
Procurement Auctions via Approximately Optimal Submodular Optimization

Yuan Deng 1 Amin Karbasi 2 Vahab Mirrokni 1 Renato Paes Leme 1 Grigoris Velegkas 2 * Song Zuo 1

Abstract

We study procurement auctions where an auction-
eer must acquire services from strategic sellers
with private costs. The quality of these services
is represented by a known submodular function.
Our goal is to design computationally efficient
auctions that approximately maximize the differ-
ence between service quality and total seller costs,
while remaining incentive compatible (IC), indi-
vidually rational (IR), and yielding non-negative
surplus (NAS) for the auctioneer. Our contri-
bution is twofold: (i) we provide an improved
analysis of existing algorithms for non-positive
submodular function maximization; (ii) we de-
velop frameworks that transform submodular op-
timization algorithms into mechanisms that are
IC, IR, NAS, and preserve approximation guaran-
tees. These frameworks apply both in an offline
setting—where all bids are simultaneously observ-
able—and an online setting—where sellers arrive
adversarially and decisions must be made irrevo-
cably. We further investigate whether state-of-the-
art submodular algorithms can be converted into
descending auctions under adversarially chosen
price schedules. We show that any algorithm satis-
fying a bi-criteria (12 , 1)-approximation in welfare
can be adapted into such a descending auction.
Finally, we demonstrate the practicality of our
frameworks by instantiating them with various
submodular optimization algorithms and evalu-
ating their performance on datasets containing
thousands of sellers.

*Part of the work was done while the author was a student
researcher at Google Research. 1Google Research 2Yale Univer-
sity. Correspondence to: Yuan Deng <dengyuan@google.com>,
Grigoris Velegkas <grigoris.velegkas@yale.edu>, Song Zuo
<szuo@google.com >.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
In this paper, we consider procurement auctions (Dim-
itri et al., 2006) in which strategic service sellers with
private costs submit bids to an auctioneer, who then de-
cides the set of winners based on an objective function
and purchases their services. Procurement auctions have
been adopted in multitude of application domains, includ-
ing industrial procurement (Bichler et al., 2006), data shar-
ing (Roth & Schoenebeck, 2012; Rasouli & Jordan, 2021;
Sim et al., 2022; Fallah et al., 2023), and crowdsourcing
markets (Singer & Mittal, 2013). Additionally, Amazon
Business provides government procurement solutions for
products ranging from office supplies to first responder
equipment (AmazonBusiness, 2024), while the U.S. Govern-
ment Publishing Office conducts nationwide procurement
for items used in publishing (USGPO, 2024). Each of these
markets involve thousands of vendors for ensuring supplier
diversity and competitive prices. There is also a large body
of literature on procurement auction for the sale of data, in-
cluding Bayesian mechanism design for one-sided markets,
two-sided markets, and their online learning variants (Ghosh
& Roth, 2011; Roth & Schoenebeck, 2012; Abernethy et al.,
2015; Agarwal et al., 2019; Sim et al., 2022; Fallah et al.,
2023; Agarwal et al., 2024).

Since procurement auctions were introduced to the algorith-
mic game theory community in the seminal paper of Nisan
& Ronen (1999), many aspects of these auctions have been
studied, including frugality in procurement auctions for min-
imizing purchasing costs (Archer & Tardos, 2007; Karlin
& Kempe, 2005; Talwar, 2003), budget-feasible procure-
ment auctions in which the purchasing cost is constrained
by a budget (Singer, 2010; Kempe et al., 2010; Chen et al.,
2011; Bei et al., 2012; Balkanski et al., 2022), and profit
maximization for optimizing the auctioneer’s surplus (Cary
et al., 2008). In this paper, we consider the classic setting
of procurement auctions with one auctioneer and a group of
sellers, N . Each seller has a private cost ci for providing
the service, and for each S ⊆ N , the auctioneer has a value
function f(S) for purchasing services from sellers in S. The
social welfare obtained from the procurement auction when
the auctioneer purchases from sellers in S is given by the
difference between the value obtained by the auctioneer and
the total cost of sellers in S, i.e., f(S)−

∑
i∈S ci.

1

Procurement Auctions via Approximately Optimal Submodular Optimization

We note that our objective differs from the utilitarian objec-
tive, which maximizes the sum of all agents’ valuations, i.e.,
f(S)+

∑
i ̸∈S ci, assuming seller i has value ci if the service

is not sold. Our objective can be considered a measure simi-
lar to the gains-from-trade in the bilateral trade literature, as
it measures the additional total value generated by running
the procurement auction. This is further motivated by the
fact that, in many domains where procurement auctions can
be applied, sellers incur costs only after they have been
selected to provide a service. For instance, when a vendor
provides goods or services to a company, it is most often
the case that they incur costs only after signing the contract
and needing to purchase the required materials. Although
maximizing gains-from-trade is equivalent to maximizing
the utilitarian objective, providing an approximation to the
gains-from-trade is considerably harder than providing an
approximation to the utilitarian objective. In particular, a
non-zero approximation to the utilitarian objective may al-
ready be achieved without any trade, which would only
result in a zero approximation to gains-from-trade.

Another major obstacle to studying our objective is that
maximizing for f(S)−

∑
i∈S ci is a computationally chal-

lenging optimization problem, even when f is a mono-
tone submodular function. Submodularity captures a broad
class of functions with diminishing returns, including gross-
substitute functions, budget additive functions, and coverage
functions. When f is a monotone submodular function, the
aforementioned optimization task is known as regularized
submodular maximization, expressed as maximizing the dif-
ference between a monotone submodular function f(S) and
a modular function

∑
i∈S ci as the regularization term. For

the special case where ci = 0 for all sellers, it is well-known
that obtaining an approximation ratio better than (1− 1/e)
requires exponentially many queries to f (Nemhauser et al.,
1978). Before a breakthrough result from Sviridenko et al.
(2017), many heuristics had been proposed in the litera-
ture (Feige et al., 2008; 2013; Kleinberg et al., 2004), but
none of them provided provable guarantees that are uni-
versal and unconditional. For example, Feige et al. (2013)
design algorithms with parameterized approximation guar-
antees, where the parameterization may depend on classes
of instances and the properties of their optimal solutions.
Sviridenko et al. (2017) show a tight bi-criteria (α, β)-
approximation guarantee of the form f(S) −

∑
i∈S ci ≥

α · f(OPT)− β ·
∑

i∈OPT ci with α = 1− 1/e and β = 1,
where OPT = argmaxS f(S)−

∑
i∈S ci, which rules out

the possibility of constant approximation for the welfare
objective. Harshaw et al. (2019) developed a simplified and
practical algorithm, called the distorted greedy algorithm,
that achieves the same optimal approximation guarantee.

Inspired by recent progress in regularized submodular maxi-
mization, we revisit the problem of procurement auctions
where our objective is to maximize the welfare, i.e., the

difference between the value obtained by the auctioneer and
the total cost of sellers. Our goal is to design a mechanism
that: 1) is incentive compatible (IC) and individual rational
(IR) for each seller; 2) guarantees non-negative auction-
eer surplus (NAS); 3) achieves state-of-the-art bi-criteria
welfare guarantees; 4) is computationally efficient.

The interpretation of the desired game-theoretical properties,
i.e., IC, IR, and NAS, is that IR encourages sellers to partic-
ipate in the auction while IC prevents strategic behavior and
simplifies the sellers’ decision-making process. The surplus
of the auctioneer is given by f(S)−

∑
i∈S pi for purchasing

services from sellers in S, where pi is the payment to seller
i ∈ S. NAS is reminiscent of the weakly budget-balanced
property under the interpretation that f(S) captures the po-
tential revenue generated for the auctioneer through the
services purchased from sellers in S. The NAS property
is critical for many applications; if the auctioneer is at risk
of having negative revenue, they might be incentivized not
to run the auction at all. Thus, it is crucial to ensure that
our transformations from algorithms to mechanisms satisfy
NAS, which requires subtle technical work.

1.1. Our Results

In this paper, we make theoretical contributions to the lit-
erature of regularized submodular optimizations as well as
theoretical and empirical contributions to the literature of
procurement auctions.

On the submodular optimization side, Harshaw et al. (2019)
show that the distorted greedy algorithm satisfies an (1 −
1/e, 1) bi-criteria approximation guarantee. In Section 3, we
demonstrate that the distorted greedy algorithm also satisfies(
1−e−β , β+o(1)

)
bi-criteria approximation simultaneously

for all β ∈ [0, 1], which is also almost tight (Feldman, 2021).
Using the framework developed in this work, we obtain
mechanisms that satisfy the same approximation guarantees
for all β ∈ [0, 1]. We also extend the results to a setting
with noisy function evaluations.

Moving on to the mechanism design side in Section 4.1,
from a theoretical perspective, we first show that VCG
mechanisms satisfy IC, IR, and NAS, and they are always
welfare-optimal, but it is computationally prohibitive to im-
plement them for practical applications. We then develop
a mechanism design framework that can convert state-of-
the-art submodular optimization algorithms to sealed-bid
mechanisms that satisfy IC, IR and NAS, preserve the bi-
criteria welfare guarantees, and can be computed efficiently.
Leveraging online submodular optimization algorithms, we
extend our framework to the online setting where the sellers
arrive in a potentially adversarial order and the auctioneer
has to make an irrevocable decision whether to purchase
their services.

2

Procurement Auctions via Approximately Optimal Submodular Optimization

In addition to sealed-bid mechanisms, in Section 5 we ask
whether it is possible to convert submodular optimization
algorithms to descending auctions. These auctions were
initially designed under the assumption that f is a gross-
substitute function (Kelso Jr & Crawford, 1982), which is a
subclass of submodular functions. We focus on the adversar-
ial setting where the schedule of descending prices is deter-
mined by an adversary. We show that if the demand oracle is
based on the cost-scaled greedy algorithm (Nikolakaki et al.,
2021), the descending auction always achieves bi-criteria
(12 , 1)-approximation in welfare, even in the adversarial set-
ting. On the other hand, we show that if the oracle solves
the demand problem exactly, the approximation guarantees
could be arbitrarily bad. We further establish a connection
between descending auctions and online submodular opti-
mization algorithms, showing that any online submodular
optimization algorithm can be converted to a descending
auction in an approximation-preserving way. Thus, an im-
possibility result, showing there is no descending auction
that can achieve bi-criteria (α, 1)-approximation in welfare
with α > 1

2 , implies an impossibility result on online sub-
modular optimization with bi-criteria (α, 1)-approximation
guarantees for the same α, which is a long-standing open
question in online submodular optimization.

In Section 6, we complement our theoretical results with
empirical studies evaluating the welfare performance and
running time trade-offs of different mechanisms on a cover-
age problem. Due to space constraints, the discussions of
further related work are deferred to Appendix A.

2. Preliminaries
We consider a setting of procurement auctions with one
auctioneer and a set N of n sellers with items to sell. The
auctioneer has a valuation function f : 2N → R≥0 that
specifies the value that the auctioneer assigns to the items
of every set S of sellers, where S ⊆ N . Each seller i ∈ N
has a private cost ci ≥ 0 indicating the minimum acceptable
payment for selling to the auctioneer. We focus on functions
f that are monotone and submodular with f(∅) = 0. A
function f is monotone if f(S) ≤ f(T) for all S ⊆ T ⊆ N ,
and submodular if it satisfies the property of diminishing
returns: f(i | S) >= f(i | T) for all S ⊆ T ⊂ N and
i ̸∈ T , where f(i | S) = f(S ∪ {i}) − f(S) computes
the marginal contribution of seller i to f , conditioned on S.
Throughout the paper, we use bold symbols x to represent
a vector with n elements (x1, · · · , xn) and use x(a,b) to
represent (xa, · · · , xb). As usual, we use −i to indicate all
the sellers other than seller i.

Let bi be the reported bid from seller i. A mechanism
M = (a, p) consists of an allocation rule a : Rn

≥0 → 2N

that maps sellers’ reported bids b to a subset of sellers to
procure the items, and a payment rule p : Rn

≥0 → Rn
≥0 that

maps sellers’ reported bids b to a vector of payments to each
seller. We assume sellers have quasi-linear utilities such that
given a bid profile b and a mechanism M , seller i’s utility
is given by uM

i (b) = p(b)− ci · 1[i ∈ a(b)]. Our goal is to
design a mechanism M that is incentive compatible, individ-
ual rational, and induces non-negative auctioneer surplus:
A mechanism is incentive compatible (IC) if it is always an
optimal strategy for a seller to report their private cost truth-
fully, i.e., for any seller i and any b, ui(ci, b−i) ≥ ui(b); A
mechanism is individual rational (IR) if a seller’s utility is al-
ways non-negative if they report truthfully, i.e., for any seller
i and any b−i, ui(ci, b−i) ≥ 0; A mechanism satisfies the
non-negative auctioneer surplus (NAS) condition if the ac-
quired value of the auctioneer is at least the total payment to
the sellers, i.e., f

(
a(b)

)
≥
∑n

i∈1 pi(b), for any bid profile b.
We will refer to mechanisms that satisfy the IC, IR, and NAS
conditions as feasible mechanisms. We measure the perfor-
mance of a mechanism by its welfare f

(
a(c)

)
−
∑

i∈a(c) ci
and let OPT = argmaxS f(S) −

∑
i∈S ci, when the def-

inition of f is clear from context. We may also write
c(S) =

∑
i∈S ci. We say that a mechanism satisfies bi-

criteria (α, β)-approximation to the welfare if f
(
a(c)

)
−∑

i∈a(c) ci ≥ max
{
0, α · f(OPT)− β ·

∑
i∈OPT ci

}
.

