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Fig. 1: In this work, we introduce an environment-shaping framework to improve the generalization of RL drone racing
agents to diverse and unseen tracks without retraining. We use a Soft Actor-Critic (SAC) policy to adaptively shape the
track layouts by generating difficult but achievable race tracks based on the racing agent’s actual performance. The resulting
single racing policy can fly in various unseen and challenging race tracks in the real world with competitive lap times.

Abstract— Reinforcement learning (RL) has achieved out-
standing success in complex robot control tasks, such as
drone racing, where the RL agents have outperformed human
champions in a known racing track. However, these agents
fail in unseen track configurations, always requiring complete
retraining when presented with new track layouts. This work
aims to develop RL agents that generalize effectively to novel
track configurations without retraining. To enhance the general-
izability of the RL agent, we propose an adaptive environment-
shaping framework that dynamically adjusts the training en-
vironment based on the agent’s performance. We achieve this
by leveraging a secondary RL policy to design environments
that strike a balance between being challenging and achievable,
allowing the agent to adapt and improve progressively. Using
our adaptive environment shaping, one single racing policy
efficiently learns to race in diverse challenging tracks.

Website: http://rpg.ifi.uzh.ch/env_as_policy.

I. INTRODUCTION

Reinforcement learning (RL) involves agents learning
through trial and error by interacting with a pre-defined
environment and maximizing the rewards based on these
interactions. It has proven highly effective in various robotic
control applications, demonstrating remarkable task perfor-
mance across scenarios like dexterous manipulation [1], [2],
[3], [4], quadrupedal locomotion [5], [6], and agile quadrotor
flight [7], [8], [9], [10], [11]. However, while RL agents
excel within the specific distributions they are trained on,
they struggle with out-of-distribution configurations and may
require retraining from scratch for even minor configuration
changes [12]. To improve adaptability and generalization,
extending the RL framework to train and perform across a
broader range of distributions is essential, enabling agents to

handle more diverse and dynamic environments effectively.
Domain randomization is a commonly used technique to

improve the learning capability of RL agents across a broader
range of tasks [12], [13], [14], [15]. This approach varies
the parameters of the training environment to expose the
agent to a wide variety of potential deployment scenarios.
By learning in diverse conditions, the agent develops robust
policies less likely to overfit the specific characteristics
of a single environment. Domain randomization is often
combined with curriculum learning, where the complexity
and variability of training scenarios are incrementally in-
creased [15]. However, curriculum learning often depends on
manual design, introducing human biases. This reliance on
fixed, non-adaptive progressions can limit training diversity
and restrict the agent’s ability to generalize to new, real-
world situations [16]. To address this problem, we propose
an automatic adaptive environment-shaping framework to
enhance the agent’s generalization ability to fly in unseen
race tracks. This framework dynamically adjusts the envi-
ronment curriculum based on the agent’s learning progress
(Fig. 1). The key idea is to create consistently challenging yet
attainable environments, avoiding tracks that are too easy or
overly difficult, which could hinder learning. By automating
the environment shaping, the system can more precisely
tailor the learning environment to the agent’s performance,
enhancing the agent’s ability to generalize across various
unseen track configurations. We show that our approach out-
performs the existing environment-shaping approaches using
the same number of actions and enables the racing policy to
generalize to a diverse set of unseen and complicated tracks.

http://rpg.ifi.uzh.ch/env_as_policy
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Fig. 2: Overview of the proposed method.

II. RELATED WORKS

Environment shaping has been widely applied in rein-
forcement learning by designing a distribution of environ-
ments that progressively improves the agent’s performance.
Previous works like [17], [18], [19], [20] on environment
shaping have been successful in simulation tasks like Bipedal
Walker and maze games, where environments are easily
parameterized for manual curriculum design. However, this
process becomes more challenging for more complex real-
world robotic tasks. Domain randomization is a common
solution, where environments are sampled from a predefined
range to enable robust task execution. For instance, [15],
[14] used domain randomization to achieve dexterous ma-
nipulation in the real world. Additionally, [5] proposed an
adaptive terrain curriculum using a particle filter to sample
environment parameters, enabling quadrupedal locomotion
across various terrains in real-world scenarios.

III. METHODOLOGY

Racing Policy Training. The autonomous racing task can
be framed as an optimization problem, where the objective
is to minimize the time it takes for an agile quadrotor
to pass through a predefined sequence of gates [21], as
illustrated in Fig. 3. In this task, we define the observations
as oracing =

[
R̃,v,ω, aprev, δp1, δp2

]
, where R̃ ∈ R6 is

a vector comprising the first two columns of RWB [22],
v ∈ R3 and ω ∈ R3 denote the linear and angular velocity of
the drone, aprev represents the previous action from the actor
policy, and δp1, δp2 ∈ R12 represent the relative difference
in position of the four next gate corners (4× 3) in the world
frame. The total reward at time t, denoted as rt, consists of
several components:

rracingt = rprogt + ractt + rbrt + rpasst + rcrasht , (1)

where rprogt represents progress toward passing the next
gate [23], ractt penalizes changes in actions from the previous
time step, rbrt discourages high body rates to ensure a stable
flying behavior, rpasst is a binary reward for successfully
passing the next gate, and rcrasht is a binary penalty applied
when a collision occurs, which also terminates the episode.

