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ABSTRACT

We present SCD (Soft fop-k Contrastive Decoding) for universal LLM detox-
ification. Prior approaches typically target specific model families or lean on
bespoke decoding tricks, limiting cross-model/task generalization; others distill
“cleaned” datasets, which adds training cost yet fails to address toxicity at its
source. Motivated by intervening at the data origin, we attempt to detoxify directly
on raw corpora; however, naively applying vanilla contrastive decoding to corpus
rewriting yields low-quality or semantically drifting edits and often fails to pro-
duce usable replacements. Instead, we intervene at the corpus level: SCD guides
an LLM to localize and rewrite toxic spans in raw data while preserving semantics,
yielding a detoxified corpus that can drop-in replace the original for fine-tuning or
other training. On GPT2-XL, SCD attains state-of-the-art detoxification, reduc-
ing Toxicity Probability (TP) from 0.42 to 0.18 and Expected Maximum Toxic-
ity (EMT) from 0.43 to 0.20. We further validate consistent best-in-class results
on LLaMA2-7B, OPT-6.7B, and Falcon-7B. These findings show that semantics-
preserving, corpus-level rewriting with SCD effectively suppresses downstream
toxicity while retaining data utility and allowing seamless source-level mitigation.

1 INTRODUCTION

With the widespread adoption of scaling laws, the practice of increasing pretraining corpora to enrich
a model’s foundational knowledge and enhance its basic capabilities has become mainstream. How-
ever, the growth of high-quality data has been constrained, thereby limiting improvements in these
fundamental capabilities. Today, most public data sources come from the internet, where there is a
large amount of unscreened toxic content. In terms of content, this can refer to unethical statements
that contain offense, hatred, or prejudice (Hallinan et al.,2023), or to any rude, disrespectful, or un-
reasonable behaviors and utterances that may drive interlocutors out of a conversation—phenomena
that are inherently complex and subjective (Borkan et al.,|2019). In form, toxic speech may be ex-
plicit and colloquial, or metaphorical and embedded in context. In particular, increasingly prevalent
toxic speech can cause unavoidable harm to minority groups, whether online or in real life (Thomas
et al.| [2021; commission on human rights, [2021). Some studies aim to identify and replace such
toxic text in an unsupervised manner using natural language processing algorithms, rewriting it as
non-toxic text and formulating the task as text style transfer (dos Santos et al.| 2018 [Tran et al.,
2020; |[Laugier et al., 2021}, which focuses on preserving the original content while only altering the
style of expression. Other work regards it as a translation or paraphrasing task and uses classifiers
to avoid the generation of toxic content (Zheng et al.| {2024} |Dale et al., [2021)). The process of iden-
tifying and modifying toxic speech is referred to as text detoxification (text detoxification). When
identifying and replacing toxic speech via NLP algorithms, overtly toxic phrases can be detected
and replaced by traditional methods such as pattern matching. However, when bias is more subtle
or couched in metaphor, and explicit harmful keywords are scarce, traditional algorithms struggle
to capture the underlying semantic relations and thus find it difficult to identify and replace toxic
speech in text (Hartvigsen et al., 2022; [Han & Tsvetkov, [2020; |Vidgen et al., [2021)). These publicly
available data from the Internet, whose inherent toxicity constitutes an important component of data
quality, have a significant impact on the subsequent training of models.

During the training of large language models, it is difficult by design for models to timely detect
and adapt to content that is sensitive and contains toxicity; as a result, they inadvertently acquire the
toxic language present in the corpus during optimization (Gehman et al., 2020; Webster et al., 2020
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Nozza et al. [2021)), which leads models to learn toxic expressions and thereby creates the risk of
amplifying and propagating harmful social biases and toxicity that exist in the real world. Moreover,
in interactions with users, when prompts contain toxic statements, large language models often re-
spond with text that itself contains toxicity or bias (Liang et al., 2022} |Shaikh et al., 2023)). Toxic
models are particularly prone to capturing and amplifying common societal biases, such as associ-
ating vulnerable groups (e.g., “homosexuals,” “Muslims,” etc.) with toxicity (Park et al., 2018} |Q1an
et al.| 2021)). Such undesirable deviations may stem from the demographics of internet users, latent
or explicit biases of annotators, or omissions introduced by filtering and sampling procedures during
annotation. To mitigate these concerns, some work has begun detoxifying the models themselves.
One approach adopts refusal strategies (Zhang et al.| [2023a)) to ignore unsafe context, which is not
user-friendly in mediation and conflict-resolution settings (Lohr et al.l [2017). Other work focuses
on detoxifying the generated text, which preventing the model from producing toxic content in a
given context without refusing to respond. One line of methods intervenes in the output by modify-
ing the model’s output probability distribution during inference, i.e., at decoding time (Dale et al.,
20215 | Xu et al., 2022; [Leong et al., 2023 Zhang & Wan, 2023; [Zhang et al.,|2023b). Another line
trains the model via RLHF or instruction tuning on detoxified corpora (Wang et al.| [2022; |Park &
Rudzicz, 2022} |Niu et al., [2024) or applies reinforcement learning on the original corpus to reduce
toxicity (Lee et al.,|2024). Yet another employs prompting setting up scenarios and using prompts
to influence the model’s interpretation of context so as to reduce toxic content in subsequent gen-
eration (Zheng et al., 2024; Xie et al., 2023; Meade et al., [2023). In addition, knowledge editing
has been explored to detoxify models by precisely removing toxicity in LLMs using only a single
input—output pair and a few adjustment steps (Wang et al.| 2024)).

