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ABSTRACT

Deep metric learning (DML) enables learning with less supervision through its
emphasis on the similarity structure of representations. There has been much
work on improving generalization of DML in settings like zero-shot retrieval,
but little is known about its implications for fairness. In this paper, we are the
first to evaluate state-of-the-art DML methods trained on imbalanced data, and
to show the negative impact these representations have on minority subgroup
performance when used for downstream tasks. In this work, we first define fairness
in DML through an analysis of three properties of the representation space – inter-
class alignment, intra-class alignment, and uniformity – and propose finDML, the
fairness in non-balanced DML benchmark to characterize representation fairness.
Utilizing finDML, we find bias in DML representations to propagate to common
downstream classification tasks. Surprisingly, this bias is propagated even when
training data in the downstream task is re-balanced. To address this problem,
we present Partial Attribute De-correlation (PARADE) to de-correlate feature
representations from sensitive attributes and reduce performance gaps between
subgroups in both embedding space and downstream metrics.

1 INTRODUCTION

Deep metric learning (DML) extends standard metric learning to deep neural networks, where the
goal is to learn metric spaces such that embedded data sample distance is connected to actual semantic
similarities (Globerson & Roweis, 2006; Weinberger et al., 2006; Hoffer & Ailon, 2018; Wang et al.,
2014). The explicit optimization of similarity makes deep metric spaces well suited for usage in
unseen classes, such as zero-shot image or video retrieval or facial re-identification (Milbich et al.,
2021; Roth et al., 2020c; Musgrave et al., 2020; Hoffer & Ailon, 2018; Wang et al., 2014; Schroff
et al., 2015; Wu et al., 2018; Roth et al., 2020c; Brattoli et al., 2020; Hu et al., 2014; Deng et al.,
2019; Liu et al., 2017). However, while DML is effective in establishing notions of similarity, work
describing potential fairness issues is limited to individual fairness in standard metric learning (Ilvento,
2020), disregarding embedding models.

Indeed, the impacts and metrics of fairness are well studied in machine learning (ML) generally,
and representation learning specifically (Dwork et al., 2012; Mehrabi et al., 2019; Locatello
et al., 2019b). This is especially true on high-risk tasks such as facial recognition and judicial
decision-making (Chouldechova, 2017; Berk, 2017), where there are known risks to minoritized sub-
groups (Samadi et al., 2018). Yet, relatively little work has been done in the domain of DML (Rosen-
berg et al., 2021). It is crucial to address this knowledge gap – if DML embeddings are used to create
upstream embeddings that facilitate downstream transfer tasks, biases may propagate unknowingly.

To tackle this issue, this work first proposes a benchmark to characterize fairness in non-balanced
DML - finDML. finDML introduces three subgroup fairness definitions based on feature space
performance metrics – recall@k, alignment and group uniformity. These metrics measure clustering
ability and generalization performance via feature space uniformity. Thus, we select the metrics
for our definitions to enforce independence between inclusion in a particular cluster or class, and
a protected attribute (given the ground-truth label). We leverage existing datasets with fairness
limitations (CelebA (Liu et al., 2015) and LFW (Huang et al., 2007)) and induce imbalance in training
data of standard DML benchmarks, CARS196 (Krause et al., 2013) and CUB200 (Wah et al., 2011),
in order to create an effective benchmark for fairness analysis in DML.
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Making use of finDML, we then perform an evaluation of 11 state-of-the-art (SOTA) DML methods
representing frequently used losses and sampling strategies, including: ranking-based losses (Wang
et al., 2014; Hoffer & Ailon, 2018), proxy-based (Kim et al., 2020) losses, semi-hard sam-
pling (Schroff et al., 2015) and distance-weighted sampling (Wu et al., 2018). Our experiments
suggest that imbalanced data during upstream embedding impacts the fairness of all benchmarks
methods in both upstream embeddings (subgroup gaps up to 21%) as well as downstream classi-
fications (subgroup gaps up to 45.9%). This imbalance is significant even when downstream
classifiers are given access to balanced training data, indicating that data cannot naively be
used to de-bias downstream classifiers from imbalanced embeddings.

Finally, inspired by prior work in DML on multi-feature learning (Milbich et al., 2020), we introduce
PARtial Attribute DE-correlation (PARADE). PARADE addresses imbalance by de-correlating two
learned embeddings: one learnt to represent similarity in class labels, and one learnt to represent
similarity in the values of a sensitive attribute, which is discarded at test-time. This creates a model in
which the ultimate target class embeddings have been de-correlated from the sensitive attributes of the
input. We note that as opposed to previous work on variational latent spaces, PARADE de-correlates
a learned similarity metric. We find that PARADE reduces gaps of SOTA DML methods by up to 2%
downstream in finDML.

In total, our contributions can be summarized as follows:

1. We define finDML; introducing three definitions of fairness in DML to capture multi-
faceted minoritized subgroup performance in upstream embeddings through focus on feature
representation characteristics across subgroups, and five datasets for benchmarking.

2. We analyze SOTA DML methods using finDML, and find that common DML approaches
are significantly impacted by imbalanced data. We show empirically that learned embedding
bias cannot be overcome by naive inclusion of balanced data in downstream classifiers.

3. We present PARADE, a novel adaptation of previous zero-shot generalization techniques
to enhance fairness guarantees through de-correlation of class discriminative features with
sensitive attributes.

2 BACKGROUND

Deep Metric Learning DML extends standard metric learning by fusing feature extraction and
learning a parametrized metric space into one end-to-end learnable setup. In this setting, a large
convolutional network ψ provides the mapping to a feature space Ψ, while a small network f , usually
a single linear layer, generates the final mapping to the metric or embedding space Φ. The overall
mapping from the image space X is thus given by ϕ = f ◦ ψ. Generally, the embedding space is
projected on the unit hypersphere SD−1 through normalization (Weisstein, 2002; Wu et al., 2018;
Roth et al., 2020c; Wang & Isola, 2020) to limit the volume of the representation space with increasing
embedding dimensionality. The embedding network ϕ is then trained to provide a metric space Φ
that operates well under some predefined, usually non-parametric metric such as the Euclidean or
cosine distance defined over Φ.

Typical objectives used to learn such metric spaces range from contrastive ranking-based training
using tuples of data, such as pairwise (Hadsell et al., 2006), triplet- (Schroff et al., 2015; Wu et al.,
2018) or higher-order tuple-based training (Sohn, 2016; Wang et al., 2020a), procedures to bring
down the effective complexity of the tuple space (Schroff et al., 2015; Harwood et al., 2017; Wu
et al., 2018) or the introduction of learnable tuple constituents (Movshovitz-Attias et al., 2017; Qian
et al., 2019; Kim et al., 2020).

