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(b.1) Diffusion (b.2) Autoregressive Image Generation

😊😠？ √

(a) Generation Examples from DnD-Transformer

Figure 1: Generations from DnD-Transformers trained on class-conditional ImageNet256×256
(a.top) and unconditional arXiv images (a.bottom). Unconditional rich-text image generations by
trained diffusion (b.1) and autoregressive model (b.2), where autoregressive model has dominating
performance, showing a spark of vision-language intelligence after purely training on images.

ABSTRACT

This work tackles the information loss bottleneck of vector-quantization (VQ) au-
toregressive image generation by introducing a novel model architecture called
the 2-Dimensional Autoregression (DnD) Transformer. The DnD-Transformer
predicts more codes for an image by introducing a new direction, model depth,
along with the sequence length. Compared to 1D autoregression and previous
work using similar 2D image decomposition such as RQ-Transformer, the DnD-
Transformer is an end-to-end model that can generate higher quality images with
the same backbone model size and sequence length, opening a new optimization
perspective for autoregressive image generation. Furthermore, our experiments re-
veal that the DnD-Transformer’s potential extends beyond generating natural im-
ages. It can even generate images with rich text and graphical elements in a self-
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Figure 2: Illustration of the proposed DnD-Transformer. N denotes the number of depth autoregres-
sion. O-i denotes the transformer layer index for the i-th prediction head. Each transformer layer
predicts the corresponding depth code, achieving multi-code prediction within one forward pass.

supervised manner, demonstrating an understanding of these combined modal-
ities. This has not been previously demonstrated for popular vision generative
models such as diffusion models, showing a spark of vision-language intelligence
when trained solely on images. Codes, models and datasets will be open.

1 INTRODUCTION

The field of autoregressive (AR) image generation is experiencing a resurgence of interest, largely
driven by groundbreaking advancements in large language models (LLMs), exemplified by the re-
lease of ChatGPT (OpenAI, 2022). Because typical AR image generation methods also predict
output in a next-token prediction manner, this resemblance has sparked significant efforts in two
main areas: 1) transferring advanced, large-scale training techniques and expertise from LLMs to
AR image generation models (Bai et al., 2023; Tian et al., 2024; Sun et al., 2024), and 2) develop-
ing truly multimodal foundation models capable of both understanding and generating multimodal
information within a unified training framework (Lu et al., 2022; 2023; Team, 2024). These devel-
opments have the potential to lead to more versatile and powerful multimodal AI systems.

A review of the development history of AR image generation approaches reveals significant efforts
focused on finding better sequential decompositions of images and balancing reconstruction fidelity
with prediction difficulty. Early models, like PixelCNN (van den Oord et al., 2016), generated
images pixel by pixel. This approach was later enhanced by using vector-quantized variational
autoencoders (VQVAEs) to compress images and model the prior distribution of discrete tokens in
a compact latent space (Van Den Oord et al., 2017). Vector quantization (VQ) paved the way for
notable models such as VQGAN (Esser et al., 2021), DALL·E (Ramesh et al., 2021), and MUSE
(Chang et al., 2023), and it remains a core technique in recent AR image generation models like
VAR (Tian et al., 2024) and LlamaGen (Sun et al., 2024), and multimodal foundation models like
LVM (Bai et al., 2023), Unified-IO (Lu et al., 2022; 2023), and Chameleon (Team, 2024).

However, despite advancements in AR image generation, VQ-based autoregressive methods face
two persistent criticisms, especially juxtaposed with latent diffusion models (Rombach et al., 2022):
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1) Information loss inherent in the quantization process. Quantization, specifically in VQVAE,
introduces significant information loss. With a typical configuration (N=8192, f=16), the Informa-
tion Compression Ratio (ICR = log2 N

24f2 , explained in Equation 1) is just 0.21%, drastically lower
than the 8.3% of Stable Diffusion’s VAE1, hindering fine-grained detail reconstruction. Accord-
ing to Chameleon (Team, 2024), the authors note that their VQ tokenizer struggles to reconstruct
finegrained details like text in images, which we believe is due to the low ICR of their tokenizer.

2) Substantially increased computational requirements for producing higher-quality images.
According to Equation 1,Increasing ICR by expanding the latent space (N) is logarithmically limited
and computationally expensive leading to potential codebook collapse and more embedding parame-
ters, while reducing the downscaling factor (f) significantly increases computational overhead due to
a longer token sequence of O(1/f2) and a higher transformer computation complexity of O(1/f4).

We draw inspiration from the Residual Quantization method (Lee et al., 2022b), which provides
a new dimension for sequentially decomposing the image for better generation quality. However,
the proposed RQ-Transformer employs two separate transformer models. This structure presents
difficulties in integrating current LLMs for end-to-end training. In this work, we aim to solve the
problem covering the two mentioned concerns: Can we overcome the information loss of VQ-based
AR image generation without increasing overall computation budget in an end-to-end manner?