However, the aforementioned methods suffer from several issues. Decoding-time interventions of-
ten trade off generation quality: due to such perturbations, the produced text tends to deviate from
the original contextual semantics, sometimes failing to produce coherent or readable sentences.
Training-based and prompt-based approaches are limited by the availability of detoxified corpora
or by the semantics of the prompting context; while they can better preserve consistency and coher-
ence, the detoxification effect is often modest, and applying RLHF does not fundamentally achieve
detoxification (Lee et al., [2024). As for knowledge editing, it requires precise parameter edits and
does not generalize well across different model architectures, limiting its generality. Fundamentally,
there is a goal conflict between text generation and current detoxification methods, that is genera-
tion quality versus content safety, so safety requirements in detoxification inevitably compromise,
to some extent, the semantic consistency between generated text and its context.

To reconcile the tension between textual toxicity and generation quality, we posit that modifying
the logits during model inference can further optimize the balance between the two. Inspired by
Lu et al.| (2025) which achieves detoxification via dataset distillation but focuses on detoxifying the
model itself while overlooking toxicity in the original text, we aim to address the problem at its
source, given that the toxicity of large language models often originates from the raw corpus. We
therefore propose directly detoxifying the original text and then using it for downstream training,
suppressing toxicity at its origin. Our design has three components. First, leveraging the successes
of prompt engineering, we input the original text together with a detoxification prompt to guide
the model during inference to avoid producing toxic tokens, thereby achieving detoxified rewriting.
Second, inspired by the vanilla contrastive decoding (L1 et al.,2023) that modulates the logits during
model inference, we proposed SCD (Soft fop-k Contrastive Decoding): because we observe that
directly masking potentially toxic tokens in vanilla contrastive decoding leads to loss of contextual
semantics and severely degrades text quality, we instead dynamically assess the current distributional
differences and regulate the top-%k tokens with the largest toxicity disparities, replacing masking
with directly subtracting token logit scores to improve text quality. Third, we semantically re-rank
the detoxified texts obtained in step two: for multiple outputs generated from the same input, we
compute embeddings and cosine similarity, then fuse confidence scores from a toxicity classifier,
selecting the result that is closest in semantics and comparatively lowest in toxicity as the final
detoxified text.

In our experiments, we used the detoxified texts to fine-tune GPT2-XL (Radford et al.,|2019). Com-
prehensive evaluations show that our method achieves substantial reductions in both model toxicity
and the toxicity of the original corpus, significantly outperforming existing model detoxification
approaches, while largely preserving the original text semantics and causing only a slight decrease
in the quality of text generation after downstream model training. Moreover, we quantified the ex-
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Figure 1: Simplified text detoxification pipeline. In the figure, we divide the text detoxification
pipeline into three steps. To simplify the description, we directly use probabilities rather than logits.
Firstly, given the prompt, base model and toxic model perform decoding to obtain their probability
distributions. Secondly, we subtract the corresponding token probabilities of both models and select
k tokens with the largest distribution disparity. Thirdly, we focus only on the selected & tokens and,
directly subtract to obtain the final distribution, and then sample the final output token.

tent of toxicity reduction by proposing AR-ADT (Absolute Reduction in Average Direct Toxicity),
which assesses the decrease in the texts’ inherent toxicity by measuring the mean absolute reduction
in toxicity scores. During our text detoxification process, the toxicity of the original corpus across
multiple categories dropped markedly, leading to a significant enhancement in subsequent model
detoxification performance. In addition, the detoxified texts can be seamlessly applied to various
pre-training settings, avoiding the need for tuning specific model architectures.

In summary, our contributions are as follows:

* By pairing raw corpora with prompt engineering, we guide the model to detoxify the original text,
seeking to suppress toxicity at the source of the training data.

* With SCD, we preserve the contextual information of the original text and avoid over-masking.

* By fusing direct toxicity scores with semantic similarity, we ensure effective and consistent detox-
ification of the original corpus, enabling near-lossless use in downstream training while substan-
tially reducing model toxicity.

2 METHODOLOGY

In this section, we detail our workflow and explain our efforts to balance text toxicity and text
quality. The core ideas are SCD and semantic alignment, ultimately achieving model detoxification
at its source.

Detoxification Prompt Engineering For the original toxic text dataset D, let a toxic text sample
be a, with @ € . We design a prompt « that guides the model to rewrite the toxic text a into
a non-toxic or low-toxicity version, and we specify a detoxification angle for it. The model then
performs a text generation task and, under a given contrastive decoding paradigm, is able during
inference to detect in time any tokens that are about to express toxic semantics.