3. Submodular Optimization Algorithms
We first present several submodular optimization algorithms
that will be useful for the derivation of our mechanisms,
and provide an improved analysis for the deterministic and
stochastic versions of the distorted greedy algorithm (Har-
shaw et al., 2019). We will demonstrate how to convert all
the algorithms from this section to NAS, IC, and IR mech-
anisms that maintain the approximation guarantees of the
underlying algorithms in Section 4.1.

Recall that in the regularized submodular maximization
problem under a cardinality constraint, there is a monotone
submodular function f : 2N → R≥0, a cost ci ∈ R≥0

for each element i ∈ N , and a cardinality constraint k ≤
n. All the algorithms we touch upon in this section, and
subsequently in our mechanism design framework, share
the same paradigm (Algorithm 1): the algorithm maintains
a candidate solution set initialized as S = ∅ and in each
round k, it assigns a score to each element i ∈ N \ S based
on a scoring function G, which depends on the cost vector c
and possibly the round number k as well as a random seed
r (for randomized algorithms). The algorithm then adds the
element with the highest non-negative score to S.

We next describe each algorithm in detail, focusing on the
corresponding scoring function G. The bi-criteria guaran-
tees of all the algorithms are deferred to Table 1 in Ap-
pendix B. To simplify the notation, when we discuss deter-
ministic algorithms, we omit referring to the random seed
that G could take as input, and we omit referring to the

3

Procurement Auctions via Approximately Optimal Submodular Optimization

round number k as input of G when G does not use the
round number information.

Greedy-margin (Kleinberg et al., 2004). We start with
the simplest algorithm, called the greedy-margin algorithm,
which is perhaps the most natural approach . This algorithm
simply chooses the seller with the largest difference between
their marginal contribution and their cost, i.e., the scoring
function is given by G(i, S, c) = f(i | S)− ci.

Greedy-rate (Feige et al., 2013). The greedy-rate algorithm
chooses the seller that maximizes the ratio of the difference
between their marginal contribution and their cost, over their
marginal contribution, i.e., the scoring function is given by
G(i, S, c) = f(i|S)−ci

f(i|S) .

Distorted Greedy (Harshaw et al., 2019). The dis-
torted greedy algorithm shares a similar flavor to the clas-
sical algorithm of Nemhauser et al. (1978), but with a
slightly distorted objective with a multiplier

(
1− 1

n

)n−ℓ

on the marginal contribution in round ℓ: G(i, S, c, ℓ) =(
1− 1

n

)n−ℓ · f(i | S) − ci. It is worth highlighting that
this scoring function does not have the diminishing-return
structure and in particular, it does not stop early even if
scores are negative for all remaining candidates.

Stochastic Distorted Greedy (Harshaw et al., 2019). In
order to speed up the execution of the distorted greedy algo-
rithm, Harshaw et al. (2019) proposed a randomized im-
plementation of it that works as follows. It runs for n
iterations and in every iteration k it draws a seller uni-
formly at random from N . Assume the random seed r
encodes the selected seller in iteration ℓ via r(ℓ). Then, we
can define the scoring function as G(i, S, c, k, ℓ) = 1[i =

r(ℓ)] ·
((

1− 1
n

)n−ℓ · f(i | S)− ci

)
. Harshaw et al. (2019)

showed that, in expectation over the random draws of the
sellers, the approximation guarantee of this algorithm does
not degrade compared to its deterministic counterpart.

Return-on-Investment (ROI) Greedy (Jin et al., 2021).
The ROI greedy algorithm chooses the seller that has the
largest marginal contribution per unit of their cost among
sellers whose cost not exceeding their marginal contribution,
i.e., the scoring function is given by G(i, S, c) = f(i|S)−ci

ci
.

Observe that, ROI greedy is effectively the same as greedy-
rate as both algorithms are effectively ranking the sellers
in descending order of f(i|S)

ci
. Feige et al. (2013) provide a

parameterized approximation guarantee for this algorithm
while Jin et al. (2021) demonstrate a unconditional approxi-
mation guarantee without paying a linear term on f(OPT),
which is desirable when this quantity is large.

Cost-scaled Greedy (Nikolakaki et al., 2021). This algo-
rithm chooses the seller with the largest difference between
their marginal contribution and twice their cost, i.e., the scor-
ing function is given by G(i, S, c) = f(i | S) − 2 · ci. In

fact, the cost-scaled greedy algorithm can also be applied to
the online and adversarial setting in which the sellers arrive
in an online manner (such that any decision is irrevocable)
and the sequence of their arrival is determined by an adver-
sary. In the online and adversarial setting, the algorithm
maintains a tentative solution S and adds a newly arrived
seller to the solution S if and only if f(i | S)− 2 · ci > 0.

3.1. Improved Analysis of Distorted Greedy

We now explain the improved analysis we propose for the
distorted greedy algorithm. Recall that the distorted greedy
score of every element i ∈ N in every round 1 ≤ j ≤ k

of the execution of the algorithm is
(
1− 1

n

)k−j · f(i |
Sj−1)− ci , and the element that maximizes it is added to
the current solution, provided that its distorted score is non-
negative. Harshaw et al. (2019) showed that both versions
of the algorithm enjoy (roughly) a (1− 1/e, 1)-bi-criteria
approximation guarantee, which is tight. We show that, in
fact, these algorithms satisfy an even stronger guarantee:
the distorted greedy algorithm enjoys (1− e−β , β + o(1))-
bi-criteria guarantee for all β ∈ [0, 1], where the o(1) term
is sub-constant in cardinality k. A similar result holds,
in expectation, for the stochastic version of the algorithm.
The guarantee of the algorithm holds simultaneously for all
β ∈ [0, 1], so it does not require parameterization by β.

Theorem 3.1. Let N be a universe of n elements, f : 2N →
R≥0 be a monotone submodular function, and c : N →
R≥0 be a cost function. Let OPT be the optimal solution of
the objective maxS⊆N ,|S|≤k{f(S)−

∑
i∈S ci}. Then, the

output of the distorted greedy algorithm satisfies f(R) −∑
j∈R cj ≥ (1 − e−β)f(OPT) − (β + 1/k)

∑
j∈OPT cj ,

simultaneously for all β ∈ [0, 1].

The proof, as well as the formal statement for the the algo-
rithm, are postponed to Appendix B. Our main technical
insight is to perform a parameterized analysis of the poten-
tial function argument of Harshaw et al. (2019) based on
the target value of β that we wish to prove the guarantee for.
In other words, given some β ∈ [0, 1], we lower bound the
potential function by a β-dependent quantity. This allows
us to obtain the stated guarantees for all β simultaneously.
A result of Feldman (2021) (cf. Theorem B.1) shows that
our analysis achieves the Pareto frontier of the bi-criteria
guarantees for this problem, up to the o(1) term. Details are
deferred to Appendix B.

In Appendix B we present an adaptation of the distorted
greedy algorithm that works even when we only have access
to an approximate version F : 2N → R≥0 of valuation func-
tion f such that (1−ε)f(S) ≤ F (S) ≤ (1+ε)f(S),∀S ⊆
N (Horel & Singer, 2016). Gong et al. (2023) propose a
slight adaptation of the distorted greedy algorithm that per-
forms well when ε = O(1/k). However, when we convert
their algorithm to a mechanism, it is not immediate how to

4

Procurement Auctions via Approximately Optimal Submodular Optimization

prove the NAS property, since F might not be submodular,
which was a crucial property of the function in our later
proof of NAS. Thus, we propose a modification of their
algorithm to overcome this issue (see Algorithm 7). Our
main insight is to have the greedy scores of the elements
in round t of the execution depend not only on the current
tentative solution St, but on the whole trajectory S1, . . . , St.
Essentially, this enforces the structure of diminishing returns
without hurting the approximation guarantees.

4. A Mechanism Design Framework
In this section, we develop a framework that is capable
of converting the state-of-the-art submodular optimization
algorithms to feasible mechanisms for procurement auctions.
We first start with the “offline” setting, where all the sellers
report their cost to the mechanism designer simultaneously
and then we move on to the “online” setting, where the
sellers arrive sequentially.

4.1. Offline Mechanism Design Framework

As a warm-up, we first show that the classic VCG frame-
work (Vickrey, 1961; Clarke, 1971; Groves, 1973) provides
mechanisms that are IC, IR, and welfare-efficient. It turns
out that the VCG mechanisms also satisfy NAS.
Proposition 4.1. The VCG mechanism satisfies NAS when
f is a submodular function.

The proof is postponed to Appendix C. Although VCG
mechanisms are IC, IR, NAS, and welfare-efficient, imple-
menting them is computationally prohibitive. We now move
on to describing the computationally efficient framework
that transforms algorithms to mechanisms, which is one of
the main contributions of our work.

Algorithm 1 provides a meta-algorithm A = (G) for reg-
ularized submodular function optimization specified by a
scoring rule G, computing a score for a candidate i given
a subset S, a vector c, the round number k, and possibly a
random seed r (for randomized algorithms) as input. The
algorithm runs for n rounds1 and maintains a tentative so-
lution set Sk at the end of each round k. In each round k it
calls G to compute a score for each candidate not in the ten-
tative solution set Sk−1, and then it identifies the candidate
i∗ with the highest score (where ties are broken lexicograph-
ically). If the highest score is positive, Sk = Sk−1 ∪ {i∗};
otherwise Sk = Sk−1.
Assumption 4.2. The meta-algorithm A = (G) satisfies: 1)
for all i and S with i ̸∈ S, G(i, S, b, k, r) is non-increasing
in bi, for all b−i, k and r; 2) for all i and S with i ̸∈ S,

1Our framework can be extended to accommodate algorithms
that stop early without running all the n iterations. To simplify
the exposition, we let the algorithm run for longer by adding extra
dummy rounds.

Algorithm 1 A meta algorithm A = (G) for submodular
optimization
Data: A set of seller N , a cost profile c from sellers, and a

random seed r
Result: A subset of sellers to purchase services from
S0 = ∅
for k from 1 to n do

i∗ = argmaxi ̸∈Sk−1
G(i, Sk−1, c, k, r)

if G(i∗, Sk−1, c, k, r) > 0 then
Sk = Sk−1 ∪ {i∗}

end
else

Sk = Sk−1

end
end
return Sn

if bi > f(i | S), then G(i, S, b, k, r) < 0 for all b−i, k,
and r; 3) for all i, S with i ̸∈ S, k and r, G(i, S, b, k, r) is
independent of b−i.

We argue that both (1) and (2) of Assumption 4.2 are mild
ones and any reasonable meta-algorithm A should satisfy it.
For instance, all the algorithms we present in Table 1 satisfy
these assumptions. In particular, Assumption 4.2(1) states
that the scoring function G should be non-increasing as the
reported bid bi increases, which is a natural requirement
as a candidate with a smaller reported bid is more favor-
able. Assumption 4.2(2) states that the algorithm should
not pick a candidate whose marginal contribution is smaller
than their reported bid. Under truthful reporting, such a
candidate has a negative marginal contribution in round
k towards the social welfare, and therefore, they should
not be included to the solution. Assumption 4.2(3) is a
stronger assumption, stating that the score for a seller i
should be independent of bids from other sellers, but to
the best of our knowledge, almost all state-of-the-art al-
gorithms satisfy this assumption. In fact, for our mech-
anism to satisfy the desired properties we can relax As-
sumption 4.2(3) to require: for all i, S with i ∈ S, k,
and r, for any b, if i ̸= argmaxℓ ̸∈S G(i, S, b, k, r), then
for any b′i > bi, argmaxℓ ̸∈S G

(
ℓ, S, (b′i, b−i), k, r

)
=

argmaxℓ ̸∈S G(ℓ, S, b, k, r). In other words, as long as
seller i does not have the highest score, then the candidate
with the highest score remains the same. Such a property is
similar to non-bossiness, studied by Paes Leme et al. (2023).

Given a meta algorithm A specified by Algorithm 1, Al-
gorithm 2 first runs Algorithm 1 with the reported bids
as input in order to obtain the set of sellers S∗ whose
items will be purchased. Then, the payment for each
seller i ∈ S∗ is computed in the following way: we
re-run A by raising the bid from seller i to infinity and
record the intermediate solutions {S0, S1, · · · , Sn}. For

5

Procurement Auctions via Approximately Optimal Submodular Optimization

each Sk, we compute the supremum of the set of bids
bi ≥ 0 satisfying i = argmaxℓ ̸∈Sk

G(ℓ, Sk−1, b, k, r) and
G(i, Sk−1, b, k, r) > 0. If such a non-negative bid does not
exist, the sup function takes a default value of 0. Finally, pi
is computed by taking the max across k ∈ [n].

