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ABSTRACT

Human Body Part Semantic Segmentation and Human Pose esti-
mation are considered to be essential for understanding human
behaviours. Both of these tasks are correlated with each other. Em-
ploying them together in a unified framework to perform two dis-
tinct Human Centric Visual Analysis tasks simultaneously allows
benefiting from each other. Taking advantage of the correlation be-
tween Human Body Part Semantic Segmentation and Human Pose
Estimation, this paper proposes a unified framework that explores
efficient context modelling. The framework simultaneously predicts
the human body part semantic segmentation and pose estimation
with high-quality results. The results extracted from the segmenta-
tion are used to predict the pose estimation task. An experimental
analysis of the proposed framework is done on the benchmark LIP
Dataset. The analysis of the results shows that the proposed frame-
work outperforms the state-of-the-art by 7.3% when evaluated on
mean IoU. Moreover, Mean Accuracy, Pixel Accuracy and PCKh
are the other metrics used for the evaluation of the framework.

CCS CONCEPTS

« Computing methodologies — Image segmentation; - Human-
centered computing — Visualization.
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1 INTRODUCTION

Human Body Part Semantic Segmentation is also known as Human
Parsing. This technique segments the human body into fine-grained
components like hat, hair, face, pants, coat, right and left legs, left
and right arm and many more, along with the background. Due
to factors like intricate patterns and textures of clothing, change-
able positions of people, and the scale variation of various seman-
tic pieces, human part semantic segmentation falls under scene
parsing, where pixel categorization is carried out for particular
images. With the development of Deep Convolution Neural Net-
works (DCNN) and large-scale as well as comprehensive datasets,
human-part semantic segmentation has recently gained significant
interest and made remarkable strides. Most earlier research, such
as dilated convolution, LSTM [23] structure, encoder-decoder ar-
chitecture, and human posture restrictions, concentrate on creating
new structures and providing additional information guidance to
enhance general feature representation. However, they directly use
one flat prediction layer to classify all labels, ignoring the inherent
semantic relationships between concepts and wastefully using the
annotations, even though these methods produce promising results
on each human part semantic segmentation dataset. The human
part semantic segmentation approach is comparable to semantic
segmentation [4, 27], which anticipates the labelling of each pixel
in the scene.

The goal of Human Pose Estimation (HPE) is to create a skeleton-
like illustration of the human body, further processing it for task-
specific applications. HPE presents geometric and motion informa-
tion that is used to apply to a wide range of applications like human-
computer interaction, motion analysis, virtual reality, healthcare,
augmented reality, and many more. Human pose estimation con-
sists of three different approaches Volume Based, Contour Based,
and Skeleton Based [19] approach. This paper includes work im-
plemented on the Skeleton-Based Model. Using deep learning tech-
niques in HPE jobs has already resulted in notable advancements in
performance. Occlusion, a lack of training data, and depth ambigu-
ity are obstacles that must be solved. With the aid of deep learning
approaches, high performance has been attained for the human
pose estimate[10, 14] of a single person utilizing 2D HPE from
pictures and videos with 2D pose annotations. Recently, highly
occluded multi-person HPE in complicated situations has received
some attention. In comparison, it is significantly harder to generate
correct 3D pose annotations for 3D HPE than for 2D HPE. Motion
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Figure 1: Example of pose estimation and Human Body Part
Semantic Segmentation. Figures (a) and (c) are the original
images, while (b) and (d) are the predicted result of pose
estimation and human body part semantic segmentation,
respectively.

capture devices can gather 3D position annotation in controlled lab
settings but are less effective in natural settings.

Pose estimation and human body semantic part segmentation are
two fundamental challenges for studying human behaviour. These
two jobs are connected on a visual level. The fact that key points
are frequently present inside the various semantic zones suggests
that the semantic data gleaned from human parsing might be used
to pinpoint these points and provide precise posture estimates. On
the other hand, the keypoint group comes with abundant structural
data that can help create semantic pieces. Convolutional Neural
Networks (CNN) are increasingly used to handle these two tasks
because of the deep neural network’s [2, 17] improved learning
capabilities [9]. Most extant models share a basic encoder-decoder
design. However, their learning objectives may change. They [38]
intend to transfer the up-sampled output to pixel-wise annotations
for human parsing [18], whereas the pose estimate ground truth
[8] correlates to the heatmaps of sparse key points.