More recent work (Milbich et al., 2020; Roth et al., 2020c; Jacob et al., 2019) extends standard DML
training through incorporation of objectives going beyond just sole class label discrimination: e.g.,
through the introduction of artificial samples (Lin et al., 2018; Duan et al., 2018), regularization of
higher-order moments (Jacob et al., 2019), curriculum learning (Zheng et al., 2019; Harwood et al.,
2017; Roth et al., 2020a), knowledge distillation (Roth et al., 2020b) or the inclusion of additional
features (DiVA) to produce diverse and de-correlated representations (Milbich et al., 2020).

DML Evaluation Standard performance measures reflect the goal of DML: namely, optimizing
an embedding space Φ for best transfer to new test classes via learning semantic similarities. As
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Figure 1: a) Visualization of the standard DML pipelines and the aspects of intra-class alignment
and uniformity in the embedding space. b) Infographic of the fairness issue in DML, where learned
representational bias can even transfer to downstream models building on previously learned repre-
sentations. c) Layout of our proposed PARADE approach to better incorporate sensitive attribute
context and improve representational fairness.

immediate applications are commonly found in zero-shot clustering or image retrieval, respective
retrieval and clustering metrics are predominantly utilized for evaluation. Recall@k (Jegou et al.,
2011) or mean average precision measured on recall (Roth et al., 2020c; Musgrave et al., 2020)
typically estimate retrieval performance. Normalized mutual information (NMI) on clustered embed-
dings (Manning et al., 2010) is used as a proxy for clustering quality (see Supplemental for detailed
definitions). We leverage these performance metrics to inform finDML and our experiments.

Fairness in Classification Formalizing fairness in ML continues to be an open problem (Mehrabi
et al., 2019; Chen et al., 2018a; Chouldechova, 2017; Berk, 2017; Locatello et al., 2019b; Choulde-
chova & Roth, 2018; Dwork et al., 2012; Hardt et al., 2016; Zafar et al., 2017). In classification,
definitions for fairness such as demographic parity, equalized odds, and equality of opportunity, rely
on model outputs across the random variables of protected attribute and ground-truth label (Dwork
et al., 2012; Hardt et al., 2016).

Fairness in Representations A more relevant family of fairness definitions for DML would be
those explored in fairness for general representation learning (Edwards & Storkey, 2015; Beutel
et al., 2017; Louizos et al., 2015; Madras et al., 2018). Here, the goal is to learn a fair mapping
from an original domain to a latent domain so that classifiers trained on these representations are
more likely to be agnostic to the sensitive attribute in unknown downstream tasks. This assumption
distinguishes our setting from previous fairness work in which the downstream tasks are known at
train time (Madras et al., 2018; Edwards & Storkey, 2015; Moyer et al., 2018; Song et al., 2019;
Jaiswal et al., 2019). DML differs from this form of representation learning as it aims to learn a
mapping capturing semantic similarity, as opposed to latent space representation.

Earlier works in fair representation learning intended to obfuscate any information about sensitive
attributes to approximately satisfy demographic parity (Zemel et al., 2013) while a wealth of more
recent works focus on using adversarial methods or feature disentanglement in latent spaces of
VAEs (Locatello et al., 2019a; Kingma & Welling, 2013; Gretton et al., 2006; Louizos et al., 2015;
Amini et al., 2019; Alemi et al., 2018; Burgess et al., 2018; Chen et al., 2018b; Kim & Mnih, 2018;
Esmaeili et al., 2019; Song et al., 2019; Gitiaux & Rangwala, 2021; Rodríguez-Gálvez et al., 2020;
Sarhan et al., 2020; Paul & Burlina, 2021; Chakraborty et al., 2020). In this setting, the literature
has focused on optimizing on approximations of the mutual information between representations
and sensitive attributes: maximum mean discrepancy (Gretton et al., 2006) for deterministic or
variational (Li et al., 2014; Louizos et al., 2015) autoencoders (VAEs); cross-entropy of an adversarial
network that predicts sensitive attributes from the representations (Edwards & Storkey, 2015; Xie
et al., 2017; Beutel et al., 2017; Zhang et al., 2018; Madras et al., 2018; Adel et al., 2019; Zhao &
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Gordon, 2019; Xu et al., 2018); balanced error rate on both target loss and adversary loss (Zhao et al.,
2019); Weak-Conditional InfoNCE for conditional contrastive learning (Tsai et al., 2021).

PARADE shares aspects of these previous methods in its choice of de-correlation or disentanglement.
However, PARADE de-correlates the learned similarity metric as opposed to the latent space. In
addition, with DML-specific criteria, PARADE learns similarities over the sensitive attribute while
not directly removing all information about the sensitive attribute, as the sensitive attribute and target
class embeddings share a base network.

3 EXTENDING FAIRNESS TO DML - finDML BENCHMARK

To characterize fairness with finDML, this section introduces the key constituents – definitions to
characterize fairness in embedding spaces and respective benchmark datasets.

3.1 PRELIMINARIES

Our embedding space fairness definitions rely on embedding space metrics adapted from (Wang
& Isola, 2020) and (Roth et al., 2020c), namely alignment and uniformity. Both metrics we use to
characterize embeddings for our definitions in the next section (intra- as well as inter-class alignment
and uniformity) have been successfully linked to generalization performance in contrastive self-
supervised and metric learning models (Wang & Isola, 2020; Roth et al., 2020c; Sinha et al., 2020).
Alignment succinctly captures the similarity structure learned by the representation space with respect
to the target labels through measuring distances between pairs of samples. On the other hand, notions
of uniformity can differ. Uniformity of the sample distribution over the hypersphere has been studied
through the radial basis function (RBF) over pairs of samples. Alternatively, uniformity of the feature
space has been studied through the KL-divergence DKL between the discrete uniform distribution UD

and the sorted singular value distribution Sϕ(X) of the representation space ϕ on dataset X .

UKL(X) = DKL
(
UD,Sϕ(X)

)
(1)

Here, lower scores indicate more significant directions of variance in learned representations. Both
introduced notions of uniformity represent important aspects of the embedding space, but the
computational overhead in computing RBF over all pairs of samples in large datasets makes it
impractical for our uses and is less interpretable than UKL. Therefore, we leave the uniformity metric
utilized in finDML general, but utilize UKL for our experiments.