Algorithm 2 A feasible mechanism construction for a given
meta algorithm A
Data: A set of sellers N , a bid profile b from sellers, and a

meta algorithm A
Result: A subset of sellers to purchase from and a vector of

payment to sellers
Generate a random seed r if needed or set r = 0
S∗ = A(N , b, r)
for i ∈ S∗ do

Run A
(
(∞, b−i), r

)
and record {S0, S1, · · · , Sn}

pi = 0
for k ∈ [n] do

pi = max(pi, sup
{
bi
∣∣G(i, Sk−1, b, k, r

)
> 0
}

pi =
max(pi, sup

{
bi
∣∣i = argmaxℓ ̸∈Sk

G
(
ℓ, Sk−1, b, k, r

)}
end

end
return S∗ and p

Theorem 4.3. For a meta-algorithm A = (G) satisfying As-
sumption 4.2, the mechanism constructed using Algorithm 2
is feasible.

The proof is postponed to Appendix C. To show the IC and
the IR properties, we make use of Myerson (1981) together
with our carefully designed payment rule with Assump-
tion 4.2(1) and 4.2(3). It is more technically difficult is to
establish the NAS property, where we make use of the sub-
modularity property of f and Assumption 4.2(2). It is worth
highlighting that Theorem 4.3 does not require the scor-
ing function G to have a diminishing-return structure, i.e.,
G(i, S, b, j, r) ≥ G(i, T, b, k, r) for all S ⊆ T and j ≤ k;
and the distorted greedy algorithm does not satisfy such a
structure. With Theorem 4.3, we establish a framework for
converting a submodular optimization algorithm to a mech-
anism satisfying IC, IR, and NAS. In such a mechanism,
the sellers are incentivized to submit their true private costs
as their bids, and therefore, the mechanism preserves the
bi-criteria welfare approximation guarantee, which follows
immediately from the fact that under truthful bidding the
allocations of Algorithm 1 and Algorithm 2 coincide.
Remark 4.4 (Running Time). In Algorithm 2, we need to
make at most O(n) many calls to the optimization algorithm
in line to compute A

(
(∞, b−i), r

)
, i.e., one call for each

seller in the optimal solution. Moreover, for each inner loop
starting, we need to make O(n log |B|) calls to the scoring
function where |B| is the number of possible bids. To sum-
marize, Algorithm 2 makes O(n) calls to the optimization

algorithm and O(n2 log |B|) calls to the scoring function.

4.2. Online Mechanism Design Framework

In this section we shift our attention to the online setting,
where each seller i ∈ N arrives online in an arbitrary order
and the auctioneer needs to make an irrevocable decision of
whether to buy the item or not. For convenience, assume
seller k arrives in round k. A meta-algorithm Ao = (G) for
online submodular optimization is provided in Algorithm 3,
where the scoring function G in round k computes a score
for a seller k given a subset S, a vector c(1,k), and possi-
bly a random seed r as input. The algorithm maintains a
tentative solution Sk at the end of each round k. In each
round k, seller k is added to the tentative solution if and
only if the scoring function returns a positive score. From
the taxation principle, we can focus on (possibly random-
ized) posted-price mechanisms for designing IC and IR
mechanisms, i.e., in each round k, the auctioneer makes a
take-it-or-leave-it price pk ∈ R≥0 for seller k. We provide
an approximation-preserving transformation from online al-
gorithms to posted-price mechanisms in Algorithm 8, post-
poned to Appendix C.1. Our main insight is to map the
(online) scores to posted prices in an approximation preserv-
ing way. The formal proof is postponed to Appendix C.1.
Similarly as in the offline setting, we require that the online
submodular optimization algorithm satisfies the following
mild assumptions.
Assumption 4.5. The meta-algorithm Ao = (G) satisfies:
1) for all k, S, b(1,k−1) and r, G(k, S, b(1,k), r) is contin-
uous and strictly decreasing in bk; 2) for all k, S, b(1,k−1)

and r, if bk > f(k | S), then
G(k, S, b(1,k), r) < 0.

In particular, we drop the counterpart of Assumption 4.2(3)
in the online setting, but we additionally require G to be
continuous and strictly decreasing to avoid tie-breaking
issues so that the equation G

(
k, S, (b(1,k−1), z), r

)
= 0 has

a unique solution in terms of z.
Theorem 4.6. For a meta-algorithm Ao = (G) satisfying
Assumption 4.5, the online mechanism constructed using
Algorithm 8 is IC, IR, NAS, and outputs the same solution
as Algorithm 3 under full knowledge of the cost of the items.

As we alluded to before in Section 3, the cost-scaled
greedy algorithm (Nikolakaki et al., 2021) gives a (12 , 1)-bi-
criteria approximation guarantee in the online setting and
fits within the template we have provided. Similarly, an
adaptation of this algorithm by Wang et al. (2021) gives
(β−α/β, β−α/α), 0 < α ≤ β parameterized bi-criteria guar-
antees in the online setting, and, interestingly, can also
handle matroid constraints. In addition, Wang et al. (2020)
provide parameterized bi-criteria guarantees adapting the
algorithm from Nikolakaki et al. (2021). In the case of noisy
evaluations of the function f , our framework can be applied

6

Procurement Auctions via Approximately Optimal Submodular Optimization

Algorithm 3 A meta algorithm Ao = (G) for online sub-
modular optimization
Data: A set of sellers arriving online and a random seed r
Result: A subset S∗ of sellers to purchase from
S0 = ∅, k = 0
while there exists a newly arrived seller k + 1 with cost
ck+1 do

k = k + 1
if G(k, Sk−1, c(1,k), r) > 0 then

Sk = Sk−1 ∪ {k}
end
else

Sk = Sk−1

end
end
return Sk

to the noise-robust algorithm from Gong et al. (2023), which
builds upon Nikolakaki et al. (2021).

5. Descending Auctions
The mechanism design framework developed in Section 4.1
has a sealed-bid format. In this section, we investigate
another popular class of procurement auctions, called de-
scending auctions. A descending auction is parameterized
by a demand oracle D, that takes a set of sellers S ⊆ N and
a vector of prices p as input and returns a subset of sellers
D(S,p) ⊆ S. The auction maintains a set of active sellers
S, initialized to be N , and a vector of prices p, where pi
is initialized to be f(i | ∅), the highest possible marginal
contribution from seller i. In each iteration, the auction calls
D: If D(S,p) = S, the descending auction ends and returns
the current S as the set of sellers to purchase from and p as
the vector of payment to sellers; If D(S,p) ⊊ S, an active
seller i not in D(S,p) is chosen and its price pi is decreased
by a small step size ε. If pi is smaller than bi, seller i is
removed from the active seller set and pi is set to 0.

Algorithm 4 provides a classic paradigm of such auctions.
Note that the descending auction is always IR since seller i
is chosen only if the final price pi is at least bi, and IC since
the reported bid bi is only used for checking whether the
current price pi is smaller than bi, which also enables the
implementation without eliciting sealed bids from sellers
in which whenever pi is lowered, the auctioneer asks the
seller whether they would like to leave the market. This
has the appealing property that for the set of the winning
sellers, the auctioneer only learns an upper bound on their
true valuation, instead of their actual valuation, which is
always the case in sealed-bid auctions. Another advantage
of descending auctions is that they satisfy obviously strate-
gyproofness (Li, 2017). Moreover, NAS can be achieved if
f
(
D(S,p)

)
−
∑

i∈D(S,p) pi ≥ 0 always holds.

Algorithm 4 Descending auction with a demand oracle D
and a step size of ε
Data: A set of sellers N and a bid profile b from sellers
Result: A subset S∗ of sellers to purchase from and a vector

of payment to sellers
Set the set of active sellers as S = N
Set initial prices as pi = f(i | ∅)
while D(S,p) ⊊ S do

Select an arbitrary seller i ∈ S \ D(S,p)
pi = pi − ε
if pi < bi then

S = S \ {i}
pi = 0

end
end
return S and p

Descending auctions were initially designed under the as-
sumption that f is a gross-substitute function, a subclass
of submodular functions. In particular, when f is a gross-
substitute function, the demand oracle that exactly solves the
welfare optimization problem can be computed in polyno-
mial time; and with such an oracle, the descending auction
returns the optimal subset OPT, even if it is executed in
the adversarial setting, i.e., where the selection of seller
i not in D(S, p) for price decrement is determined by an
adversary (Kelso Jr & Crawford, 1982; Paes Leme, 2017).

Descending Auctions in the Adversarial Setting. We first
show that when f is a submodular function, in the adversar-
ial setting, a descending auction may return an arbitrarily
worse solution even with the exact demand oracle satisfying
bi-criteria (1, 1)-approximation in welfare. The proof is
postponed to Appendix D.

Theorem 5.1. In the adversarial setting, given demand
oracle D satisfying bi-criteria (1, 1)-approximation in wel-
fare, for any L ∈ N+, there exists a problem instance with
L+ 2 sellers and a vector of bids b, such that Algorithm 4
with demand oracle D and ε < 1

L returns a subset S∗ with
f(S∗)−

∑
i∈S∗ bi = O

(
1
L

)
·
(
f(OPT)−

∑
i∈OPT bi

)
.

We complement our negative result by designing a demand
oracle based on the cost-scaled greedy algorithm of (Niko-
lakaki et al., 2021), which leads to a descending auction with
(1/2, 1)-approximation guarantees. The proof is postponed
to Appendix D.

Theorem 5.2. There exists a demand oracle D̂ satisfying
bi-criteria (12 , 1)-approximation in welfare such that, Algo-
rithm 4 with demand oracle D̂ and ε > 0 always returns
a subset S∗ satisfying f(S∗) −

∑
i∈S∗ bi ≥ 1

2f(OPT) −∑
i∈OPT bi − nε in the adversarial setting.

Remark 5.3. We remark that our results show a, perhaps,
counter-intuitive phenomenon in the adversarial setting:

7

Procurement Auctions via Approximately Optimal Submodular Optimization

there are instances in which if we run the descending auction
described in Algorithm 4 with the perfect demand oracle we
will end up with welfare that is arbitrarily worse than the
execution with the oracle based on Nikolakaki et al. (2021).
In particular, the family of problems that witnesses the lower
bound in Theorem 5.2 shows that for every L > 0, there
is an instance in which the solution S∗ that we get through
the perfect oracle satisfies f(S∗)−

∑
i∈S∗ bi < 1, whereas

the solution Ŝ that we get through the scaled-greedy oracle
satisfies f(Ŝ)−

∑
i∈Ŝ bi ≥ L/2− 1.

From Online Submodular Optimization to Descending
Auctions. We demonstrate a reduction from online submod-
ular optimization to descending auctions when the selection
of seller i not in D(S, p) for price decrement can be con-
trolled by the auctioneer. Recall that we have demonstrated
that an online submodular optimization algorithm (Algo-
rithm 3) that satisfies Assumption 4.5 can be converted to an
(online) posted-price auction that preserves the bi-criteria
welfare guarantee. As posted-price auctions can be imple-
mented by descending auctions with a tailored schedule of
descending prices, an online submodular optimization algo-
rithm (Algorithm 3) that satisfies Assumption 4.5 can also
be converted to a descending auction that preserves the bi-
criteria welfare guarantee (see Algorithm 9 in Appendix D).
Thus, an impossibility result, that there is no descending
auction that can achieve bi-criteria (α, 1)-approximation
in welfare with α > 1

2 , directly implies an impossibility
result on online submodular optimization with bi-criteria
(α, 1)-approximation guarantees for the same α, which is
a long-standing open question for online submodular opti-
mization. We leave this as an interesting open question.

6. Experiments
In this section, we empirically evaluate the welfare
performance and running time trade-offs of various
mechanisms on a publicly available coverage prob-
lem. Our instances are constructed using a bipartite
graph from SNAP (https://snap.stanford.edu/
data/wiki-Vote.html). The graph consists of ap-
proximately 7000 nodes representing sets and 2800 nodes
representing vertices to be covered by the sets. We consider
the value of covering each vertex and the cost of select-
ing each set based on the degrees of the corresponding
nodes. We define the value of f(S) as the sum of the
values from vertices covered by at least one selected set,
i.e., f(S) =

∑
i∈

⋃
s∈S s vi. To create instances with vary-

ing sizes and value-to-cost ratios, for each pair (n, s), we
randomly sample subsets of the sets of size n and scale
their costs using κ ∼ U [s, s2]. We generate 10000 random
instances per (n, s). Since VCG needs to solve exactly
argmaxS

(
f(S) −

∑
i∈S ci

)
, we solve the optimization

problem using a mixed integer program (MIP) when n is
relatively small. Figure 1 shows the running time com-
parison of different methods and Figure 2 compares the
welfare outcomes. In summary, i) VCG computes both
VCG allocation and payment; ii) Optimal Welfare com-
putes VCG allocation (i.e., the welfare-optimal allocation)
only; ii) For Descending Auction (DA) with an unspecified
oracle, we implement it with a demand oracle that com-
putes the welfare-optimal allocation. We also experiment
with Greedy-margin, Greedy-rate, Distorted Greedy, and
Cost-scaled Greedy, introduced in Section 3 and their DA
variants. In Appendix E, we use an approach, based on lazy
implementations of the greedy algorithm (Minoux, 2005), to
speed up the computation for both allocation and payment.