Recent research [15, 20, 31, 39] attempts to perform joint infer-
ence via neural networks from the standpoint of multi-task learn-
ing in light of the correlation between two tasks. These models
use a single shared encoder-decoder structure [15] or two distinct
encoder-decoder structures [20, 39], and they hand-design the mod-
ules [20] to interact with high-level features derived for two tasks.
It can be difficult to build the ideal network architecture and feature
interactions for cooperative learning. On the one hand, despite hav-
ing outward similarities, the two activities nonetheless have their
own unique qualities. While human parsing requires investigating
the pixel-by-pixel context information, the general techniques for
posture estimation concentrate on aggregating information into
small joint areas. Therefore, while tackling both jobs at once, it
is difficult to extract discriminative characteristics. However, it is
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challenging to model the relationship between the two jobs. By
manually building the fusion modules to interface with the high-
level features from the two branches, existing works [20, 39]address
this issue. But given that different levels of characteristics call for
more precise interaction, it is fairly rigid and ignores the variety of
intermediate features with multi-scale information.

This paper proposes a combined framework that integrates two
independent works, human body part semantic segmentation and
human pose estimation. The framework is fabricated by achieving
success on smaller tasks like feature extraction, context modelling,
semantic and pose subnet, and refining the maps by passing through
integration and refinement network. Now, for the feature extrac-
tion task, a deep residual network is shared for both semantic and
pose estimation tasks. Afterwards, the features are carried forward
to two separate small networks for encoding and predicting the
contextual information and results. An efficient integration and
refinement network is constructed for both semantic segmentation
and pose prediction to explore coherent context modelling that
leads to semantic and pose estimation tasks mutually beneficial.
This framework works to integrate multi-scale feature combina-
tions and iterative location refinement, which are frequently posed
as two different coarse-to-fine methodologies that are extensively
researched for human parsing and pose estimation individually. The
summary of the contribution can be understood in the following
manner:

o Introduction of a unified framework that performs efficient
context modelling and simultaneously predicts the human
body part semantic segmentation and pose estimation with
high-quality results.

e Experimental analysis of human body part semantic seg-
mentation and human pose estimation. The framework is
evaluated on the validation set of the benchmark LIP Dataset.

e Qualitative and quantitative analysis of the proposed model
with other benchmark methods. Results are validated using
four parameters Pixel Accuracy, Mean Accuracy, Mean IoU
and PCKh values. Results are represented in visual as well
as graphical manner.

Section II of this paper discusses the state-of-the-art methods
in the Human Centric Visual Analysis domain. Section III explains
the proposed methodology with well-labelled architectures. Exper-
imental Analysis and results are shown in section IV. This section
contains visual, tabular, and graphical outputs of the proposed
framework. Lastly, section V contains the conclusion followed by
references.

2 RELATED WORKS

Human body part semantic segmentation and human pose estima-
tion are two correlated tasks. The fact that key points are frequently
present inside the various semantic zones suggests that the seman-
tic data gleaned from human parsing might be used to pinpoint
these points and provide precise posture estimates. This section
covers the most recent studies performed in the respective field of
study.

Human Body Part Semantic Segmentation: In the area of
human body part semantic segmentation, numerous deep-learning-
based networks have achieved outstanding benchmarks. Ruan et al.
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Figure 2: This figure represents the overview of the proposed framework. Here is the explanation of some of the acronyms
used in the figure. FE: Feature Extraction, SSF: Semantically Segmented Features, FRI: Feature Refinement and Integration.

[24] constructed CE2P [24] framework built on Resnet-101 heavily
utilising edge detail, global spatial context information, and feature
resolution and won the LIP challenge held in 2019. Pixel’s label
indicates the class of the object to which the particular pixel fits;
Yuan et al. [34] constructed a representation technique for semantic
segmentation based on the objects’ context that performed altru-
istically on LIP. Human prior knowledge has also been combined
in some experiments for human parsing. Wang et al. [28] studied
the hierarchy of the human body. The structure was set up to allow
for effective, thorough human processing. Designing a new neural
network tree for the purpose of segmentation and human parsing
Jietal. [13] also took advantage of the natural anatomical shape
of the human body. Using the natural hierarchical construction of
the human body and its relationship with various human organs,
Zhang et al. [37] obtained good human parsing [18] outcomes by
applying rules of grammar in a parallel and cascaded fashion. Simi-
larly, Zhang et al. [39] combined keypoint positions with human
semantic boundaries to improve human parsing. When multiple
humans are present or unexpected occlusions cover specific human
body parts, these strategies rely on the unique human posture or
the preceding human hierarchical structure, making it impossible
to guarantee generality.

