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ABSTRACT

Text image machine translation aims to translate the content of textual regions
in images from a source language to a target language. Compared with tradi-
tional document, images captured in natural scenes have more diverse text and
more complex layout, posing challenges in recognizing text content and predict-
ing reading order within each text region. Current methods mainly adopt pipeline
pattern, in which models for text spotting and translating are trained separately.
In this pattern, translation performance is affected by propagation of mispredicted
reading order and text recognition errors. In this paper, we propose a scene text
image machine translation approach by implementation of synchronous text spot-
ting and translating. A bridge and fusion module is introduced to make better use
of multi-modal feature. Besides, we create datasets for both Chinese-to-English
and English-to-Chinese image translation. Experimental results substantiate that
our method achieves state-of-the-art translation performance in scene text field,
proving the effectiveness of joint learning and multi-modal feature fusion.

1 INTRODUCTION

In recent times, there has been a notable rise in interest surrounding research on Text Image Machine
Translation(TIMT) (Mansimov et al., 2020; Hinami et al., 2021; Ma et al., 2022; Tian et al., 2023;
Zhu et al., 2023; Lan et al., 2023; Ma et al., 2024; Lan et al., 2024; Qian et al., 2024). TIMT aims
at identifying one or multiple text regions within an image and translating the textual content from
a source language to a target language. A text region is an area in the image containing several
words ordered based on spatial and semantic consistency, also called as paragraph from the aspect
of natural language. Correct reading order means that the text content in each isolated region follows
the semantic logic of natural language and transmits a complete message (Xue et al., 2022). TIMT
methods could be classified into two patterns, pipeline and synchronous. Pipeline methods achieve
TIMT in multi-steps, including detecting the position or border of the text region, recognizing its text
content in the source language and translating it into the target language. Among them, detection
and recognition can also be end-to-end and referred to as text spotting. In pipeline methods, text
spotting model and translating model are trained separately. On the opposite, synchronous methods
unify the two models by jointly learning with multi-tasks. Unlike pipeline, intermediate recognition
result is unnecessary in synchronous methods, which is end-to-end, but added to multi-tasks training
for the potentially benefit of enhancing translation performance (Ma et al., 2022).

The majority of existing TIMT methods adopt pipeline pattern. However, joint learning demon-
strates numerous advantages compared with separate one. Not only does it reduce the propagating
error of text recognition, but also makes better use of multi-modal feature. For scene text image
machine translation(Scene TIMT), the problem of error propagation becomes more significant due
to the variety of image backgrounds and font irregularities. The wide range of visual complexities
in scene text images makes it harder for text spotting model to achieve high accuracy and relia-
bility (Long et al., 2021). Consequently, the negative impact of these errors is accumulated and
amplified in the translation process (Lan et al., 2023). Furthermore, the intricacy and diversity of
layouts in scene text images can lead to incorrect predictions of reading order, thereby further de-
grading the performance of translation. To address these challenges, we propose a synchronous
approach by jointly training text spotting and translating models. The difference of translation result
between existing pipeline methods and our proposed approach are illustrated in Figure 1 by an exam-
ple of Scene TIMT. The layout of text in this example does not satisfy the common zig-zag shaped
scanning order and the art font of Chinese characters makes it hard to recognize text content of the
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source language correctly. The pipeline result exhibits two recognition errors, and its predicted read-
ing order, as indicated by the yellow arrows in the figure, is inaccurate. This inaccuracy results in
erroneous translations on the first half of the sentence. Conversely, our synchronous method predicts
correct reading order and fewer recognition errors, and the usage of additional visual information
ensures that the translation output remains unaffected by such issues.

(a) Original Image (b) Pipeline (c) Ours

Ref src (Chn)  三津汤包 拼搏的味道
Ref tgt (Eng)   sanjin soup dumplings :                        
                       the taste of struggle

Prd src (Chn)  三用包<unk> 拼搏的味道
Prd tgt (Eng)   three usages package :                        
                       the taste of struggle

Prd src (Chn)  三津用包 拼搏的味道
Prd tgt (Eng)   sanjin soup dumplings :                        
                       the flavour of struggle

Figure 1: An Example of Scene TIMT to Show Difference Between Pipeline and Ours

Our contributions in this paper are summarized as follows:

• We propose a synchronous text spotting and translating approach for Scene TIMT by jointly
training our model with three sub-tasks, detecting text regions in the image, recognizing the
source language text content and translating it into the target language.