We propose a novel paradigm for AR image generation called 2-Dimensional Autoregression (DnD)
and DnD-Transformer, an end-to-end model architecture. DnD Autoregression introduces a new
depth dimension along with the original spatial dimension. In the depth dimension, the image patch
could be decomposed in any causal coarse-to-fine order, including the residual decomposition (Lee
et al., 2022b), Gaussian denoising decomposition (Ho et al., 2020) and etc. With a depth of d and
other configurations unchanged, the ICR of DnD Autoregression becomes d× logN

24f2 , more effectively
reducing the information loss comparing to increasing the codebook size N .

The remaining problem is how to predict the d times more tokens effectively. We propose the DnD-
Transformer. As shown in Figure 2, it inserts multiple prediction heads into the backbone trans-
former decoder model to predict the depth codes and conduct additional autoregressive predictions
in each forward process. Different from RQ-Transformer (Lee et al., 2022b), the DnD-Transformer
does not require additional modules or increased sequence length, making it applicable to any lan-
guage model architecture and efficiently generate more fine-grained images.

Our experiments show several interesting results: 1) superior reconstruction of fine-grained image
details using residual image decomposition in VQVAEs, disproving VQ’s limitations with text-rich
images; 2) more efficient and lower-entropy decomposition with DnD autoregression compared to
1D methods, evidenced by lower training cross-entropy loss despite predicting more codes; 3) sig-
nificant outperformance of the AR baseline on ImageNet 256x256 generation, achieving up to 1.54
FID and 82.6 IS improvements (XXL model, cfg=2) without increased model size or sequence
length, even surpassing larger LlamaGen model trained with longer sequence length; and 4) DnD-
Transformer shows that we can conduct accurate language modeling with pure image generation
model outperforming diffusion models like DDPM and Stable Diffusion on dedicated rich-text im-
age datasets, highlighting the distinct advantage of autoregressive models for multimodal modeling.

2 2D VISUAL TOKENIZER AND 2D AUTOREGRESSION

2.1 UNDERSTAND VQVAE AS COMPRESSION

We introduce the basics of AR generation in Section A in the appendix. We can better understand the
reconstruction ability of VQVAE from the lens of compression. Let us assume a VQVAE with down-
scaling factor f , codebook size N , input image’s size of H × W , then the shape of the quantized
code is h×w = (H/f)× (W/f). We assume that the code follows a uniform distribution, so each
code has log2 N bits information. Its information compression ratio (ICR) is as follows.

1The Stable Diffusion VAE (https://huggingface.co/stabilityai/sd-vae-ft-mse) uses
a downsampling factor (f) of 8 and 4 channels, with fp32 tensor precision (logN = 4× 32).

3

https://huggingface.co/stabilityai/sd-vae-ft-mse


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

D=8 (RQ)
L2 Loss 0.0027

PSNR 25.68

D=1 (VQ)
L2 Loss 0.0088

PSNR 20.56

D=2 (RQ)
L2 Loss 0.0059

PSNR 23.27
Ground Truth (512x512)

D=8 (RQ)
L2 Loss 0.0014

PSNR 28.69

D=1 (VQ)
L2 Loss 0.0322

PSNR 14.92

D=2 (RQ)
L2 Loss 0.0218

PSNR 16.61
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Figure 3: Performance of our visual tokenizers of different depths. The reconstruction of complex
features (i.e., eyes, mouse and text) gains significant improvement as the depth increases.

ICR(N, f) =
(H/f)× (W/f)× log2 N

H ×W × 3× log2 256
=

log2 N

24f2
(1)

A typical configuration (N=8192, f=16) results in 0.21% ICR. As a comparison, JPEG typically
achieves a far larger compression ratio from 5% to 10%, resulting in minimal perceptible loss in
image quality (Haines, 1992). To increase ICR, the 1D AR method could increase N (might face the
codebook collapse problem (Mentzer et al., 2023) and the improvement is logarithmically bounded)
or decrease f (more effective, but increases the token count quadratically).

2.2 IMAGES’ 2D DECOMPOSITION AND QUANTIZATION

As pointed out by Equation 1, the information compression ratio of VQVAE is bounded by the size
of the codebook and the downscaling ratio. Residual Quantization (Lee et al., 2022b) proposes a
new direction to quantize the image feature with multiple residual codes to reduce the quantization
error and improve the quality of the reconstruction. For a feature map having h×w vectors, RQVAE
uses h× w × d codes to quantize the feature map, where d is the depth dimension of the code. For
each feature vector v, RQ finds d codes (q1, q2, ..., qd) by sequentially conducting d times residual
decomposition and quantization operation Q(x) as finding the closest entry to x from the codebook:

qd = Q(rd−1), rd = rd−1 − qd, r0 = v (2)

Consequently, the sum of the residual codes
∑d

i=1 qi is expected to approximate more closely the
feature vector v, thus reducing the quantization error. We generalize this process as two-dimensional
autoregression (DnD), which extends beyond Markov residual decomposition and can be applied to
any decomposition operation, such as the diffusion process (Ho et al., 2020), etc.