Human Pose Estimation: Recognising the position and loca-
tion of the human body in a particular scenario is the goal of human
pose estimation. Now, human pose estimation can be performed
for a single person when there is only one person in the frame,
and multi-person human pose estimation when there is more than
one person in the frame. So, in Single Person Pose Estimation, the
conventional method for estimating an articulated human pose
involves performing reasoning over a set of circumscribed observa-
tions on different components of the body along with the spatial
relationships between them. The spatial model for an interlocked
pose is based on two different methods, tree-structured graphical
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methods and non-tree methods. The tree-structured graphical mod-
els [1, 30, 36] encode the spatial relationships parametrically with
adjoining parts along with the kinematic chain. Whereas the non-
tree structure methods [10, 14] extend the tree’s construction with
additional edges to record symmetry, occlusion and long-range
relationships. Convolutional Neural Networks (CNNs) have been
broadly utilised to gather trustworthy local observations of the
parts of the body with significantly improved accuracy of the body
posture estimation [19, 21, 26, 29]. Tompson et al. developed a deep
neural network architecture, including a graphical model whose
parameters could learn collaboratively with the network. The se-
quential prediction framework [22] was the foundation for the
pose machine architecture, including convolutions, introduced by
Wei et al. [29]. They were iteratively applying overall context to
update partial confidence maps along with maintaining the multi-
modal variability from earlier repetitions. To combat the issue of
vanishing gradients during training, intermediary supervision is
mandated after the conclusion of each distinct stage [3].In Multi-
Person Human Pose Estimation, the majority of the methods [5, 8]
have employed a top-down approach, first detecting individuals
and then evaluating each person’s position individually on every
particular region detected. Although this approach directly applies
the techniques created for the single-person situation, it also needs
a prior dedication to detect a person and misses the spatial con-
nections among various persons that call for global inference. In
some cases, Human Pose Estimation is combined with Human Ac-
tivity Recognition [25, 33] technique to predict the movement of
the human body. Combined Human Body Part Semantic Seg-
mentation and Human Pose Estimation: Taking into account
how both the tasks, i.e. Human Body Part Semantic Segmentation
and Human Pose Estimation, are correlated to each other, some
research is done on this collaborative training paradigm. The frame-
work developed for collaborative work was found to be challenging
and complicated. Dong et al. in [11] offers an And-Or graph model
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Figure 3: The above figure represents the architecture of the proposed model. In the architecture, SS represents Human Body
Part Semantic Segmentation Module. Resnet Network is explained in the upper right corner of the image. Resnet Network is
formed by using an Atrous Convolution then, followed by four ResNet 101 layers.

that constrains keypoint positions to the regions produced by the
parsing and takes advantage of the spatial information of individual
keypoints to encourage human body parsing. The earliest neural
network-based method [32] connects high-level features from two
different jobs via a) Convolutions and b) Conditional Random Fields.
For this, the corresponding framework is taught gradually. Also,
for both jobs in [15], standard features are extracted using a com-
mon backbone. Pose estimation’s performance, however, needs to
improve in terms of quality. In [20], two distinct sections are em-
ployed to obtain the features for parsing and pose. To combine the
extracted features, hand-designed modules are provided to inter-
act with these two branches. However, in contrast, [39] utilises a
module built on attention to integrate the edge, pose, and parsing
features. Even though these techniques concentrate on clearly mod-
elling the interdependence between pose and parsing tasks, the
manually planned exchange is insufficient because the outcomes of
the two tasks frequently need to be more consistent.

3 PROPOSED METHODOLOGY

This section comprises an elaborate explanation of the suggested
framework in the paper. The overview of the proposed framework
can is illustrated in Figure 2. Human Body Part Semantic Segmen-
tation and Human Pose Estimation deal with labelling each distinct
image with finer details. These details include different granularities,
which are pixel-wise semantic labelling against joint-wise struc-
ture prediction. The pixel-to-pixel labelling can produce elaborate
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information, while the joint-wise structure gives a more high-level
structure. This makes both tasks complimentary. The coarse-to-fine
scheme is used to improve accuracy in the already existing meth-
ods. Semantic Segmentation and pose tasks use this approach to
improve the efficiency of networks. However, for both tasks, the
meaning of coarse-to-fine-scheme varies. For Semantic Segmen-
tation refers to pixel-wise classification, whereas for pose tasks,
it indicates iterative displacement refinement. These two distinct
definitions illustrated that it is reasonable to combine both tasks as
they correlate with each other.

