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ABSTRACT

Referring expression comprehension (REC) tasks challenge vision-language mod-
els (VLMs) to locate specific objects within images based on natural-language
descriptions, typically by generating bounding boxes or segmentation masks. Ex-
isting REC benchmarks suffer from fundamental shortcomings: (1) their limited
diversity of referring expressions per object makes it impossible to distinguish
whether VLMs truly understand object semantics or simply memorize specific
associations; (2) the evaluation metrics do not reveal whether a VLM is robust
enough to face complex and diverse referring expressions. We address these is-
sues with a novel benchmark and two innovative metrics. Our benchmark, Diverse
Referring Expressions for Object Comprehension (DRef), encompasses 10,963
meticulously crafted diverse referring expressions for 824 objects spanning 187
categories. Each referred object features an average of 8.3 distinct positive ex-
pressions alongside 5.0 negative expressions for non-existent objects. To evaluate
model robustness to expression diversity, we propose two complementary metrics:
(1) Hard Pass Rate, which necessitates successful localization across all expres-
sions referring to the same object; and (2) Mean Consistency Rate, which quan-
tifies how VLMs generate consistent outputs for expressions describing the same
object. Our evaluation reveals that state-of-the-art models struggle with consistent
object comprehension. The best model in our assessment, Qwen2.5-VL-72B, at-
tains merely 27.7% on Hard Pass Rate and identifies all negative expressions for
only 10.1% of images. DRef can serve as a rigorous evaluation suite for assessing
the robustness of REC models under diverse expressions, and hopefully encourage
efforts toward increasing the reliability of REC systems in real-world applications
such as robots. Code and dataset are available in supplementary materials 1.

1 INTRODUCTION

Referring expression comprehension (REC) challenges models to identify objects in images based
on natural language descriptions Kazemzadeh et al. (2014). This task requires sophisticated integra-
tion of visual perception and linguistic understanding. Recent vision-language models (VLMs) have
demonstrated remarkable progress, with state-of-the-art systems achieving accuracy exceeding 90%
on established benchmarks Kazemzadeh et al. (2014); Mao et al. (2015). Notable examples include
Grounding DINO Liu et al. (2023e), DeepSeek-VL2 Wu et al. (2024), InternVL series Chen et al.
(2024d;c), and Qwen series (Bai et al., 2023; Wang et al., 2024).

Despite impressive benchmark results, we argue that current evaluation protocols are insufficient for
assessing models’ comprehensive understanding of object recognition due to their limited diversity.
They fail to capture the diversity of language used to describe objects in real-world scenarios. Our
evaluations reveal a substantial performance gap between the lower and upper bounds within this
limited evaluation framework. In the real-world scenarios, a model may encounter diverse and
complex referring expressions that vary in linguistic structures, level of details, and description
perspectives. For example, consider the robotic instruction following task Brohan et al. (2022; 2023);

1https://anonymous.4open.science/r/DRef-Anonymous-ICLR-AD29/
Due to the size limitation of the supplementary materials, we provide the anonymous link instead
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Figure 1: Upper: the annotation pipeline of our benchmark. Lower: prediction results of Qwen2.5-
VL-72B on one object of our benchmark. Referring expressions of the left, middle, and right images
are starting with the [L], [M], and [R], respectively.

Chen et al. (2024a), A robot might easily recognize a refrigerator when it’s explicitly instructed to
do so. However, with the instruction “bring me a can of soda” in a kitchen setting, if the soda
is not explicitly placed, the robot should reason about the possible locations of the soda, e.g., the
refrigerator. The problem is then equivalent to locate “the place where soda drinks are most likely
to appear”.

Figure 1 (lower part) demonstrates the inconsistent behavior of the Qwen2.5-VL-72B Bai et al.
(2025) when presented with three different referring expressions for the same person in a real im-
age. Despite all expressions referring to the identical individual, the model’s performance varies
dramatically depending on the expression. While it correctly identifies the target person when given
a straightforward spatial description, it fails when the referring expression requires understanding of
social interaction context or occlusion relationships. For instance, when prompted to identify “the
person being photographed by the individual wearing white shorts”, the model incorrectly selects
the photographer (“the individual wearing white shorts”) rather than the subject of the photograph.
This inconsistency across semantically equivalent references to the same object reveals a critical lim-
itation in current models: their comprehension remains highly dependent on the specific expression
used, rather than demonstrating robust understanding of the visual scene. This phenomenon indi-
cates that current benchmarks overestimate the performance of models because they lack diversity
of expressions.

To address this issue, we introduce Diverse Referring Expression Comprehension (DRef), a novel
benchmark designed to evaluate comprehensive understanding of objects in visual scenes. Differ-
ent from existing benchmarks, DRef provides multiple diverse referring expressions for each target
object, intentionally capturing different descriptive perspectives. These expressions span a com-
prehensive range of referential strategies: object attributes, spatial positioning (both 2D and 3D),
relative locations, state descriptions, and expressions requiring reasoning from visual details. By
evaluating model performance across this spectrum of referring expressions for identical objects,
DRef provides a more rigorous and realistic assessment framework that better reflects the linguistic
variation models would encounter in real-world applications.

Hard Pass Rate measures a model’s comprehensive understanding by requiring successful localiza-
tion of a target object across all its diverse referring expressions at a given confidence threshold.
While this metric effectively captures a model’s ability to understand objects from multiple perspec-
tives, it does not fully characterize the pattern of successes and failures across expressions. For
instance, a model that succeeds on all but one expression demonstrates greater reliability than a
model that succeeds on only one expression, though both would fail the Hard Pass Rate criterion. To

2
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address this nuance, we introduce Mean Consistency Rate, which evaluates the stability of a model’s
performance across different expressions for the same object. Together, these metrics provide a more
nuanced assessment of visual language models, offering insights into both their comprehensive un-
derstanding capabilities and their behavioral consistency.

Our evaluation results demonstrate that DRef presents a substantially more challenging evaluation
environment compared to existing REC benchmarks. By requiring models to process diverse per-
spectives of the same visual entity, it reveals performance gaps that conventional benchmarks fail
to detect. Analysis shows that even state-of-the-art models exhibit significant performance degra-
dation when evaluated on their ability to comprehend multiple referring expressions for identical
objects, highlighting a critical weakness in current visual language understanding capabilities. This
approach bridges an important gap in current evaluation methodologies by more accurately reflect-
ing the heterogeneity of human reference in natural communication contexts. Furthermore, DRef’s
multi-perspective design enables more nuanced diagnosis of model weaknesses across different ref-
erential strategies. To our knowledge, DRef represents the first systematic benchmark specifically
designed to evaluate comprehensive object understanding across diverse referring expressions, pro-
viding a more reliable indicator of model readiness for deployment in real-world applications where
linguistic variation is inevitable.