DnD Autoregression quantizes a 2D feature map m ∈ Rh·w·c by decomposing it in two directions.
First, m is divided into h · w feature vectors. Second, each vector v is decomposed into n codes
(q1, ..., qn) using a function Dn(v,Q) based on a codebook Q. The resulting quantized map q has
shape h ·w ·n and is predicted in depth-first-spatial-second order. This decomposition could also be
non-Markov, unlike RQVAE. The selection of potentially better decomposition functions is left for
future exploration. We still use the residual quantization from Equation 2 as Dn. DnD decompo-
sition increases the ICR d times (Equation 3), more effectively than increasing codebook size. The
remaining challenge of predicting d times more codes is addressed by our DnD-Transformer.

ICR(N, f, d) = d× (H/f)× (W/f)× log2 N

H ×W × 3× log2 256
= d× log2 N

24f2
(3)
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Depth ImageNet 256×256

rFID↓ L2 Loss↓ Code Usage↑
1 2.98 0.11 100%
2 0.93 0.08 100%
4 0.60 0.05 100%
8 0.42 0.04 100%

SDXL 0.68 0.05 -
SD3 0.67 0.04 -

(a) Reconstruction Performance on ImageNet
256×256 Validation Set.

Depth Text256 Text512 arXiv512

rOCR↑
1 0.15 0.73 0.14
1† 0.00 0.00 0.00
2 0.50 0.81 0.49
8 0.80 0.83 0.67

SDXL 0.72 0.83 0.66
SD3 0.82 0.83 0.74

(b) Reconstruction OCR Performance. † indicates
zero-shot tokenizer trained on ImageNet.

Table 1: Ablation studies on the reconstruction performance of visual tokenizers. Our trained
tokenizers all have a f = 16 downscaling factor and N = 16384 codebook size.
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(a) Layerwise code usage of visual tokenizers.
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Figure 4: Analysis of visual tokenizers.

2.3 RECONSTRUCTION PERFORMANCE

We evaluate the reconstruction performance of our trained visual tokenizers with varying maximum
codebook depths using the standard ImageNet dataset as the benchmark. All images are resized to
256×256 resolution. We train the different visual tokenizers using the same training objectives as in
Lee et al. (2022b), and assess the reconstruction Fréchet Inception Distance (rFID) on the ImageNet
validation set using ADM’s evaluation suite (Dhariwal & Nichol, 2021). The results are presented
in Table 1a. For comparison, we include the rFID from the VAE of SDXL (Podell et al., 2023) and
Stable-Diffusion 3 (Esser et al., 2024) . Our findings demonstrate that our trained visual tokenizer
achieves an rFID lower than 1 with two or more codebook depths, even surpassing the performance
of SD3’s continuous VAE with less theoretical information loss. As shown in the example from
Figure 3, by increasing code depth, we could reconstruct more fine-grained details in the image.

Code Usage. We further analyze the code usage in each codebook layer, with results shown in
Figure 4a. The analysis indicates that usage generally decreases as depth increases. This is due to
the diminishing diversity of code usage as the residual decomposition progresses deeper, resulting
in smaller feature norms and more centralized code usage according to Figure 4b. Interestingly, we
do not observe signs of codebook collapse with the DnD visual tokenizers, even when using a large
codebook size (16384), as mentioned in previous work (Mentzer et al., 2023). While they reported
much lower code usage (< 50%), our tokenizer achieves 100% usage across all maximum depths.

2.4 VQVAES CAN PERFECTLY RECONSTRUCT RICH-TEXT IMAGES

A prevalent criticism of VQVAE has been its alleged intrinsic information loss problem, particularly
its inability to reconstruct images with fine details, such as those containing rich text (Team, 2024).
However, we argue that this claim is unfounded. Our findings suggest that VQVAE can indeed
achieve perfect reconstruction of detailed images, when provided sufficient data and an increased
number of codes used to represent each image. This demonstrates that the perceived limitations of
VQVAE can be overcome through appropriate data-centric adjustments and model scaling-up.
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Figure 5: Different explored multi-token prediction architectures for DnD-Transformer, which are
all designed to generate multiple codes with one forward pass.

rOCR - A New Metric. We proposes rOCR, a novel metric for evaluating rich-text image re-
construction. Unlike rFID/L2 Loss, rOCR measures textual recognizability using the Qwen2-VL-
72B (Wang et al., 2024a) visual language model for OCR. The metric computes the Rouge-L score
between recognized and groundtruth text (or original image OCR if groundtruth is unavailable).

Experiments and Results. Two rich-text image datasets, Text-Image and arXiv-Image (details in
Section 4.1), were used to train visual tokenizers. Performance (rOCR scores) was evaluated on
both datasets’ 1K test sets, compared against ImageNet-trained tokenizers, SDXL’s (Podell et al.,
2023) and Stable-Diffusion-3’s VAE (Esser et al., 2024). Text-Image was also tested at a reduced
256×256 resolution to assess resolution impacts. Table 1a shows the rOCR results, with reconstruc-
tion examples in Figures 3 and 9. Results indicate more training data and deeper tokenizers improve
text reconstruction. Unlike Team (2024), our discrete visual tokenizers excel in rich-text image
reconstruction even compared to continuous VAEs.