SCD (Soft top-k Contrastive Decoding) To realize SCD, we need to “poison” a model that is
inclined to output toxic semantics. To ensure the toxic model can accurately identify most toxicity
during contrastive decoding, we fine-tune a model directly on DD, obtaining the toxic model Gyyic.
Next, for a base model 6y,,. With the same vocabulary size V, given the detoxification prompt,
suppose we are at some decoding step. As shown in Figure [I, we compute the difference between
the token probability distributions output by the two models at that step, which serves as the strength
with which we suppress toxic dimensions. The disparity « is described in Equation [T}

A = [ (PO (T), PO (T)) ey



Under review as a conference paper at ICLR 2026

where f(-, ) denotes a distributional disparity measure, and pg(x) denotes the probability distribu-
tion obtained after applying only the softmax function to model 8 under the current input .

In vanilla contrastive decoding (Li et al.||2023)), we observe that, given a prompt, the model tends to
produce incoherent or nonsensical text. UNIDETOX (Lu et al.,|2025), in a dataset distillation setting,
constrains decoding by using only <bos_token> and extrema that depend solely on pg,, (),
while ignoring other distributions via masking as in vanilla contrastive decoding. This can improve
generated text quality but greatly harms consistency with the original text. Although this matches the
needs of data distillation, while prioritizing text quality, but weakened the detoxification effect. Here
we provide another decoding constraint that prioritizes detoxification effectiveness while ensuring
text quality does not deteriorate too much. We thus propose SCD, which primarily selects the top-
k most divergent dimensions for processing, preserving as much information as possible in other
dimensions.

At step t, we first compute the per-token logits score difference in Equation

d = Dist (5(171‘ | T <t; 0base)7 S(It | T<t; etoxic)) (2)

where s(x; | ®<;;0) denotes the logits score at step ¢ under model 6 for input x, and Dist(-, )
denotes the element-wise difference between two vectors.

Then we select the dimensions with the top-k largest differences from Equation [3}

v = TopK ({d;}).4, k) 3)

and obtain the corresponding mask with Equation [4}

m=(my,...,my), m; = 1[i € yi ] )

The final logits are computed as shown in Equation [5}

s (2 | @y) = (4 | Tat; Opase) —am O |s(zy | Tt; Oronic) | (5)

Here we avoid the hyperparameter design in vanilla contrastive decoding and instead use the distri-
butional disparity « as an adaptive control parameter. Intuitively, when « is large, the two models
diverge on the semantics of the current token: the toxic model tends to express toxic semantics,
while the base model tends to express normal (or possibly toxic) semantics. In this case, SCD
can detect toxic-token dimensions and detoxify them while retaining token information in the other
dimensions.

Semantic-Toxicity Fusion Ranking Finally, for the same input we sample multiple candidate
outputs. We use Detoxify (Hanu & Unitaryl, |2020) to directly assess the toxicity of each detoxified
text and convert each result into semantic embeddings to compute cosine similarity, thereby ensuring
low toxicity and semantic consistency. We then compute a weighted sum of the toxicity score and
the semantic consistency score and select the top-1 result as the final detoxified text for the input.

3 EXPERIMENT

In this section, we implement our detoxification method and evaluate its final effectiveness.

3.1 DATASETS AND MODELS

Datasets Following UNIDETOX (Lu et al.,2025), we use the Dynamically Generated Hate Speech
(DGHS) dataset (Vidgen et al., 2021) as the input corpus for training the toxic model and for per-
forming detoxification; it contains a large amount of offensive content targeting different social
groups. For evaluation, we likewise use the ToxiGen dataset (Hartvigsen et al.l |2022), which in-
cludes explicit and implicit toxic statements directed at various groups. To examine how our method
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behaves on known versus unseen toxicity types, we split DGHS and only use the categories gen-
der, sexual orientation, race, and religion for training and detoxification; ToxiGen, in addition to
these categories, also includes physical and mental disabilities, which we use to assess detoxifica-
tion on unseen toxicity. In addition, we use MMLU (Hendrycks et al., 2020) to evaluate the model’s
downstream performance after detoxification.

Models For model selection, we use Qwen2.5-0.5B (Yang et al., 2024) as the toxic model, and
Qwen2.5 models of 0.5B, 3B, and 7B parameters as the base models. To assess detoxification
effectiveness, following common practice, we use GPT2-XL (Radford et al., 2019), LLaMA2-7B
(Touvron et al.,2023)), OPT-6.7B (Zhang et al., |2022) and Falcon-7B (Almazrouei et al., 2023)). We
fine-tune them on the detoxified text and examine the resulting performance seperately.

3.2 BASELINES

We adopt prompt-based detoxification as one baseline; the prompt design is provided in Appendix
We also include GPT2-XL, LLaMA2-7B, OPT-6.7B and Falcon-7B themselves as comparison
models.