In summary, our contributions are as follows:

• We propose DRef, a benchmark that evaluates whether vision-language models can handle
multiple, diverse referring expressions for the same object, thereby uncovering limitations
overlooked by current REC benchmarks.

• We propose two complementary metrics, Hard Pass Rate and Mean Consistency Rate, that
quantify robustness to linguistic variation in REC task and evaluate consistency across dif-
ferent perspectives, yielding a more nuanced and realistic assessment of model capabilities.

• Our systematic analysis uncovers a significant performance gap between existing bench-
marks and our multi-expression evaluation framework. Notably, state-of-the-art vision-
language models that excel on current benchmarks still struggle with comprehensive object
understanding under natural variation in human referring expressions.

2 RELATED WORK

Referring Expression Comprehension (REC). RefCOCO, RefCOCO+ Kazemzadeh et al.
(2014), and RefCOCOg Mao et al. (2015) are widely adopted built upon the MS COCO 2014 (Lin
et al., 2014). RefCOCO contains approximately 50k annotations across about 20k images, charac-
terized by short and simple expressions. RefCOCO+ increases semantic complexity by excluding
locational descriptions. RefCOCOg provides more complex annotations with longer expressions.
Described Object Detection Xie et al. (2023) simultaneously considers both the open vocabulary
detection Zang et al. (2022); Zareian et al. (2020); Yao et al. (2024); Minderer et al. (2022) and
referring expression comprehension, enabling flexible expressions to refer to arbitrary numbers of
instances per image. HC-RefLoCo Wei et al. (2024) is specifically designed for grounding with
human-centric expressions, which includes about 13,452 images, 24,129 instances, and 44,738 an-
notations. Human-centric datasets such as HC-RefLoCo Wei et al. (2024) (with 13,452 images,
24,129 instances, and 44,738 annotations) and HumanRef Jiang et al. (2025) focus on grounding
person-specific expressions, with the latter emphasizing one-to-many referring relationships (aver-
aging 2.2 instances per referring statement across 103,028 statements). MMR Jang et al. (2025)
extends the REC for the multi-objects or the multiple parts of an object. Cops-Ref Chen et al. (2020)
applies additional images to provide distracting factors. FineCops-Ref Liu et al. (2024b) provides
multi-level fine-grained reasoning across different attributes and multi-hop relationships. It also
includes negative texts and images created through fine-grained editing and generation based on ex-
isting data. Despite these advancements in complexity and reasoning requirements, none specifically
evaluate model robustness, a limitation our DRef directly addresses.

Visual Grounding Models. Recent advancements in VLMs, e.g., BLIP series Li et al. (2022;
2023), Flamingo Alayrac et al. (2022), InstructBLIP Dai et al. (2023), have significantly im-
proved the vision-language understanding by leveraging the progress of large language models

3
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Table 1: Comparison between existing bench-
marks and our proposed DRef. EPO is the
short of “Expressions Per Object”. We com-
pare most widely used REC benchmarks, includ-
ing RefCOCO, RefCOCO+ Kazemzadeh et al.
(2014), RefCOCOg Mao et al. (2015), and Rea-
sonSeg Lai et al. (2023) as they are the widely
used REC benchmarks.

Benchmark Hard
Constraint

High
Diversity # EPO

RefCOCO 7 7 2.84
RefCOCO+ 7 7 2.82
RefCOCO+ 7 7 1.91
ReasonSeg 7 7 1
DRef (Ours) ✓ ✓ 13.30
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Figure 2: The statistics of expressions of each
referred object (positive expressions).

(LLMs) (Zhang et al., 2022; Chung et al., 2022). The visual grounding task further requires the
model to locate the referred object. Some works employ a special head to regress the bounding
box of the referrent, e.g., ScanFormer Su et al. (2024), M-DGT Chen & Li (2022), and QRNet (Ye
et al., 2022). More recently, LLaVA-inspired architectures Liu et al. (2023c;b) have gained promi-
nence, wherein models like Shikra Chen et al. (2023), Ferret You et al. (2024), KOSMOS-2 Peng
et al. (2024), Grounding-GPT Li et al. (2024), Cambrian-1 Tong et al. (2024), and SPHINX Lin
et al. (2023) connect visual encoders to auto-regressive LLMs and represent bounding boxes as text
strings. MRES Wang et al. (2023), OneRef Xiao et al. (2024), LISA Lai et al. (2023); Yang et al.
(2023), PixelLLM Ren et al. (2023), PSALM Zhang et al. (2025), GlaMM Rasheed et al. (2024),
and GROUNDINHOG Zhang et al. (2024) further explore the more fine-grained localization using
the segmentation masks.

3 DATASET AND METRICS

Compared to existing benchmarks such as RefCOCO Kazemzadeh et al. (2014) and ReasonSeg Lai
et al. (2023), our DRef exhibits greater diversity and enables more rigorous assessment of model
robustness through metrics with hard constraints (Table 1). In this section, we present the dataset
statistics (Section 3.1) and curation process (Section 3.2) of our DRef benchmark. We then introduce
the evaluation metrics designed to assess model robustness and consistency (Section 3.3), where hard
constraints are incorporated into the robustness evaluation.

3.1 DATASET STATISTICS

Categories. Our DRef comprises 824 objects distributed across 187 categories. We group them
into 12 general concepts and visualize the hierarchy in the appendix (Figure 11). More details and
statistics are available in the appendix (Section A.5).

Referring Expressions. DRef consists of 10,963 challenging referring expressions, comprising
6,855 positive expressions (describing existent objects) and 4,108 negative expressions (describing
non-existent objects). Figure 2 illustrates that the majority of referred objects are annotated with at
least eight diverse expressions. For each image, there are an average of five negative expressions
describing non-existent objects. Examples are presented in the appendix (Section A.4).

Tags & Diversity. Each referring expression is tagged with at least one describing perspective.
Based on these tags, we can annotate diverse referring expressions for each object. We define 9 tags
for positive referring expressions, and 1 negative tag for expressions of non-existent objects. Table 2
presents the definitions and examples of these tags. As an example, “The person who is speaking
to the woman in red” contains both the “interaction” tag and the “attribute” tag. Figures 3 and 4
visualize the distribution of positive expressions and objects across each tag, respectively. Based on
Figure 4, we can see that most objects have at least 7 tags of positive expressions, indicating the
high diversity of expressions in our benchmark.
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Table 2: The definition as well as the example of the tags in DRef.