101 102 103

Sample Size (n)

10 2

100

102

104

Ru
nn

in
g

Ti
m

e
pe

r I
ns

ta
nc

e
(s

ec
)

Running Time by Mechanism and Sample Size
Descending Auction (DA)
DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate
Optimal Welfare
VCG

Figure 1. Average running time for different mechanisms at differ-
ent sample sizes n. Both axes are log-scaled.

Running Time Comparison Figure 1 shows the average
running time for different mechanisms. VCG, Descend-
ing Auction, and Optimal Welfare exhibit super-polynomial
complexity due to MIP computations, with Descending Auc-
tion being the slowest. Greedy-based algorithms demon-
strate polynomial complexity, but Distorted Greedy’s time
grows faster due to the absence of a diminishing-return
structure, so the approach from Appendix E does not apply.

Welfare Comparison Figure 2 compares welfare for sam-
ple sizes n = 4000. Further comparisons are shown in
Figure 3 and 4, Appendix E. Instances are grouped by
the fraction of active agents, determined by whether their
marginal contribution exceeds their cost. This fraction de-
creases as the cost multiplier κ increases. When feasible
to run, DA with an optimal oracle outperforms other auc-
tions—contrasting our theoretical result that DA can be
much worse than cost-scaled greedy in some cases. Across
approximation algorithms, direct implementations outper-
form their DA variants, with an ordering of Greedy-margin
> Greedy-rate > Cost-scaled Greedy > Distorted Greedy.

8

https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html

Procurement Auctions via Approximately Optimal Submodular Optimization

0.0 0.2 0.4 0.6 0.8
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 4000)

DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

Figure 2. Welfare as a function of the fraction of active agents for
n = 4000. Curves correspond to different mechanisms.

7. Conclusion
In this work we propose a new procurement auction setting
inspired by the recent development in regularized submod-
ular optimizations. Our results enable computational and
welfare efficient transformations from regularized submodu-
lar maximization algorithms to various types of mechanisms,
including sealed-bid auctions and descending auctions, that
satisfy several desirable properties such as NAS, IC, and
IR. Moreover, we have tested our framework on several
large-scale instances which showcases its practical appli-
cability. An immediate direction is to close the gap be-
tween the (1/2, 1) bound of our descending auction and the
(1− 1/e, 1) we get in the sealed-bid auction. Another inter-
esting problem would be to replace the cost in the objective
of the mechanism designer with the payment, i.e., to study
an objective of maximizing the surplus of the mechanism
designer. It would also be interesting to see if the descend-
ing auction can get the same performance as VCG, when
we disregard computational considerations.

Acknowledgements
Amin Karbasi acknowledges funding in direct support of
this work from NSF (IIS-1845032), ONR (N00014- 19-1-
2406), and the AI Institute for Learning-Enabled Optimiza-
tion at Scale (TILOS). Grigoris Velegkas was supported in
part by the AI Institute for Learning-Enabled Optimization
at Scale (TILOS).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Procurement Auctions via Approximately Optimal Submodular Optimization

References
Abernethy, J., Chen, Y., Ho, C.-J., and Waggoner, B. Low-

cost learning via active data procurement. In Proceedings
of the Sixteenth ACM Conference on Economics and Com-
putation, pp. 619–636, 2015.

Agarwal, A., Dahleh, M., and Sarkar, T. A marketplace
for data: An algorithmic solution. In Proceedings of the
2019 ACM Conference on Economics and Computation,
pp. 701–726, 2019.

Agarwal, A., Dahleh, M., Horel, T., and Rui, M. Towards
data auctions with externalities. Games and Economic
Behavior, 148:323–356, 2024.

Amanatidis, G., Kleer, P., and Schäfer, G. Budget-feasible
mechanism design for non-monotone submodular objec-
tives: Offline and online. In Proceedings of the 2019
ACM Conference on Economics and Computation, pp.
901–919, 2019.

AmazonBusiness. Government procurement solutions,
2024. URL https://business.amazon.com/
en/work-with-us/government. Last accessed
October 2024.

Anari, N., Goel, G., and Nikzad, A. Mechanism design
for crowdsourcing: An optimal 1-1/e competitive budget-
feasible mechanism for large markets. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science,
pp. 266–275. IEEE, 2014.

Archer, A. and Tardos, É. Frugal path mechanisms. ACM
Transactions on Algorithms (TALG), 3(1):1–22, 2007.

Balkanski, E., Garimidi, P., Gkatzelis, V., Schoepflin, D.,
and Tan, X. Deterministic budget-feasible clock auctions.
In Proceedings of the 2022 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 2940–2963.
SIAM, 2022.

Bei, X. and Huang, Z. Bayesian Incentive Compatibility via
Fractional Assignments. In the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2011.

Bei, X., Chen, N., Gravin, N., and Lu, P. Budget feasible
mechanism design: from prior-free to bayesian. In Pro-
ceedings of the forty-fourth annual ACM symposium on
Theory of computing, pp. 449–458, 2012.

Bei, X., Chen, N., Gravin, N., and Lu, P. Worst-case mech-
anism design via bayesian analysis. SIAM Journal on
Computing, 46(4):1428–1448, 2017.

Bichler, M., Davenport, A., Hohner, G., and Kalagnanam, J.
Industrial procurement auctions. Combinatorial auctions,
1:593–612, 2006.

Blumrosen, L. and Dobzinski, S. (almost) efficient mecha-
nisms for bilateral trading. Games and Economic Behav-
ior, 130:369–383, 2021.

Blumrosen, L. and Mizrahi, Y. Approximating gains-from-
trade in bilateral trading. In Web and Internet Economics:
12th International Conference, WINE 2016, Montreal,
Canada, December 11-14, 2016, Proceedings 12, pp.
400–413. Springer, 2016.

Brustle, J., Cai, Y., Wu, F., and Zhao, M. Approximating
gains from trade in two-sided markets via simple mecha-
nisms. In Proceedings of the 2017 ACM Conference on
Economics and Computation, pp. 589–590, 2017.

Cai, Y., Daskalakis, C., and Weinberg, S. M. An algorithmic
characterization of multi-dimensional mechanisms. In
Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, pp. 459–478, 2012a.

Cai, Y., Daskalakis, C., and Weinberg, S. M. Optimal
multi-dimensional mechanism design: Reducing revenue
to welfare maximization. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pp. 130–
139. IEEE, 2012b.

Cai, Y., Daskalakis, C., and Weinberg, S. M. Reducing
revenue to welfare maximization: Approximation algo-
rithms and other generalizations. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 578–595. SIAM, 2013a.

Cai, Y., Daskalakis, C., and Weinberg, S. M. Understanding
incentives: Mechanism design becomes algorithm design.
In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 618–627. IEEE, 2013b.

Cai, Y., Goldner, K., Ma, S., and Zhao, M. On multi-
dimensional gains from trade maximization. In Proceed-
ings of the 2021 ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 1079–1098. SIAM, 2021.

Cary, M., Flaxman, A. D., Hartline, J. D., and Karlin, A. R.
Auctions for structured procurement. In SODA, volume 8,
pp. 304–313, 2008.

Chawla, S., Immorlica, N., and Lucier, B. On the limits
of black-box reductions in mechanism design. In Pro-
ceedings of the forty-fourth annual ACM symposium on
Theory of computing, pp. 435–448, 2012.

Chen, N., Gravin, N., and Lu, P. On the approximability
of budget feasible mechanisms. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Dis-
crete Algorithms, pp. 685–699. SIAM, 2011.

Clarke, E. H. Multipart pricing of public goods. Public
choice, 11(1):17–33, 1971.

10

https://business.amazon.com/en/work-with-us/government
https://business.amazon.com/en/work-with-us/government

Procurement Auctions via Approximately Optimal Submodular Optimization

Colini-Baldeschi, R., Keijzer, B. d., Leonardi, S., and
Turchetta, S. Approximately efficient double auctions
with strong budget balance. In Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 1424–1443. SIAM, 2016.

Colini-Baldeschi, R., Goldberg, P. W., Keijzer, B. d.,
Leonardi, S., Roughgarden, T., and Turchetta, S. Approx-
imately efficient two-sided combinatorial auctions. ACM
Transactions on Economics and Computation (TEAC), 8
(1):1–29, 2020.

Deng, Y., Mao, J., Sivan, B., and Wang, K. Approximately
efficient bilateral trade. In Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
718–721, 2022.

Dimitri, N., Piga, G., and Spagnolo, G. Handbook of pro-
curement. Cambridge University Press, 2006.

Dobzinski, S., Papadimitriou, C. H., and Singer, Y. Mecha-
nisms for complement-free procurement. In Proceedings
of the 12th ACM conference on Electronic commerce, pp.
273–282, 2011.

Dughmi, S., Hartline, J. D., Kleinberg, R., and Niazadeh,
R. Bernoulli factories and black-box reductions in mech-
anism design. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 158–
169. ACM, 2017.

Fallah, A., Makhdoumi, A., Malekian, A., and Ozdaglar,
A. Optimal and differentially private data acquisition:
Central and local mechanisms. Operations Research,
2023.

Fei, Y. Improved approximation to first-best gains-from-
trade. In International Conference on Web and Internet
Economics, pp. 204–218. Springer, 2022.

Feige, U. A threshold of ln n for approximating set cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.

Feige, U., Immorlica, N., Mirrokni, V., and Nazerzadeh,
H. A combinatorial allocation mechanism with penalties
for banner advertising. In Proceedings of the 17th inter-
national conference on World Wide Web, pp. 169–178,
2008.

Feige, U., Mirrokni, V. S., and Vondrák, J. Maximizing
non-monotone submodular functions. SIAM Journal on
Computing, 40(4):1133–1153, 2011.

Feige, U., Immorlica, N., Mirrokni, V. S., and Nazerzadeh,
H. Pass approximation: A framework for analyzing and
designing heuristics. Algorithmica, 66:450–478, 2013.

Feldman, M. Guess free maximization of submodular and
linear sums. Algorithmica, 83(3):853–878, 2021.

Fu, H., Kleinberg, R., and Lavi, R. Conditional equilibrium
outcomes via ascending price processes with applications
to combinatorial auctions with item bidding. In EC, pp.
586. Citeseer, 2012.

Geng, M., Gong, S., Liu, B., and Wu, W. Bicriteria al-
gorithms for maximizing the difference between sub-
modular function and linear function under noise. In
International Conference on Algorithmic Applications in
Management, pp. 133–143. Springer, 2022.

Ghosh, A. and Roth, A. Selling privacy at auction. In
Proceedings of the 12th ACM conference on Electronic
commerce, pp. 199–208, 2011.

Gong, Q., Gao, S., Wang, F., and Yang, R. A multi-pass
streaming algorithm for regularized submodular max-
imization. In Combinatorial Optimization and Appli-
cations: 15th International Conference, COCOA 2021,
Tianjin, China, December 17–19, 2021, Proceedings 15,
pp. 701–711. Springer, 2021.

Gong, S., Liu, B., Geng, M., and Fang, Q. Algorithms
for maximizing monotone submodular function minus
modular function under noise. Journal of Combinatorial
Optimization, 45(4):96, 2023.

Groves, T. Incentives in teams. Econometrica: Journal of
the Econometric Society, pp. 617–631, 1973.

Han, K., Wu, Y., Huang, H., and Cui, S. Triple eagle:
Simple, fast and practical budget-feasible mechanisms.
Advances in Neural Information Processing Systems, 36,
2024.

Harshaw, C., Feldman, M., Ward, J., and Karbasi, A. Sub-
modular maximization beyond non-negativity: Guar-
antees, fast algorithms, and applications. In Interna-
tional Conference on Machine Learning, pp. 2634–2643.
PMLR, 2019.

Hartline, J., Kleinberg, R., and Malekian, A. Bayesian
incentive compatibility via matchings. In the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2011.

Hartline, J. D. and Lucier, B. Bayesian Algorithmic Mecha-
nism Design. In the 42nd ACM Symposium on Theory of
Computing (STOC), 2010.

Hartline, J. D., Kleinberg, R., and Malekian, A. Bayesian
incentive compatibility via matchings. Games and Eco-
nomic Behavior, 92:401–429, 2015.

Horel, T. and Singer, Y. Maximization of approximately
submodular functions. Advances in neural information
processing systems, 29, 2016.

11

Procurement Auctions via Approximately Optimal Submodular Optimization

Jalaly Khalilabadi, P. and Tardos, É. Simple and efficient
budget feasible mechanisms for monotone submodular
valuations. In International Conference on Web and In-
ternet Economics, pp. 246–263. Springer, 2018.

Jin, T., Yang, Y., Yang, R., Shi, J., Huang, K., and Xiao, X.
Unconstrained submodular maximization with modular
costs: Tight approximation and application to profit max-
imization. Proceedings of the VLDB Endowment, 14(10):
1756–1768, 2021.