• A Bridge and Fusion(BAF) module is designed to connect and fuse visual feature with
textual feature and enhance translation performance.

• We create Scene TIMT datasets for both Chinese-to-English and English-to-Chinese trans-
lation. Label includes text regions’ coordinates and their matched bilingual sentence pairs.
Words in each region are arranged in semantic reading order.

• Experimental results show that our method achieves the state-of-the-art performance and
prove the advantages of joint learning. Besides, ablation study on multi-modal feature
fusion demonstrates that BAF module further improves the model’s translation ability.

2 RELATED WORK

2.1 TEXT SPOTTING

Arbitrary Shaped Text Region Optimizing for arbitrary shaped text region is one of the popular
topics in text spotting field. Studies mainly focus on finding a more suitable format to represent the
text region (Liu et al., 2020; 2021a; Peng et al., 2022; Liu et al., 2023; Kil et al., 2023; Wang et al.,
2020; Tang et al., 2022). Liu et al. (2020; 2021a) import Bezier control points coordinate for curved
text, and Peng et al. (2022); Liu et al. (2023) adopt single-point coordinate to cover arbitrary shaped
area. Kil et al. (2023) applies multi-format coordinate by adding a coordinate prompt. Besides,
detection granularity represents another research direction. Baek et al. (2019; 2020) introduce
character-level attention to achieve fine-grained text spotting and improve the detection flexibility.

Joint Learning and Multi-task Training Owing to advancements in computational resources, re-
cent studies have increasingly focused on enhancing performance by simultaneously training the
detector and recognizer (Feng et al., 2019; Baek et al., 2020; Liu et al., 2020; 2021a; Qiao et al.,
2021; Wang et al., 2021; Zhang et al., 2022; Peng et al., 2022; Liu et al., 2023; Huang et al., 2022;
2023; Kittenplon et al., 2022).Joint learning optimizes detection and recognition in unified archi-
tectures (Huang et al., 2022; 2023). Moreover, multiple decoders is a trend for multi-task training.
Zhang et al. (2022) designs two parallel decoders, in which one is for recognition, another is for gen-
erating fine-grained coordinate . Kittenplon et al. (2022) adds a third branch for text segmentation.
Multi-task training could enrich the information contained in visual feature.
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2.2 MULTI-MODAL TRANSLATION

Multi-modal Translation(MMT) is based on text-only machine translation, while the latter is a rel-
atively stable technology. An additional visual model is needed for image feature extraction, and
MMT achieves fusion of visual-textual feature by attention mechanism (Calixto et al., 2017; Elliott
& Kádár, 2017; Wu et al., 2021; Li et al., 2022a; Lan et al., 2023). According to input image’s
content, MMT methods could be classified into two types, textual image and non-textual image.

Textual Image MMT with textual image as input translates text content with the assistance of se-
mantic information derived from the visual feature map. This semantic information has a absolute
correlation with text regions in the image. Lan et al. (2023) builds a code book in training process by
clustering the visual feature vectors with similar semantic. In inference process, the code book fea-
ture which is closest to current image will be chosen to construct multi-modal feature for translation.
The translation performance of MMT further improves based on the text-only machine translation
due to the introduction of visual information. However, this method relies on the external Optical
Character Recognition(OCR) (Mori et al., 1992) tool. Another way of utilizing visual feature is
feeding it directly into the translation model and achieving end-to-end image translation (Mansimov
et al., 2020; Ma et al., 2022; 2024; Lan et al., 2024). These models are trained to deal with only
simple layout cases with a single paragraph and scanning reading order, so they are not able to deal
with complex scene text images.