3.2 DEFINING FAIRNESS

Building on the aforementioned performance metrics, we introduce three definitions for fairness in
the embedding spaces of DML models. As the recall@k and alignment metrics inform inclusion
in an embedded cluster (or class), we follow fair classification literature in the motivation for our
first fairness definition: inclusion in a class should be independent of a protected attribute given the
ground-truth label. Thus, we examine the probability of encountering a data instance of the same
class in a data point’s k-nearest neighbors to form the first definition. The second definition relies
on equal expectation of alignment across sensitive attribute values. Departing from classification
literature, our third definition encapsulates fairness in a task-agnostic sense (as DML is often applied
in such settings): fairness across the “goodness" of the learned features via a uniformity metric.

Let X denote the input data, and A a protected attribute variable. Denote Xa the partition of X
with attribute a ∈ A. To recap common DML terminology, a positive pair of samples is defined as
(x1, x2) ∈ X ×X s.t. the class label of x1 and x2 are identical. A negative pair of samples is defined
as (x1, x2) ∈ X ×X such that the class label of x1 and x2 differ. Let Pa denote the set of all positive
pairs s.t. at least one of x1 or x2 has attribute a ∈ A, and analogously for Na and negative pairs.
Definition 1 (K-Close Fairness). Define NNk : Φ ⊂ SD−1 → P(X) as a function that receives a
point ϕ(x) ∈ Φ and returns a set in the powerset of X , P(X), containing points in X that map to
the k nearest neighbors of ϕ(x) in Φ. Thus, ϕ is k-close fair with respect to attribute A if:

Pr
x∈Xa

(∃x̃ ∈ NNk(ϕ(x))s.t.Y (x̃) = Y (x)) = Pr
x∈Xb

(∃x̃ ∈ NNk(ϕ(x))s.t.Y (x̃) = Y (x)) ∀a, b ∈ A

(2)
Note: the criteria weakens as k increases, similar to recall@k.
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Definition 2 (Alignment). ϕ is fair, according to alignment with respect to attribute A, if:
E(x1,x2)∈Pa

[||ϕ(x1)− ϕ(x2)||2] = E(x1,x2)∈Pb
[||ϕ(x1)− ϕ(x2)||2] (3)

E(x1,x2)∈Na
[||ϕ(x1)− ϕ(x2)||2] = E(x1,x2)∈Nb

[||ϕ(x1)− ϕ(x2)||2] ∀a, b ∈ A (4)
i.e. the expectation of the alignment is equal across domain of A.
Definition 3 (Uniformity Across Groups). ϕ is fair, according to uniformity, and with respect to
attribute A, if the expectation of the uniformity is equal across domain of A:

U(ϕ(Xa)) = U(ϕ(Xb)) ∀a, b ∈ A (5)
where U(·) denotes some measure of uniformity over a set V ∈ SD−1.

3.3 CONSTRUCTED finDML BENCHMARK DATASETS

finDML encompasses existing DML benchmark datasets, CUB200 and CARS196, and facial recogni-
tion datasets, CelebA and LFW (Wah et al., 2011; Krause et al., 2013; Liu et al., 2015; Huang et al.,
2007). For fairness analysis, we investigate bird color in CUB2001, Race in LFW and Skintone in
CelebA (Kumar et al., 2009). A detailed description of dataset and attribute labeling is included in
the Supplemental. To create additional fairness benchmarks, we induce class imbalance in CUB200
and CARS196, as both datasets are naturally balanced w.r.t. class.

Manually Introduced Class Imbalance We introduce imbalance by reducing the number of training
data samples of 50 randomly selected classes by 90% (Imbalanced). We run an experiment with the
original datasets as a balanced control (Balanced) for comparison. In the imbalanced setting, we
adjust (increase) the number of training samples of the majoritized groups to match the number of
datapoints in the balanced control experiments. We average metrics over 10 sets of 50 randomly
selected classes for imbalanced experiments. We use the standard ratio of 50 − 50 for train-test
split of these datasets, but split over number of data points per class, as opposed to splitting over
the classes themselves. The manually imbalanced datasets are used to benchmark standard DML
methods, validate our framework, and analyze downstream effects.

Although dataset imbalance does not constitute the sole source of bias in machine learning applica-
tions, unfairness as a result of imbalance is the most well-understood in the literature (Chen et al.,
2018a). Additionally, we do not assume for our naturally imbalanced datasets, particularly the facial
datasets, that attribute imbalance is the only source of bias we observe.

4 PARTIAL ATTRIBUTE DE-CORRELATION (PARADE)

In this section, we present Partial Attribute De-correlation, or PARADE, in which we incorporate
adversarial separation (Milbich et al., 2020) during training to de-correlate separate embeddings.
We enumerate several significant changes: 1) only target embedding released at test-time; 2) triplet
formation and loss term w.r.t. sensitive attribute; 3) de-correlation with sensitive attribute as opposed
to de-correlation to reduce redundancy in concatenated feature space. These two representations
branch off from the deep metric embedding model at the last layer. The two representations encode
the similarity metrics learned over the sensitive attribute and target class, respectively. The sensitive
attribute embedding layer is discarded at test time. The resulting network expresses a similarity
metric with respect to the target class, de-correlated from the sensitive attribute (Figure 1). Therefore,
PARADE figuratively optimizes the first two fairness definitions proposed in Section 3.2 via an
objective that maximizes independence between the sensitive attribute and target class.

Objective Term Per Embedding To achieve efficient training and de-correlation of the target class
and the sensitive attribute embedding layers, we simultaneously train both layers that branch from
the penultimate layer of the model and de-correlate at each iteration. Because PARADE must learn
one embedding w.r.t. target class (ϕtarg) and one embedding w.r.t. the sensitive attribute (ϕSA), we
introduce separate objectives for each embedding:

Ltarg =
1

N

∑
t∼Ttarg

L(t) LSA =
1

N

∑
t∼TSA

L(t)

1While bird color in CUB200 does not represent a real-world fairness setting, CUB200 is widely used as a
DML benchmark. Thus, a fairness angle allows fairness analysis of previous methods benchmarked on CUB200.
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Figure 2: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for bird color CUB200 experiments: the sensitive attribute embedding (left) and the class label
embedding (right). In the sensitive attribute embedding, both example images are mapped to clusters
with birds of the same plumage (yellow and blue, respectively). Due to de-correlation, in the class
label embedding, the images are separated from the region of space with other birds of the same
plumage, but are still well-clustered, indicating that PARADE can find other attributes to distinguish
these species clusters.

where N is the number of training triplet samples, and L represents a generic loss function, such as
triplet loss (Hoffer & Ailon, 2018). We use t ∼ Ttarg to illustrate sampling over triplets of the form
(xa, xp, xn) where xa and xp are of the same target class and xa and xn are of differing target classes.
Similarly, t ∼ TSA indicates sampling over triplets of the form (xa, xp, xn) where xa and xp are of
the same sensitive attribute subgroup and xa and xn are of differing sensitive attribute subgroups.
See Figure 2 for a t-SNE visualization of the distinct embeddings of PARADE.