Karlin, A. R. and Kempe, D. Beyond vcg: Frugality of
truthful mechanisms. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’05), pp. 615–
624. IEEE, 2005.

Kazemi, E., Minaee, S., Feldman, M., and Karbasi, A. Reg-
ularized submodular maximization at scale. In Interna-
tional Conference on Machine Learning, pp. 5356–5366.
PMLR, 2021.

Kelso Jr, A. S. and Crawford, V. P. Job matching, coalition
formation, and gross substitutes. Econometrica: Journal
of the Econometric Society, pp. 1483–1504, 1982.

Kempe, D., Salek, M., and Moore, C. Frugal and truthful
auctions for vertex covers, flows and cuts. In 2010 IEEE
51st Annual Symposium on Foundations of Computer
Science, pp. 745–754. IEEE, 2010.

Kleinberg, J., Papadimitriou, C., and Raghavan, P. Seg-
mentation problems. Journal of the ACM (JACM), 51(2):
263–280, 2004.

Lehmann, B., Lehmann, D., and Nisan, N. Combinatorial
auctions with decreasing marginal utilities. In Proceed-
ings of the 3rd ACM conference on Electronic Commerce,
pp. 18–28, 2001.

Li, S. Obviously strategy-proof mechanisms. American
Economic Review, 107(11):3257–3287, 2017.

Lu, C., Yang, W., and Gao, S. Regularized nonmono-
tone submodular maximization. Optimization, pp. 1–27,
2023a.

Lu, C., Yang, W., and Gao, S. Streaming algorithms for
maximizing the difference of submodular functions and
the sum of submodular and supermodular functions. Op-
timization Letters, pp. 1–25, 2023b.

McAfee, R. P. A dominant strategy double auction. Journal
of economic Theory, 56(2):434–450, 1992.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Optimization Techniques:
Proceedings of the 8th IFIP Conference on Optimization
Techniques Würzburg, September 5–9, 1977, pp. 234–243.
Springer, 2005.

Mitra, S., Feldman, M., and Karbasi, A. Submodular+
concave. Advances in Neural Information Processing
Systems, 34:11577–11591, 2021.

Myerson, R. B. Optimal auction design. Mathematics of
operations research, 6(1):58–73, 1981.

Myerson, R. B. and Satterthwaite, M. A. Efficient mecha-
nisms for bilateral trading. Journal of economic theory,
29(2):265–281, 1983.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical programming, 14:265–
294, 1978.

Nikolakaki, S. M., Ene, A., and Terzi, E. An efficient
framework for balancing submodularity and cost. In
Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1256–1266,
2021.

Nisan, N. and Ronen, A. Algorithmic mechanism design.
In Proceedings of the thirty-first annual ACM symposium
on Theory of computing, pp. 129–140, 1999.

Paes Leme, R. Gross substitutability: An algorithmic survey.
Games and Economic Behavior, 106:294–316, 2017.

Paes Leme, R., Schneider, J., and Zhang, H. Nonbossy
mechanisms: Mechanism design robust to secondary
goals. arXiv preprint arXiv:2307.11967, 2023.

Papadimitriou, C. and Yannakakis, M. Optimization, ap-
proximation, and complexity classes. In Proceedings
of the twentieth annual ACM symposium on Theory of
computing, pp. 229–234, 1988.

Qi, B. On maximizing sums of non-monotone submodular
and linear functions. Algorithmica, pp. 1–55, 2023.

Rasouli, M. and Jordan, M. I. Data sharing markets. arXiv
preprint arXiv:2107.08630, 2021.

Roth, A. and Schoenebeck, G. Conducting truthful surveys,
cheaply. In Proceedings of the 13th ACM Conference on
Electronic Commerce, pp. 826–843, 2012.

Sim, R. H. L., Xu, X., and Low, B. K. H. Data valuation
in machine learning:“ingredients”, strategies, and open
challenges. In Proc. IJCAI, pp. 5607–5614, 2022.

Singer, Y. Budget feasible mechanisms. In 2010 IEEE 51st
Annual Symposium on foundations of computer science,
pp. 765–774. IEEE, 2010.

Singer, Y. and Mittal, M. Pricing mechanisms for crowd-
sourcing markets. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pp. 1157–1166,
2013.

12

Procurement Auctions via Approximately Optimal Submodular Optimization

Sviridenko, M., Vondrák, J., and Ward, J. Optimal approx-
imation for submodular and supermodular optimization
with bounded curvature. Mathematics of Operations Re-
search, 42(4):1197–1218, 2017.

Talwar, K. The price of truth: Frugality in truthful mecha-
nisms. In Annual Symposium on Theoretical Aspects of
Computer Science, pp. 608–619. Springer, 2003.

Tang, S. and Yuan, J. Adaptive regularized submodular
maximization. arXiv preprint arXiv:2103.00384, 2021a.

Tang, S. and Yuan, J. Submodular optimization beyond non-
negativity: Adaptive seed selection in incentivized social
advertising. arXiv preprint arXiv:2109.15180, 2021b.

USGPO. Nationwide procurement, 2024. URL https:
//www.gpo.gov/how-to-work-with-us/
agency/services-for-agencies/
nationwide-procurement-programs. Last
accessed October 2024.

Vickrey, W. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of Finance, 16(1):8–37, 1961.

Wang, Y., Xu, D., Du, D., and Ma, R. Online bicriteria al-
gorithms to balance coverage and cost in team formation.
In International Conference on Algorithmic Applications
in Management, pp. 25–36. Springer, 2020.

Wang, Y., Xu, Y., and Yang, X. On maximizing the dif-
ference between an approximately submodular function
and a linear function subject to a matroid constraint. In
International Conference on Combinatorial Optimization
and Applications, pp. 75–85. Springer, 2021.

13

https://www.gpo.gov/how-to-work-with-us/agency/services-for-agencies/nationwide-procurement-programs
https://www.gpo.gov/how-to-work-with-us/agency/services-for-agencies/nationwide-procurement-programs
https://www.gpo.gov/how-to-work-with-us/agency/services-for-agencies/nationwide-procurement-programs
https://www.gpo.gov/how-to-work-with-us/agency/services-for-agencies/nationwide-procurement-programs

Procurement Auctions via Approximately Optimal Submodular Optimization

A. Related Work
Gains From Trades vs. Utilitarian Objectives. The objective we study in this work has connections to gains-from-trade
in two-sided market. The seminal work of Myerson & Satterthwaite (1983) showed that even when there is one seller and one
buyer there is no mechanism that satisfies IR, Bayesian IC (BIC), Budget-Balance, and can extract the full gains-from-trade
(GFT), i.e., the total value generated by transferring the items from the sellers to the buyers. In light of that result, a
lot of works have focused on relaxing one of these desiderata. Of particular interest are the works that are seeking an
approximately optimal solution to the GFT objective. In the case of one buyer and one seller, McAfee (1992) provided an
elegant mechanism that achieves an 1/2-approximation guarantee if the median of the buyer’s value is higher than that
of the seller’s. In a similar spirit, Blumrosen & Mizrahi (2016) proposed a 1/e−approximation for this problem, when
both the buyer and the seller satisfy the monotone-hazard-rate (MHR) condition. Recently, Brustle et al. (2017) provided a
simple mechanism that gives a 1/2−approximation to GFT under arbitrary distributions. Subsequently, Deng et al. (2022)
provided a constant approximation to the first-best objective, i.e., the GFT that can be achieved if the agents are not strategic,
resolving a long-standing open question; and Fei (2022) improves the approximation factor to 3.15. Cai et al. (2021) moved
beyond the setting with one seller, providing approximations algorithms in environments with multiple sellers. A different
line of work in the two-sided markets literature has focused on the utilitarian objective, i.e., the total value of the buyers for
the items that the purchased and the total cost of the sellers who did not sell their items. Lehmann et al. (2001) gave a greedy
algorithm for this objective that gives a 1/2−approximation, and Fu et al. (2012) implemented it as an ascending auction that
gives the same approximation, when the buyers are not strategic. More recently, Blumrosen & Dobzinski (2021) designed a
simple take-it-or-leave-it mechanism for this objective that achieves a (1− 1/e)−approximation. Colini-Baldeschi et al.
(2016) designed a constant-factor approximation mechanism that satisfies the Strongly Budget Balanced condition, meaning
that all the payments of the buyers are transferred to the sellers. Subsequently, Colini-Baldeschi et al. (2020) developed a
constant-factor approximation mechanism in the setting with XOS valuations.

Budget-feasible Mechanism Design. The study of budget-feasible mechanism design, with an emphasis on procurement
auctions, was put forth by the seminal work on Singer (2010) who provided a prior-free2 budget-feasible mechanism that
enjoys a constant approximation when the objective is a non-negative and monotone submodular function. Since then, a
long line of work has studied this problem providing better approximation guarantees, relaxing the monotonicity constraint
on the objective function and extending the results to even more general classes of functions including XOS and subadditive
functions (Dobzinski et al., 2011; Chen et al., 2011; Anari et al., 2014; Bei et al., 2017; Jalaly Khalilabadi & Tardos, 2018;
Amanatidis et al., 2019; Balkanski et al., 2022; Han et al., 2024). Currently, the best approximation guarantees for monotone
submodular functions are obtained by Han et al. (2024), that achieve an approximation factor of 4.3. It is worth highlighting
that, to the best of our knowledge, none of these works have studied non-positive submodular functions.

Reduction from Algorithm Design to Mechanism Design. Our results contribute to the rich literature of transformations
from algorithms that operate on non-strategic data to mechanisms whose input is coming from strategic agents. A striking
result by Chawla et al. (2012) showed that there is no welfare-preserving black-box reduction when the mechanism is
required to be truthful in expectation. Since then, a beautiful line of work initiated by Hartline & Lucier (2010) develops
mechanisms that satisfy the weaker Bayesian Incentive Compatibility (BIC) condition, instead of truthfulness in expectation.
An important tool that all these works (Hartline & Lucier, 2010; Bei & Huang, 2011; Hartline et al., 2011; 2015; Dughmi
et al., 2017) utilize to establish the (approximate) BIC property is a replica-to-surrogate matching. It is worth highlighting
that Dughmi et al. (2017) managed to obtain an exactly BIC mechanism, by introducing novel constructions in the context
of mechanism design, such as various Bernoulli factories. In the context of multidimensional revenue maximization, Cai
et al. (2012b;a; 2013a;b) developed black-box transformations from algorithms to (approximately) revenue-optimal and
(approximately) BIC mechanisms

Submodular Optimization. The problem of submodular maximization has received a lot of attention in the opti-
mization literature. The seminal work of Nemhauser et al. (1978) shows that the natural greedy algorithm gives an
(1 − 1/e)−approximation to the optimal solution when the submodular function is monotone and non-negative. Later,
Feige et al. (2011) designed algorithms that provide constant approximation guarantees when the underlying function is
non-negative, but, potentially, non-monotone. Designing approximation algorithms with constant-factor approximation
guarantees for general non-positive submodular functions is known to be hard (Papadimitriou & Yannakakis, 1988; Feige,
1998). The study of the objective f(S)− c(S), where f is a non-negative submodular function and c is a linear function, is

2This means that the auctioneer does not have any prior information about the private types of the sellers.

14

Procurement Auctions via Approximately Optimal Submodular Optimization

commonly referred to as regularized submodular optimization. This line of work was initiated by Sviridenko et al. (2017)
who designed an algorithm that obtains a (1− 1/e)f(OPT)− c(OPT) and showed that this guarantee is optimal. Later,
Feldman (2021) and Harshaw et al. (2019) designed simpler and more computationally efficient algorithms that attain
the same approximation guarantees. Since then, there has been a long line of work studying that problem and designing
algorithms that work in the centralized setting, the distributed setting, the streaming setting, and the online setting (Kazemi
et al., 2021; Wang et al., 2020; 2021; Jin et al., 2021; Mitra et al., 2021; Nikolakaki et al., 2021; Gong et al., 2021; Tang &
Yuan, 2021a;b; Geng et al., 2022; Lu et al., 2023a; Qi, 2023; Lu et al., 2023b; Gong et al., 2023). It is worth noting that
the design of approximation algorithms for bi-criteria objectives has alson been considered in different contexts in the past
(Kleinberg et al., 2004; Feige et al., 2008; 2013).

B. Omitted Details from Section 3

Table 1. Instantiations of Algorithm 2 with different submodular optimization algorithms.