Among publicly available methods, we first use UNIDETOX (Lu et al., 2025)) as a baseline: it ap-
plies the idea of dataset distillation, using an improved contrastive decoding method which employs
the hyperparameter « to modulate the masking strength, to sample and generate synthetic detox-
ified texts, and then using them to fine-tune the base model in the next step, thereby reducing the
high cost of second-order derivative computations in prior distillation tasks and reframing the output
of detoxification as non-toxic text, which is applicable to general-text detoxification. LM-STEER
(Han et al., 2024) focuses on converting the detoxification task into a linear transformation at the
embeddings level: by using the steering matrix W, obtained from fine-tuning on toxic data and the
hyperparameter € that controls the detoxification strength at the token-embedding level, it guides the
model to generate low-toxicity content; DEXPERTS (Liu et al.l [2021)), on the other hand, trains an
additional toxic model and a detoxified model, and at the level of contrastive decoding uses the hy-
perparameter [3 to balance detoxification strength and language modeling ability, thereby achieving
detoxification via a weighted combination based on each model’s output distributions. In addition,
we include vanilla contrastive decoding (O’Brien & Lewis| 2023) as one of our baselines. The
relevant parameter settings can be found in the Appendix [A.2]

As can be seen, our approach is related to UNIDETOX and DEXPERTS. However, DEXPERTS
requires extra training tailored to different model architectures, and the text produced by UNIDETOX
can only be used as fine-tuning data for a subsequent detoxification-specific stage. In contrast, we
intervene at the source, which is the training corpus, by suppressing toxicity in the raw data to
achieve detoxification and improve overall data quality.

3.3 METRICS

Based on prior work, we mainly evaluate the post-detoxification effects along three aspects: toxicity
mitigation, language modeling ability, and downstream task performance.

Mitigating Toxicity In line with prior studies (Gehman et al.,[2020; Liu et al.,|2021; Zhang & Wan,
2023; [Leong et al., [2023; |Han et al., [2024)), we sample 25 continuations (up to 20 tokens each) for
every ToxiGen example using nucleus sampling with p = 0.9 (Holtzman et al.l 2020). We evaluate
toxicity with Detoxify using two measures: (1) Toxicity Probability (TP), the observed chance
that at least one of the 25 generations attains a Detoxify score > 0.5; and (2) Expected Maximum
Toxicity (EMT), the highest Detoxify score recorded across the 25 generations. In detoxification
tasks, this class of metrics can also serve as our core metrics.

Language Modeling Capability Consistent with prior work (Liu et al.| 2021} Zhang & Wan,
2023 Han et al., [2024), we gauge language modeling along two axes: (1) Perplexity (PPL) com-
puted by LLaMA2-7B to reflect textual fluency; and (2) Dist-1/2/3, the average numbers of unique
uni-, bi-, and trigrams, normalized by output length, aggregated over 25 generations per prompt to
quantify diversity. These metrics will serve as our reference metrics, primarily assessing the impact
of the detoxification process on the model’s generative capability.
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Table 1: Detoxification results for GPT2-XL. Scores are reported as the average across five runs.
The lowest values for Toxicity Probability and Expected Maximum Toxicity are in bold. ID: In-
distribution. QOD: Out-of-distribution. Core Metrics: TP represents the probability of generating
at least one continuation with a Detoxify score > 0.5 across 25 generations, and EMT represents
average of the maximum Detoxify scores over 25 generations. Reference Metrics: PPL represents
perplexity of the generated output as measured by LLaMA2-7B, and Diversity represents number
of distinct n-grams normalized by text length, and Ace. stands for accuracy on MMLU (1-shot).

Core Metrics Reference Metrics
Model . .
TP () EMT (|) PPL (]) Diversity (1) Acce. (1)
ID OOD ID OOD Dist-1 Dist-2 Dist-3  1-shot (%)
GPT2-XL 0.54 040 054 041 17.53 0.26 0.43 0.46 31.81
LM-Steer 042 033 043 036 19.44 0.28 0.42 0.45 29.72
DEXPERTS 048 036 049 0.38 18.12 0.27 0.44 0.46 30.83
UNIDETOX 042 025 043 0.30 11.30 0.20 0.33 0.37 31.61

SCD (Ours) 0.18 0.19 0.20 0.22 21.45 0.16 0.22 0.22 30.83

Table 2: Detoxification results across models. Scores are reported as the average across five runs.
The lowest values for Toxicity Probability and Expected Maximum Toxicity are in bold. ID: In-
distribution. OOD: Out-of-distribution. Core Metrics: TP represents the probability of generating
at least one continuation with a Detoxify score > 0.5 across 25 generations, and EMT represents
average of the maximum Detoxify scores over 25 generations. Reference Metrics: PPL represents
perplexity of the generated output as measured by LLaMA2-7B, and Diversity represents number
of distinct n-grams normalized by text length, and Ace. stands for accuracy on MMLU (1-shot).

Core Metrics Reference Metrics
Model . .
TP () EMT (|) PPL (|) Diversity (1) Ace. (1)
ID OOD 1D OOD Dist-1 Dist-2 Dist-3  1-shot (%)

LLaMA2-7B 059 055 058 0.55 7.46 0.25 0.41 0.44 40.89
LM-Steer 046 041 046 040 11.62 0.28 0.35 0.38 41.02
DEXPERTS 045 036 046 0.38 10.57 0.27 0.40 0.42 37.75

UNIDETOX 028 0.25 030 028 7.04 0.18 0.22 0.27 38.67
SCD (Ours) 0.16 0.18 0.21 0.22 18.42 0.15 0.21 0.21 38.60
OPT-6.7B 079 084 077 0.81 16.67 0.25 0.42 0.45 34.10
LM-Steer 075 080 070 0.76 22.35 0.25 0.41 0.43 30.83
DEXPERTS 0.60 0.59 061 0.62 26.71 0.26 0.38 0.40 35.62
UNIDETOX 026 0.18 031 0.21 10.94 0.19 0.30 0.31 30.64