Tag Description Example

2D Position The position description on a plane, e.g., image plane. The person closest to the top of the image.
3D Position The position description on a 3D space. The bird in the mid-air.
Relative Position Describe the position of the object relative to other objects. The person to the left of the car.
Size The size of the object, typically compared with other objects. The visually largest toy.
Attribute The intrinsic properties of the object. The red car.
Interaction The interaction between the object and other objects or the environment. The person who is speaking to the woman in red.
Possible Usage The possible usage or designed purpose of the object. The object that is used for holding garbage.
Possible Status The possible status of the object. The device that is turned on.
Reasoning Requires reasoning from existing visual and textual cues. The person most likely to be the band’s lead singer.
Negative The object that is not in the image. The person who is speaking to the woman in green.
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Figure 3: The statistics of positive referring ex-
pressions of each tag.
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3.2 DATASET CURATION

As illustrated in Figure 1, we design an annotation pipeline to decouple the highly difficult and time-
consuming process into several steps: (1) image source selection, (2) image collection, (3) box and
mask annotation, (4) object description annotation, and (5) two-pass verification. Steps (4) and (5)
proved most challenging and labor-intensive, requiring annotators to formulate unambiguous and
uniquely identifying descriptions for each object. On average, annotating all positive and negative
expressions for a single image required over 30 minutes. Utilizing this structured pipeline, our team
of seven annotators produced 10,963 expressions across 824 images over two months.

Image Sources Selection and Image Collection. We first determine which data sources the im-
ages should be extracted from. We first randomly sample a few images of validation and test sets
from existing image datasets, e.g., Flicker30K Young et al. (2014), MS COCO Lin et al. (2014),
and OpenImages Kuznetsova et al. (2020), etc. Then, annotators evaluate these samples for scene
complexity, and we rank data sources based on the proportion of complex images they contain.
The images for further annotation are extracted from the most complex data source until it runs
out. Through this process, our images are collected from the MS COCO val 2017 and OpenImages
V7 test datasets. We excluded images with simple scenes, such as close-ups of single objects or
scenes containing only one object category. Detailed selection criteria are provided in the appendix
(Section A.7).

Box and Mask Annotation. For each selected object, annotators label its bounding box. Using
these boxes as input, we employ the SAM-2.1-H model Ravi et al. (2025) to automatically generate
segmentation masks. Each mask underwent quality assurance review by annotators, who manually
correct issues such as internal holes or the inclusion of non-object areas. When the model-generated
masks are substantially inaccurate, annotators create new masks manually to ensure precise object
delineation.

Object Description Annotation. During this critical phase, annotators generate a minimum of six
diverse referring expressions for each selected object. To ensure description diversity, we instruct

5
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annotators to characterize objects from different perspectives that are listed in Table 2. Perspectives
inapplicable to specific objects could be omitted. Throughout this process, annotators verify that
each referring expression uniquely and unambiguously identifies its target object. As for the negative
expressions that refer to non-existent objects, the core idea is to try to fool the model. Annotators
are instructed to: (1) change the modifiers in a sentence, e.g., shape, color, size, positions, etc; (2)
increase or decrease the number of modifiers; (3) modify other fine-grained details. For more details,
please refer to the appendix (Section A.7).

Quality Control. We implement a two-pass quality control process to ensure annotation accuracy
and clarity. During each pass, annotators verify that all referring expressions are unique and un-
ambiguous. When they detect ambiguity in a description, they modify it to eliminate any potential
confusion. Similarly, if they found that a referring expression could apply to multiple objects in the
image, they refine the description to ensure it uniquely identifies the intended target object. This
iterative verification process was crucial for maintaining the benchmark’s integrity and utility for
evaluating referring expression comprehension models.

3.3 EVALUATION METRICS

We first introduce the concept of successful localization: (1) located expression: for a given expres-
sion, we said the expression is successfully located if the Intersection over Union (IoU) between the
predicted bounding box and the ground truth bounding box exceeds the threshold; (2) located object:
for a given object, we said the object is successfully located if all the expressions referring to the
object are successfully located; (3) partially located object: for a given object, at least one of the
expressions referring to the object is successfully located. For the negative expressions of an image,
we define a special category of “non-existent object”. In these cases, we assign an IoU of 1 if the
model correctly identifies the object as “not in the image”, and 0 otherwise.

Besides the mean precision P that defined as the proportion of the number of expressions success-
fully located, we also propose two metrics, Hard Pass Rate and Mean Consistency Rate, to evaluate
a model’s performance in locating referred objects across diverse expressions. The proposed met-
rics specifically assess robustness and output consistency at the object level while accounting for
linguistic variations.

Metrics: Hard Pass Rate. We said the model passes the test of the object if the object is success-
fully located. The Hard Pass Rate metric calculates the proportion of objects that are successfully
located, which requires successful localization across all diverse expressions referring to the same
object, or correct recognition of all negative expressions for non-existent objects.

We also consider a soft version of Hard Pass Rate, namely Soft Pass Rate, to highlight the drawback
of the limited diversity and the absence of hard constraints of metric in existing benchmarks. The
Soft Pass Rate calculates the proportion of objects that are partially located. By randomly extracting
individual expressions from our benchmark, we can construct multiple “virtual benchmarks” that
simulate these existing benchmarks. The performance of a model on these virtual benchmarks could
vary significantly depending on the selected expression. The Hard Pass Rate and Soft Pass Rate thus
serve as a lower bound and upper bound of such virtual benchmarks, respectively. We demonstrate in
Section 4 that the gap between the two bounds is significant, indicating that the existing benchmarks
are problematic and a more comprehensive evaluation is necessary.

Denoting the set of all diverse expressions of an object as E , the set of all objects as O, the proposed
metrics are defined as follows:

RHard =
1

|O|

|O|∑
o

1[(

|E|∑
e

so,e) ≥ |E|] (1)

RSoft =
1

|O|

|O|∑
o

1[(

|E|∑
e

so,e) ≥ 1] (2)
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where the threshold τ is omitted for simplicity. 1[·] is the indicator function. so,e is interpreted as
success and is defined as 1 if either a model: (1) successfully locates object o referred by expression
e, or (2) successfully recognizes that the referred object does not exist; otherwise, so,e equals 0.

In our evaluation, we mainly set the τ as 50% (RHard
50 and RSoft

50 ). The value of τ can be increased to
meet the requirements for higher localization accuracy, e.g., RHard

75 and RHard
95 .

Importantly, high Soft Pass Rate does not imply high Hard Pass Rate. Consider an extreme case
where, for each object, the model consistently predicts exactly one incorrect result for each expres-
sion. This would produce a Soft Pass Rate of 1 while resulting in a Hard Pass Rate of 0.