Non-textual Image MMT with non-textual image as input is based on the assumption that the
source language text is already given correctly. The optimization methods in this filed do research
on making use of visual feature as additional information to improve traditional text-only machine
translation. One research direction focuses on exploring model structure for better visual-textual
feature fusion: Wu et al. (2021); Li et al. (2022a) use gated vector; Li et al. (2022a) imports
selective attention mechanism; Ye et al. (2022) adopts interactive fusion with cross-modal relation-
aware mask mechanism. Another research direction is optimizing training process. Cheng et al.
(2024) limits the textual input and guides model to pay more attention to visual information. Guo
et al. (2023); Cheng et al. (2023) focus on the problem of insufficient text-image pairs and consider
synthetic data generation. Guo et al. (2023) uses consistency training to reduce the difference
between the output of the transformer decoder for synthetic and real data, and Cheng et al. (2023)
applies asymmetric contrastive learning to mitigate the negative impact of noise in those generated
pairs.

3 METHODOLOGY

3.1 OVERVIEW

The input of Scene TIMT is an image I ∈ ZH×W×3. Information of one text region contains its
coordinate, source language text and target language text for translation:

• Scene text regions exhibit a wide range of diversity in shape and size. To ac-
commodate various scenarios, we employ multi-format coordinates of three types:
boxes, quadrilaterals, and polygons with sixteen vertices. They are defined by a type
prompt followed with a fixed number of 2-dimensional vertices, {⟨box⟩, x0, y0, x1, y1},
{⟨quad⟩, x0, y0, x1, y1, x2, y2, x3, y3} or {⟨poly⟩, x0, y0, ..., x15, y15}. Single point coor-
dinate is not used as we need explicit region border in prediction output to retain the capa-
bility of rendering the translated text back onto the image.

• Both source and target language text use Byte Pair Encoding (Bostrom & Durrett, 2020),
and they share same vocabulary with size 60K. All texts are described as padded token
sequence with fixed length, like {s0, s1, ⟨pad⟩, ..., ⟨pad⟩} and {t0, t1, ⟨pad⟩, ..., ⟨pad⟩}.

The overview of our proposed method is shown in Figure 2. It includes four main modules, Vi-
sual Feature Extraction, Detection & Recognition, Bridge & Fusion and Translation. Among them,
Visual Feature Extraction and Detection & Recognition construct a text spotter, which is based on
UNITS (Kil et al., 2023), a sequence generation model for end-to-end text spotting. Translation
module is based on Transformer (Vaswani, 2017).
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Figure 2: The Overview of Our Proposed Method and Details of BAF Module

3.2 VISUAL FEATURE EXTRACTION

The backbone for visual feature extraction is Swin-Transformer (Liu et al., 2021b), pre-trained with
computer vision tasks1. To capture high-level visual information, we select the output of the last and
also deepest layer as visual feature, V = {v0, v1, ..., vm}. Visual feature could be used in both 1-
dimensional sequence format and 2-dimensional map format. m = h× w is the length in sequence
format, where h and w are the height and width of map format, scaled by 1/32 from the original
image size H and W . The coordinate is based on visual feature map, so it is correspondingly scaled
by 1/32 from the original coordinate in the image.

3.3 DETECTION & RECOGNITION

The auto-regressive structure for sequence generation has been proved effective in end-to-end text
spotting task previously (Kil et al., 2023). Similarly, Detection & Recognition module is con-
structed by eight stacked Transformer Decoder (Vaswani, 2017) layers. The input for these de-
coders is the visual feature V . Information of object text regions are generated in the format
of a coordinate-text-mixed sequence. Since the model is trained with paragraph-level label (not
word-level) of text regions, layout analysis are implicitly embedded in this sequence generation
process, including paragraph segmentation and reading order prediction. The recognition output is
S = {s0, s1, ...}. For detection output, the coordinate like {x0, y0, x1, y1} is converted into discrete
bins B = {bx0

, by0
, bx1

, by1
} in order to integrate detection and recognition into a unified classifi-

cation task paradigm (Kil et al., 2023). The conversion method is Equation 1, where nbins = 1000
is the number of bins. For the n-th vertex of the coordinate, xn is the position along width axis in
visual feature map, and yn is the position along height axis:

bxn
= ⌈xn/w × nbins⌉

byn = ⌈yn/h× nbins⌉
(1)

3.4 BRIDGE & FUSION

Bridge & Fusion module is shown in the lower half of Figure 2. The input visual feature V is
globally extracted from the whole image. The input textual feature {s0, s1, ...} is the embedding