3 THE DND-TRANSFORMER

Prior section showed DnD visual tokenizers effectively reconstruct fine details like text. However,
efficiently predicting the increased number of depth codes (d times more) remains challenging.
Existing methods, like RQ-Transformer, use a separate transformer for depth, hindering integration
with LLMs. We propose an efficient end-to-end architecture for multi-code prediction.

3.1 DND-TRANSFORMER DESIGN

Figure 5 shows DnD-Transformer and its variants: Parallel and Vertical Prediction. Parallel Predic-
tion adds multiple prediction heads for simultaneous multi-depth code prediction, similar to accel-
erated LLM inference (Cai et al., 2024). However, this ignores the coarse-to-fine nature (Figure 4b)
of code distributions, where deeper codes have smaller norms and are more centered. Vertical Pre-
diction addresses this by sequentially predicting codes. Adding autoregression further refines this
by conditioning deeper code predictions on previous ones, achieving the best multi-layer code pre-
diction without increasing model parameters or sequence length. Ablation on the structure design is
shown in Table 3 from Appendix.

3.2 IMPLEMENTATION DETAILS

As shown in Figure 5, the DnD-Transformer enhances the vanilla transformer decoder by adding
output heads and embedding addition operation. Assuming the linearized codemap’s length is
L = h × w and code depth is d, the DnD-Transformer performs L forward passes, generating d
codes sequentially during each pass. After generating for all depths, the embeddings are summed
to form the next input token. This allows the model to produce L × d tokens with just L forward
passes, improving generation quality without increasing inference costs. The only additional hyper-
parameter is the layer indexes for codes at different depths. We use the same architecture as the
LLaMA (Touvron et al., 2023) transformer decoder; training details can be found in Appendix E.
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4 EXPERIMENTS AND FINDINGS

4.1 TASKS AND DATASETS

Class-Conditional Image Generation. We conduct standard conditional image generation task
with ImageNet-1k benchmark. Images are resized to 256×256 resolution during training and evalu-
ation. We sample 50k images with classes uniformly distributed, and compute the FID, IS, Precision
and Recall aganist the training set data using the ADM evaluation tool Dhariwal & Nichol (2021).

Unconditional Rich-Text Image Generation. We collect two datasets for this task. Dataset ex-
amples are shown in Figure 10 in the Appendix. Models are trained in a unconditional setting in this
task. We aim to explore whether the tested vision generation models could understand and generate
the complex logical interrelation among the generated elements such as language.

1. Pure Text Images (Text-Image). The dataset is automatically rendered from a portion of
English wikipedia (Foundation), consisting of 2.4M images. Each image has a original
resolution of 512×512 and a font size of 32pt. We set a maximum of 100 words in each
image with a paddling margin of 20pt. We use the PILLOW library to render the image.

2. arXiv Images (arXiv-Image) we first download the papers in PDF format from arXiv.
org, and render the pages to image of A4 resolution (1260×1782) with PDF2IMAGE tool.
We then randomly crop ten 512×512 image from each pages and finally collect 2M images.

We developed an evaluation pipeline that combines Optical Character Recognition (OCR) and Per-
plexity Measurement to assess the quality of generated images, focusing on their textual content.
First, we use the state-of-the-art Vision-Language Model Qwen2-VL-72B to extract text from the
images. Then, we calculate the text’s perplexity using the Qwen2.5-72B model, treating it as the
evaluator. The resulting score, PPLocr, is compared to the score of ground truth data from the
training images to establish a performance upper bound.

4.2 MODELS

Visual Tokenizers. We train our visual tokenizer based on RQVAEs (Lee et al., 2022b). We train
tokenizers with code depths of {1, 2, 4, 8} and scaling factor f = 16 across different experiments.
We choose the checkpoint with best rFID across 150 epochs. Performance comparison of different
visual tokenizers is shown in Table 1. We follow Lee et al. (2022b) to train the visual tokenizers.
Details of the training of visual tokenizers are listed in Appendix B. Reconstruction performance of
the trained visual tokenizers is shown in Table 1.

DnD-Transformer. We train two size of DnD-Transformers across our experiment, namely DnD-
Transformer-XXL (1.4B) and DnD-Transformer-XXXL (2.5B). Basically, DnD-Transformer in-
herits the LLaMA (Touvron et al., 2023) architecture. The XXL version strictly align with the
LlamaGen-XXL baseline to be fairly compared. Details of the model are shown in Appendix E.

Implemented Baselines for Class-Conditional Image Generation. LlamaGen (Sun et al., 2024)
is the major baseline and state-of-the-art model for AR image generation on ImageNet. Our imple-
mented code primarily refers to the same training codebase for fair comparison. LlamaGen could be
also viewed as a special version of DnD-Transformer where the decomposition depth equals to 1.

Implemented Baselines for Rich-Text Image Generation. We select multiple diffusion models
as the baselines, including DDPM (Ho et al., 2020), Stable Diffusion XL (SDXL) (Podell et al.,
2023) and Stable Diffusion v3.0 (SD3) (Esser et al., 2024). For DDPM, we train the model on the
dataset from scratch. For SDXL and SD3, we finetune the checkpoints from the official websites.