Metrics: Mean Consistency Rate. While the RHard metric evaluates overall localization accuracy,
it cannot assess whether a model consistently locates objects across different referring expressions.
To further evaluate the consistency, we propose the mean consistency rate RC, which measures
prediction stability across diverse expressions for each object in the benchmark. For each object, the
similarity Si,j of each pair of predicted bounding boxes is calculated by their IoU. We then build
a similarity matrix S of size |E| × |E| for all predictions. The consistency rate R̂C

o for object o is
calculated as the mean of the strictly upper (or lower) triangular elements in matrix S:

R̂C
o =

2

|E|(|E| − 1)

|E|∑
i=1

|E|∑
j=i+1

Si,j (3)

However, the naive consistency rate can be misleading if a model consistently produces incorrect
predictions, e.g., consistently localizing a human when it’s asked to locate a car. To address this, we
introduce a modified consistency rate that incorporates the mean IoU between the prediction and the
ground truth. Specifically, denoting the IoU between the prediction and the ground truth as IoUo,e,
we weight the consistency rate of each object by the average of the IoUs of that object, and calculate
the mean across all objects:

RC
o =

∑|E|
e IoUo,e

|E|
· R̂C

o , RC =
1

|O|

|O|∑
o

RC
o (4)

If RC is close to 1, it indicates that the model consistently produces similar bounding boxes for
different expressions referring to the same object, demonstrating strong consistency in object com-
prehension. Conversely, a low RC suggests that the model’s predictions vary significantly across
different expressions, or that the model struggles to accurately locate the referred object, indicating
poor consistency in object comprehension.

4 BENCHMARKING RESULTS AND ANALYSIS

4.1 MODELS AND METRICS

We evaluate a range of state-of-the-art vision-language models: PolyFormer Liu et al. (2023d),
MDETR Kamath et al. (2021), ReLA Liu et al. (2023a), X-Decoder Zou et al. (2022), SEEM Zou
et al. (2023), LISA Lai et al. (2023), InternVL series Chen et al. (2024b); Zhu et al. (2025), and
Qwen2.5-VL series Bai et al. (2025). Full results of all evaluated models are provided in the ap-
pendix (Table 5). Additionally, we also include recent findings VLM-R1-3B Shen et al. (2025),
which enhances Qwen2.5-VL-3B through reinforcement fine-tuning (RFT) (DeepSeek-AI et al.,
2025; Shao et al., 2024). We generate corresponding masks using SAM-2.1-H Ravi et al. (2025)
for models that produce only bounding boxes, e.g., Qwen2.5-VL series Bai et al. (2025). Con-
versely, for models that output only masks, we derive bounding boxes from their mask outputs. For
the expected output format of negative expressions, please check the appendix (Section A.2.1).

As mentioned in Section 3.3, we employ multiple metrics to evaluate the performance of models on
our DRef, including Hard Pass Rate, Soft Pass Rate, Mean Consistency Rate, and mean precision
P . For pass rates and precision, we set the IoU threshold to 0.5 and calculate RHard

50 , P50, and RSoft
50

accordingly.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The performance of the advanced vision-language models on DRef. The SEEM models
with subscript S means it only support single interactive inference, while the models with M support
multiple interactive inference.

Model

Bbox Mask

Positive Negative Positive Negative

RHard
50 P50 RSoft

50 RC RHard P RHard
50 P50 RSoft

50 RC RHard P

PolyFormer-L 8.3 51.2 78.4 28.6 0.0 0.0 8.0 49.2 75.6 24.2 0.0 0.0
MDETR 7.5 49.4 84.3 25.9 0.7 11.3 7.3 49.3 85.6 26.8 0.7 11.3
ReLA 2.3 34.1 67.6 15.8 5.0 18.0 2.8 32.8 66.4 13.4 5.0 18.0
X-Decoder-L 5.5 37.0 67.6 20.1 1.6 11.0 5.1 36.7 68.9 18.5 1.6 11.0
SEEM-LS 5.7 38.8 69.1 21.2 1.2 8.2 5.1 37.9 68.9 19.6 1.2 8.2
SEEM-LM 6.7 39.4 68.6 22.4 1.3 6.4 6.1 38.8 69.3 20.9 1.3 6.4
SEEM-SAM-L 8.5 35.0 66.0 21.7 0.6 0.6 8.4 34.0 64.4 19.4 0.6 0.6

LISA-7B 3.8 34.2 68.0 20.5 0.0 1.3 3.9 41.5 78.9 18.9 0.0 1.3
LISA-13B 6.7 42.9 75.5 25.0 0.0 1.0 7.6 48.5 82.8 24.8 0.0 1.0
InternVL2.5-8B 12.3 48.6 71.8 23.8 1.6 20.8 12.1 51.2 78.9 30.1 1.6 20.8
InternVL3-8B 22.1 66.4 89.9 42.2 0.1 3.5 21.5 66.5 91.1 45.1 0.1 3.5
Qwen2.5-VL-7B 18.4 57.8 88.0 35.7 0.0 0.0 17.6 56.7 87.3 36.6 0.0 0.0
Qwen2.5-VL-32B 23.7 63.6 96.1 46.4 0.2 10.2 22.5 70.6 95.5 47.8 0.2 10.2
Qwen2.5-VL-72B 27.7 77.4 97.2 51.4 10.1 57.6 26.2 76.5 96.0 54.4 10.1 57.6
VLM-R1-3B 27.2 38.9 51.2 33.8 0.0 0.0 26.6 37.9 50.7 31.9 0.0 0.0

4.2 MAIN RESULTS

As illustrated in Table 3, our benchmark DRef reveals that even advanced VLMs such as X-Decoder
and SEEM struggle to consistently identify referred objects across diverse expressions. Although
most models report relatively good results on P50, the performance on RHard

50 is significantly worse.
Notably, Qwen2.5-VL-72B, the most powerful model in our evaluation, achieves only 27.7% on
RHard

50 , suggesting poor robustness confronted with diverse expressions.

Analysis on Qwen-VL Series. Our evaluation across different model scales in the Qwen2.5-VL
series reveals clear performance trends on multiple metrics. With the model size increasing, there
are substantial gains on the P50 and RSoft

50 . The 7B model in Qwen2.5-VL series achieves 18.4%
on RHard

50 , 57.8% on P50, and 88.0% on RSoft
50 . As model size increases to 32B and 72B, the scores

on RHard
50 are improved to 23.7% and 27.7%, respectively, However, the considerably lower Mean

Consistency Rate, e.g.35.7% of the 7B model and the 46.4% of the 72B model, suggests the model
might suffer from hallucination problems and be distracted from other instances in the expressions.
We also observe that the ability to reject all negative referring expressions in an image emerges with
the 72B model, achieving 10.1% on the RHard for negative referring expressions.

RHard
50 and RSoft

50 Reveal the Limitation of Existing benchmarks. As stated in Section 3.3, RHard
50

and RSoft
50 serve as the lower and upper bounds of the performance of a model on the simulated

benchmarks missing diverse expressions and hard metric constraints. Taking Qwen2.5-VL-72B as
an example (Table 3), we see that there is a huge gap between the RHard

50 and RSoft
50 scores, i.e., 27.7%

and 97.2%, indicating that the different expressions can lead to significantly different results, hence
showing that evaluation on benchmarks without diversity and hard metric constraints are not robust
and reliable.

