate ad-
vanced features such as load balancing, fault toler-
ance, and scalability, ensuring that the framework
can handle the growing demands of real-world
multi-agent systems. Additionally, the Security
Module will be strengthened to provide comprehen-
sive security measures, safeguarding the integrity
and confidentiality of agent interactions within the
framework.

C.4 Implementation Details of Different
Experiments

In this section, we provide an overview of the im-
plementation details for each experiment conducted
to evaluate the performance of IoA.

C4.1 GAIA

For the GAIA benchmark, IoA integrated four
ReAct agents: Web Browser, Code Executor,
YouTube Transcript Downloader, and Wikidata
Searcher. The tools provided to Web Browser and
Code Executor agents are adapted from the Auto-
Gen framework with minor modifications to ensure
compatibility with IoA. To address the YouTube-
related tasks in GAIA, we develop a YouTube
video transcript downloader based on PyTube*. For
videos without readily available transcripts, the tool
employs the Whisper model to transcribe spoken
language into text. Similarly, we adapt the Wiki-
data tool from Langchain® to fit the IoA ecosystem.
These adaptations showcases a key feature of IoA:
when a task requires a specific tool, it can be easily
integrated into the system through its implementa-
tion and agent adaptation, enabling it to participate
in task completion.

Due to budget constraints, we conduct perfor-
mance testing on the GAIA validation set. Despite
this limitation, the results provide valuable insights
into the effectiveness of IoA in handling complex,
multi-step tasks.

C.4.2 Open-Ended Instruction Benchmark
To create a diverse and challenging benchmark for

evaluating the performance of IoA on open-ended

4h'ctps ://github.com/pytube/pytube
5h'ctps ://python.langchain.com/v@.1/docs/
integrations/tools/wikidata/

18

tasks, we construct a set of 153 instructions span-
ning four categories: search & report, coding, math,
and life assistance. The benchmark construction
process involved three main steps:

First, we select the instructions based on the
real-world complex tasks used by XAgent (Team,
2023). These instructions were categorized into the
four aforementioned groups. Second, to increase
the diversity of the benchmark, we manually cre-
ate an additional 10 complex tasks. Finally, we
use the Self-Instruct method (Wang et al., 2023d)
to generate approximately 200 instructions, using
the previously selected instructions as seeds. After
manual screening and modification, we obtained
the additional 94 instructions, resulting in a total of
153 tasks. The benchmark eventually consists of
52 search & report tasks, 30 coding tasks, 30 math
tasks, and 41 life assistance tasks. By incorporating
a diverse set of open-ended instructions, this bench-
mark allows for a comprehensive evaluation of the
performance and versatility of IoA in handling a
wide range of real-world scenarios. We show one
example instruction for each category in Fig. 10.

Evaluation Methodology. For IoA, we consider
the final conclusion generated by the agents as the
final answer. However, since AutoGPT (Signifi-
cant Gravitas, 2023) and Open Interpreter (Open
Interpreter, 2023) complete tasks in multiple steps
and do not inherently generate a conclusion, we
prompted them to provide a detailed conclusion as
the final answer after task completion.

Inspired by the pairwise comparison evaluation
method used in MT-Bench (Zheng et al., 2023b),
we employ GPT-4 to evaluate the responses of IoA
against AutoGPT and Open Interpreter. To mit-
igate potential biases introduced by the order of
the responses, we alternate the order of the two
responses when presenting them to GPT-4 for eval-
uation. A result is counted as a win for a system
only when it is consistently determined to be su-
perior to its competitor in both orderings. In cases
where the performance is inconsistent across the
two orderings, the result is considered a draw.

C.4.3 Embodied Agent Tasks

For the RocoBench experiments, we adhere to
the original paper’s methodology, which relies on
discussions and parsing specific formatted strings
from the discussion results to determine the em-
bodied agent’s actions, rather than using agents to
call tools directly. We implement two clients that
communicate without integrated agents, requiring

https://github.com/pytube/pytube
https://python.langchain.com/v0.1/docs/integrations/tools/wikidata/
https://python.langchain.com/v0.1/docs/integrations/tools/wikidata/

them to output strings in the RocoBench format
at the conclusion stage. These strings are then
parsed and used to interact with the environment
using RocoBench’s predefined parsing functions.
This approach serves as a validation of IoA’s client
implementation and communication mechanism
design.

To accommodate the varying requirements of dif-
ferent tasks in RocoBench, we adopt task-specific
settings. For the Sort, Sandwich, and Sweep tasks,
which exhibit strong interdependencies between
steps, we retained the chat history and continued
each new action discussion based on the previous
group chat. In contrast, for the Cabinet and Rope
tasks, where the steps were less interdependent, we
initiated a new group chat for each action to op-
timize costs. Other settings remained consistent
with the Roco Dialog baseline.

C.4.4 Retrieval-Augmented Generation

For the retrieval-augmented generation (RAG)
question-answering task, we follow the settings out-
lined in Apollo’s Oracle. We provide agents with
two evidence pools: one derived from Wikipedia
and the other from Google. For Wikipedia, we uti-
lize Pyserini’s pre-built index of Wikipedia content
up to January 20, 2021, retrieving the top 10 most
relevant results for each query. For Google, we di-
rectly access the Google Search API, returning the
top 5 most relevant results for each query. These
tools were made available to the client-side LLMs,
enabling them to query relevant information during
discussions and ultimately provide well-informed
answers.

To evaluate the performance of IoA on the RAG
task, we randomly sample 500 entries from the
validation or test sets of the four datasets. After the
model generates answers, we employ GPT-4 for
answer evaluation. Specifically, we provide GPT-4
with the dataset answers and the model’s answers,
requiring it to output its reasoning in a Chain of
Thought (CoT) manner before providing a final
correctness judgment.