Partial De-correlation In order to minimize the correlation between ϕtarg and ϕSA, we use the
adversarial separation (de-correlation) method from (Milbich et al., 2020), which minimizes the
mutual information between a pair of embeddings. The task of mutual information minimization
is accomplished through learning an MLP to maximize the pair’s correlation, c, and consequently
performing a gradient reversal R, which inverts the gradients during backpropagation. The MLP, ξ,
is trained to maximize c(ϕtargi , ϕSA

i ) = ∥R(ϕtargi )
⊙
ξ(R(ϕSA

i ))∥22, s.t.
⊙

denotes element-wise
multiplication. Combining the loss terms results in total loss:

LPARADE = Ltarg + αSALSA − ρ · c(ϕtarg, ϕSA)

where αSA weights the sensitive attribute loss and ρ weights the degree of de-correlation. ρmodulates
the de-correlation term to allow ψ to retain some attribute information (i.e. partial de-correlation).
Thus, the deployed model ϕtarg = ftarg ◦ ψ can retain information about the sensitive attribute in its
feature representations, as αSALSA appears in the loss function back-propagated through the full
model ψ. The extent to which the sensitive attribute affects the output features is controlled by αSA;
we suggest optimizing αSA ∈ (0, 1) and ρ through maximization of worst-group performance (Lahoti
et al., 2020) (See Supplemental C.5 for further analysis of PARADE hyperparameters).

5 EXPERIMENTS

Baseline DML Methods For all datasets, we use a ResNet-50 (He et al., 2016) architecture with best
performing parameters on a validation set (for further implementation details, see Supplemental).
To investigate a sweeping set of frequently used DML methods, we benchmark across a diverse,
representative set of 11 techniques, including: three standard ranking-based losses (margin, triplet,
n-pair, and contrastive) three batch mining strategies (random, semi-hard and distance-weighted
sampling) and three common loss functions (multisimilarity loss, ArcFace loss for handling facial
datasets, and proxy-based loss, ProxyNCA) (Hoffer & Ailon, 2018; Hadsell et al., 2006; Wu et al.,
2018; Sohn, 2016; Hadsell et al., 2006; Kim et al., 2020; Wang et al., 2020a; Deng et al., 2019; Wu
et al., 2018; Schroff et al., 2015). See Supplementary for more details.
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Fairness Evaluation In the embedding space, we analyze fairness via performance gaps between
minoritized groups and majoritized groups, or worst-group performance gaps (Lahoti et al., 2020).
For fairness of the feature representations, we compute gaps in three metrics: recall@k and NMI
for intra- and inter-class distance (Section 3.2), and the uniformity measure UKL corresponding to
Definition 3 (defined in Section 3.1).

Training and Evaluation on Downstream Classifiers To link fairness performance in the embedding
space to downstream classification (in which more extensive prior work has been completed), we
train downstream classifiers and evaluate classification bias. After training the DML model with
the aforementioned criteria, the network is fixed. The output embeddings from the image training
datasets, in addition to the class labels, are used to train four downstream classification models: logistic
regression (LR), support vector machine (SVM), K-Means (KM), and random forest (RF) (Pedregosa
et al., 2011). In the manually imbalanced upstream setting, we train downstream classifiers on
the original balanced image datasets to ascertain if bias incurred in the embedding can propagate
downstream even if the downstream classifier is trained with real balanced data.

We execute class imbalanced experiments for CARS196 and CUB200 and vary the level of imbalance
between minoritized and majoritized classes in the upstream training set.

PARADE Configuration We test Partial Attribute De-correlation, PARADE, by training models in
the listed settings: manually color imbalanced dataset for CUB200, CelebA and LFW. The attribute
used to train the sensitive attribute embedding for each dataset, and the attribute used for fairness
evaluation. We compare PARADE with margin loss and distance-weighted sampling (Wu et al., 2018)
to standard margin loss and distance-weighted sampling.

6 RESULTS

6.1 SOTA DML METHODS HAVE LARGE FAIRNESS GAPS IN finDML BENCHMARK

Our experiments indicate that current DML methods encounter crucial fairness limitations in the
presence of imbalanced training data. Table 1 (along with a corresponding table for CARS196 in the
Supplemental) demonstrate that gaps in the manually class imbalanced setting are greater than the
balanced control setting. In four combinations of loss functions and sampling strategies, we do not
observe a scenario in which the class imbalanced setting achieves a smaller gap than the control in the
embedding space, nor the downstream classification. This is particularly significant due to the nature
of sampling strategies studied (Wu et al., 2018; Schroff et al., 2015), which batch samples to force
the model to correct “hard" examples. The results validate finDML as a benchmark and framework
for fairness through the lens of well-studied fairness characterization in classification.

Interestingly, Table 1 displays non-negligible gaps in downstream performance metrics recall and
precision even in the balanced control case. This could represent stenography of underlying structures
in the data, such as car color or bird size. More likely, however, these gaps are due to use of macro-
averaging in recall and precision calculations. Nonetheless, the manually class imbalanced settings
consistently produce larger gaps.

6.2 PROPAGATION OF BIAS TO DOWNSTREAM TASKS

The tabular results emphasize a significant result: naive re-balancing with real data downstream cannot
overcome bias incurred in the upstream embedding in any setting studied. Indeed, Table 1 exhibits
propagation of bias from upstream embeddings (trained on imbalanced data) to downstream tasks
(trained on fixed upstream embeddings with a re-balanced dataset). To provide additional context for
the result, we direct to increasing use of DML models as components of larger classification models.
This trend is arising in literature such as supervised contrastive learning, and recent developments
in pre-training and lifting DML models for classification (Khosla et al., 2020). This necessitates
tackling bias in the representation space of DML as opposed to patches downstream, and emphasizes
the importance of defining fairness in this setting as done in our work.

Impact of imbalance degree on lack of fairness Figure 3 shows that gaps in downstream clas-
sification mimic those upstream, even as we vary the level of imbalance introduced when training
the upstream embedding. Here, the random forest classifier sees greater gaps in downstream metrics
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Table 1: Gap study on CUB200-2011. Average gaps in representation space and downstream classifi-
cation (logistic regressor) over 10 seeds between minoritized and majoritized classes in manually
class imbalanced experiments (Imbalanced) and control experiments (Balanced) for CUB200-2011.
Results for CARS196 are available in the supplementary with similar conclusions. Bold represents
larger gap for each method shown (Loss · Batch Mining).