Comparison with Existing Expression Benchmarks. As shown in Table 4, the experimental re-
sults demonstrate that our DRef benchmark is significantly more challenging than existing expres-
sion benchmarks due to its diverse referring expressions. Current state-of-the-art models, which
achieve high performance on traditional benchmarks, show substantial performance drops on DRef,
i.e., RHard

50 and P50, highlighting the concern of the stability of these models when facing diverse
referring expressions in real-world scenarios.

Graded Hard Pass Rate Analysis. We further analyze the model performance using the graded
hard pass rate, as shown in Figure 5. For a given percentage p, an object is considered successfully
localized if the model correctly identifies it in at least p% of the referring expressions associated
with that object. This metric provides a nuanced view of model performance across varying levels
of expression difficulty. The gentle decrease in performance indicates that models are relatively
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Table 4: Comparison with Existing Expression Benchmarks. We compare the perfor-
mance of state-of-the-art models on our DRef benchmark and existing benchmarks: Ref-
COCO(val/testA/testB), RefCOCO+(val/testA/testB), and RefCOCOg(val/test). We also present the
mIoU of all positive referring expressions following the existing benchmarks. The results show that
DRef is more challenging and models are struggling to keep robust.

Models DRef Rhard
50 DRef P50 DRef mIoU RefCOCO RefCOCO+ RefCOCOg

Bbox

PolyFormer-L 8.3 51.2 48.3 90.4 / 92.9 / 87.2 85.0 / 89.8 / 78.0 85.8 / 85.9
Qwen2.5-VL-72B 27.7 77.4 70.8 92.7 / 94.6 / 89.7 88.9 / 92.2 / 83.7 89.9 / 90.3
InternVL2.5-8B 12.3 48.6 43.1 90.3 / 94.5 / 85.9 85.2 / 91.5 / 78.8 86.7 / 87.6
InternVL3-8B 22.1 66.4 61.0 92.5 / 94.6 / 88.0 88.2 / 92.5 / 81.8 89.6 / 90.0
Mask

PolyFormer-L 8.0 49.2 42.6 76.0 / 78.3 / 73.3 69.3 / 74.6 / 61.9 69.2 / 70.2
LISA-7B 3.9 41.5 40.0 74.9 / 79.1 / 72.3 65.1 / 70.8 / 58.1 67.9 / 70.6
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Figure 5: Graded Hard Pass Rate. We ana-
lyze the model performance using the graded
hard pass rate. When facing more challenging
referring expressions, the performance of mod-
els drop more significantly.
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Figure 6: The precision of Qwen2.5-VL series
of the different composition of tags in DRef.
Status: Possible Status; 2D: 2D Position; 3D:
3D Position; Attr: Attribute; Rel: Relative Posi-
tion; Usg: Possible Usage;

robust for approximately 60% of the expressions in an object, suggesting their difficulty is consistent.
As the threshold further increases, the models’ performance suddenly drops, indicating that the
remaining expressions are difficult for the model.

Precision on Different Tag Groups. We visualize the precision across different tag groups in
Figure 6. We prioritized the 10 most frequent tag combinations in the dataset. Qwen2.5-VL-
72B demonstrates remarkably balanced precision across all examined tag categories. In contrast,
Qwen2.5-VL-3B exhibits substantial performance degradation, specifically on expressions that si-
multaneously incorporate 2D Position, Possible Usage, and Relative Position tags. This reveals a
weakness of Qwen2.5-VL-3B in handling expressions with special tag combinations.

5 CONCLUSION

We propose a new benchmark DRefas well as two novel metrics, Hard Pass Rate and Mean Con-
sistency Rate, for the referring expression comprehension. DRef encompasses 10,963 carefully
annotated referring expressions for 824 objects from the MS COCO val 2017 and OpenImages V7
test datasets. The Hard Pass Rate is designed to evaluate the model’s robustness under diverse and
complex referring expressions, while the Mean Consistency Rate metric is designed to evaluate the
consistency of the model on locating the referred object over diverse expressions. Our evaluation
demonstrated that DRef presented challenges for VLMs. These models underperform in both ro-
bustness and consistency when challenged with diverse expressions.
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6 REPRODUCIBILITY STATEMENT

We present the details of curation of our benchmark in Section 3.2, and provide the annotation
guidelines in Appendix A.7.

We also provide the dataset, including images and annotations, in the supplementary materials. The
code for evaluation is also provided in the supplementary materials.

7 USAGE OF LLM

In our experiments, we evaluated some models that incorporate large language models (LLMs), such
as Qwen2.5-VL series and InternVL2.5/3 series.

Also, LLMs are used during the writing of this manuscript to improve the readability. We carefully
check the generated content to ensure its correctness.
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Table 5: The performance of the advanced vision-language models on DRef. The SEEM models
with subscript S means it only support single interactive inference, while the models with M support
multiple interactive inference.

Model

Bbox Mask

Positive Negative Positive Negative

RHard
50 P50 RSoft

50 RC RHard P RHard
50 P50 RSoft

50 RC RHard P

PolyFormer-B 8.1 50.6 78.6 27.6 0.0 0.0 8.0 48.7 76.0 23.6 0.0 0.0
PolyFormer-L 8.3 51.2 78.4 28.6 0.0 0.0 8.0 49.2 75.6 24.2 0.0 0.0
MDETR 7.5 49.4 84.3 25.9 0.7 11.3 7.3 49.3 85.6 26.8 0.7 11.3
ReLA 2.3 34.1 67.6 15.8 5.0 18.0 2.8 32.8 66.4 13.4 5.0 18.0
X-Decoder-T 4.1 33.5 62.4 17.9 1.6 10.7 4.1 33.8 65.0 16.4 1.6 10.7
X-Decoder-L 5.5 37.0 67.6 20.1 1.6 11.0 5.1 36.7 68.9 18.5 1.6 11.0
SEEM-TS 5.8 35.9 65.9 19.2 0.7 8.0 5.5 35.9 67.0 18.1 0.7 8.0
SEEM-LS 5.7 38.8 69.1 21.2 1.2 8.2 5.1 37.9 68.9 19.6 1.2 8.2
SEEM-TM 4.7 34.5 65.5 18.5 1.3 7.8 4.6 34.4 66.6 17.1 1.3 7.8
SEEM-LM 6.7 39.4 68.6 22.4 1.3 6.4 6.1 38.8 69.3 20.9 1.3 6.4
SEEM-SAM-B 9.1 35.7 64.4 22.4 0.6 0.7 8.6 34.7 63.1 20.2 0.6 0.7
SEEM-SAM-L 8.5 35.0 66.0 21.7 0.6 0.6 8.4 34.0 64.4 19.4 0.6 0.6