SCD (Ours) 0.16 019 021 0.24 22.87 0.17 0.25 0.26 32.79

Falcon-7B 059 056 058 054 10.72 0.26 0.43 0.46 39.26
LM-Steer 039 033 040 034 28.47 0.25 0.34 0.36 34.49
DEXPERTS 029 025 036 0.26 28.19 0.28 0.39 0.40 36.83
UNIDETOX 031 028 036 0.3l 10.74 0.16 0.23 0.26 34.67
SCD (Ours) 0.13 0.15 0.18 0.20 24.96 0.15 0.21 0.21 35.08

Downstream Task Performance Building on earlier evaluations (Brown et al., [2020), we assess
downstream capability on MMLU and report Accuracy (Acc.): 1-shot accuracy for GPT-2 models.
This metric will serve as a reference indicator for assessing the impact of our detoxification process
on the model’s performance on downstream tasks.

Direct Toxicity Scores As our generated corpus preserves the semantics of the original text, we
introduce a direct evaluation: AR-ADT, which is used to measure the reduction in direct toxicity
scores across each toxicity evaluation dimension. Finally, the mean value is computed over all texts
in the dataset. We use Detoxify to directly score the detoxified outputs across multiple dimensions
and compare how prompt engineering, vanilla contrastive decoding, and soft top-k contrastive de-
coding suppress toxicity.
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Table 3: Detoxification results across Qwen2.5 base models and measures. Scores are reported
as the average across five runs. Each item under Method corresponds to Appendix [A.T|for its expla-
nation. ID: In-distribution. OOD: Out-of-distribution. Core Metrics: TP represents the probability
of generating at least one continuation with a Detoxify score > 0.5 across 25 generations, and EMT
represents average of the maximum Detoxify scores over 25 generations. Reference Metrics: PPL
represents perplexity of the generated output measured by LLaMA2-7B, Diversity represents num-
ber of distinct n-grams normalized by text length, and Acc. represents accuracy on MMLU (1-shot).

Core Metrics Reference Metrics
Model Method . .
TP (}) EMT ({) PPL (|) Diversity (1) Ace. (1)
ID OOD ID (0]0)D] Dist-1 Dist-2 Dist-3  1-shot (%)

prompt 022 0.18 026 0.22 32.52 0.15 0.20 0.21 31.48
CD 0.21 0.19 0.23 0.20 32.49 0.11 0.14 0.14 30.63
FKL 0.19 0.17 023 0.20 39.81 0.13 0.18 0.18 30.70
0.5B RKL 020 0.18 024 022 34.67 0.14 0.19 0.19 30.76
JS 020 0.19 024 0.21 36.17 0.13 0.18 0.18 30.63
TVD 0.21 0.17 0.25 0.20 37.21 0.13 0.17 0.18 30.96
EMD 021 020 025 0.22 39.09 0.13 0.18 0.18 30.44
prompt  0.19 0.23 024 0.25 20.54 0.16 0.24 0.25 30.96
CD 0.19 021 022 023 21.45 0.14 0.20 0.21 30.96

FKL 0.17 019 021 0.24 25.05 0.16 0.26 0.22 31.22

3B RKL 0.17 016 025 022 26.20 0.15 0.21 0.22 30.76
JS 0.17 017 022 0.22 23.17 0.16 0.21 0.22 30.96

TVD 0.17 019 022 022 23.59 0.16 0.22 0.22 31.16

EMD 0.18 0.19 020 0.22 21.45 0.16 0.22 0.22 30.83

prompt 0.09 0.10 0.13 0.13 22.33 0.14 0.19 0.20 31.35

CD 0.10 0.09 0.13 0.12 22.48 0.14 0.19 0.19 30.83

FKL 0.12 0.10 0.16 0.14 22.70 0.16 0.22 0.23 30.83

7B RKL 0.10 0.08 0.14 0.13 23.46 0.15 0.20 0.21 30.50
JS 0.11 011 0.15 0.15 24.34 0.15 0.20 0.21 30.83

TVD 0.10 0.09 0.14 0.13 23.97 0.15 0.20 0.20 30.83
EMD 0.10 0.10 0.13 0.13 24.69 0.14 0.20 0.20 31.16

3.4 RESULTS

In this part, we use the Qwen2.5 series models throughout to detoxify texts. The toxic model has a
0.5B-parameter scale, and the base models are 0.5B, 3B, and 7B in size. In the subsequent detoxifi-
cation fine-tuning process, we use the GPT2-XL model for fine-tuning training to evaluate toxicity.
For the contrastive decoding—based text detoxification process, we use several abbreviations; their
meanings and explanations are given in Appendix

Detoxification results among models Table [I|reports the detoxification outcomes for GPT2-XL,
where the detoxified outputs are distilled from the same base model. The results are averaged over
five runs with different random seeds, with both the mean and standard deviation presented. The in-
distribution (ID) scores capture Toxicity Probability (TP) and Expected Maximum Toxicity (EMT)
on domains directly used for detoxification, while the out-of-distribution (OOD) scores reflect the
model’s ability to generalize detoxification performance to unseen domains.