Algorithm Approximation Guarantee

Greedy-margin No Worst-Case Guarantee
(Kleinberg et al., 2004)

Greedy-rate Parametrized Guarantee
(Feige et al., 2013)

Distorted Greedy (1− e−β) · f(OPT)− (β + o(1)) · c(OPT)
(Harshaw et al., 2019) & (this paper) for all β ∈ [0, 1]

Stochastic Distorted Greedy (1− e−β) · f(OPT)− (β + o(1)) · c(OPT)
(Harshaw et al., 2019) & (this paper) for all β ∈ [0, 1] (in expectation)

ROI Greedy (same as Greedy-rate) f(OPT)−
(
1 + ln f(OPT)

c(OPT)

)
· c(OPT)

(Jin et al., 2021)

Cost-scaled Greedy 1/2 · f(OPT)− c(OPT)
(Nikolakaki et al., 2021) (online and adversarial)

B.1. Deterministic Distorted Greedy Algorithm Analysis

Algorithm 5 Distorted greedy algorithm (Harshaw et al., 2019)
Data: A set of n items N , a monotone submodular function f : 2N → R≥0, a cost function c : N → R≥0, a capacity

constraint k ≤ n
Result: A subset of the items R ⊆ N with |S| ≤ k
S0 = ∅ for j from 1 to k do

G(i, Sj−1, c, j, r) =
(
1− 1

n

)k−j · f(i | Sj−1) − ci,∀i ∈ S it = argmaxi ̸∈Sj−1
G(i, Sj−1, c, j, r) if

G(i∗, Sj−1, c, j, r) > 0 then
Sj = Sj−1 ∪ {i∗}

end
else

Sj = Sj−1

end
end
return Sn

In this section we extend the results of (Harshaw et al., 2019) that obtain a (1− e−1, 1) bi-criteria approximation guarantee
to (1− e−β , β) guarantee, where β ∈ [0, 1]. First, we recall a negative result from (Feldman, 2021).

Theorem B.1 ((Feldman, 2021)). For every β ∈ [0, 1], ε > 0, no polynomial-time algorithm can guarantee (1−e−β+ε, β)-
bi-criteria approximation for the problem maxS(f(S)−

∑
i∈S ci).

15

Procurement Auctions via Approximately Optimal Submodular Optimization

We underline that Feldman (2021) proposes an algorithm that achieves an (almost) matching upper bound, however the
algorithm works using the continuous multilinear extension of the underlying function, which is quite non-practical and does
not fit our mechanism design framework. We propose an approach based on the distorted greedy algorithm of (Harshaw
et al., 2019) that achieves this guarantee for every β ∈ [0, 1]. Formally, we prove the result stated in Theorem 3.1.

We reiterate that Theorem 3.1 improves upon the guarantees stated in (Harshaw et al., 2019) since it achieves optimal
bi-criteria guarantee simulataneously for all β ∈ [0, 1]. Following (Harshaw et al., 2019), we define the following functions

Φt(T) =

(
1− 1

k

)k−t

f(T)−
∑
j∈T

cj , ∀T ⊆ N ,

Ψt(T, i) = max

{
0,

(
1− 1

k

)k−(t+1)

f(i|T)− ci

}
, ∀T ⊆ N , i ∈ N .

The next result from (Harshaw et al., 2019) describes the connection between these two quantities.
Lemma B.2 ((Harshaw et al., 2019)). In each iteration t ∈ {0, . . . , k − 1} of Algorithm 5 it holds that

Φt+1(St+1)− Φt(St) = Ψt(St, it) +
1

k

(
1− 1

k

)k−(t+1)

f(St) .

The next result of (Harshaw et al., 2019) relates the marginal gain in each iteration of Algorithm 5 to the function Ψt(St, it).

Lemma B.3 ((Harshaw et al., 2019)). In each iteration of Algorithm 5 it holds that

Ψt(St, it) ≥
1

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))−
1

k
c(OPT)

Finally, we will make use of the following simple technical result.
Proposition B.4. For any n ∈ N, β ∈ [0, 1] it holds that

1

n
·
1−

(
1− 1

n

)x·n
1−

(
1− 1

n

) ≥ 1− e−x .

Proof. We have that

1

n
·
1−

(
1− 1

n

)x·n
1−

(
1− 1

n

) = 1−
(
1− 1

n

)x·n

(Simplify denominator)

≥ 1− e−
x·n
n . (1− x ≤ e−x)

Equipped with the previous results, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By definition of Φ0(·),Φk(·) we have that

Φ0(S0) =

(
1− 1

k

)
· f(∅)− c(∅) = 0 ,

and

Φk(Sk) =

(
1− 1

k

)0

· f(SK)− c(Sk) = f(Sk)− c(Sk) .

Notice that Φk(Sk)− Φ0(S0) =
∑k−1

t=0 Φt+1(St+1)− Φt(St). By Lemma B.2 it follows immediately that Φt+1(St+1)−
Φt(St) ≥ 0. Moreover, by Lemma B.2 and Lemma B.3 we have that

Φt+1(St+1)− Φt(St) = Ψt(St, it) +
1

k

(
1− 1

k

)k−(t+1)

f(St) (Lemma B.2)

16

Procurement Auctions via Approximately Optimal Submodular Optimization

≥ 1

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))

− 1

k
c(OPT) +

1

k

(
1− 1

k

)k−(t+1)

f(St) (Lemma B.3)

≥ 1

k

(
1− 1

k

)k−(t+1)

f(OPT)− 1

k
c(OPT) (Rearranging terms)

First, assume that β is a multiple of 1/k. We lower bound the first k − β · k terms of
∑k−1

t=0 Φt+1(St+1)− Φt(St) by 0 and
the last β · k terms by the previous inequality. Thus, we get

k−1∑
t=0

Φt+1(St+1)− Φt(St) ≥
k−1∑

t=k−β·k

Φt+1(St+1)− Φt(St)

≥
k−1∑

t=k−β·k

{
1

k

(
1− 1

k

)k−(t+1)

f(OPT)− 1

k
c(OPT)

}

=

 k−1∑
t=k−β·k

1

k

(
1− 1

k

)k−(t+1)
 f(OPT)− β · c(OPT)

=
1

k
·
1−

(
1− 1

k

)β·k
1−

(
1− 1

k

) · f(OPT)− β · c(OPT) (Sum of geometric series)

≥ (1− e−β) · f(OPT)− β · c(OPT). (Proposition B.4)

In case β is not a multiple of 1/k, the same analysis goes through with β̂ being the smallest multiple of 1/k that is greater
than β and the guarantee we get is (1− e−β̂ , β̂), which is at least (1− e−β , β + 1/k).

B.2. Stochastic Distorted Greedy Algorithm Analysis

In this section we shift our attention to the stochastic version of the distorted greedy algorithm (Harshaw et al., 2019), which
requires fewer oracle calls to the function f(·) than its deterministic counterpart.

Algorithm 6 Stochastic distorted greedy algorithm (Harshaw et al., 2019)
Data: A set of n items N , a monotone submodular function f : 2N → R≥0, a cost function c : N → R≥0, a capacity

constraint k ≤ n, an error parameter ε > 0
Result: A subset of the items R ⊆ N with |S| ≤ k
S0 = ∅ s = ⌈n

k log 1
ε⌉ for j from 1 to k do

Bj = sample s elements uniformly and independently from Ω G(i, Sj−1, c, j, r) =
(
1− 1

n

)k−j ·f(i | Sj−1)−ci,∀i ∈
Bj it = argmaxi ̸∈Sj−1,i∈Bj

G(i, Sj−1, c, j, r) if G(i∗, Sj−1, c, j, r) > 0 then
Sj = Sj−1 ∪ {i∗}

end
else

Sj = Sj−1

end
end
return Sn

We first state some results from Harshaw et al. (2019) that will be useful in our analysis.

17

Procurement Auctions via Approximately Optimal Submodular Optimization

Lemma B.5 ((Harshaw et al., 2019)). In each step t of Algorithm 6 it holds that

E[Ψt(St, it)] ≥ (1− ε)

(
1

k

(
1− 1

k

)k−(t+1)

(f(OPT)− E[f(St)])−
1

k
c(OPT)

)

Notice also that we have the trivial lower bound E[Ψt(St, it)] ≥ 0. We are now ready to state and prove our main result in
this subsection.
Theorem B.6. Let N be a universe of n elements, f : 2N → R≥0 be a monotone submodular function and c : N → R≥0

be a cost function. Let OPT be the optimal solution of the objective maxS⊆N ,|S|≤k{f(S)−
∑

i∈S ci}. Then, the output R

of Algorithm 6 satisfies E
[
f(R)−

∑
j∈R cj

]
≥ (1 − ε)(1 − e−β)f(OPT) − (β + 1/k)

∑
j∈OPT cj , simultaneously for

all β ∈ [0, 1].

Proof. By definition of Φ0(·),Φk(·) we have that

E[Φ0(S0)] =

(
1− 1

k

)
· f(∅)− c(∅) = 0 ,

and

E[Φk(Sk)] = E

[(
1− 1

k

)0

· f(SK)− c(Sk)

]
= E [f(Sk)− c(Sk)] .

Notice that, by linearity of expectation, E[Φk(Sk)− Φ0(S0)] =
∑k−1

t=0 E[Φt+1(St+1)− Φt(St)]. By definition of Ψt+1 it
follows immediately that E[Φt+1(St+1)− Φt(St)] ≥ 0.3 Moreover, by Lemma B.2 and Lemma B.5 we have that

E[Φt+1(St+1)− Φt(St)] = E

[
Ψt(St, it) +

1

k

(
1− 1

k

)k−(t+1)

f(St)

]
(Lemma B.2 and linearity of expectation)

≥ (1− ε)

(
1

k

(
1− 1

k

)k−(t+1)

(f(OPT)− E[f(St)])−
1

k
c(OPT)

)
+

1

k

(
1− 1

k

)k−(t+1)

E[f(St)] (Lemma B.3)

≥ (1− ε)

(
1

k

(
1− 1

k

)k−(t+1)

f(OPT)− 1

k
c(OPT)

)
+

ε

k

(
1− 1

k

)k−(t+1)

E[f(St)] (Rearranging terms)

≥ (1− ε)

(
1

k

(
1− 1

k

)k−(t+1)

f(OPT)− 1

k
c(OPT)

)
(Non-negativity of f)

First, assume that β is a multiple of 1/k. We lower bound the first k − β · k terms of
∑k−1

t=0 E[Φt+1(St+1)− Φt(St)] by 0
and the last β · k terms by the previous inequality. Thus, we get

k−1∑
t=0

E[Φt+1(St+1)− Φt(St)] ≥
k−1∑

t=k−β·k

E[Φt+1(St+1)− Φt(St)]

≥
k−1∑

t=k−β·k

(1− ε)

{
1

k

(
1− 1

k

)k−(t+1)

f(OPT)− 1

k
c(OPT)

}

≥ (1− ε)

 k−1∑
t=k−β·k

1

k

(
1− 1

k

)k−(t+1)
 f(OPT)− β · c(OPT) (Non-negativity of c)

3In fact, it holds for the realization of the random variables and not just in expectation.

18

Procurement Auctions via Approximately Optimal Submodular Optimization

=
1− ε

k
·
1−

(
1− 1

k

)β·k
1−

(
1− 1

k

) · f(OPT)− β · c(OPT) (Sum of geometric series)

≥ (1− ε)(1− e−β) · f(OPT)− β · c(OPT). (Proposition B.4)

In case β is not a multiple of 1/k, the same analysis goes through with β̂ being the smallest multiple of 1/k that is greater
than β and the guarantee we get is ((1− ε)(1− e−β̂), β̂), which is at least ((1− ε)(1− e−β), β + 1/k).

B.3. Noisy Setting

Following the model of Horel & Singer (2016), in this section we discuss adaptations of our results to the noisy setting
where we have access to an oracle F : 2N → R≥0 so that

(1− ε)f(S) ≤ F (S) ≤ (1 + ε)f(S),∀S ⊆ 2N ,

for some ε > 0. Our Algorithm 7 is an adaptation of Harshaw et al. (2019) and Gong et al. (2023) with the main difference
being that when we evaluate the score of an element we look at its minimum marginal contribution across all the sets we
have constructed in the history of the execution. This is because the function F is not submodular.

Similarly as in the noiseless setting, we let

Φ̃t(T) =

(
1− 1

k

)k−t

F (T)− x ·
∑
j∈T

cj , ∀T ⊆ N ,

Ψ̃t(T , i) = max

{
0,

(
1− 1

k

)k−(t+1)

min
S∈T

F (i|S)− x · ci

}
, ∀T ⊆ 2N , i ∈ N .

Algorithm 7 Noisy distorted greedy algorithm
Data: A set of n items N , a monotone submodular function f : 2N → R≥0, a cost function c : N → R≥0, a capacity

constraint k ≤ n, a cost parameter x
Result: A subset of the items R ⊆ N with |S| ≤ k
S0 = ∅ S0 = S0 for j from 1 to k do

G(i, Sj−1, c, j, r) =
(
1− 1

n

)k−j ·min1≤t≤j F (i | St−1) − x · ci,∀i ∈ S i∗ = argmaxi ̸∈Sj−1
G(i, Sj−1, c, j, r) if

G(it, Sj−1, c, j, r) > 0 then
Sj = Sj−1 ∪ {i∗} Sj = Sj−1 ∪ Sj

end
else

Sj = Sj−1 Sj = Sj−1

end
end
return Sn

The next result describes the connection between Φ̃, Ψ̃. Our proof is an adaptation of Harshaw et al. (2019); Gong et al.
(2023).
Lemma B.7. In each iteration t ∈ {0, . . . , k − 1} of Algorithm 7 it holds that

Φ̃t+1(St+1)− Φ̃t(St) ≥ Ψ̃t(St, it) +
1

k

(
1− 1

k

)k−(t+1)

F (St) ,

where St = {S0, . . . , St}.