1https://github.com/SwinTransformer/storage/releases/download/v1.0.0/
swin_base_patch4_window7_224_22k.pth
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sequence generated from the last decoder layer in Detection & Recognition module, matched with
recognized text S. Both visual and textual feature are applied with a self-attention layer, which
means that visual feature is able to collect global visual information which is helpful for translation
task before cropping local feature for the specific text region. Coordinate of each text region like
{x0, y0, x1, y1}, which is converted from the discrete bins B generated in Bridge & Fusion Module,
is fed into Region of Interest (RoI) Pooler and guides the pooler to crop local visual feature for each
text region from the whole visual feature map. These self-attention and cropping operations make a
bridge for connecting features extracted from different modules. Then the processed textual feature
is fed into cross-attention as query, while the cropped local visual feature as key and value. The
output multi-model fused feature F = {f0, f1, ...} has same length as recognized source language
text S, but combined with more details of visual information. Notably, the textual feature is concate-
nated with two position embedding before fed into fusion module as query. One is 2-dimensional
and represents the global position of each feature vector in the feature map of the whole image,
another is 1-dimensional and represents the local position of each feature vector in the recognized
text sequence. That way, even if the recognition result is wrong, BAF module is still able to guide
cross-attention layer to collect visual information for translation according to position-related part
in the query.

3.5 TRANSLATION

Translation module is based on typical machine translation model, Transformer (Vaswani, 2017).
This module regressively generates translation result T = {t0, t1, ...} based on the multi-model
fused feature F from BAF module. We apply beam search in decoding process(beam size is 5).

3.6 OPTIMIZATION OBJECT

Scene TIMT is optimized with multi-tasks. The final loss is the weighted sum of three sub-losses,
respectively for detection, recognition and translation. These three sub-tasks are all classification
tasks, so their losses are calculated with Cross-Entropy(CE). The loss function is shown in Equa-
tion 2, where hat mark means ground true label. The α is the sum weight, which is not sensitive in
training and could be set as 0.1, 0.5 or 0.9.

loss = α× (CE(B, B̂) + CE(S, Ŝ)) + (1− α)× CE(T, T̂ ) (2)

4 EXPERIMENT

4.1 DATASETS

We create Scene Text Spotting and Translation 800,000 (STST800K) dataset, which contains both
synthesized and real data for Chinese-to-English and English-to-Chinese translation tasks. The
overview is in Table 1, and example cases are shown in Figure 3.

4.1.1 DATA SYNTHESIZING

Image source is COCO (Lin et al., 2014) with more than 330K images constructed for scene un-
derstanding tasks. We use PaddleOCR2 tool to exclude images with text content. After filtering,
there are nearly 100K images left as synthesizing background material. We extract the depth mask3

for each image and generate its segmentation mask4 as well. With these two masks, images are
segmented into several regions and some of them are chosen to render text of the source language
for their suitable shape and sufficient area. The source-target language text pairs are from Machine
Translation Challenge WMT22 (Kocmi et al., 2022). There are nearly 55M Chinese-English pairs in
the zh-en subset of WMT22. After deleting long text which is not suitable for rendering on image,

2https://github.com/PaddlePaddle/PaddleOCR
3https://bitbucket.org/fayao/dcnf-fcsp/src/master/
4https://github.com/jponttuset/mcg
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Chinese-to-English Count
SynthChn 500,000
OCRMT30K (Lan et al., 2023) 30,000
ReCTS (Liu et al., 2019) 20,000

English-to-Chinese Count
SynthEng 300,000
HierText (Long et al., 2022) 10,000
CTW1500 (Xue et al., 2022) 1,500

Table 1: Overview of STST800K

SynthChn OCRMT30K ReCTS

SynthEng HierText CTW1500

Figure 3: Example Cases of STST800K (Yellow Arrow Presents Reading Order)

there are about 39M pairs left. We use the filtered images and source language text to synthesize
Scene TIMT data. The synthesizing code is modified from SynthText5.