Experiments → Balanced Imbalanced Balanced Imbalanced

Objective → Margin · Distance Margin · Semi-hard

UPSTREAM
EMBEDDING

Recall@1 0.017± 0.007 0.212± 0.029 0.02± 0.007 0.187± 0.031
NMI −0.001± 0.004 0.112± 0.012 −0.004± 0.004 0.092± 0.017
UKL −0.042± 0.003 0.0± 0.002 −0.048± 0.004 0.002± 0.004

DOWNSTREAM
CLASSIFICATION

Precision 0.339± 0.007 0.39± 0.014 0.33± 0.004 0.393± 0.015
Recall 0.36± 0.007 0.424± 0.018 0.351± 0.005 0.43± 0.016

Accuracy 0.014± 0.002 0.131± 0.027 0.016± 0.005 0.131± 0.031

Objective → Triplet · Distance Triplet · Semi-hard

UPSTREAM
EMBEDDING

Recall@1 0.019± 0.006 0.159± 0.031 0.019± 0.006 0.168± 0.036
NMI −0.001± 0.004 0.103± 0.016 −0.004± 0.006 0.082± 0.016
UKL −0.054± 0.006 −0.004± 0.009 −0.051± 0.006 0.014± 0.011

DOWNSTREAM
CLASSIFICATION

Precision 0.336± 0.005 0.41± 0.014 0.338± 0.007 0.384± 0.014
Recall 0.357± 0.004 0.459± 0.016 0.359± 0.007 0.426± 0.016

Accuracy 0.016± 0.003 0.179± 0.031 0.02± 0.005 0.134± 0.031
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Figure 3: Impact of varying imbalance between the minoritized and majoritized classes on upstream
embedding and downstream classifier (RF) in the manually class imbalanced CARS196 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase both
upstream and downstream with more imbalance introduced to the upstream training data.

than the control, even when manual imbalance is set at 40 − 60 upstream, and the downstream
training dataset is balanced. For results with additional downstream classifiers, see Supplemental.
This experiment demonstrates that the propagation of bias to downstream will occur even with lower
levels of imbalance, and does not appear to depend on the downstream classifier chosen.

6.3 REDUCED SUBGROUP GAPS THROUGH PARTIAL DE-CORRELATION WITH SENSITIVE
ATTRIBUTE

Table 2a shows results for performance gaps between relevant subgroups in both facial recognition
datasets. PARADE shows strong results for CUB200 bird color dataset, primarily reducing gaps
downstream and accordingly to recall@1 (Definition 1). PARADE can reliably reduce gaps for
both the representation space and downstream classifiers on LFW. Interestingly, we observe that the
majoritized subgroup (“White") had worst performance of all “Race" subgroups (see Supplemental),
contrary to previous results (Samadi et al., 2018).3 As such, we measure gaps between the worst-
performing subgroup and others.

2Due to the great number of singleton classes in LFW, recall@1 is discarded as a metric.
3Note: minoritized subgroups can still encounter notable bias across other axes more difficult to mea-

sure (Radford & Espenshade, 2014).
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Table 2: Comparison between PARADE and standard losses with distance-weighted sampling of
average gaps in representation space and downstream classification (logistic regressor) over 3 seeds
between minoritized and majoritized groups in (a) facial dataset studies, namely on CelebA (w.r.t.
“Fitzpatrick Skintone") and between worst-performing subgroup and other subgroups in LFW2(w.r.t.
“Race") with Margin loss and (b) bird color experiments for CUB200 image dataset (w.r.t. color) with
Margin and Triplet loss. Bold represents smaller gap (better fairness performance).

(a)

Facial
Datasets

CelebA (skintone) LFW (race)

PARADE Margin · Distance PARADE Margin · Distance

UPSTREAM
EMBEDDING

Recall@1 0.085± 0.009 0.122± 0.005 0.075± 0.014 0.068± 0.013
NMI −0.012± 0.003 −0.002± 0.003 0.041± 0.003 0.048± 0.003
UKL −0.04± 0.011 −0.03± 0.007 0.163± 0.003 0.165± 0.005

DOWNSTREAM
CLASSIFICATION

Precision 0.146± 0.006 0.1± 0.007 0.004± 0.002 0.005± 0.005
Recall 0.141± 0.007 0.098± 0.007 0.003± 0.001 0.007± 0.006

Accuracy 0.131± 0.006 0.082± 0.005 0.009± 0.003 0.012± 0.009

(b)

CUB200-2011
color PARADE (M · D) Margin · Distance PARADE (T · D) Triplet · Distance

UPSTREAM
EMBEDDING

Recall@1 0.172± 0.021 0.176± 0.041 0.172± 0.027 0.195± 0.051
NMI 0.349± 0.031 0.326± 0.184 0.372± 0.291 0.359± 0.024
UKL 0.167± 0.013 0.153± 0.013 0.174± 0.035 0.159± 0.018

DOWNSTREAM
CLASSIFICATION

Precision 0.317± 0.046 0.333± 0.049 0.248± 0.038 0.308± 0.119
Recall 0.352± 0.039 0.363± 0.046 0.276± 0.042 0.337± 0.123

Accuracy 0.163± 0.018 0.153± 0.028 0.148± 0.049 0.154± 0.029

For CelebA, we find for standard methods the minoritized subgroups to generally perform worst.
PARADE excels at gap reduction upstream but encounters larger subgroup gaps downstream com-
pared to standard methods. While PARADE does reduce downstream gaps between light skintones (I,
II, and III), and the two lighter dark skintones (IV, V), gaps increase between lighter skintones and
the darkest skintone (VI) (see Supplemental). Because skintone VI constitutes < 1% of the CelebA
dataset, PARADE is likely not able to learn similarity between faces over attributes besides skintone.
And PARADE is prevented from learning similarities based on skintone due to de-correlation. In
such settings, PARADE could be combined with oversampling minoritized subgroups to ensure better
performance.

In general, the results show promising benefits of PARADE to adequately address and improve on
the challenge of subgroup gaps for DML models used in facial recognition; and in the standard DML
dataset CUB200, for recall@1 upstream (Definition 1) and across metrics downstream (Table 2b).

7 DISCUSSION

In this work, we introduce the finDML benchmark, a framework for fairness in deep metric learning
(§3.2). We demonstrate the fairness limitations of established DML techniques, and the surprising
propagation of embedding space bias to downstream classifiers. Importantly, we find that this bias
cannot be addressed at the level of downstream classifiers but instead needs to be addressed at the
DML stage. We investigate the limit of this propagation in manually introduced imbalance, and
finally show that PARADE can reduce subgroup gaps in several settings.