In Tablem we present the results of the SCD method, where the distributional difference is measured
using the Wasserstein distance with & = 10. The results are obtained under the setting where
the base model is Qwen2.5-3B and the toxic model is Qwen2.5-0.5B. It can be observed that our
detoxification method substantially outperforms baseline methods such as UNIDETOX on toxicity
metrics. Although it sacrifices a certain degree of text quality, it ensures leading performance on the
primary toxicity metrics and still preserves the model’s capabilities on downstream tasks.

Likewise in Table [2] using the same corpus as for detoxifying GPT2-XL, we further compare the
detoxification performance on LLaMA2-7B, OPT-6.7B, and Falcon-7B. We observe that our method
achieves effects similar to those for detoxifying GPT2-XL.: it significantly outperforms the baselines
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Table 4: AR-ADT results across Qwen2.5 base models and measures. The score is the mean
absolute reduction in toxicity for each text before and after detoxification. Below AR-ADT are the
Detoxify toxicity evaluation dimensions, along with the mean absolute reduction in toxicity score
for each dimension.

Model Method AR-ADT (1)

toxic severe toxic  obscene threat insult  identity attack

prompt  0.4296 0.0606 0.2501  0.0276  0.2282 0.1725

CD 0.3888 0.0568 0.2318  0.0259 0.2102 0.1593

FKL 0.4312 0.0606 0.2502  0.0275 0.2284 0.1730

0.5B RKL 0.4313 0.0607 0.2502  0.0275 0.2285 0.1732

IS 0.4312 0.0607 0.2503  0.0275 0.2285 0.1732

TVD 0.4312 0.0607 0.2503  0.0275 0.2285 0.1732

EMD 0.4312 0.0607 0.2503  0.0275 0.2285 0.1732

prompt  0.4289 0.0604 0.2488  0.0270 0.2254 0.1696

CD 0.4089 0.0596 0.2431  0.0263 0.2187 0.1616

FKL 0.4357 0.0605 0.2492  0.0273  0.2265 0.1716

3B RKL 0.4370 0.0605 0.2497  0.0272  0.2271 0.1722

IS 0.4359 0.0605 0.2492  0.0273 0.2264 0.1717

TVD 0.4357 0.0605 0.2492  0.0272  0.2263 0.1716

EMD 0.4361 0.0606 0.2497  0.0276  0.2269 0.1719

prompt  0.4563 0.0608 0.2516  0.0279 0.2301 0.1781

CD 0.4552 0.0608 0.2513  0.0279 0.2295 0.1774

FKL 0.4567 0.0608 0.2517  0.0279 0.2302 0.1781

7B RKL 0.4574 0.0608 0.2516  0.0279 0.2302 0.1783

IS 0.4572 0.0608 0.2517  0.0279 0.2303 0.1783

TVD 0.4569 0.0608 0.2517  0.0279 0.2302 0.1782

EMD 0.4569 0.0608 0.2517  0.0279 0.2302 0.1782

on the main toxicity metrics, yields lower text quality than the baselines, and largely preserves
downstream task capability.

Differences Resulting from Different Distribution Discrepancy Measures In addition, as
shown in Table[3] we evaluate detoxification performance on GPT2-XL, using different distribution-
discrepancy measures and different detoxification model sizes. We observe that, regardless of the
specific discrepancy measure, the resulting detoxification effectiveness is similar. For pairs of small
toxic models and small base models, introducing the toxic model and contrastive decoding actu-
ally degrades the quality of the generated text. For medium-size base models combined with small
toxic models, we see clear gains from SCD, accompanied by a slight decline in text quality. For
large base models combined with small toxic models, contrastive decoding is nearly ineffective and
slightly reduces text quality. At a macro level, detoxification effectiveness increases with the size
of the base model, while text quality remains roughly unchanged; a possible reason is that, in our
setting, detoxified outputs are mostly short sentences, and fine-tuning may have ultimately altered
the model’s behavior. In Appendix [B| we additionally provide the results of model toxicity evalua-
tions for LLaMA2-7B, OPT-6.7B, and Falcon-7B under different distribution-discrepancy measures,
conducted on texts detoxified using Qwen2.5-3B as the base model.

From Table 4] In direct toxicity evaluation, we observe that for medium-scale and small-scale mod-
els, the SCD method outperforms prompt engineering and vanilla contrastive decoding across multi-
ple distribution-discrepancy metrics, and differences in how the distribution discrepancy is measured
have little impact on detoxification. Likewise, as the base model size increases, the degree of toxicity
reduction tends to become similar across the various methods.

4 RELATED WORK

Detoxification for LLMs Model detoxification approaches can be grouped into four categories:
continued training, constrained inference, prompt-based constraints, and knowledge editing. Con-



Under review as a conference paper at ICLR 2026

tinued training focuses on further training the model under paradigms such as domain-adaptive
pretraining, fine-tuning, and RLHF to remove toxicity, e.g., DAPT (Gururangan et al., 2020).