D Visualization of RocoBench

We provide the visualization of RocoBench
at Fig. 9. The cabinet task requires three agents to
collaborate: two agents open and hold the cabinet
door while the third agent retrieves two cups from
inside the cabinet and places them onto coasters
that match the color of the cups. The sweep task
involves two agents coordinating their actions: one

1
2

19

agent controls a broom to sweep cubes, while the
other agent holds a bucket to collect the cubes, and
finally, they dump all the cubes into a dustbin. In
the sandwich task, two agents work together to
pick up ingredients and stack them according to a
given recipe. The sort task requires three agents
to place three cubes onto coasters with matching
colors. Since each agent can only reach a limited
area, they must coordinate their movements. Lastly,
the rope task involves agents moving a rope into
a bracket. They must communicate effectively to
decide the correct path for maneuvering the rope.

E Simulated Environment for Team
Formation Evaluation

To construct a simulated environment for evalu-
ating the team formation mechanism, we employ
GPT-4-1106-preview to generate a diverse set of
tasks and agents. The dataset construction process
involved the following steps:

1. Task Generation:

* Using ChatGPT-4, we generate 399 dis-
tinct categories of theme keywords, cov-
ering various domains such as sports,
lifestyle, and entertainment.

* From these categories, we randomly se-
lect 25 themes and task GPT-4 with gen-
erating task descriptions related to at
least four themes from the selected set,
thus obtaining a task that require diverse
agents with different capabilities.

* Task descriptions are generated in JSON
format using the GPT-4 API, ensuring a
structured and consistent representation.

2. Agent Generation:

» After generating the tasks, for each task,
we again prompt GPT-4 to construct at
least two agents with varying capabilities
for the given task, including the name of
the agent and the description of the agent.

* The agent profile format is designed to
align with the server-side agent registry,
facilitating seamless integration and in-
teraction within IoA.

An example of a generated task description in
JSON format is as follows:

{

n n

"task_id": "xxx",

(a) Cabinet (b) Sweep (c) Sandwich (d) Sort (e) Rope

Figure 9: The different environments in RocoBench.

"task_description”: "Develop a
mobile app that helps users
plan and manage their
personal finance, including
budgeting, expense tracking,

and investment suggestions

n

Similarly, an example of an agent profile in
JSON format is:

{

"agent_name”: "FinanceGuru",
"agent_description”": "
FinanceGuru is a highly
skilled agent specializing
in personal finance
management. It has extensive
knowledge of budgeting
techniques, expense tracking
tools, and investment
strategies. FinanceGuru can
provide personalized
recommendations based on a
user's financial goals and
risk tolerance.”

By generating a diverse set of tasks and agents
with varying capabilities, we create a comprehen-
sive simulated environment for evaluating the team
formation mechanism. This environment enables
us to assess the effectiveness of IoA in assembling
appropriate teams based on task requirements, ad-
dressing the limitations of existing benchmarks in
providing suitable large-scale agent evaluation sce-
narios.

20

Please complete the function according to its comment.

def minimumTime(grid: List[List[int]]) -> int:

You are given a m x n matrix grid consisting of non-negative integers
where grid[row][col] represents the minimum time required to be able to
visit the cell (row, col), which means you can visit the cell (row, col)

only when the time you visit it is greater than or equal to grid[row][col].

You are standing in the top-left cell of the matrix in the Oth second, and
you must move to any adjacent cell in the four directions: up, down, left, and
right. Each move you make takes 1 second.

Return the minimum time required in which you can visit the bottom-right cell
of the matrix. If you cannot visit the bottom-right cell, then return -1.

Example 1:

Input: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]

Output: 7

Explanation: One of the paths that we can take is the following:
- at t = 0, we are on the cell (0,0).

[..]

Constraints:

[..]

After you complete the function, display the content of the script as res.py
directly.

Coding

In a country, there are cities connected by
one-way roads. It's known that from any city,
there is a route (possibly passing through
other cities) leading to the capital. Prove that
it's possible to choose one road from each city
in such a way that all chosen roads lead
directly or indirectly to the capital.

Math

Review three smartphone models (Apple
iPhone 13, Samsung Galaxy S22, and Google
Pixel 6) based on camera quality, battery life,
user interface, and price to decide the best
buy.

Search & Report:

I am a 35-year-old software engineer who is
vegan and looking to optimize for a balanced
diet containing 2500 calories per day. Create a
personalized weekly meal plan for me. Include
three meals and two snacks per day, paying
close attention to incorporating a variety of
protein sources to meet daily protein needs.
Provide a detailed grocery list that organizes
ingredients by aisle for a standard grocery
store layout.

Life Assistant

Figure 10: Example instructions from different categories in our open-ended instruction benchmark

21

	Introduction
	Framework Design of IoA
	Client
	Server

	Key Mechanisms in IoA
	Autonomous Nested Team Formation
	Autonomous Conversation Flow Control
	Comprehensive Message Protocol Design

	Experiments
	General AI Assistant Tasks
	GAIA Benchmark
	Open-Ended Instruction Benchmark

	Embodied Agent Tasks

	Related Work
	Conclusion
	Analysis
	Team Formation Precision
	Cost and Sub-Optimal Communication Pattern Analysis

	Retrieval-Augmented Generation Experiment
	Implementation Details of IoA
	Message Protocol
	Client
	Foundation Layer
	Data Layer
	Interaction Layer

	Server
	Foundation Layer
	Data Layer
	Interaction Layer

	Implementation Details of Different Experiments
	GAIA
	Open-Ended Instruction Benchmark
	Embodied Agent Tasks
	Retrieval-Augmented Generation

	Visualization of RocoBench
	Simulated Environment for Team Formation Evaluation