Limitations PARADE suffers from pitfalls similar to other “fairness with awareness" methods:
PARADE uses information only on pre-defined sensitive attributes and therefore can be unfair w.r.t.
other sensitive attributes. PARADE does have an advantage in addressing the combinatorial number
of attributes considered in multi-attribute fairness through DML, which will scale sub-combinatorially
in time/space complexity. We also note that subgroup gaps are not sufficient to capturing societal
understandings of fairness, and there is no consensus as to how to remedy such gaps (Chouldechova &
Roth, 2018; Dwork et al., 2012; Hardt et al., 2016; Zemel et al., 2013; Zafar et al., 2017). Additionally,
while PARADE intentionally optimizes Definitions 1 and 2, we provide no explicit guarantee and
optimization of uniformity, Definition 3, remains an open problem. Finally, PARADE does incur
slight decrease in overall performance, similar to other methods (Wick et al., 2019) (see Supplemental
for per-subgroup performance and additional fairness-utility trade-off analysis for PARADE).
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Code of Ethics Statement The work presented here deals with fairness in deep metric learning.
A portion of our studies in the paper focus on CARS196 and CUB200-2011 datasets, which have
consistently been used in benchmarking novel DML frameworks (Krause et al., 2013; Wah et al.,
2011). The fairness analysis considered for CUB200-2011 deals with bird color, which does not, to
our knowledge, correspond with any societal problems relating to fairness. Nonetheless, as CUB200-
2011 is used in a litany of papers for SOTA performance comparison, finDML includes CUB200 so
that DML methods can be analyzed w.r.t. fairness on a dataset used in their original paper.

We do include facial recognition datasets and tasks and analyze fairness with respect to facial
attributes. Facial recognition does raise ethical concerns in practice. We note that our paper attempts
to address primary social concerns in facial identity recognition. We do not encourage the task of
facial attribute recognition, and solely use labeled attributes that correspond to known axes of bias
for fairness analysis (e.g. Race and Skintone). As PARADE has solely been tested in two widely
used public facial recognition datasets, we cannot guarantee fairness nor privacy in practical settings
with private facial datasets.

Reproducibility Statement Additional experimental results discussed in the main paper and others
are contained in Supplemental C. Implementation details including attribute information, generation
of attributes, training parameters, metric calculation and gap computation are listed in Supplemental D.
Code available here: https://github.com/ndullerud/dml-fairness.
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SUPPLEMENTAL MATERIAL

A ADDITIONAL BACKGROUND

A.1 DEEP METRIC LEARNING DEFINITIONS

Here, we iterate through some common DML criteria and batch mining strategies more formally
than in the main paper. Throughout this section, let X denote the input data, ϕ(X) the embedded
data, Y the class label, and let Y (x) denote the value of the ground truth class label for data instance
x. Denote the set of all positive pairs with respect to class label Y as P = {(x1, x2) ∈ X × X :
Y (x1) = Y (x2), x1 ̸= x2}. Denote the set of all negative pairs with respect to class label Y as
N = {(x1, x2) ∈ X ×X : Y (x1) ̸= Y (x2)}. We use the notation (xa, xp, xn) ∈ X ×X ×X to
denote a triplet with an anchor sample xa, positive sample xp where Y (xa) = Y (xp), and negative
sample xn where Y (xa) ̸= Y (xn).

Batch Sampling and Mining The batch sampling procedure in deep metric learning methods
differ from that of generic deep classifiers in that canonical loss functions require tuples or pairs of
samples in order to utilise ranking objectives as training surrogates to learn an appropriate similarity
metric. To ensure that tuples with positive and negative examples can be extracted from the batch,
the Samples-Per-Class-n (SPC-n) heuristic (see e.g. Roth et al. (2020c)) is generally used, where
commonly n = 2, 4, 8. Given a batch size b, the SPC-n technique randomly selects b/n classes from
which n training samples are then drawn randomly to be included in each batch B.

After feeding the batch through the network, tuples are mined from the batch to use in the loss
function. We refer to mining in this paper either as batch mining or overload the both as batch
sampling terminology. The naive solution to tuple mining is random mining, in which all possible
tuples of the form (xa, xp, xn) are considered and b are randomly chosen from the batch. However,
this method lacks the capacity to utilize valuable information about the current embedding space, and
is prone to significant redundancy in the training signal Schroff et al. (2015); Wu et al. (2018).
Definition 4 (Random Mining). Hu et al. (2014) For each xa ∈ B, we randomly draw a positive
example from {xp ∈ B : Y (xp) = Y (xa), xp ̸= xa} and a negative example from {xn ∈ B :
Y (xn) ̸= Y (xa)} to form the triplet (xa, xp, xn).

Intuitively, this could be mitigated by hard mining heuristics searching for negative samples that are
closer to the anchor sample in the embedding space than positive samples, thereby always ensuring a
significant training signal. Unfortunately, such approaches are prone to heavy overfitting, training
instability and large gradient variance, thereby commonly resulting in less-than-optimal solutions
(see e.g. Schroff et al. (2015); Harwood et al. (2017); Wu et al. (2018)). Recent approaches thus
establish more lenient heuristics, such as through the introduction of slack parameters to the hard
mining objective (e.g. semi-hard mining Schroff et al. (2015) or softhard mining Roth & Brattoli
(2019)).
Definition 5 (Semi-hard Mining). For each xa ∈ B, we randomly draw a positive example from
{xp ∈ B : Y (xp) = Y (xa), xp ̸= xa}, and a negative example from the set

{xn ∈ B : Y (xn) ̸= Y (xa), ∥ϕ(xa)− ϕ(xn)∥22∥ϕ(xa)− ϕ(xp) + γ∥22}
where γ ∈ R is a slack parameter, to form the triplet (xa, xp, xn).

While other adaptive means (e.g. Harwood et al. (2017); Roth et al. (2020a)) have shown strong
performance improvements, modern predefined heuristics such as distance-weighted tuple mining
Wu et al. (2018) offer a better cost-to-performance tradeoff Roth et al. (2020a). Here, the heuristic
leverages the fact that embeddings are commonly normalized to have unit L2 norm for regularization
purposes Wu et al. (2018). This ensures a distribution over a unit hypersphere, in which explicit
pairwise distributions can be established Weisstein (2002); Wu et al. (2018). By inverting this
distribution, distance-weighted mining can thus encourage a much more diverse coverage of tuple
difficulties, improving generalization performance and reducing gradient variance Wu et al. (2018).
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Definition 6 (Distance-weighted). For embedding spaces normalized to the (D − 1)-dimensional
hypersphere SD−1, we haveWeisstein (2002); Wu et al. (2018) the following pairwise sampling
distribution q(•, •):

q (d (ϕ(xi), ϕ(xj))) ∝ d (ϕ(xi), ϕ(xj))
D−2

[
1− 1

4
d (ϕ(xi), ϕ(xj))

]D−3
2

for embedding pairs (ϕ(xi), ϕ(xj)) ∈ SD−1 and Euclidean distance d(•, •). For each xa ∈ B,
we randomly draw a positive example from {xp ∈ B : Y (xp) = Y (xa), xp ̸= xa}, and sample a
negative example based on an inverse distance distribution w.r.t. q:

P (xn|xa) ∝ min(λ, q−1(d(ϕ(xi), ϕ(xj))))

where λ ∈ R defines a clipping parameter to avoid potentially erroneous training samples.