4.3 RESULTS OF CLASS-CONDITIONAL IMAGE GENERATION

As demonstrated in Table 2, our DnD-Transformer significantly outperforms the 1D autoregressive
baseline LlamenGen across various scales and generation evaluation metrics, including FID and IS.
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Type Model #Para. FID↓ IS↑ Precision↑ Recall↑

Diffusion-Reported

ADM (Dhariwal & Nichol, 2021) 554M 10.94 101.0 0.69 0.63
CDM (Ho et al., 2022) − 4.88 158.7 − −
LDM-4 (Rombach et al., 2022) 400M 3.60 247.7 − −
DiT-XL/2 (Peebles & Xie, 2023) 675M 2.27 278.2 0.83 0.57

AR-Reported

VQGAN (Esser et al., 2021) 1.4B 5.20 280.3 − −
RQTransformer (Lee et al., 2022a) 3.8B 7.55 134.0 − −
LlamaGen-XXL (cfg=2) (Sun et al., 2024) 1.4B 3.64 296.5 0.86 0.51
LlamaGen-XXL† (384×384, cfg=2) (Sun et al., 2024) 1.4B 2.52 295.4 0.84 0.56
LlamaGen-3B (cfg=2) (Sun et al., 2024) 3.1B 4.21 325.2 0.87 0.49
LlamaGen-3B† (384×384, cfg=2) (Sun et al., 2024) 3.1B 2.81 311.6 0.84 0.54
VAR (Tian et al., 2024) (with reject sampling) 2.0B 1.73 350.2 0.82 0.60
HQ-Transformer (You et al., 2022) (with reject sampling) 1.4B 4.35 - 0.73 0.55
MAR (Li et al., 2024) (trained longer, 400 epochs) 400M 1.98 290.3 - -

AR-Implemented

LlamaGen-XXL (cfg=4) 1.4B 7.67 345.1 0.89 0.35
LlamaGen-XXL (cfg=2) 1.4B 4.12 266.9 0.83 0.49
DnD-Transformer-XXL (cfg=4) 1.4B 6.55 427.7 0.89 0.42
DnD-Transformer-XXL (cfg=2) 1.4B 2.58 295.6 0.83 0.56
DnD-Transformer-XXL (cfg=1.7) 1.4B 2.78 239.2 0.82 0.56
DnD-Transformer-XXL (cfg=1.5) 1.4B 2.96 232.5 0.80 0.57
DnD-Transformer-XXXL (cfg=4) 2.5B 6.48 413.0 0.89 0.42
DnD-Transformer-XXXL (cfg=2) 2.5B 2.77 319.1 0.85 0.54
DnD-Transformer-XXXL (cfg=1.7) 2.5B 2.21 279.3 0.83 0.58
DnD-Transformer-XXXL (cfg=1.5) 2.5B 2.52 244.2 0.80 0.59

Table 2: Model comparisons on class-conditional ImageNet 256×256 benchmark. The “Re-
ported” results refer to Sun et al. (2024). The “Implemented” results are conducted in this work. †
indicates that the model is unorthodoxly trained at 384×384 resolution, which requires 2.25 times
longer sequence length compared to our implemented models. “cfg” means the scale of classifier-
free guidance. The number of depth autoregression is 2 for DnD-Transformers.
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Figure 6: Curves during training.

This superior performance is achieved while maintaining the same number of parameters in the back-
bone model, based on our reported and implemented results. It is noteworthy that our 2.5B model,
trained with a sequence length of 256, even outperforms the 3.1B LlamaGen model, which was
trained with a much longer image sequence length of 576. This result demonstrates that the DnD-
Transformer can effectively predict a greater number of tokens within a shorter sequence length,
highlighting its significant potential to revolutionize the one-dimensional autoregressive paradigm.
We randomly sample some generation results as shown in Figure 1 and compare the generation per-
formance with 1D-AR in Figure 11,12 and 13 from the Appendix. The comparative analysis clearly
illustrates the effectiveness of our approach to generate high-quality images.

4.4 RESULTS OF RICH-TEXT IMAGE GENERATION

Generation Results on Text-Image. A DnD-Transformer (depth 1) and a DDPM model were
trained on the same text-image dataset. Comparing 250 randomly sampled images from each, the
AR model significantly outperformed the diffusion model in generating coherent text (lower OCR
perplexity 6b; Generation examples 1, 15, 16, 17 and 18 ). This suggests the AR model’s dis-
crete token reconstruction enables effective autoregressive modeling. We also find that with a lower
sampling temperature, the model would generate text images with lower PPL just like LLMs. Con-
versely, the diffusion model’s simultaneous generation hinders text coherence.
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SD3

DnD

Figure 7: Comparison of Unconditional Rich-Text Image Generation on the more complex arXiv-
Image dataset. SD3 is hard to generate valid words, while DnD-Transformer demonstrates an ability
to generate semantically appropriate phrases, as marked in blue. More baselines are in Figure 14.

(a) Training Loss for DnD-Transformer trained with
different number of prediction heads.