Gemini-1.5-Flash 2.9 5.7 8.6 8.9 0.8 12.4 2.9 6.1 11.3 4.3 1.0 12.6
LISA-7B 3.8 34.2 68.0 20.5 0.0 1.3 3.9 41.5 78.9 18.9 0.0 1.3
LISA-13B 6.7 42.9 75.5 25.0 0.0 1.0 7.6 48.5 82.8 24.8 0.0 1.0
LISA++-7B 3.9 36.3 73.7 17.8 0.0 3.5 2.8 40.4 80.1 16.8 0.0 3.5
Llava-Next-Mistral-7B 15.8 53.6 74.3 31.0 0.0 0.8 16.9 57.5 84.0 35.9 0.0 0.8
Llava-Next-Llama3-8B 12.4 49.7 74.9 27.9 0.0 0.5 13.0 51.6 80.8 31.0 0.0 0.5
DeepSeek-VL2-Small 25.2 60.7 84.6 43.7 0.0 0.0 24.6 60.0 84.2 43.8 0.0 0.0
DeepSeek-VL2 22.7 58.9 83.3 40.5 0.0 0.0 22.2 57.7 82.3 40.8 0.1 0.1
InternVL2.5-2B 2.8 23.0 49.4 11.5 1.6 0.1 2.4 23.0 54.1 10.0 0.0 0.1
InternVL2.5-4B 11.8 47.5 70.4 29.6 0.1 2.3 10.6 48.0 76.6 30.0 0.1 0.0
InternVL2.5-8B 12.3 48.6 71.8 23.8 1.6 20.8 12.1 51.2 78.9 30.1 1.6 20.8
InternVL3-1B 14.0 37.2 67.6 24.8 0.1 0.9 13.1 37.3 70.9 24.4 0.0 0.0
InternVL3-2B 14.1 54.9 80.3 33.2 0.0 1.2 13.2 54.4 81.1 33.6 0.0 0.0
InternVL3-8B 22.1 66.4 89.9 42.2 0.1 3.5 21.5 66.5 91.1 45.1 0.1 3.5
Qwen2.5-VL-3B 26.0 37.0 48.7 32.5 0.0 0.0 24.9 35.8 47.6 30.4 0.0 0.0
Qwen2.5-VL-7B 18.4 57.8 88.0 35.7 0.0 0.0 17.6 56.7 87.3 36.6 0.0 0.0
Qwen2.5-VL-32B 23.7 63.6 96.1 46.4 0.2 10.2 22.5 70.6 95.5 47.8 0.2 10.2
Qwen2.5-VL-72B 27.7 77.4 97.2 51.4 10.1 57.6 26.2 76.5 96.0 54.4 10.1 57.6
VLM-R1-3B 27.2 38.9 51.2 33.8 0.0 0.0 26.6 37.9 50.7 31.9 0.0 0.0

A APPENDIX

A.1 EVALUATION RESULTS OF ADVANCED MODELS

We present the evaluation results of advanced vision-language models in Table 5, including
MDETR Kamath et al. (2021), ReLA Liu et al. (2023a), X-Decoder Zou et al. (2022), SEEM Zou
et al. (2023), Gemini-1.5-Flash Team et al. (2024), LISA series Lai et al. (2023); Yang et al. (2023),
Llava-Next series Liu et al. (2024a), DeepSeek-VL2 series Wu et al. (2024), and InternVL se-
ries Chen et al. (2024d;b); Zhu et al. (2025). The results of Qwen2.5-VL Bai et al. (2025) series and
VLM-R1-3B Shen et al. (2025) are also included for reference.

Discussion on Reinforcement Fine-Tuning (RFT). Recent efforts trying to bring the reasoning
ability to large vision-language models, e.g., MM-EUREKA and VLM-R1-3B. VLM-R1-3B is de-
rived from Qwen2.5-VL-3B through GRPO Shao et al. (2024); DeepSeek-AI et al. (2025), applied
for 500 fine-tuning steps. Results in Table 3 show that compared with the base model, it yields a
modest but meaningful improvement of 1.2%, 1.9%, and 2.5% on RHard

50 , P50, and RSoft
50 , respectively.

These results suggest the potential of reinforcement learning. Though recent findings claim the RFT
improves the sampling efficiency by shrinking the solution space, which may not be able to instill
new knowledge into the model, results of VLM-R1-3B still show the potential of RFT in improving
the robustness. We suppose there is still a lot of room for RFT for exploration.
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A.2 EXPERIMENTAL DETAILS

A.2.1 EXPECTED OUTPUT OF NEGATIVE EXPRESSIONS.

We mainly follow the official evaluation protocols of each model while adapting them to our bench-
mark. Specifically, we consider the expected outputs for negative expressions as follows:

LLM/MLLM-based models: These models typically possess instruction-following capabilities,
such as the Qwen2.5-VL series. We define specific expected behaviors for each task: (1) Grounding
task: Models should output a designated “null” bounding box: [0, 0, 0, 0]; (2) Segmentation task:
Models should generate an empty mask with no pixels marked as foreground. For models with
specialized output formats, we adapt our evaluation accordingly. For example, LISA uses a special
segmentation token [SEG], so we employ a dual-condition check: (1) whether the output mask is
empty, and (2) whether the special token is generated. If either condition indicates “no object”, we
consider the model’s response correct for negative expressions. For grounding models that require
SAM to generate segmentation masks, we consider the model’s response correct if it outputs the
“null” bounding box.

Non-LLM/MLLM-based models: We follow each model’s standard output format and evaluation
protocol: (1) Grounding task: These models typically output confidence scores for each bounding
box. During post-processing, only bounding boxes exceeding a predefined confidence threshold are
considered valid detections. For negative expressions, we expect all confidence scores to fall below
this threshold. (2) Segmentation task: Models should produce empty masks. When confidence
scores are available, we apply the same threshold-based evaluation: scores below the threshold
indicate correct “no object” predictions.

A.2.2 DETAILED SETTINGS

Most of the models in our evaluation are open-sourced, and we use the official implementations to
conduct the experiments. For X-Decoder, SEEM models, we follow the instructions in their official
repositories to load the models and run the evaluation with default hyperparameters. For the models
based on the large language models, we download the models from HuggingFace and deploy them
using vLLM, which speeds up the generation using some advanced techniques such as KV cache
and flash attention. Under this setting, we still cost about 60 and 90 minutes to evaluate Qwen2.5-
VL-7B and Qwen2.5-VL-32B models, respectively. For the generation temperature, since this value
is different among the tested models, we choose the temperature from 0 to the default value and
report the best results. As the evaluation is time-consuming, we only evaluate once for the non-zero
temperature. We set the temperature to 0 for the models except the InternVL2.5 and InternVL3
series, where the temperature is set to 0.7.
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A.3 INSPECT QWEN2.5-VL-3B AND QWEN2.5-VL-72B

Interestingly, the Qwen2.5-VL-3B performs better on RHard
50 than the larger 7B and 32B models,

achieving results comparable to the 72B model, despite having significantly lower RSoft
50 and P50.