4.1.2 REAL DATA RELABELING

OCRMT30K (Lan et al., 2023) has complete annotations for Scene TIMT, including paragraph-level
coordinate, recognition result and its matched translation. ReCTS (Liu et al., 2019)’s label is word-
level and does not have translation. HierText (Long et al., 2022) is a hierarchical labeled scene text
dataset, and its labeling structure is paragraph-lines-words. The words within a line are arranged in
reading order, however the lines within a paragraph are not. Contextual CTW1500(CTW1500) (Xue
et al., 2022)’s label is also word-level but provides reading order information to construct text para-
graph from words. Besides, neither HierText nor CTW1500 has translation label. We manually
label the text regions and reading order information for test subset of ReCTS and HierText. Other
data’s reading order and all translation labeling work is achieved by large-scale language model API
Tongyi Qianwen6 and then proofread by humans.

4.2 EVALUATION METHOD

Object detection harmonic mean (Hmean), also called F1-score, is used to measure the performance
of text region detection, while SacreBLEU (Post, 2018) and COMET (Guerreiro et al., 2023) is for
evaluating the quality of translation.

Hmean is a comman object detection evaluation method. In our experiments, if the ratio of the
intersection area to the union area between predicted coordinate and ground true coordinate is greater
than 0.5, this sample is seen as detected correctly.

SacreBLEU and COMET serve as tools for evaluating the quality of machine translation by assess-
ing the similarity between the generated text and the reference translation label. In our experiments,

5https://github.com/ankush-me/SynthText
6https://tongyi.aliyun.com/
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the language model used to calculate COMET is XCOMET-XL7. These two scores provide a com-
prehensive evaluation that encapsulates translation accuracy, fluency, and similarity.

4.3 EXPERIMENTAL SETTINGS

Training process includes three steps:

• Pre-train Visual Feature Extraction and Detection & Recognition modules on low reso-
lution 768 × 768 with all image data. Pre-train Translation module with text-only data
WMT22 (Kocmi et al., 2022). This is for quicker converging.

• Jointly train all modules and improve image resolution from low to high 1920× 1920. Ex-
cept BAF module, other modules’ weights are initialized with pre-trained weights got in the
first step. Text-only data is still used in for training to avoid the decreasing of generalization
ability in Translation module.

• Fine-tune on target dataset.

Optimizer is AdamW (Loshchilov et al.). For the three steps, batch size = {32, 16, 16}, learning
rate = {3e-4, 1.2e-4, 3e-5}. The total number of training batches is 1000K for the first two steps and
300K for the third step. All experiments are done on eight A6000 GPUs.

4.4 RESULTS

4.4.1 BASELINES COMPARISON

GT Coord Prd Coord
Pipeline or End-to-End Method Model Parameters OCRMT30K ReCTS OCRMT30K ReCTS

B C B C H B C H B C
Gated Fusion (Wu et al., 2021) 96M 29.87 75.60 24.31 66.09 - - - - - -

Pipeline (PaddleOCR + Selective Attn (Li et al., 2022a) 96M 26.80 70.69 21.24 66.83 - - - - - -
Multimodal Machine VALHALLA (Li et al., 2022b) 260M 28.12 70.02 25.68 69.11 - - - - - -

Translation) E2E-TIT (Ma et al., 2022) 137M 16.30 42.88 10.16 39.10 - - - - - -
MCTIT (Lan et al., 2023) 158M 31.07 80.93 24.42 69.79 - - - - - -

ABCNetv2 (Liu et al., 2021a) 51M 2.17 33.69 4.34 16.14 52.55 3.78 37.43 54.59 6.10 25.95
End-to-End (Text Detection SWINTS (Huang et al., 2022) 177M 16.17 39.60 18.84 45.60 69.73 16.80 42.00 66.37 18.40 44.53

& Translation) SPTSv2 (Liu et al., 2023) 36M 1.90 38.32 8.50 36.80 51.14 5.47 34.92 59.42 12.98 37.45
UNITS (Kil et al., 2023) 133M 24.06 66.34 22.45 58.31 74.24 23.64 60.32 71.79 20.73 50.58

Synchronous Ours 288M 35.60 84.46 28.23 75.55 65.15 37.51 85.38 65.26 25.55 71.52

Table 2: Comparisons with State-of-the-arts on Chinese-to-English Datasets.