(b) Training Loss when trained on different domain
datasets.

Figure 8: Analysis of code depths and domains during training DnD-Transformers.

Generation Results on arXiv-Image. An 8-layer visual tokenizer and corresponding DnD-
Transformer trained on arXiv-Image outperformed diffusion model baselines, generating more valid
words and phrases (Figure 7). However, arXiv-Image generation lagged behind Text-Image genera-
tion, suggesting joint language and figure modeling is more challenging. More results and baselines
are in Figure 14 and 19. While SD3’s VAE reconstructs arXiv images well (Table 1b), its generative
performance is inferior to DDPM and AR, suggesting its latent space is less suitable for language
modeling comparing to pixel or discrete space.

A Spark of Vision-Language Intelligence. Autoregressive (AR) image generation exhibits a
marked advantage over diffusion models in producing text-rich images, as demonstrated by our
results. The pixel-level language generation inherent to AR models facilitates this capability. De-
spite limitations imposed by our current training data and model size (preventing direct comparison
with large language models), these findings suggest a promising pathway towards vision-language
intelligence where language understanding emerges directly from visual perception. Further-
more, our pure image learners display behaviors mirroring language model issues such as repetition
and hallucination (Figure 20), implying the potential for integrating pure language modeling into a
unified autoregressive framework for joint vision-language image modeling.

4.5 TRAINING BECOMES EASIER WHEN PREDICTING MULTIPLE CODES, SAMPLING NOT

Deeper DnD-Transformer codes achieve lower cross-entropy loss during training (Figure 8a), indi-
cating lower entropy image decompositions. However, despite this, increased depth doesn’t improve
ImageNet generation fidelity, possibly due to the larger sampling space. Exploring this multi-depth
sampling space for better generation is a promising research direction.
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4.6 AR TRAINING LOSS FOR DIFFERENT DOMAINS ALIGN WITH INNER RANDOMNESS

Training loss for the same DnD-Transformer varies significantly across datasets (Figure 8b), being
notably higher for ImageNet than rich-text images. While rich-text image loss nears that of LLMs,
ImageNet loss sits between text and natural image datasets. The AR model’s LLM-like training
suggests it learns language from visual input alone, implying language’s visual representation has
lower entropy than natural images, easing the learning process.

5 RELATED WORK

Image Generation with VQVAE. The vector quantization (VQ) method has been pivotal in the
development of generative models (Ramesh et al., 2021; Yu et al., 2022; Chang et al., 2023), which
achieve image generation through the prediction of discrete image tokens. Efforts in this area fo-
cus on two main directions: the optimization of image tokenization techniques (Esser et al., 2021;
Mentzer et al., 2023; Yu et al., 2023; 2024; Weber et al., 2024; You et al., 2022), and the strategic
planning of effective decompositions of image tokens, such as MaskGit (Chang et al., 2022) and
VAR (Tian et al., 2024) or incorporating a diffusion loss such as MAR (Li et al., 2024). Meanwhile,
alongside the advancement of large language models, there is growing interest in autoregressive
image generation, which predicts image tokens sequentially (Tian et al., 2024; Sun et al., 2024).
Recent research has also focused on developing multimodal foundation models (Lu et al., 2023;
Kondratyuk et al., 2024; Wang et al., 2024b) that integrate both understanding and autoregressive
image generation capabilities. They typically convert images or videos into sequences of discretized
tokens and train over combined text-image/video token sequences within the AR modeling frame-
work (Lu et al., 2022; Bai et al., 2023; Xie et al., 2024; Team, 2024). However, these models often
struggle with inherent information loss during the image quantization and the significantly increased
computational demands when generating higher-quality images. The DnD-Transformer that adopts
the residual 2D decomposition of image features does not require additional modules or increased
sequence length for high-quality and fine-grained image generation.

Rich-Text Image Generation. Despite recent significant progress in image generation, the task
of rich-text generation within images remains a persistent challenge (Chen et al., 2023b; Ma et al.,
2024; OpenAI, 2024). Most advancements have been witnessed in diffusion models (Betker et al.,
2023; Saharia et al., 2022b;a), these models either leverage large language models to enhance the
character spelling capabilities of generative models (Saharia et al., 2022b; Balaji et al., 2023; Saharia
et al., 2022a) or attempt to explicitly control the position and content of the text using additional su-
pervision from different modules (Tuo et al., 2024; Yang et al., 2023; Liu et al., 2024). However,
most diffusion-based methods have primarily focused on text rendering Chen et al. (2023a;b); Balaji
et al. (2023); Saharia et al. (2022a) in image generation, often limited to generating short words for
logos and posters (Yang et al., 2023; Ma et al., 2023; 2024). The full potential of rich-text image
generation remains largely unexplored. Our methods, which build on the foundation of DnD Au-
toregression, show substantial progress in generating rich-text images in an unconditional manner,
highlighting the feasibility of conducting joint vision-language modeling tasks using purely images.