We inspect this phenomenon by visualizing and manually checking the predicted results (Figure 7
and Figure 8). Our analysis reveals that the 3B model tends to select one of the foreground ob-
jects and has poor comprehension of complex expressions that reference background objects (low
RSoft

50 and P50). Consequently, while this simplistic selection strategy occasionally succeeds with
difficult expressions that happen to reference foreground objects, it fundamentally lacks the compre-
hensive understanding displayed by larger models. In contrast, the 72B model demonstrates more
sophisticated comprehension of both foreground and background object references, but this broader
capability paradoxically makes it more susceptible to distraction from ambiguous descriptors or
competing referents within complex expressions.

The following figures present: (1) the cases where Qwen-2.5-VL-3B performs better than Qwen-2.5-
VL-72B, and (2) the cases where Qwen-2.5-VL-72B performs better than Qwen-2.5-VL-3B.

Cases of Qwen-2.5-VL-3B performs better than Qwen-2.5-VL-72B The visualized results are
shown in Figure 7. The referring expressions are listed below:

1. The die with the six-dot face oriented towards the camera.

2. The third person from left to right.

3. The person closest to the individual wearing a black helmet.

4. A person wearing a helmet on head.

5. The player furthest from the scoring screen.

6. The farthest pizza from the lady.

7. The person furthest from the car.

8. The person facing toward the left side of the image from the viewer’s perspective.

9. The first cup when counted from bottom to top from image viewer’s perspective.

We take some subfigures as examples to analyze the behaviors of different models. In the subfigure
(4) in Figure 7, the Qwen-2.5-VL-72B model is distracted from the helmet and thus fails to localize
the person on the motorcycle. In the subfigure (5), the Qwen-2.5-VL-72B might be influenced by the
scoring screen and fails to understand the “furthest” in the referring expression, and thus localizes
the person closest to the scoring board. In subfigure (7), the Qwen-2.5-VL-72B model recognizes
another in the background, but is distracted by the “car” and fails to localize the person. The referred
objects are mainly distributed in the foreground, and the Qwen-2.5-VL-3B model can localize them
correctly. In contrast, the Qwen-2.5-VL-72B model is prone to being distracted by other objects in
the background or other non-target objects in the foreground, leading to incorrect localization.

Cases of Qwen-2.5-VL-72B performs better than Qwen-2.5-VL-3B The visualized results are
shown in Figure 8. The referring expressions are listed below:

1. The car closest to the left edge of the image.

2. Towel on the bathtub.

3. The plate closest to the right edge of the image.

4. The sunglasses closest to the right edge of the image from the viewer’s perspective.

5. The object closest to the top edge of the image.

6. The person closest to the camera that captured this image.

7. The animal closest to the upper edge of the image.

8. The car farthest from the camera that captured this image

In subfigure (2), Qwen2.5-VL-3B ignores the small towels in the image and locates the conspicuous
curtain instead. In subfigure (3), the 3B model ignores the modifiers in the referring expression

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and always locates the central plate instead of the correct one. In subfigure (4), the 3B model
fails to recognize the sunglasses and locates the fish. In subfigure (5), the 3B model can only
locate the boat instead of the lifebuoy, which is relatively smaller and in the background. A similar
phenomenon happens in subfigures (7) and (8), where the 3B model cannot recognize the objects in
the background.

Conclusion The examples above imply that the Qwen-2.5-VL-3B model mainly focuses on the
foreground objects and tends to assume that one of them is the object referred to. In contrast, the
Qwen-2.5-VL-72B model has a better understanding of the given image but is prone to being dis-
tracted by other objects in the background or other non-target objects in the foreground, leading to
incorrect localization.
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Figure 7: Cases of 3B model better than 72B model. The blue boxes are of Qwen2.5-VL-3B and
correctly localize the referred objects, while the red boxes are of Qwen2.5-VL-72B and localize
incorrect objects. Best viewed in color and zoomed in.
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A.4 ANNOTATION EXAMPLES

We present some of the annotated examples in Figure 9 and Figure 10. The referring expressions are
in a light-blue background, while the negative ones are in a light-gray background. The blue boxes
are the ground truth of the referred objects. Segmentation masks are ignored here for simplicity.

The person closest to the lower edge of the image from viewer's perspective
The person closest to the camera that captured this image
The person carrying a blue-gray shoulder bag
The person wearing dark blue jeans
The person wearing a black hat
The person most likely to be posing for a group photo with the deer herd
The person holding a transparent umbrella in her left hand from subject's perspective
The person facing the camera

The person carrying a black backpack on her back
The person riding on a deer's back
The person holding a folded umbrella
The person holding an umbrella printed with a deer pattern

The excavator closest to the upper edge of this image
The excavator closest to the red-and-white checkered patterned object bag
The second excavator from the bottom counting upward from this image viewer's perspective
The excavator with a fully visible tail section
The excavator closest to the orange truck at the center of this image
The excavator closest to the zipper head

The yellow excavator
The excavator with its mechanical arm folded
The excavator with red wheels
The excavator with checkered patterns
The excavator with tracks crawler undercarriage

The vehicle that appears to be the largest
The vehicle that appears to be the tallest
The vehicle with the number '7' on its body
The vehicle that is most likely used for transporting frozen foods
The vehicle with a white compartment
The object used for transporting large quantities of goods

The vehicle with a person standing on its roof
The vehicle with the number '7' printed on its front section
The vehicle depicted on the billboard
The vehicle with green wheel hubs

Figure 9: Examples of DRef benchmark.
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The knife closest to the right edge of the image
The farthest knife from the camera that captured this image
The knife on the food
The knife closest to the grape
The wooden knife
The knife placed on the plate closest to the bottom of the image
The knife closest to the cup in the dish
A knife that most likely to be used to spread butter

A knife cutting a cake
A knife covered with a book
A knife hanging on the wall
A knife with a red pattern

The one closest to the right edge of the image within the poster featuring a clearly visible female face
The poster featuring three people
The poster displaying the most exaggerated facial expression
The one positioned in the first row and fourth column within the poster from the viewer's perspective
The poster most likely promoting a group/team ensemble
The poster located to the right of the poster bearing the text 'CON TODOS' viewer's right
The poster positioned directly above the poster featuring the word 'LIVE’
The poster situated to the left of the poster displaying the text 'BUZONEO' viewer's left

The poster with red-colored text
The poster depicting three male individuals
The blank/unprinted poster
The poster with a black background/base color
The poster containing blue-colored text

The person with white hair
The person wearing glasses
The person wearing black gloves
The person wearing red pants
The person who appears to be the oldest
The person whose own left hand is placed on another person's right leg
The person who appears to be the shortest among those seated on the sofa
The person with the highest seniority status in the family hierarchy

The person holding a pair of glasses
The person seated on the chair
The person wearing red clothing
The person holding a cup
The person wearing blue gloves

Figure 10: Examples of DRef benchmark.
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A.5 CATEGORIES
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Figure 11: The categories of annotated objects. Parent nodes represent more generic concepts
than their children.