Constrained inference methods control attributes via decoding-time constraints or discriminator
guidance: PPLM (Dathathri et al.,|2019) updates internal representations using classifier gradients;
GeDi (Krause et al., [2021) jointly trains a generator and a discriminator to learn label-conditioned
distributions; ParaGeDi (Dale et al., |2021)) uses a paraphrasing model to preserve semantic consis-
tency; DEXPERTS (Liu et al.l 2021)) combines base, expert, and anti-expert logits for detoxification;
CondBERT (Dale et al., 2021) uses BERT (Devlin et al.,|2019) masking to replace toxic tokens with
non-toxic alternatives (which can also be viewed as data augmentation (Wu et al.,|[2019)); MARCO
(Hallinan et al.| [2023)) adopts an unsupervised detect—rewrite pipeline; CMD (Tang et al.,|[2024) per-
forms self-detoxification in two stages with synthetic data and self-training; LM-Steer (Han et al.,
2024) treats style transfer as a linear transformation in the word-embedding space to steer rewriting;
UNIDETOX (Lu et al., [2025) formulates detoxification as dataset distillation (Wang et al., [2018)),
using contrastive decoding to sample synthetic corpora and reduce second-order gradient overhead.

Prompt-based constraint methods (Xie et al.| [2023; [Meade et al 2023} [Zheng et al., [2024) focus
on jailbreak scenarios by injecting safety prompts into the context to induce the model to refuse
generating toxic content. Knowledge editing methods (Wang et al.,|2024)) first compare hidden-state
differences between safe and unsafe responses to localize toxicity-bearing layers, then fine-tune the
relevant parameters using toxic inputs and their safe responses, while preserving general capabilities
via knowledge question answering.

Contrastive Decoding Contrastive decoding was first proposed at|Li et al.[(2023). By introducing
a combination of an expert model and an amateur model, it improves the quality of generated text
solely during inference. Building on the observation that errors made by large models are often
made even more severely by smaller models, text spans to which the expert model assigns high
probability while the amateur model assigns low probability receive higher contrastive scores and
thus are more likely to be selected during decoding. Compared with classic decoding methods, con-
trastive decoding can generate text with richer content and more fluent sentences, and this advantage
is especially pronounced when the parameter scales of the expert and amateur models differ greatly.
Later, O’Brien & Lewis|(2023) extended contrastive decoding to LLM QA tasks and found that it
can substantially improve accuracy on abstract reasoning without retraining; its advantage in reason-
ing scenarios lies in reducing abstract reasoning errors and effectively preventing the model, during
chain-of-thought, from simply copying the input or following superficial patterns.

5 CONCLUSION

In this study, we focus on corpus detoxification prior to model training, aiming to detoxify the model
at the source by detoxifying the data. Through novel detoxification algorithms and workflows,
which distinct from traditional contrastive decoding methods that forcibly mask other information,
we adopt SCD approach to retain non-target information, and we use semantic embeddings to en-
sure semantic consistency, thereby detoxifying the original corpus. Experimental results show that
although the detoxified corpus slightly reduces the quality of generated text, it significantly lowers
LLM toxicity and has only a negligible impact on downstream task performance. The detoxified
corpus can be used directly for pre-training, fine-tuning, or other tasks without the need to apply
additional methods to detoxify the model again. This work highlights the strong potential of directly
detoxifying raw text, and offers an effective perspective on using our method for text detoxification
and, by extension, model detoxification.
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A EXPERIMENTAL DETAILS

We conducted all experiments on a single machine with eight 80 GB A800 GPUs.

A.1 METHOD ABBREVIATIONS AND EXPLANATIONS

For non-prompt-based methods, the input is consistent with that of prompt-only method, with the
distinction lying in which contrastive decoding method is employed, as well as which distributional
divergence measure is utilized during the implementation of SCD.

Table 5: Abbreviations and explanations of detoxification methods.

Abbreviations Explanations

prompt Only use prompts to detoxify texts.
CDh Vanilla contrastive decoding.
FKL SCD with forward Kullback-Leibler Divergence.
RKL SCD with reverse Kullback-Leibler Divergence.
IS SCD with Jensen-Shannon Divergence.
TVD SCD with total variation distance.
EMD SCD with earth mover’s distance or Wasserstein distance.
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Table 6: Detoxification results across models and measures. Scores are reported as the average
across five runs. Each item under Method corresponds to Appendix [A.T]for its explanation. ID: In-
distribution. QOD: Out-of-distribution. Core Metrics: TP represents the probability of generating
at least one continuation with a Detoxify score > 0.5 across 25 generations, and EMT represents
average of the maximum Detoxify scores over 25 generations. Reference Metrics: PPL represents
perplexity of the generated output as measured by LLaMA2-7B, and Diversity represents number
of distinct n-grams normalized by text length, and Ace. stands for accuracy on MMLU (1-shot).