6 CONCLUSION

This paper investigated the limitations of autoregressive (AR) image generation methods, partic-
ularly the information loss and computational burden associated with vector quantization (VQ).
We introduced 2-Dimensional Autoregression (DnD) and a novel end-to-end architecture, DnD-
Transformer, which leverages a depth dimension autoregression alongside the spatial dimension to
mitigate these limitations. Our experiments demonstrate that DnD-Transformer achieves significant
improvements in image quality, outperforming strong baselines like LlamaGen without increasing
model size or sequence length. Notably, DnD-Transformer showcases emergent vision-language
intelligence, generating text-rich images unconditionally, a known weakness of diffusion models.
These findings highlight the potential of DnD for efficient and high-quality AR image generation
and underscore the promise of this approach for advancing multimodal foundation models.
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Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation, 2024. URL https://arxiv.
org/abs/2406.07550.

A PRELIMINARY: AUTOREGRESSIVE IMAGE GENERATION

In this section, we introduce the fundamentals of autoregressive image generation. The pipeline is
rooted in the Vector Quantized Variational Autoencoder (VQVAE) (Van Den Oord et al., 2017) and
the autoregressive Transformer (Vaswani et al., 2017). This approach has been adopted from the
early DALLE (Ramesh et al., 2021) to the latest LlamaGen (Sun et al., 2024).

A.1 STEP1: TRAIN THE VISUAL TOKENIZER AND TOKENIZE THE IMAGES

Images initially exist in the pixel-level RGB color space, which consists of little semantic infor-
mation and makes it challenging to directly model prior knowledge. For example, an image with
a resolution of 256 × 256 comprises 256 × 256 × 3 = 196, 608 distinct values, representing the
individual red, green, and blue intensities for each pixel. The large sequence length makes it diffi-
cult to train in autoregressive manner similar to language models’ technique. Van Den Oord et al.
(2017) proposed the Vector Quantized Variational Autoencoder (VQVAE), which significantly alle-
viates the problem. It downscales and tokenizes the image from the original sparse RGB space into a
dense and discrete representational space (codebook) Q by finding the nearest entry. The VQVAE is
typically implemented in an encoder-decoder architecture, with its primary training objective being
to minimize the image reconstruction loss. You could refer to Van Den Oord et al. (2017) for details
in training a standard VQVAE.

A.2 STEP2: LEARN THE PRIOR DISTRIBUTION OF IMAGE TOKENS

Having tokenized the source images into discrete tokens and trained a visual decoder to map these
tokens back to real images, the next crucial step is to learn the prior distribution of the discrete
tokens. This distribution enables the sampling process, which is essential for generating new images.
AR Image generation generally first linearizes the h× w image tokens q ∈ Q in a raster scan order
and formalize 1D sequence (q1, q2, q3, ..., qh×w) for the transformer (Vaswani et al., 2017) model to
learn.

During training, the training objective is the same as GPT’s next token prediction task (Radford
et al., 2018), that the model is required to predict the next image token given the previous tokens
and class or text conditional tokens

∏h×w
t=1 p (qt | q<t, c). After training, we can generate images

by autoregressively sampling h × w tokens from the model. The sampled 1D sequence of image
tokens is then reshaped to 2D code map with height h and width w. This reshaped token map is
subsequently fed into the trained VQVAE decoder, which reconstructs the final image from the code
representation.
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Classifier-Free Guidance As a technique to enhance the visual quality and text-image alignment,
classifier-free guidance (Ho & Salimans, 2022) has been adopted across the diffusion models (Rom-
bach et al., 2022; Podell et al., 2023), VQ models (Chang et al., 2023) and autoregressive mod-
els (Sun et al., 2024) for image generation. During the training, the model is exposed to data with
and without conditioning: the conditioning is randomly discarded from a fraction of the training
samples. We have implemented this approach in our model as well. Specifically, during training,
we randomly replace the conditional embedding with a learnable unconditional embedding in 10%
of the cases. At the inference stage, the logits ℓg are recalculated for each generated token. We form
the ℓg by subtracting the unconditional logits ℓu by conditional logits ℓc with the guidance scale t
through the following equation:

ℓg = ℓu + (ℓc − ℓu)× t (4)

B TRAINING DETAILS OF VISUAL TOKENIZERS

We follow (Lee et al., 2022b) to train the 2D tokenizers with residual decomposition a combined
objective of l2 loss, GAN loss and perceptual loss. Codes from different depth share the same
codebook. We train all tokenizers a fixed learning rate of 4e-5, a total batch-size of 256 for 100
epochs and select the one with lowest validation loss as the final tokenizers. We conduct all training
on 8×A100 GPUs.

C RECONSTRUCTION RESULTS OF TEXTS

Figure 9 shows the reconstruction result on arXiv images of different visual tokenizers.

No arXiv Data
D=1 (VQ)

Add arXiv Data
D=1 (VQ)

Add arXiv Data
D=8 (RQ)

Figure 9: Reconstruction Results of Texts. With training data and enough depths of codes, RQ visual
tokenizers can well reconstruct the text in the images.