Our annotation team annotated 824 objects in 187 categories. As illustrated in Figure 11, we orga-
nize them in a hierarchical structure, where parent nodes represent more generic concepts than their
children. The statistics of the categories of the referred objects are presented in Figure 12.
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Figure 12: The statistics of the categories of the referred object.

A.6 BROADER IMPACTS

Potential Positive Impacts. Our work focuses on the evaluation of the robustness of the task of
referring expression comprehension of vision-language models under diverse referring expressions.
We provide a benchmark with multiple diverse referring expressions for the same object. Also,
the proposed metrics, Hard Pass Rate and Mean Consistency Rate, reveal that existing models are
not so reliable when confronted with diverse referring expressions. Our benchmarking results en-
courage the community to develop more robust models to benefit real-world applications, such as
autonomous driving, robotic manipulation, and human-robot interaction.

Potential Negative Impacts. We collect the publicly available images from the OpenImages
dataset and the COCO dataset. Some of the images contain the living environment, which may
include the faces of people. The private information of the people in the images may be leaked dur-
ing the usage of the benchmark. A potential solution is to use AI generated images, but it’s necessary
to further research to ensure the generated images can be used to construct evaluation benchmarks.
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Figure 13: The annotation interface. The developed annotation tool based on label-studio. This
tool enables the annotation of bounding boxes, segmentation masks, and referring expressions for
selected objects.

A.7 MORE ANNOTATION DETAILS

We developed an annotation tool based on label-studio to annotate the bounding boxes, segmen-
tation masks, and referring expressions for selected objects, the screenshot is shown in Figure 13.
Annotators are trained to use the tool and follow the guidelines as described below.

About the Annotators. The annotators are full-time employees of a labeling company, and all of
them are paid according to the contract.

Training Process. We trained the annotators to instruct them on how to use the annotation tool.
They are told:

• Select the “Rectangle” tool to draw the bounding box of your chosen object, and adjust the
box carefully to ensure it surrounds the object as closely as possible.

• Click the bounding box, then the text box will appear. Type the referring expression, and
click the corresponding tags listed above the text area to attach the tags to the referring
expression.

• Once one referring expression is finished, click the “Add” button to add the referring ex-
pression to the list and start a new one.

• If you find the referring expression is not correct, you can click the “Edit” button (in the
shape of a pen) to correct it or the “Delete” button (in the shape of a trash) to remove it
from the list.

• If you finish all the referring expressions, click the “Submit” button to submit your work.

• If you are asked to review the segmentation masks, click the “brush” tool or “Eraser” tool
to adjust the segmentation masks. If the mask is totally wrong, you can click the “Delete”
button and draw a new one using the “brush” tool.

• If you are asked to review the annotation results, carefully check the bounding boxes, seg-
mentation masks, referring expressions, and the tags. If you find any mistakes, please edit
them using the corresponding tools.
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Annotation Guidlines. The annotators are trained to follow the guidelines below:

In this annotation task, you are asked to annotate each object in the given image with multiple refer-
ring expressions from different aspects. The referring expressions should be diverse, unambiguous,
and can uniquely identify the object. The annotation process is time-consuming and requires careful
consideration. You should put the quality of the annotation as the first priority.

You should first select an object in the image with the following rules:

• If the given image is very simple, e.g., the close-up of a single object, please skip it and go
for another image.

• If there is only one type of object and there is not enough recognition between objects,
e.g., an image only contains several apples without other marks to further distinguish them,
please also skip the image. Objects like dice would be OK as there are more details and
they can be distinguished by the dots on the surface.

• You can select a part of the object, e.g., the shirt of a person, or the wheel of a car.

• If there is only one object in the foreground, select the object in the background, or the part
of the object in the foreground.

• If there are multiple objects in the foreground, you are free to select one of them or the
object in the background.

You should then draw a bounding box (introduced in the tutorial of the annotation tool) around the
selected object. The bounding box should be as tight as possible to the object. You can zoom in on
the image for better accuracy. The bounding box would then be used to automatically generate the
corresponding segmentation mask.

To describe the object from different perspectives, you can take the following table as a reference.
Please carefully observe the object based on its intrinsic properties, such as color, shape, size, com-
position, and material, etc. Then, carefully observe the relationship and interaction between the
object and its surrounding objects as well as the environment.

Table 6: The definition as well as the example of the tags in DRef.

Tag Description Example

2D Position The position description on a plane, e.g., image plane. The person closest to the top of the image.
3D Position The position description on a 3D space. The bird in the mid-air.
Relative Position Describe the position of the object relative to other objects. The person to the left of the car.
Size The size of the object, typically compared with other objects. The visually largest toy.
Attribute The intrinsic properties of the object. The red car.
Interaction The interaction between the object and other objects or the environment. The person who is speaking to the woman in red.
Possible Usage The possible usage or designed purpose of the object. The object that is used for holding garbage.
Possible Status The possible status of the object. The device that is turned on.
Reasoning Requires reasoning from existing visual and textual cues. The person most likely to be the band’s lead singer.
Negative The object that is not in the image. The person who is speaking to the woman in green.

To construct the negative referring expressions, please keep in mind that you are trying to fool
a model. You should use one or more of the following strategies to modify a positive referring
expression to create a negative one::

• Attribute modification: Modify one or a few key attributes of the positive expression, such
as color, position, size, object categories, material properties, current status, or possible
usage.

• Attribute quantity adjustment: Increase or decrease the number of specified attributes in the
positive expressions.

• Fine-grained detail modification: Alter specific details within objects mentioned in the
expressions. For example, “The object that is imprinted with the flag of Australia” can be
modified to “The object that is imprinted with the flag of the United Kingdom.”

If you are in the role of a reviewer to check the annotation results, you should carefully check the
bounding boxes, segmentation masks, referring expressions, and the tags.
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For the bounding boxes, please check if the bounding box is tight enough to the object. If it’s not
the case, please adjust the bounding box to make it meet the requirement. Don’t forget to zoom in
on the image for better accuracy.

For the segmentation masks, please correct the issues such as the internal holes or the inclusion
of areas outside the object. Please keep in mind that the generated segmentation masks might be
totally wrong, e.g., there are multiple objects within the bounding box, so you are also responsible
for checking if the mask belongs to the object referred to by the referring expressions. If the mask
is totally wrong, please delete it and draw a new one using the “brush” tool.

For the referring expressions, please check if the referring expressions are correct and can uniquely
identify the object. If it’s not the case, please follow your best judgment to either edit the referring
expression or delete it and write a new one. For the tags, please also check if the tags are correct
based on the above table. If there are controversial tags, please remove them.

If you encounter any issues during the annotation process, please feel free to contact us for help.
One of us will answer your questions as soon as possible.
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