The reward components are formulated as follows

rprogt = α1(dGate(t− 1)− dGate(t)),

ractt = α2∥ut − ut−1∥,
rbrt = α3∥ωB,t∥,

rpasst = α4 if robot passes the next gate,

rcrasht = α5 if robot crashes (gates, ground).

(2)

Environment Policy Training. The track layout used for
training the racing policy plays a critical role in shaping its
flying capabilities while also impacting the overall training
stability. If the tracks are too difficult, the agent will struggle
to extract meaningful learning signals. Conversely, simple
tracks fail to challenge the agent, limiting its ability to
generalize to more complex environments. Thus, to ensure
effective learning, the track difficulty must be continuously
adapted to the current capabilities of the agent. To achieve
this, we introduce a learned environment policy πenv that
dynamically adjusts the race tracks. This adaptive approach
allows the agent to consistently gather relevant and progres-
sive learning experiences, optimizing its training stability and
performance in diverse race tracks.

1) MDP Formulation: In our racing scenario, the states
of the environment are represented by the position p and
orientation R of each individual gate, such that the full
gate state vector is given by sgates = [p1,R1, . . . ,pN ,RN ],
where N is the total number of gates in the environment.
The environment policy leverages the observation oenv =
[sgates, eracing], where sgates represents the current states of
all gates, and eracing indicates the performance of the drone
agent achieved in the track corresponding to the environment
state sgates. The evaluation performance vector eracing =
[e1, . . . , eN ] contains the gate-passing error for each of the
N gates, where the error ei is computed as the distance
between the drone’s position and the center of gate i at the
moment the drone passes through the gate. The environment
policy outputs actions a = [∆pgates,∆yawgates], where
∆pgates specifies changes in gate positions, and ∆yawgates
indicates changes in the yaw angles of the gates, both in the
world frame coordinates. Hence, the transition dynamics P
is naturally stgates = st−1

gates + at−1. As training progresses,
the training track layout reflects accumulated changes from
the initial track, naturally producing various tracks.

Another key component of our framework is the develop-
ment of a metric that precisely measures the effectiveness
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Fig. 3: Visualization of the drone racing tracks used for the experiments, each characterized by varying levels of complexity.
All the tracks maintain a consistent size scale, spanning widths from 8 meters to 16 meters.

of the environment policy’s actions on the performance of
the racing agent. In our work, we propose a reward for the
environment policy grounded in the relative ranking of the
performance of the racing policy in different environments.
Specifically, after each training phase, we rank all the parallel
training environments according to the number of gates the
agent successfully passed. The higher the ranking number,
the worse the policy performs. The environment policy is
then penalized for generating track layouts at the extremes
of the ranking—those that are either too easy or too difficult.
Additionally, we reward race tracks that fall within an
intermediate range, where the agent demonstrates a degree
of success but has not fully mastered the track. The reward
is defined as follows:

renvt =


R Nenv−rank

Nenv−rupper
if rank > rupper

R if rank ∈ [rlower, rupper]

R rank
rlower

if rank < rlower

(3)

where R represents a positive constant, rlower and rupper are
the fixed thresholds determining the mid-range representing
the tracks that are not too easy and not too hard, Nenv

represents the total number of parallel training environments.
This formulation represents a smooth reward function that
provides fine-grained feedback on the environment policy
for each generated training track.

IV. EXPERIMENTS

Our experiments aim to address the following key research
questions: (i) How does our approach generalize to unseen
race tracks? (ii) How does our environment policy perform
on different training configurations? (iv) Does our policy
transfer to the real world?

Experimental Setup. To evaluate the performance of
our approach, we tested the racing policy on several fixed

racetracks with varying difficulties and complexities. All of
these tracks are significantly different than the initial training
track, with most having a different number of gates than
during training. For the evaluation, we primarily used two
metrics: success rate (SR %) and lap time (LT [s]). The
success rate is calculated as the ratio of successful runs,
where the drone passes all the gates without crashing, over
the total number of trials. Lap time refers to the drone’s total
time to successfully complete a race track. These metrics
are commonly used in drone racing and are essential in
evaluating whether the policy enables fast and stable flight
performance [24], [25].

Baselines. To evaluate the generalization ability of our
proposed methods, we compared them with three baseline
methods: (i) RL policy without curriculum: This method
shares the same initial environment setup as ours but does
not use a curriculum for training. (ii) Domain randomization
from [7]: In this approach, the initial environment is the same
as in our method. However, environment policy actions are
sampled randomly within the action space; we use the iden-
tical configurations from [7]. (iii) Particle Filter Curriculum
from [5]: This method also uses the same initial environment
as ours but relies on a particle filter to sample environments.