3.1 Unified Network

In order to use the logical and systematic illustration of human body
part semantic segmentation and human pose to support each task,
we put forward a joint human body part semantic segmentation
and human pose estimation framework that integrates two different
coarse-to-fine strategies, namely multi-scale feature and iterative
refinement strategies. The detailed architecture of the introduced
framework is explained in fig 3. In the proposed framework, the
primary network of the Semantic Segmentation framework is the
residual network [12]. In contrast, the Pose Estimation framework
is constructed taking Stacked Hourglass Network [19] as its founda-
tion. When combined with both network, the proposed framework
share the residual network to obtain human image features. As a
result, the architecture has two different networks for producing
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Table 1: Quantitative comparison result of the proposed with
state-of-the-art

Method Pixel Accuracy Mean Accuracy Mean IoU
CorrPM [39] 87.68 67.21 55.33
MuLA [20] 88.50 60.50 49.30
JPPNet [15] 86.39 62.32 51.37
Ours 78.13 64.50 58.67

parser and pose features and findings. Following that is an inte-
gration and refinement network, which uses features and results
as input to build more precise segmentation and joint localization.
Feature extraction: In the architecture, the convolution layer
with upsampled filters, also known as “Atrous Convolutions” [6], is
used to remodel ResNet-101 for dense predictions. Atrous convolu-
tion enables us to deliberately adjust the resolution at which feature
responses are generated within DCNNs. Without increasing the
number of parameters or the amount of calculation, it also success-
fully broadens the field of view of filters to include a broader context.
There are four stages of ResNet-101 introduced in the framework.
Further, deeper layers in the framework are designed for learning
different tasks accordingly.

Parsing Subnet and Pose Subnet: The parsing subnet is built
based on ResNet-101. This subnet is built using atrous convolution
along with ResNet-101 acting as the fundamental unit. Now the
output layer that gives the segmented results is constructed with
ASPP [7] that segments object at various scales reliably. ASPP, with
the help of filters, performs probing to capture objects as well as
visual contexts at different scales that come from the convolutional
feature layer through various effective fields of view and sampling
rates. Two convolutions are performed after Res-5 to produce the
context needed for the refining stage. Numerous 3 x 3 convolutional
layers are added to ResNet-101’s fourth stage (Res-4) to create pose
features along with heatmaps for the pose subnet.

Integration and Refinement Network: Integration and re-
finement networks can simultaneously enhance both body part
semantic segmentation and pose results. The intermediate body
part semantic segmentation and prediction of the pose are con-
catenated again by mapping them together to a more significant
number of channels and adding another 1x1 convolution layer into
a feature space. This network is constructed by combining many
convolutional layers with incremental kernel sizes ranging from
1 to 9 to collect enough semantic segmentation and pose features
from the last stage. For the final semantic segmentation prediction,
the ASPP module is used after concatenating the initially generated
remapped results.

3.2 Modules of the architecture

The architecture is made from different small modules combined
step by step to form a bulky framework.

SS Module SS Module is made up of only two convolutional
layers. The kernel size of both layers is 3 X 3 with 512 and 256
channels, respectively. First convolutional Layer takes the output of
ResNet-5 as input and sends its result to the second convolutional
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layer. This module generates SS context, extracting semantically
segmented human body features.

Joint Module The joint module in the architecture contains
multiple convolutional layers for kernel sizes of 3 X 3 and 1 X 1.
The first layer of the module takes the output of ResNet4 as its input
and has 512 channels. The size of the channels in the convolutional
layer decreases after Conv2. The last two layers of the module have
kernel size 1 X 1 with 512 and 16 channels, respectively.

Pose Refinement In this module, remap-1, remap-2 and pose
context are concatenated. Remap1 and remap2 both are convolu-
tional layers of kernel size 1 X 1 and 128 channels. It takes pose
maps and part semantic segmentation maps as inputs, respectively.
The pose refinement module is made of 6-size convolutional Layers
with incremental kernel sizes ranging from 3 to 9. Although the
channel size of the pose refinement network is 512, then decreases
to 256, and the last layer has a channel size of 16.