Examined Objectives The primary goal of DML loss functions is to provide a training surrogate
that implicitly optimizes for desired metric space quantities by narrowing down the expected distance
between positive pairs of samples and expanding on the expected distance between negative pairs of
samples in the embedding space. Most commonly employed pair Hadsell et al. (2006) and tripled-
based Schroff et al. (2015); Hoffer & Ailon (2018) ranking losses penalize close negative pairs and
disparate positive pairs up to a predefined margin to avoid overclustering. Using P(x) to denote all
positive pairs containing x

P(x) = {(x1, x2) ∈ P : x1 = x}

and N(x) to denote all negative pairs containing x

N(x) = {(x1, x2) ∈ N : x1 = x}

we define

Definition 7 (Contrastive). Hadsell et al. (2006) Given a batch B, and pairs of samples S over
B × B, the contrastive objective is defined as:

Lcontr =
1

b

∑
(xi,xj)∈S

IY (xi)=Y (xj)d (ϕ(xi), ϕ(xj)) + IY (xi) ̸=Y (xj) [γ − d (ϕ(xi), ϕ(xj))]+

with margin γ.

Definition 8 (Triplet). Hoffer & Ailon (2018) The triplet loss extends the contrastive objective with
sample triplets and can be defined as:

Ltripl =
1

b

∑
(xa,xp,xn)∈T

Y (xa)=Y (xp) ̸=Y (xn)

[d (ϕ(xa), ϕ(xp))− d (ϕ(xa), ϕ(xn)) + γ]+

with margin γ.

Margin loss extends the triplet objective through the inclusion of a learnable boundary β between
positive and negative pairs Wu et al. (2018). In our experiments, we utilise β = 1.2. These criteria
are widely used (see e.g. Roth et al. (2020c); Musgrave et al. (2020)) and require mining to make use
of the batch information.

Definition 9 (Margin). Wu et al. (2018) The margin objective integrates the learnable distance
boundary β between positive and negative pairs of samples for a relative ordering of pairs with
respect to β as

Lmargin =
∑

(xi,xj)∈S

γ + IY (xi)=Y (xj) (d (ϕ(xi), ϕ(xj))− β)− IY (xi) ̸=Y (xj) (d (ϕ(xi), ϕ(xj))− β)

Going beyond pairs and triplets, one can also consider the case of more general n-tuples, which was
investigated e.g. in the N-Pair objective Sohn (2016) and the Multisimilarity loss Wang et al. (2020a).

17



Published as a conference paper at ICLR 2022

Definition 10 (N-Pair). Sohn (2016) N-Pair loss is a simple augmentation of the triplet framework
in which all negatives in the batch B are incorporated in the objective function as:

Lnpair =
1

b

∑
(xa,xp)∈B

Y (xa)=Y (xp),a ̸=p

log

1 +
∑
xn∈B

Y (xa )̸=Y (xn)

exp
(
ϕ(xa)

∗,Tϕ(xn)− ϕ(xa)
∗,Tϕ(xp)

∗)
+

ν

b
·
∑
i∈B

∥ϕ(xi)∗∥22 (6)

where ν denotes an embedding regularization parameter due to slow convergence for normalized
embeddings stated in Sohn (2016)

Definition 11 (Multisimilarity). Wang et al. (2020a) Multisimilarity loss fits into the ranking loss
category, but in addition to evaluation of cosine similarity between positive-anchor pairs and negative-
anchor pairs, the objective evaluates positive-positive and negative-negative pairs with respect to the
anchor:

s∗c(xi, xj) =

 sc (ϕ(xi), ϕ(xj)) sc (ϕ(xi), ϕ(xj)) > minxj∈P(xi) sc (ϕ(xi), ϕ(xj))− ϵ
sc (ϕ(xi), ϕ(xj)) sc (ϕ(xi), ϕ(xj)) < maxxk∈N(xi) sc (ϕ(xi), ϕ(xk)) + ϵ
0 otherwise

Lmultisim =
1

b

∑
xi∈B

1

α
log

1 + ∑
xj∈P(xi)

exp (−α (s∗c (ϕ(xi), ϕ(xj))− λ))

+

1

β
log

1 + ∑
k∈N(xi)

exp (β (s∗c (ϕ(xi), ϕ(xk))− λ))

 (7)

where cosine similarity sc(x, y) = xT y for two normalized vectors x, y ∈ X .

Notably, the Multisimilarity loss employs a masking process as a stand-in for the lack of batch-
mining heuristic. While this proves to be similarly successfull in addressing the tuple sampling
complexity issue, this can also be addressed through the usage of proxy-samples. These are dummy
variables that represent various contextual properties (such as mean class representations) to serve as
standing for actual samples, which is found e.g. in the ArcFace Deng et al. (2019) or ProxyNCA loss
Movshovitz-Attias et al. (2017).
Definition 12 (Proxy-NCA). Kim et al. (2020) ProxyNCA learns class proxies, or class centers,
which each represent a class in the set of unique classes Y . Then, each anchor from the batch is
sampled and a positive or negative proxy ψc ∈ Rd per class c ∈ Y is introduced in lieu of a positive
or negative sample, respectively, giving:

Lproxy = −1

b

∑
xi∈B

log

(
exp

(
−d
(
ϕ(xi), ψY (xi)

)∑
c∈Y\{Y (xi)} exp (−d (ϕ(xi), ψc)

)
Definition 13 (Arcface). Deng et al. (2019) Arcface combines proxy and angular loss methods (e.g.
in Wang et al. (2017)) to enforce an angular margin between the embeddings ϕ and a proxy (or
approximate center) W ∈ Rc×d for each class, giving the following:

Larc = −1

b

∑
xi∈B

log
exp

(
s · cos

(
WT

Y (xi)
ϕ(xi) + γ = 0.5

))
exp

(
s · cos

(
WT

Y (xi)
ϕ(xi) + γ = 0.5

))
+
∑

xj∈B
Y (xi) ̸=Y (xj)

exp
(
s · cos

(
WT

Y (xj)
ϕ(xi)

))
where the angular component is encoded in additive angular margin penalty γ, and s is a scaling
parameter, which denotes the radius of the effective utilized hypersphere S.