How does our approach generalize to unseen race
tracks? We first evaluated our method on six unseen tracks
to assess its generalization ability across tracks with varying
numbers of gates and different layouts compared to those
used during training. Table I presents the performance re-
sults. As can be observed, the reference single-track RL
policies on the left side demonstrate the best performance
in most experiments. This is because these policies overfit
the specific track, allowing them to optimize and perform
well in that particular environment. Consequently, the results



Track Type Track Name
Methods

Single-track RL RL w/o curriculum Particle Filter Domain Randomization Ours

SR [%] LT [s] SR [%] LT [s] SR [%] LT [s] SR [%] LT [s] SR [%] LT [s]

2D
Figure 8 100.00 4.263 0.00 - 100.00 5.128 100.00 6.205 100.00 4.746
Kidney 100.00 4.260 0.00 - 0.00 - 100.00 4.984 100.00 4.943
Big S 100.00 9.245 0.00 - 0.00 - 0.00 - 100.00 7.513

3D
3D Figure 8 100.00 5.010 0.00 - 100.00 5.654 0.00 - 100.00 5.856

3D Big S 100.00 10.187 0.00 - 0.00 - 0.00 - 100.00 9.761
Twist 100.00 7.444 0.00 - 0.00 - 0.00 - 100.00 10.199

TABLE I: We compare the success rate (SR) and lap time (LT) of our method against four baselines. Six different unseen
racetracks are evaluated in a realistic BEM simulation [26], including three 2D tracks and three 3D tracks. Here apart from
the our and baseline approaches, we also include the Single-track RL as a reference, which is a vanilla PPO agent trained
and tested on individual track.
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Fig. 4: Ablation study on the progress reward. Due to the
fluctuations in evaluation results across different iterations,
to fairly compare the performance of different coefficients,
we take the average and variance of the success rate and lap
time after the model has stabilized for comparison.

from the RL method without a curriculum show that directly
training on one track without a curriculum and testing on
different tracks is not successful.

Additionally, we found that a simple curriculum has a
limited effect on improving the racing policy’s generalization
ability. Methods such as domain randomization and particle
filters can enhance the agent’s generalization ability, allowing
it to fly on some simple unseen tracks, such as Figure 8 or
Kidney tracks. However, since these methods do not take into
account the continuous improvement of the agent’s policy
during training or the evolution of the environment, they
fail to perform well in rather complicated unseen tracks,
e.g., in 2D Big S or Twist tracks. Only our proposed
method demonstrated stable and successful flight across
all six unseen tracks. How does our environment policy
perform on different training configurations? To assess
the impact of different configurations on the performance
of our environment policy in racing policy training, we
performed an ablation study. Within the same parameter
setting for the environment policy, we vary the progress
reward coefficients α1 from Equation 2 of the racing policy.
As shown in Fig. 4, within a large range of parameters,

increasing the progress reward coefficient helps the agent
learn to fly faster, as evidenced by the decreasing lap times on
specific tracks. At the same time, we observe no significant
decrease in generalization, as the success rate remains fairly
stable. This indicates the robustness of our framework, where
a dedicated human-defined curriculum usually needs to be
re-designed for different speed ranges.

Does our policy transfer in the real world? To validate
the effectiveness of our proposed method, we conducted tests
in real-world conditions. We used the Agilicious quadrotor
platform [27] with precise state estimation provided by a
VICON motion capture system, ensuring accurate inputs for
the policy. The BetaFlight2 firmware was employed for low-
level control to execute the collective thrusts and body rate
commands. We performed nine laps on each of the six tracks
(Fig. 3), demonstrating that our single racing policy can
successfully navigate these previously unseen tracks in the
real world with a success rate of 100%, as shown on the
right side of Fig. 1. For further details, we invite readers to
view the supplementary video.

V. CONCLUSION

In this work, we proposed an adaptive environment-
shaping framework enabling, for the first time, a learned
policy to race on unseen and dynamic tracks. Our method
works by leveraging a secondary environment policy that
shapes the training environments for a drone racing policy.
Using our novel relative ranking reward, our environment
policy can generate track layouts that are challenging but
feasible based on the racing agents’ performance. One single
drone racing policy trained with our framework can race
in various race tracks with different complexity with 100%
success rate, whereas the state-of-art curriculum learning
approach mostly cannot fly. Furthermore, we validated the
policy’s generalization ability by racing on a track with mov-
ing gates, where existing methods performed significantly
worse at adapting to the fast-changing gate positions. We
believe our work represents a significant advancement in
enabling agile robots to achieve greater generalization and
robustness in complex, dynamic, and open environments.
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