GT Coord Prd Coord
Pipeline or End-to-End Method Model Parameters HierText CTW1500 HierText CTW1500

B C B C H B C H B C
Pipeline MCTIT (Lan et al., 2023) 158M 28.00 72.60 27.45 73.38 - - - - - -

ABCNetv2 (Liu et al., 2021a) 51M 6.17 40.80 3.30 22.53 33.60 3.55 27.34 36.69 4.40 22.93
End-to-End SPTSv2 (Liu et al., 2023) 36M 4.09 29.32 6.50 33.02 48.14 5.40 36.77 40.40 18.22 44.76

UNITS (Kil et al., 2023) 133M 22.02 58.10 21.80 60.37 55.48 19.58 58.54 78.79 22.00 51.74
Synchronous Ours 288M 30.80 72.63 34.50 75.60 54.40 35.00 78.98 72.28 36.76 76.90

Table 3: Comparison with State-of-the-arts on English-to-Chinese Datasets

To evaluate our proposed method comprehensively, we select two kinds of existing methods as
baselines, pipeline and end-to-end:

• Pipeline Baselines These methods are MMT model using external OCR tool to do text
spotting or assuming that the recognition result is given. However, the text region detected
by OCR tool might be smaller than the ground truth, since label for TIMT is paragraph-
level, and for scene text, words belonging to the same paragraph might be split into different
region by OCR because of not gathered spatially on the image. To solve this problem, we
use ground true coordinate(GT Coord) of text region to crop images and then use OCR
tool(PaddleOCR) to recognize the text content within the cropped pieces. If there are mul-
tiple objects detected by OCR tool in one text region, we arrange them in zig-zag shaped
scanning reading order and see them as a whole paragraph when subsequently applying
multi-modal translation. Testing with GT Coord ensures that pipeline methods can be

7https://github.com/Unbabel/COMET
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compared with end-to-end methods without considering the factor of text region detection.
Moreover, we can observe the effect of reading order error due to the assumption of the
simple layout rule. To compare fairly, we also use GT Coord to test end-to-end methods.
Besides, end-to-end methods are individually tested with predicted coordinate(Prd Coord),
and the purpose of this test is further evaluating the whole performance of end-to-end meth-
ods for Scene TIMT task.

• End-to-End Baselines Since a comprehensive end-to-end model for synchronous detecting
and translating remains elusive in existing methods, we select state-of-the-art text spotting
models as end-to-end baselines by training them for translation instead of recognition.

The result of baselines comparison is shown in Table 2 and Table 3. Our proposed method outper-
forms both pipeline and end-to-end baselines and achieves the state-of-the-art on datasets of both
Chinese-to-English (OCRMT30K (Lan et al., 2023) and ReCTS (Liu et al., 2019)) and English-to-
Chinese (HierText (Long et al., 2022) and CTW1500 (Xue et al., 2022)).

UNITS (Kil et al., 2023) is the best end-to-end baseline. Visual Feature Extraction module and
Detection & Recognition module in our proposed method are based on it. The scores of the best
end-to-end baseline are still much lower than our proposed method in both GT Coord column and
Prd Coord column, this fact indicates that additional translation module is necessary in Scene TIMT
task.

MCTIT (Lan et al., 2023) is the best pipeline baseline, whose performance is better than that of the
best end-to-end baseline. To further prove the advantage of joint learning, we conduct an additional
test on MCTIT and our proposed method by using ground true coordinate and recognition(GT Coord
& Rec) as input. This test evaluates the translation performance individually without considering
the factor of OCR. The result in Table 4 shows that our proposed method performs better than the
best pipeline baseline even when using the entirely correct result of OCR, especially on ReCTS(Liu
et al., 2019), the test set which has more complex layout than OCRMT30K(Lan et al., 2023).