Semantic Segmentation Refinement Similar to the pose re-
finement module, in the semantic segmentation module, the con-
catenation is performed between remap 1, remap2 and SS context,
which is generated after extracting the feature from ResNet5 and
proceeding it from SS Module. The results of the concatenation will
be sent into a convolutional layer of size 3 X 3 and channel 512.
The module is made up of 5 convolutional Layers and one ASPP
module. The ASPP module will take input the result of the Conv-5
layer as input and reduce its channel size from 256 to 20.

4 EXPERIMENTAL ANALYSIS AND RESULTS

This section includes the quantitative and qualitative analysis of
the results produced by the proposed framework. Separate results
for the Human Body Semantic Part segmentation and Pose Esti-
mation are discussed in the below section, along with the dataset
description.

4.1 Dataset

The Look Into Person (LIP) [15] is an extensive image dataset that
focuses on the task of segmenting human parts semantically from
the given images, called Human Parsing. In other words, the LIP
dataset is fabricated for the semantic interpretation of human body
parts with diverse, intriguing features. The dataset contains around
50,462 human images with detailed pixel-wise annotations of ap-
prox 19 labels enlighting semantic human part labels, a background
label from Human Parsing, and 2-Dimensional Human poses, in-
cluding 16 key points for Human Pose Estimation. The images
included in the dataset are assembled using real-world scenarios.
People with challenging poses, substantial occlusions, extensive
resolution, different viewpoints and appearances were included as
a necessary obstacle in the dataset. Images contained by the LIP
dataset are constructed by cropping instances of a person shown in
the image from the Microsoft COCO [16] training and validation
datasets. The dataset contains about 19 labels of human body parts
clothes for the purpose of annotation. These labels are upper clothes,
face, sunglasses, dress, coat, jumpsuit, arms, and many more, along
with the background. This dataset also provides detailed annota-
tions for 16 main body joints, including their visibility and positions
for human pose estimation. Joint annotation of LIP Images is done
in a “Person-Centric” approach implying that the right/left joints
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Input Image Ground Truth Prediction Input Image Ground Truth Prediction

Figure 4: The above figure represents the visualized result of the proposed work when evaluated on the validation set. The
figure contains the input image, its ground truth and the predicted out that is generated after the evaluation of the model. The
generated output is closely similar to its ground truth.

refer to the respective right/left limbs of the person in the image. Table 2: 16 Joint values of the human body. Y and X represent
To expedite the annotation process, multi-scale superpixels of the the Y and X-axis where the joints are located. Frames are the
photos were constructed using an annotation tool. images whose results are generated.

4.2 Evaluation Metric Joints | Frame1 Frame2 Frame3 Frame4  Frame5
PCKh is an accuracy measurement metric that predicts whether y X Y x|y x|y X y X

Joint1 | 17 124 | 32 161 | 31 249 | 59 228 | 53 332
Joint2 | 43 94 | 38 161 | 28 206 | 16 180 | 51 276
Joint3 | 16 72 | 101 161 | 27 150 | 18 140 | 40 198
Joint4 | 42 70 | 204 156 | 57 150 | 46 140 | 97 193
Joint5 | 43 94 | 251 95 |58 203 |46 180 | 98 274
Joint6 | 41 128 | 234 159 | 59 251 | 55 228 | 100 330
Joint7 | 41 64 | 174 158 | 41 145 |33 132 | 71 187
Joint8 | 47 45 | 164 88 |40 89 |40 8 | 66 95
Joint9 | 51 27 | 182 50 [37 53 |39 56 | 65 57
Joint10 | 60 15 | 194 27 |28 18 | 44 27 | 67 19

the key point and the actual joint are within a defined distance
threshold. The PCKh is usually decided according to the scale of the
object enclosed in a bounding box. The threshold of the PCKh can
be of a different type. If PCKh is denoted in PCK@0.5, it refers to
the constraint when the threshold distance is 50% of the head bone
link. Similarly, PCK@0.2 is denoted when the distance between the
predicted and actual joint is less than 0.2 times the diameter of the
torso. Sometimes, the threshold is taken as 150 mm as the default
value. This evaluation metric can also be used to evaluate 3D pose

estimation.
Joint 11 | 33 77 | 132 66 7 126 | 49 87 33 132
. Joint 12 | 62 56 84 148 | 7 103 | 10 112 6 123
4.3 Result of Human Body Part Semantic Joint13 | 47 32 | 123 55 |12 66 | 9 56 | 30 71
Segmentation Joint14 [ 42 28 [ 187 61 [67 66 |59 60 | 106 71
Table 1 contains the overall results of the framework, including the Joint 15 | 58 56 | 241 140 | 74 102 | 72 93 | 124 128
results of the current state-art-of-the-art methods. The experiment Joint16 | 81 68 | 234 15 | 74 136 | 64 136 | 100 135

was performed on the LIP dataset, which consists of 50,462 images.
When analysed on the test and validation set of the dataset, our
proposed framework outperformed all the existing work. In terms
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Table 3: Class-wise Quantitative Comparison of mean intersection over union (IoU) with other methods on the LIP validation
set. Here each class represents the mIoU value of each human part predicted by our proposed method.