Proof. By definition we have that

Φ̃t+1(St+1)− Φ̃t(St) =

(
1− 1

k

)k−(t+1)

F (St+1)− c(St+1)−
(
1− 1

k

)k−t

F (St)− c(St)

19

Procurement Auctions via Approximately Optimal Submodular Optimization

=

(
1− 1

k

)k−(t+1)

F (St+1)− c(St+1)−
(
1− 1

k

)k−(t+1)(
1− 1

k

)
F (St)− c(St)

=

(
1− 1

k

)k−(t+1)

(F (St+1)− F (St))− (c(St+1)− c(St)) +
1

k

(
1− 1

k

)k−(t+1)

F (St) .

Now we consider two cases. If St+1 = St then Ψ̃(St, it) = 0 and the inequality holds. Otherwise, we have(
1− 1

k

)k−(t+1)

(F (St+1)− F (St))− (c(St+1)− c(St)) +
1

k

(
1− 1

k

)k−(t+1)

F (St) =(
1− 1

k

)k−(t+1)

F (it|St)− cit +
1

k

(
1− 1

k

)k−(t+1)

F (St) ≥(
1− 1

k

)k−(t+1)

min
1≤j≤t

F (it|Sj)− cit +
1

k

(
1− 1

k

)k−(t+1)

F (St) =

Ψ̃t(St, it) +
1

k

(
1− 1

k

)k−(t+1)

F (St) .

The next result relates the marginal gain in each iteration of Algorithm 7 to the function Ψ̃t(St, it). It builds upon the
approach of Harshaw et al. (2019); Gong et al. (2023).

Lemma B.8. In each iteration of Algorithm 7 it holds that

Ψ̃t(St, it) ≥
1− ε

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT) .

Proof. First, notice that

F (S|i) = F (S ∪ {i})− F (S) ≥ (1− ε)f(S ∪ {i})− (1 + ε)f(S) = (1− ε)f(S|i)− 2εf(S) . (1)

Let OPT be the optimal solution of maxS{f(S)− c(S)}. We have that

kΨ̃t(St, it) = k ·max

{
0,

(
1− 1

k

)k−(t+1)

min
S∈St

F (it|S)− x · ci

}
(Definition)

≥ k ·

((
1− 1

k

)k−(t+1)

min
S∈St

F (it|S)− x · ci

)
(Restricting max)

= k ·max
i∈N

{(
1− 1

k

)k−(t+1)

min
S∈St

F (i|S)− x · ci

}
(Definition)

≥ |OPT| ·max
i∈N

{(
1− 1

k

)k−(t+1)

min
S∈St

F (i|S)− x · ci

}
(k ≥ |OPT|)

≥ |OPT| · max
i∈OPT

{(
1− 1

k

)k−(t+1)

min
S∈St

F (i|S)− x · ci

}
(Restricting max)

≥
∑

i∈OPT

{(
1− 1

k

)k−(t+1)

min
S∈St

F (i|S)− x · ci

}
(Averaging argument)

=
∑

i∈OPT

{(
1− 1

k

)k−(t+1)

F (i|Si)− x · ci

}
(Si = argmin

S∈St

F (i|S))

≥
∑

i∈OPT

{(
1− 1

k

)k−(t+1) (
(1− ε)f(i|Si)− 2εf(Si)

)
− x · ci

}
(Equation (1))

20

Procurement Auctions via Approximately Optimal Submodular Optimization

≥
∑

i∈OPT

{(
1− 1

k

)k−(t+1) (
(1− ε)f(i|St)− 2εf(Si)

)
− x · ci

}
(Submodularity of f)

≥
∑

i∈OPT

{(
1− 1

k

)k−(t+1)

(1− ε)f(i|St)− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)− x · ci

}
. (Monotonicity of f)

We will bound each term of the summation separately. Notice that
∑

i∈OPT x · ci = x · c(OPT). Similarly,∑
i∈OPT 2ε

(
1− 1

k

)k−(t+1)
f(Sk) ≤ 2ε |OPT| f(Sk) ≤ 2εkf(Sk), and by the submodularity and monotonicity of f

we have ∑
i∈OPT

(1− ε)f(i|St) ≥ (1− ε) (f(St ∪ OPT)− f(St)) ≥ (1− ε) (f(OPT)− f(St)) .

Putting everything together, we get

kΨ̃t(St, it) ≥ (1− ε)

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))− 2εk

(
1− 1

k

)k−(t+1)

f(Sk)− xc(OPT) ,

and dividing by k we get

Ψ̃t(St, it) ≥
1− ε

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT) .

We are now ready to prove the bi-criteria guarantees of Algorithm 7. Our analysis follows Harshaw et al. (2019); Gong et al.
(2023).

Theorem B.9. For x = 1 + 2εk + ε Algorithm 7 returns a set Sk with

f(Sk)− c(Sk) ≥
1− ε

1 + 2εk + ε
· (1− 1/e) f(OPT)− c(Sk) .

Proof. Combining Lemma B.7 and Lemma B.8 we immediately get that

Φ̃t+1(St+1)− Φ̃t(St) ≥

Ψ̃t(St, it) +
1

k

(
1− 1

k

)k−(t+1)

F (St) ≥

1− ε

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT) +

1

k

(
1− 1

k

)k−(t+1)

F (St) ≥

1− ε

k

(
1− 1

k

)k−(t+1)

(f(OPT)− f(St))− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT) +

1− ε

k

(
1− 1

k

)k−(t+1)

f(St) =

1− ε

k

(
1− 1

k

)k−(t+1)

f(OPT)− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT) .

Moreover, notice that a straightforward bound is

Φ̃t+1(St+1)− Φ̃t(St) ≥ 0 .

By definition of Φ̃ we have that

Φ̃0(S0) =

(
1− 1

k

)k

F (∅)− xc(∅) = 0

Φ̃k(Sk) =

(
1− 1

k

)k

F (Sk)− xc(Sk) .

21

Procurement Auctions via Approximately Optimal Submodular Optimization

Combining the previous inequalities we get

F (Sk)− xc(Sk)

= Φ̃k(Sk)− Φ̃0(S0)

=

k∑
i=1

(Φi(Si)− Φ̃i−1(Si−1))

≥
k∑

i=1

(
1− ε

k

(
1− 1

k

)k−(t+1)

f(OPT)− 2ε

(
1− 1

k

)k−(t+1)

f(Sk)−
x

k
c(OPT)

)

=
1− ε

k

k∑
i=1

(
1− 1

k

)k−(t+1)

f(OPT)− 2ε

k∑
i=1

(
1− 1

k

)k−(t+1)

f(Sk)− x · c(OPT)

=
1− ε

k
· k ·

(
1− (1− 1/k)k

)
f(OPT)− 2εk ·

(
1− (1− 1/k)k

)
f(Sk)− x · c(OPT) ,

which implies that

(1 + ε)f(Sk)− xc(Sk) ≥ (1− ε) ·
(
1− (1− 1/k)k

)
f(OPT)− 2εk ·

(
1− (1− 1/k)k

)
f(Sk)− xc(OPT)

≥ (1− ε) ·
(
1− (1− 1/k)k

)
f(OPT)− 2εk · f(Sk)− xc(OPT) ,

and rearranging we get

(1 + 2εk + ε)f(Sk)− xc(Sk) ≥ (1− ε) ·
(
1− (1− 1/k)k

)
f(OPT)− xc(OPT)

≥ (1− ε) · (1− 1/e) f(OPT)− xc(OPT) .

Finally, we can simplify x = 1 + 2εk + ε and get

f(Sk)− c(Sk) ≥
1− ε

1 + 2εk + ε
· (1− 1/e) f(OPT)− c(Sk) .

Remark B.10 (IC, IR, NAS in the Noisy Setting). We remark that our modification in Algorithm 7 enforces the diminishing
returns property in the scores of the elements that are added to the constructed solutions. Hence, an identical argument to the
one we used in the proof of Theorem 4.3 shows that the NAS property is satisfied. The IC, IR properties continue to hold
since they are not affected by the submodularity of the function.

C. Omitted Details from Section 4.1
Let OPT(b) ∈ argmaxS∈2N f(S)−

∑
i∈S ci, i.e., the optimal solution to the optimization problem when sellers report

bids b. Given a bid profile b, the VCG mechanism purchases items from the sellers in OPT(b) and the payment pi to each
i ∈ OPT(b) is given by

pi =

f
(
OPT(b)

)
−

∑
j∈OPT(b)\{i}

cj

−

f
(
OPT

(
(∞, b−i)

))
−

∑
j∈OPT

(
(∞,b−i)

) cj
 .

Proof of Proposition 4.1. We would like to show f
(
OPT(b)

)
≥
∑

i∈OPT(b) pi when f is a submodular function.

∑
i∈OPT(b)

pi =
∑

i∈OPT(b)

f
(
OPT(b)

)
−

∑
j∈OPT(b)\{i}

cj

−

f
(
OPT

(
(∞, b−i)

))
−

∑
j∈OPT

(
(∞,b−i)

) cj

≤
∑

i∈OPT(b)

f
(
OPT(b)

)
−

∑
j∈OPT(b)\{i}

cj

−

f
(
OPT(b) \ {i}

)
−

∑
j∈OPT(b)\{i}

cj

22

Procurement Auctions via Approximately Optimal Submodular Optimization

=
∑

i∈OPT(b)

f
(
OPT(b)

)
− f

(
OPT(b) \ {i}

)
≤ f

(
OPT(b)

)
,

where the first inequality uses the fact that OPT
(
(∞, b−i)

)
∈ argmaxS:i ̸∈S f(S) −

∑
j∈S cj and the second inequality

follows the property of submodularity.

Proof of Theorem 4.3. Fix b−i and r, and let
{
Sbi
0 , Sbi

1 , · · · , Sbi
n

}
be the intermediate tentative solutions of running

A
(
N , (bi, b−i), r

)
. Moreover, let pi,k = max1≤j≤k z

∗
j where

z∗j = sup

{
z | i = argmax

ℓ ̸∈S∞
j−1

G
(
ℓ, S∞

j−1, (z, b−i), j, r
)
& G

(
i, S∞

j−1, (z, b−i), j, r
)
> 0

}
.

We will show that for any i, b−i, r, and k: (1) if bi < pi,k, i ∈ Sbi
k , and if bi > pi,k, i ̸∈ Sbi

k ; (2) if i ̸∈ Sbi
k , Sbi

k = S∞
k . We

prove it by induction on k. When k = 1, from Algorithm 1, the definition of pi,1, and Assumption 4.2(1), we have

• when bi < pi,1, then Sbi
1 = {i} since i = argmaxℓ G

(
ℓ, ∅, (bi, b−i), 1, r

)
;

• when bi > pi,1, with ℓ∗1 = argmaxℓ̸=i G
(
ℓ, ∅, (bi, b−i), 1, r

)
, if G

(
ℓ∗1, ∅, (bi, b−i), 1, r

)
> 0, Sbi

1 = {ℓ∗1}; otherwise,
Sbi
1 = ∅.

Moreover, notice that whenever i ̸= ℓ∗1, i’s bid becomes irrelevant due to Assumption 4.2(3) so that

ℓ∗1 = argmax
ℓ

G
(
ℓ, ∅, (∞, b−i), 1, r

)
,

and therefore, if i ̸∈ Sbi
1 , Sbi

1 = S∞
1 . For the inductive step, we assume the previous arguments hold for all rounds up to k.

Then, for round k + 1, we have

• when bi < pi,k+1, then either we have i ∈ Sbi
k ⊂ Sbi

k+1 or we have Sbi
k = S∞

k , which also implies i ∈ Sbi
k+1 since

i = argmaxℓ ̸∈S∞
k
G
(
ℓ, S∞

k , (bi, b−i), k + 1, r
)

and G
(
i, S∞

k , (bi, b−i), k + 1, r
)
> 0;

• when bi > pi,k+1, with ℓ∗k+1 = argmaxℓ ̸=i G
(
ℓ, S∞

k , (bi, b−i), k + 1, r
)
, if G

(
ℓ∗k+1, S

∞
k , (bi, b−i), k + 1, r

)
> 0,

Sbi
k+1 = S∞

k ∪ {ℓ∗k+1}; otherwise, Sbi
k+1 = S∞

k .

Again, notice that whenever i ̸= ℓ∗k+1, i’s bid becomes irrelevant due to Assumption 4.2(3) so that

ℓ∗k+1 = arg max
ℓ ̸∈S∞

k

G
(
i, S∞

k , (∞, b−i), k + 1, r
)
;

and therefore, if i ̸∈ Sbi
k+1, Sbi

k+1 = S∞
k+1, which concludes the inductive step. Observe that Algorithm 2 exactly computes

the critical bid pi = pi,n for seller i such that if bi < pi,n, i ∈ S∗ and if bi > pi,n, i ̸∈ S∗. From Myerson’s lemma (Myerson,
1981), the mechanism is IC for seller i. Moreover, the mechanism is IR because i ∈ S∗ only if ci = bi ≤ pi,n when seller i
reports truthfully.