GT Coord & Rec
Method OCRMT30K ReCTS

B C B C
MCTIT (Lan et al., 2023) 49.07 91.34 31.69 78.54

Ours 48.63 92.15 34.04 81.37

Table 4: Test With Ground Truth OCR Result

4.4.2 VISUAL-TEXTUAL LARGE-SCALE LANGUAGE MODEL COMPARISON

Our method focuses on synchronous training of small model. However, it exhibits the largest model
size in comparison to the baseline small models. To highlight the advantages of our method, we
further compare our model’s multi-modal translation ability with visual-textual large-scale language
model(VLM). In Table 5, there are three kinds of evaluations. (1) GT Coord + Ours recognition:
We ask VLM to translate the recognition result generated by our method (with GT Coord as input).
The input for VLM includes the image and the recognition text with a few prompt. (2) GT Coord
+ VLM recognition: Draw GT Coord on image and ask VLM to translate the text within the given
region. (3) Translate Whole Image: Input the original image and ask VLM to translate the whole
image. If there are more than one text regions in the image, the translation label for the whole image
is a paragraph with all text regions arranged by scanning reading order.

GT Coord + Ours recognition GT Coord + VLM recognition Translate Whole Image
Method Parameters OCRMT30K ReCTS OCRMT30K ReCTS OCRMT30K ReCTS

B C B C B C B C B C B C
Ours 2.88B 35.60 84.46 28.23 75.55 35.60 84.46 28.23 75.55 23.44 55.73 24.55 58.65

Qwen-vl-max (Bai et al., 2023) - 21.92 83.74 - - - - - - - - - -
mPLUG-OWL2 (Ye et al., 2024) 8.2B 12.61 78.75 7.96 68.60 0.90 61.06 0.59 53.61 0.36 28.84 1.01 32.71
InternVL2-8B (Chen et al., 2024) 8B 23.06 84.22 14.47 75.16 12.62 75.84 7.46 67.48 3.52 49.64 2.21 50.56

TextMonkey (Liu et al., 2024) 9.7B 9.69 80.85 5.78 71.00 2.60 65.46 1.61 57.80 1.13 40.36 1.28 40.75
Qwen2-VL-8B-Instruct (Wang et al., 2024) 8B 23.28 84.65 12.38 73.98 20.75 80.73 7.80 69.61 2.79 50.19 1.60 51.98

Table 5: Compare our method with VLM

The result shows VLM has much lower OCR ability than ours, which proves the necessity of small
model training in text spotting task. When comparing the performance of multimodal translation,
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our model still outperforms or performs comparably to VLM, which highlights the importance of
synchronous training. Because Qwen-vl-max does not provide model weight, we could only call
server API of Qwen-VL8, and the evaluation is not applied on all conditions. To further compare
our model with Qwen-vl-max, we download the Chinese-to-English image translation dataset of
AnyTrans (Qian et al., 2024) and test our model on it. AnyTrans uses Qwen-vl-max to do multi-
modal translation. It is noteworthy that we use SacreBLEU (Post, 2018) to calculate BLEU score in
this paper, which is the weighted sum of N-gram values of BLEU(N is from 1 to 4), and the calcu-
lation of COMET (Guerreiro et al., 2023) calls the latest model XCOMET-XL9. When comparing
with AnyTrans, we use BLEU score with N=1, and the calculation of COMET score calls the de-
fault model wmt-22-comet-da10. This is to keep the same configuration as AnyTrans in evaluation
process. The result in Table 6 illustrates that our methodology attains comparable performance to
AnyTrans in multi-model translation.

Method AnyTrans: zh2en
B C

Ours 47.50 79.72
AnyTrans: Qwen-vl-max 48.70 78.00

Table 6: Compare our method with AnyTrans

4.4.3 ABLATION STUDY

To study the effect of BAF module and multi-modal feature fusion, we set three groups of ablation
experiments based on our proposed method to compare with its best performance:

• Best Use BAF module and joint learning.

• Visual Only Use coordinate of detected text region to crop local feature from the whole
visual feature map by RoI Pooler, and feed it into translation model directly without multi-
modal fusion.

• Textual Only Feed the textual feature from the last layer of Decoder & Recognition module
into translation model directly without multi-modal fusion.

• Remove BAF Use same model structure as Best for text spotting and translating but train
them separately. Translate the recognized result of text spotting directly by translation
model. BAF is not used in either the training process or the inference process.