H Method background hat  hair upperclothes

coat

pants face l-arm r-arm lleg rleg Avg H

CorrPM [39] 87.77 6620 71.56 70.20
MuLA [20] - - - -
JPPNet [15] 86.25 63.55 70.20 68.15
NPPNet [35] 88.38 66.43  72.34 71.88
Ours 92.61 5772 68.95 72.25

57.95

55.65
60.54
50.52

75.19 7436 6653 68.61 62.80 6281 55.33

49.30
51.37
58.56
58.97

72.19 7336 6197 63.88 75.99
77.07 7531 71.04 71.50 70.55
70.35 78.81 4432 47.04 35.46

58.21
71.75
34.39

of overall mean IoU, the proposed method gives the best result by
outperforming JPPNet [15] by 7.6%, MuLA [20] by 9.67%, and Cor-
rPM [39] by 3.64%. Observing the other two evaluation factors, i.e.
Pixel Accuracy and Mean Accuracy, the proposed framework was
not able to outperform MuLA [20] in pixel accuracy and CorrPM
[39] in mean accuracy but still shows a satisfactory performance
by giving pixel accuracy of 78.13 % and Mean Accuracy of 64.52%
which is 2.30% more than JPPNet [15].

Classwise values of mloU, together with comparative results
of the state-of-the-art methods, are discussed in Table 3. Values
represent the mloU values generated for each class, like face, hair,
and hat, when assessed on the validation of the LIP dataset. For
ease of comparison, 11 classes are considered in the analysis table.
Observing the discussed result, the proposed framework notably
improves the performance of classes background, upper clothes,
and face by 4.23%, 0.37% and 3.5%, respectively. Also, the overall
average mean IoU value outperforms the current state-of-the-art
value by 0.47%. The improved results establish that the proposed
framework works efficiently. Also, the framework improved the
best performance from 58.56% to 58.97%.

The visual output of the proposed model is shown in Figure 4.
The mentioned figure demonstrates the input image, the ground
truth of the input image and the predicted output. Predicted images
are very similar to the ground truth. Although LIP Dataset mainly
contains single-person images, we believe our proposed model can
perform well for multi-human or multi-person images.

4.4 Result of Human Pose Estimation

Figure 5 and Figure 6 represent the PCKh results of the proposed
network. The tables mentioned above also exhibit the comparative
analysis of the prior benchmark works. PCKh metric is an evalua-
tion metric that determines how well joints in the human body are
localised. After completing the pose estimation task, the results are
produced in a ".txt" file for each image of the validation set. The
text file contains the locations of the 16 joints. Now the value of
these 16 joints are computed according to locations in Y and X-axis,
respectively. The total number of values that will be printed in the
text file will be 32. The text file is demonstrated in Table 2.

5 CONCLUSION

In this paper, we proposed a unified human body part semantic
segmentation and human pose estimation framework that explores
and takes advantage of both tasks’ intrinsic connection. The re-
sults demonstrated by extensive experiments on the LIP dataset

49

PCKh

Head Shoulder Elbow Wrist Hip Knee Ankle

Figure 5: Graphical representation of PCKh values of the

proposed framework

70
60
50
40
30
20
10

o

Hip Ankle

Head  Shoulder Elbow Wrist

Knee Total

W ResNet - 101 CPM Hourglass Our

Figure 6: Graphical representation of the comparison of pro-
posed work with state of the art.

validate that the proposed framework works efficiently. The frame-
work of the traditional human pose estimation technique utilizes
the concept of object detection on the image frame of the given
input. However, object detection is being replaced with human
body part semantic segmentation through this proposed work to
identify human body parts accurately. This framework fulfils our
goal of creating a unified semantic segmentation framework and
pose estimation for our further task. The experiments can be more
challenging for future aspects by utilizing a multi-person dataset,
Crowd Instance-level Human Parsing(CIHP). Also, the results gen-
erated after performing human pose estimation can be considered
as features and applied for Human Activity Recognition.
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