Core Metrics Reference Metrics
Model — Method  ~pp 1y EMT()  ppr () Diversity (1) Ace. ()
ID 0OD ID OOD Dist-1 Dist2 Dist-3  l-shot (%)
prompt 025 030 029 032 1777 017 023 024  39.06
CD 015 016 019 019 1475 013 018 018  39.42
FKL 0.8 020 022 023 1743 015 021 022 3860
LLaMA2-7B  RKL 0.8 0.9 023 023 1721 017 024 025 3847
IS 016 018 021 022 1842 015 021 021 38.60
TVD 020 021 025 026 1669 0.3 024 025 3828
EMD 0.8 022 023 025 1923 017 023 024  39.12
prompt  0.19 029 023 030 2329 0.6 022 023 3423
CD 019 023 023 027 2029 016 023 024  32.07
FKL 0.9 021 022 026 2247 017 024 025 3227
OPT-67B  RKL 0.6 023 020 025 1977 016 023 024  33.38
IS 019 018 021 024 2358 016 023 024 3272
TVD 017 023 021 026 1812 016 023 024 3227
EMD 0.6 0.9 021 024 228 017 025 026 3285
prompt  0.18 025 022 027 1786 0.6 023 023 3625
CD 020 029 024 031 2101 017 023 024 3612
FKL 0.4 014 018 018 2187 014 019 019  33.70
Falcon:7B RKL 0.9 021 023 024 2093 017 023 024 3508
IS 018 022 023 026 2034 017 023 024 3632
TVD 013 012 017 017 2073 014 019 020 3403
EMD 013 015 018 020 2496 015 021 021 35.08

A.2 PARAMETER SETTINGS FOR TEXT DETOXIFICATION

SCD Unless otherwise specified, we set k¥ = 10 by default, using Qwen2.5-0.5B as the toxic
model and Qwen2.5-3B as the base model for text detoxification. This combination yields clearly
distinguishable detoxification effects; in the toxicity evaluation, one can observe noticeable perfor-
mance variations caused by different distribution discrepancy measures and different detoxification
methods. In addition, we use Qwen3-Embedding-0.6B (Zhang et al.l 2025)) to generate text embed-
dings and compute cosine similarity. For each toxic source text, we sample 3 times and select the
best top-1 detoxified text according to Semantic—Toxicity Fusion Ranking (as described in Setion [2))
as the detoxification result for that text.

Vanilla contrastive decoding Here we adopt the classic hyperparameter configuration of vanilla
contrastive decoding, setting a = 0.1, 51 = 0.5, and 52 = 0.5.

A.3 PARAMETER SETTINGS FOR MODEL TOXICITY EVALUATION

SCD We randomly sampled 640 texts with lengths no greater than 256 tokens, and performed full
fine-tuning with ms-swift (Zhao et al.,2024). The per-device batch size was 2, for a total batch size
of 16. We used the AdamW optimizer with 81 = 0.9, 82 = 0.999, and a learning rate of 3e—5.

UNIDETOX To ensure evaluation consistency, we used the publicly released distilled dataset from
UNIDETOX for toxicity evaluation, matched its paper’s optimizer and hyperparameters, and set
a = 1. The per-device batch size and total batch size followed our settings above.

LM-Steer We initialized the steering matrix W with a Gaussian distribution of mean 0 and vari-
ance le—3. To learn Wiyic, we froze all other model parameters, used the toxic dataset from
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Section 3.1, and fine-tuned each model for 3 epochs with the AdamW optimizer and a learning rate
of 1e—2. Following the best settings in Han et al.[(2024), we set the batch size to 32 and € = 1le—3,
and—as in UNIDETOX—searched within [—0.1e, —0.2¢, . .., —2.0¢| for the best detoxification ef-
fect.

DEXPERTS Following UNIDETOX, we searched for the best detoxification effect by sweeping 3
over [0.1,0.2,...,2.0].

Models For the models themselves, we keep the parameter settings identical to those in SCD to
ensure a fair comparison.

B ADDITIONAL RESULTS

In Table[6] we compare the detoxification performance of LLaMA2-7B, OPT-6.7B, and Falcon-7B
under different measures of distributional discrepancy. Similar to our findings on GPT2-XL, both
prompt-only methods and vanilla contrastive decoding are inferior to our SCD method, and the
detoxification results vary little across different discrepancy measures.

C PROMPT SETTING AND RESULTS

This section contains content that may be offensive.

System prompt You are a helpful assistant. Your task is to transcribe directly or indirectly harmful
content in the text, as well as other content that may harm the model, into legal and reasonable
content that conforms to human values.

User prompt You should return the result between <answer> and </answer>. Here is an
example input: this is a terrible fact. Output: <answer>this is a bad fact.</answer> Here is the
text that may contain harmful content: <raw_text>

Assistant prompt Here is the transcription result: <answer>

Raw texts and corresponding results

1. raw: Don’t be such a cowrd poof this is easy
result: Don’t be so a coward please, this is easy.

2. raw: Foreigners jsut fuck me rit off!
result: Foreigners just don’t bother me, please move on.

3. raw: the kikes are in charge
result: the Jews have taken control

4. raw: Every time I see your ugly moslem family I just want to stab them one by one
result: Every time I see your family, I just want to intervene harshly.

5. raw: Yes yes, they are really noisy black chicks
result: Yes yes, those are quite noisy chicks.

D LLM USAGE STATEMENT

During the preparation of this manuscript, we used large language models (LLMs) solely for linguis-
tic polishing. We carefully reviewed and proofread the LLM-polished content to ensure correctness,
and subsequently conducted additional manual editing on this basis.
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