Ablation OCRMT30K ReCTS
Condition H B C H B C

Best 65.15 37.51 85.38 65.26 25.55 71.52
Visual Only 66.06 28.24 69.80 64.93 22.33 63.02
Textual Only 62.06 30.27 75.83 59.88 20.40 55.75
Remove BAF 71.81 31.54 78.12 68.80 22.02 61.80

Table 7: Ablation Experiment for BAF Module on OCRMT30K and ReCTS Datasets

Table 7 shows that using only visual feature or textual feature is not good as using both of them.
Multi-modal fusion could improve the performance of model. Besides, when removing BAF and
adopting separate training, the detection score improves to some degree due to the reduction of
training tasks in text spotting part, but the translation score drops by one level even if the model
structure keeps same. The result of ablation proves the effectiveness of BAF module and multi-
model feature fusion.

4.4.4 CASE STUDY

Compared with pipeline pattern, joint learning and multi-modal feature fusion can make better use
of visual information and reduce the error as well as the effect of error propagating in recognition

8https://github.com/QwenLM/Qwen-VL
9https://huggingface.co/Unbabel/XCOMET-XL

10https://huggingface.co/Unbabel/wmt22-comet-da
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recognize:小米
pipeline translate: millet
synchronous translate: xiaomi

recognize: 粤港
pipeline translate: guangdong port

synchronous translate: guangdong and hongkong

recognize: 我们做好面
pipeline translate: we make a face

synchronous translate: we make good noodles

recognize:面先生
pipeline translate: face first born

synchronous translate: mr. noddle
recognize:西门车站

pipeline translate: westgate station
synchronous translate: ximen station

recognize:讯飞语音实验室
pipeline translate: xunfei voice laboratory

synchronous translate: iflytek voice lab

recognize:请 您 保管 好 随身 刷卡（should be 财物）
pipeline translate: please keep your card with you 

synchronous translate: please take care of your belongings

recognize:和可乐（should be 可口可乐）
pipeline translate: and worthy fun
synchronous translate: coca - cola

recognize:中国 餐满 （should be 云南）
pipeline translate: chinese cuisine

synchronous translate: yunnan , china

Ambiguity

Proper Noun

Recognization Error

recognize: 三用包<unk> 拼搏的味道
         （should be 三津汤包）

pipeline translate: three usages package : 
                             the taste of struggle
synchronous translate: sanjin soup dumplings :  
                             the flavour of struggle

recognize:山西风 好味道面食馆 味 ...
                    （should be 山西风味 好味道面食馆 ...）

pipeline translate: shanxi style good taste
           noodles restaurant with great taste...

synchronous translate: shanxi flavor good taste 
                   noddles restaurant...

recognize:面 粉 开 心 花 甲 粉 
         （should be 粉面）

pipeline translate: flour, happy claim 
                           and  rice powder

synchronous translate: flour noodles, happy claim 
                     and  rice powder 

Reading Order Error

Figure 4: Visualization of Hard Cases for Comparing Pipeline and Synchronous Method

and reading order prediction. To visualize this advantage, we collect three kinds of hard cases in
Figure 4 and compare the result of pipeline method and our proposed method:

• Ambiguity Same words of the source language might have multiple semantic according
to different visual backgrounds. For example ”xiaomi” is a trademark on the signboard,
so it should not be translated into ”millet” though they are matched with same Chinese
characters. The translation error caused by such ambiguity in pipeline methods is optimized
in the synchronous method.

• Proper Noun Sometimes the translation result of target language text exists in the original
image, especially for proper noun like address and station name. In pipeline methods, the
lack of visual information causes the translation error which could be solved by utilizing
multi-modal fusion.

• Recognition & Reading Order Prediction Error Joint learning is able to reduce recog-
nition and reading order prediction error in scene text cases with complex layout, resulting
in improvement in translation performance. Even the recognition result is wrong, the BAF
module in our proposed method is still able to search valid information in visual feature
map and generate correct translation result.

5 LIMITATION

Our proposed method leverages shared visual feature extracted from the image encoder for multiple
tasks, including source language detection, recognition, implicit layout analysis, and target language
translation, posing a challenge in balancing the training of these disparate objectives. The shared
nature of the visual feature may lead to suboptimal performance for some individual task, as a
single set of feature is tasked with serving multiple purposes. Future work could explore extending
the visual feature to be multi-way, tailored specifically for each task, as exemplified by Multi-way
FFNs (He et al., 2021), potentially enhancing both paragraph detection and translation performance
simultaneously.
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