Finally, to prove the mechanism satisfies NAS, assume seller i is added to the solution in round k such that Sbi
k \Sbi

k−1 = {i}.
From Assumption 4.2(2), we have bi ≤ f(Sbi

k) − f(Sbi
k−1) in order to have a positive score for i in round k. As we

have established that if bi < pi,k−1, then i ∈ Sbi
k−1, we have pi,k−1 ≤ bi ≤ f(Sbi

k) − f(Sbi
k−1). For j ≥ k, we have

z∗j ≤ f(i | S∞
j−1) due to the fact that G(i, Sj−1, b, j, r) < 0 whenever bi > f(i | S∞

j−1) from Assumption 4.2(2). From the
previously proved fact that if i ̸∈ Sbi

k−1, Sbi
k−1 = S∞

k−1, we have Sbi
k−1 ⊆ S∞

j−1 for j ≥ k by submodularity of f . As a result,
for j ≥ k, we have that

z∗j ≤ f(i | S∞
j−1) ≤ f(i | Sbi

k−1) = f(Sbi
k)− f(Sbi

k−1) ,

23

Procurement Auctions via Approximately Optimal Submodular Optimization

which implies that pi = max
{
pi,k−1,maxk≤j≤n z

∗
j

}
≤ f(Sbi

k)− f(Sbi
k−1). Thus,

∑
i∈S

bi
n

pi ≤
n∑

k=1

f(Sbi
k)− f(Sbi

k−1) = f(Sbi
n).

C.1. Omitted Details from Online Mechanism Design Framework

Algorithm 8 A posted-price mechanism construction for a given meta algorithm Ao

Data: A set of sellers arriving online and a meta algorithm Ao

Result: A subset of sellers to purchase from and a vector of payment to sellers
Generate a random seed r if needed or set r = 0
S0 = ∅, k = 0
while there exists a newly arrived seller k + 1 do

k = k + 1

Let p̂k be the unique solution of the equation G
(
k, Sk−1,

(
c(1,k−1), z

)
, r
)
= 0 in terms of z

Post price p̂k to seller k
if Seller k accepts the posted price then

Sk = Sk−1 ∪ {k}
pk = p̂k

end
else

Sk = Sk−1

pk = 0
end

end
return Sk and p

Proof of Theorem 4.6. The IC and IR properties follow immediately from the fact that the mechanism is a posted-price
mechanism, such that seller k accepts posted price p̂k if and only if p̂k > ck

4. From the definition of p̂k and the monotonicity
of G from Assumption 4.5(1), we have G(k, Sk−1, c(1,k), r) > 0 if and only if ck < p̂k, and therefore, Algorithm 8 and
Algorithm 3 return the same solution if sellers always best respond to the posted prices.

Finally, we prove for NAS. For seller k ∈ S∗, from Assumption 4.5(2), we have

p̂k ≤ f(k | Sk−1) = f(Sk)− f(Sk−1) .

Thus, summing up over all sellers in S∗, we have∑
k∈S∗

pk ≤
∑
k∈S∗

f(Sk)− f(Sk−1) = f(S∗).

D. Omitted Details from Section 5
Proof of Theorem 5.1. We construct an instance with L+2 sellers, indexed by {1, · · · , L, L+1, L+2}, with a submodular
function f such that: if {L + 1, L + 2} ∩ S = ∅, f(S) = |S|; otherwise, f(S) = L. Moreover, let bi = 1/L for i ≤ L
and bL+1 = bL+2 = L− 2. We next describe the strategy of the adversary for selecting seller i ∈ S \ D(S,p) in line 4 of
Algorithm 4.

First, the adversary keeps selecting a seller j ∈ {L + 1, L + 2} until either pL+1 < L − 1 or pL+2 < L − 1. This is
achievable since if {L + 1, L + 2} ⊆ D(S,p), the welfare is at most L − 2 × (L − 1) < 0, so that the approximation

4For simplicity, we assume that the seller does not accept the offer when the cost is exactly the same as the posted price.

24

Procurement Auctions via Approximately Optimal Submodular Optimization

guarantee is violated. Without loss of generality, assume that pL+1 < L− 1, and therefore, the welfare of selecting seller
L+ 1 alone is f({L+ 1})− pL+1 > 1.

Next, the adversary iterates over sellers from seller 1 to seller L such that for each seller i, keep selecting the seller i until
i leaves the market, i.e., pi < bi. We argue that the above process is achievable as the welfare of selecting any subset
containing seller i is at most 1.

The final welfare is at most 2 by purchasing items from either seller L + 1 or L + 2. However, the optimal welfare is
obtained by purchasing from sellers in {1, · · · , L}, which gives welfare L− 1.

Proof of Theorem 5.2. The (12 , 1)-approximate demand oracle D̂ we construct maintains a tentative solution S initialized at
S = ∅. For each iteration, let i be the candidate selected by the adversary in the previous iteration. Update S = S ∪ {i} if
f(i | S) > 2pi (otherwise, keep S as it is), and return S. Let S∗ be the subset returned by the Algorithm 4 with demand
oracle D̂. For each seller i ∈ S∗, let p̂i and Si be the price pi and the tentative solution S maintained by the demand oracle
right before i is added to the solution, respectively. For seller i ̸∈ S∗, let p̂i and Si be the price pi and the tentative solution
S maintained by the demand oracle when i is removed from the descending auction, respectively.

Let g(S) = f(S)− 2 ·
∑

i∈S bi, which is also a submodular function. For any seller i ∈ OPT \ S∗,

g(i | S∗) = f(i | S∗)− 2 · bi ≤ f(i | S∗)− 2 · p̂i ≤ 2ε

where the first inequality follows bi − ε ≤ p̂i < bi for i ̸∈ S∗ and the second inequality follows the fact that f(i | S∗) ≤
f(i | Si) ≤ 2 · (p̂i + ε). As a result, we have

2ε · |OPT \ S∗| ≥
∑

i∈OPT\S∗

g(i | S∗) ≥ g(S∗ ∪ OPT)− g(S∗)

=
(
f(S∗ ∪ OPT)− f(S∗)

)
− 2 ·

∑
i∈OPT\S∗

bk

≥ f(OPT)− f(S∗)− 2 ·
∑

i∈OPT

bi,

where the second inequality follows submodularity of g. Rearranging, we obtain

f(S∗) ≥ f(OPT)− 2 ·
∑

i∈OPT

bi − 2ε · |OPT \ S∗| ≥ f(OPT)− 2 ·
∑

i∈OPT

bi − 2nε.

Observe that we have

f(S∗)− 2 ·
∑
i∈S∗

bi =
∑
i∈S∗

f(i | Si)− 2 · bi ≥
∑
i∈S∗

f(i | Si)− 2 · p̂i ≥ 0,

where the first inequality follows p̂i ≥ bi for i ∈ S∗ and the second inequality is due to i ∈ S∗ and the definition of p̂i and
Si. Therefore, we have

∑
i∈S∗ bi ≤ 1

2 · f(S∗), indicating f(S∗)−
∑

i∈S∗ bi ≥ 1
2 · f(S∗). Putting everything together, we

have
f(S∗)−

∑
i∈S∗

bi ≥
1

2
· f(S∗) ≥ 1

2
· f(OPT)−

∑
i∈OPT

bi − nε.

E. Omitted Details from Section 6
Heuristic Implementation We provide a heuristic to optimize the running time of Algorithm 1 if the scoring rule of a
meta algorithm A = (G) has a diminishing-return structure, i.e., G(i, S, b, j, r) ≥ G(i, T, b, k, r) for all S ⊆ T and j ≤ k.
In particular, inspired by the lazy implementation of the classical greedy algorithm (Minoux, 2005), we maintain a priority
queue that records each candidate’s last-updated score. The priority queue is initialized consisting of elements with key i
and value G(i, ∅, c, 0, r) for each i ∈ N . For each iteration k, we repeatedly compare candidate i1 with the highest score
in Q and candidate i2 with the second-highest score in Q. If G(i1, S, c, k, r) for the tentative solution S is positive and is

25

Procurement Auctions via Approximately Optimal Submodular Optimization

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 100)

Descending Auction (DA)
DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(a) n = 100

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 200)

Descending Auction (DA)
DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(b) n = 200

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 500)

Descending Auction (DA)
DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(c) n = 500

Figure 3. Welfare as a function of the fraction of active agents for n ∈ {100, 200, 500}.

26

Procurement Auctions via Approximately Optimal Submodular Optimization

0.0 0.2 0.4 0.6 0.8
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 1000)

DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(a) n = 1000

0.0 0.2 0.4 0.6 0.8
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 2000)

DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(b) n = 2000

0.0 0.2 0.4 0.6 0.8
Fraction of Active Agents

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

el
fa

re

Normalized Welfare by Fraction of Active Agents (n = 4000)

DA w/ Distorted Greedy
DA w/ Greedy-margin
DA w/ Cost-scaled Greedy
DA w/ Greedy-rate
Distorted Greedy
Greedy-margin
Cost-scaled Greedy
Greedy-rate

(c) n = 4000

Figure 4. Welfare as a function of the fraction of active agents for n ∈ {1000, 2000, 4000}.

27

Procurement Auctions via Approximately Optimal Submodular Optimization

Algorithm 9 Descending auction construction for a given meta algorithm Ao and a step size of ε
Data: A set of seller N and a bid profile b from sellers
Result: A subset S∗ of sellers to purchase from and a vector p of payment to sellers
Generate a random seed r if needed or set r = 0 S0 = ∅ Set initial prices as pi = f(i | ∅) for k from 1 to n do

Let p̂k be the unique solution of the equation G
(
k, Sk−1,

(
c(1,k−1), z

)
, r
)

= 0 in terms of z Update pk = p̂k if
pk > bi then

Sk = Sk−1 \ {i}
end
else

Sk = Sk−1 pk = 0
end

end
return S and p

larger than the i2’s score maintained in Q, then i1 is guaranteed to have the highest score due to the diminishing-return
structure; otherwise, update the score for i1 and repeat (see Algorithm 10 in Appendix). The running time of the payment
calculation in Algorithm 2 can be optimized in a similar way (see Algorithm 11 in Appendix for details). Note that the
scoring rules of all deterministic algorithms presented in Table 1 have a diminishing-return structure, except for the distorted
greedy algorithm.

F. Faster Implementations of Algorithm 1 and Algorithm 2
We present the algorithmic descriptions of faster implementations of Algorithm 1 and Algorithm 2 when the scoring rule of
the meta-algorithm has a diminishing-return structure.

Algorithm 10 A faster implementation of Algorithm 1 when G has a diminishing-return structure
Data: A set of seller N , a cost profile c from sellers, and a random seed r
Result: A subset of sellers to purchase services from
S0 = ∅ Initialize an empty descending-order priority queue Q for i from 1 to n do

Insert an element to Q with key i and value G(i, ∅, c, 0, r)
end
while k < n do

Pop the highest score candidate i∗ from Q while True do
Let the highest score from Q be s∗ (without popping the candidate) if G(i∗, Sk, c, k + 1, r) > max(0, s∗) or
s∗ < 0 then

Break
end
else

Pop the highest score candidate j∗ from Q Insert an element to Q with key i∗ and value G(i∗, Sk, c, k + 1, r)
i∗ = j∗

end
end
if G(i∗, Sk, c, k + 1, r) > 0 then

Sk+1 = Sk ∪ {i∗} k = k + 1
end
else

break
end

end
return Sk

28

Procurement Auctions via Approximately Optimal Submodular Optimization

Algorithm 11 A faster implementation of Algorithm 2 when G has a diminishing-return structure
Data: A set of sellers N , a bid profile b from sellers, and a meta algorithm A
Result: A subset of sellers to purchase from and a vector of payment to sellers
Generate a random seed r if needed or set r = 0 S∗ = A(N , b, r) computed using Algorithm 10 and record the intermediate
solutions {S0, S1, · · · , SK} for k from 1 to K do

i = Sk \ Sk−1, T0 = Sk−1, and j = 0 Initialize an empty descending-order priority queue Q for i ∈ N \ Sk do
Insert an element to Q with key i and value G(i, Sk−1, c, 0, r)

end
pi = bi while j < n− k do

Pop the highest score candidate ℓ∗ from Q while True do
Let the highest score from Q be s∗ (without popping the candidate) if G(ℓ∗, Tj , c, j + k, r) > max(0, s∗) or
s∗ < 0 then

Break
end
else

Pop the highest score candidate ℓ′ from Q Insert an element to Q with key ℓ∗ and value G(ℓ∗, Tj , b, j+k, r)
ℓ∗ = ℓ′

end
end
if G(ℓ∗, Tj , c, j + k, r) > 0 then

pi = max
(
pi, sup

{
z ≥ 0 | G

(
i, Tj , (z, b−i), j + k, r

)
> G(ℓ∗, Tj , b, j + k, r)

})
Tj+1 = Tj ∪ {ℓ∗} j =

j + 1
end
else

break
end

end
end
return S∗ and p

29