D ABLATION ON DND-TRANSFORMER’S STRUCTURE

Model Parameters FID IS Precison Recall
1D 1.4B 4.12 266.9 0.83 0.49
2D Parallel 1.4B 6.32 232.1 0.79 0.44
2D Vertical 1.4B 3.18 289.7 0.83 0.57
DnD-Transformer 1.4B 2.58 295.6 0.83 0.56

Table 3: Ablation of DnD-Transformer Architecture on ImageNet dataset. All models follow
the same training setting as in Appendix E.
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E DETAILS OF HYPER-PARAMETERS OF DND-TRANSFORMER

Table 4 shows the hyper-parameters of our trained models. The XXL model has the same set-
ting as in GPT2 (Radford et al., 2019) and LlamaGen (Sun et al., 2024) for fair comparisons. For
DnD-Transformer with multiple prediction heads, the prediction layers’ indexes are set to [39, 48]
when there are two heads, [39, 42, 45, 48] when there are 4 heads in the ImageNet experiments,
[27, 30, 33, 36, 39, 42, 45, 48] when there are 8 heads in the arXiv-Image experiments.

Model Parameters Layers Hidden Size Heads
XXL 1.4B 48 1536 24
XXXL 2.5B 48 2048 32

Table 4: Model sizes and architecture configurations

All transformer models were trained using settings similar to LlamaGen (Sun et al., 2024): a base
learning rate of 10−4 per 256 batch size, the AdamW optimizer with β1 = 0.9, β2 = 0.95, and a
weight decay of 0.05, along with gradient clipping at 1.0. A dropout of 0.1 was consistently applied
to the input token embedding, attention module, and feed-forward network (FFN) module. Similarly,
a dropout of 0.1 was used for the class condition embedding for classifier-free guidance. Training
was performed for 300 epochs, and the final checkpoint was used for performance evaluation.
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F EXAMPLES OF RICH-TEXT DATASET

Figure 10 show examples from the collected Text-Image dataset and arXiv dataset.

Text arXiv

Figure 10: Data examples in of the collected Text-Image and arXiv-Image image datasets.

G GENERATION RESULTS OF DND-TRANSFORMERS

Figure 11: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “golden retriever” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model.

H EXPERIMENTS WITH DIT

We conduct additional experiments on DiT-XL model (the largest model supported by (Peebles &
Xie, 2023)) to conduct unconditional rich-text image generation. We use the VAE from SD3 (Esser
et al., 2024), which has better text reconstruction ability than the RQ-Tokenizers used by DnD-
Transformer. We use the same training setting as (Peebles & Xie, 2023). The results are shown in
Figure 21 and Figure 22.
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Figure 12: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “volcano” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model.

Figure 13: Conditional generation comparisons between LlamaGen-XXL and DnD-Transformer-
XXL on class “husky” from ImageNet. We random sampled 16 images with cfg=4. DnD-
Transformer generates images with higher quality than the 1D AR model especially for the more
complex eyes of husky.

I TRAINING/INFERENCE BUDGETS

We compare the training/inference budgets of DnD-Transformer and different baseline models as
shown in Table 5. DnD-Transformer almost does not introduce an increase in the number of param-
eters and inference/training budgets compared to the baseline LlamaGen architectures.
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SDXL 

DDPM

SD3

DnD-Transformer

Figure 14: Comparison of Unconditional Rich-Text Image Generation on the more complex arXiv-
Image dataset. All models are trained on the same dataset. The generated images are all in 256x256
resolution. Diffusion-Family models are hard to generate valid words, while DnD-Transformer
demonstrates an ability to generate semantically appropriate phrases, as evidenced by the correct
clause ”it should be” observed in the second example.

Imagenet(256x256) Total Training FLOPs Num-Parameters gFID Inference-Time(second/image) Training-Time (minutes/epoch)

DnD-Transformer(depth-2) 1.02x (2.57e17) 1.44 B 2.58 4.23s 23min
DnD-Transformer(depth-3) 1.04x (2.62e17) 1.45 B 2.53 4.48s 25min
LlamaGen(depth-1) 1x (2.52e17) 1.43 B 4.12 4.05s 22min
DiT XL (Peebles & Xie, 2023) - 675M 2.27 15.45s (100 steps) -
SD3 (Esser et al., 2024) - 3B - 10.78s (28 steps) -

Table 5: The training and inference budget of different models.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: Unconditional Generation examples of DDPM on Image-Text.
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Figure 16: Unconditional Generation examples of DnD-Transformer on Image-Text with tempera-
ture=0.1.
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Figure 17: Unconditional Generation examples of DnD-Transformer on Image-Text with tempera-
ture=0.5.
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Figure 18: Unconditional Generation examples of DnD-Transformer on Image-Text with tempera-
ture=1.0.
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Figure 19: Unconditional Generation examples of DnD-Transformer on arXiv data with tempera-
ture=1.

Repetition Hallucination

Figure 20: Some cases of the generated text images. We witness similar error pattern to LLMs such
as repetition and hallucination in our trained model during sampling.

Figure 21: The results of DiT-XL on rich-text (PIL-Text) generation tasks.
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Figure 22: The results of DiT-XL on rich-text (arXiv-image) generation tasks.
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