Standard Performance Metrics Performance metrics in deep metric learning aim to capture
the quality of the similarity metric learned by the deep embedding model. Therefore, standard
performance metrics in DML reflect the closeness between samples of the same class, the separability
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of samples of different classes, the clustering quality of embedding, and the uniformity over the
hypersphere embedding space, which has been linked to zero-shot generalization capability Wang
& Isola (2020), as discussed in Section 2. In our experiments, we utilize recall@1 Jegou et al.
(2011), normalized mutual information Manning et al. (2010) between cluster labels assigned by the
well-known K-Means Lloyd (1982) algorithm and ground-truth class labels, and UKL to measure
the closeness between samples of same class, cluster quality of the embedding (and hence, the
separability of distinct classes) and uniformity, respectively. Here, we define these metrics formally,
but we note that there exist multitudinous performance metrics for DML that we do not define here or
use explicitly for our results, including f1 score, mean average precision (mAP), and recall@k for
k > 1 Jegou et al. (2011).
Definition 14 (Recall@k). Jegou et al. (2011) Given k ∈ {1, . . . , |X|}, denote NNk as defined in
Definition 1. Then, Recall@k is measured as:

Recall@k =
1

|X|
∑
x∈X

{
1 ∃x̃ ∈ NNk(x) : Y (x̃) = Y (x)

0 else

Definition 15 (Normalized Mutual Information Score on Clusters). Manning et al. (2010) Let C a
clustering algorithm, such as K-Means Lloyd (1982) with the number of clusters set to |Y |, such
that C(x) indicates the cluster label for data point x ∈ X . The normalized mutual information score
between the target labels Y and the cluster labels C is measured as:

NMI =
2 · I(Y (X);C(X))

H(Y (X)) +H(C(X))

where for random variables X,Y , I(·, ·) denotes the mutual information function:

I(X;Y ) = H(Y )−H(Y |X)

and H(·) denotes the entropy function:

H(X) = −
∑
x∈X

Pr(x) log(Pr(x))

The performance metric UKL, used to measure feature uniformity for our empirical evaluations, is
defined in Section 3.1.

A.2 CLASSIFICATION FAIRNESS DEFINITIONS

Fairness definitions and criteria in classification are briefly mentioned in Section 2 of the main paper.
Here, we provide explicit formulas for the most common fairness definitions, including demographic
parity, equalized odds, and equality of opportunity Hardt et al. (2016), and provide some additional
context on fairness definition evolution.
Definition 16 (Demographic Parity). The predictor Ŷ satisfies demographic parity with respect to
attribute A and class Y if the predictor is independent of A:

Pr[Ŷ = 1|A = a] = Pr[Ŷ = 1|A = b] ∀a, b ∈ A

Specifically, demographic parity has largely been used over the years as a simple and intuitive
definition of fairness, in which a classifier is said to satisfy demographic parity if the sensitive
attribute is independent of the output of the classifier. While demographic parity provides a simple
fairness definition, the measure cannot capture fairness in classification tasks where the ground-truth
label is inherently related to a certain attribute value Li et al. (2017).

Definition 17 (Equalized Odds). The predictor Ŷ satisfies demographic parity with respect to
attribute A and class Y if the predictor is independent of A conditional on Y :

Pr[Ŷ = 1|A = a, Y = y] = Pr[Ŷ = 1|A = b, Y = y] ∀a, b ∈ A,∀y ∈ {0, 1}
from Hardt et al. (2016).

Definition 18 (Equality of Opportunity). The predictor Ŷ satisfies demographic parity with respect
to attribute A and class Y if the predictor is independent of A conditional on positively labelled Y :

Pr[Ŷ = 1|A = a, Y = 1] = Pr[Ŷ = 1|A = b, Y = 1] ∀a, b ∈ A

from Hardt et al. (2016).
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This lead to the introduction of other fairness definitions that capture such nuances, the most well-
known of which are probably equalized odds and equality of opportunity Hardt et al. (2016). However,
fairness metrics overall have been criticized due to the choice of protected attribute over which to
measure, and the inability of these metrics to capture bias with respect to certain attributes which are
not known at test-time. We discuss this to a limited extent in Section 7.

B DATASET SUMMARY STATISTICS

Figure 4: Class distribution in CARS196. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CARS196.

Figure 5: Class distribution in CUB200. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CUB200.

Black Blue Brown Buff Green Grey Iridescent Olive Orange Red White Yellow
Train 21.20 5.58 18.08 3.01 0.37 19.20 0.51 0.49 1.02 3.52 13.35 13.65
Test 21.17 5.56 18.11 3.04 0.39 19.21 0.51 0.51 1.01 3.52 13.29 13.68

Table 3: Summary statistics for CUB200 bird color The percentage of the dataset constituted by each
bird color in CUB200, in the train dataset and test dataset, respectively.

C ADDITIONAL RESULTS

C.1 CARS196

Additional results for all loss and batch mining strategies for the manually class imbalanced ex-
periments and balanced controls for CARS196 are located in Tables 6 and 7. K-Means was also
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Figure 6: Class distribution in CelebA. Histograms visualizing the distribution over number of
samples per class in the train (left) and test (right) datasets in CelebA.

I II III IV V VI

Train 1.10 32.04 47.92 15.12 3.20 0.61
Test 1.24 32.09 48.09 14.81 3.22 0.55

Table 4: Summary statistics for CelebA Fitzpatrick Skintone. The percentage of the dataset constituted
by each Fitzpatrick Skintone in CelebA, in the train dataset and test dataset, respectively.

Figure 7: Class distribution in LFW. Histograms visualizing the distribution over logarithm of number
of samples per class in the train (left) and test (right) datasets in LFW.

Asian Black Indian White
Train 8.43 4.17 1.71 85.70
Test 6.27 4.61 1.79 87.33

Table 5: Summary statistics for LFW Race The percentage of the dataset constituted by each Race in
LFW, in the train dataset and test dataset, respectively.

tested as a downstream classifier but showed poor performance. The impact of varying imbalance
in the manually class imbalanced CARS196 experiments with all tested downstream classifiers is
displayed in Table 8. Additional results for benchmarking of further fairness improvement methods
in downstream classification of "imbalanced" embeddings (aside from naive use of balanced datasets)
are shown in Table 8.
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Overall
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.861± 0.003 0.83± 0.005 0.854± 0.002 0.819± 0.008 0.83± 0.002 0.811± 0.006
NMI 0.909± 0.003 0.879± 0.003 0.894± 0.003 0.867± 0.005 0.876± 0.004 0.861± 0.007
UKL 0.433± 0.004 0.457± 0.008 0.096± 0.002 0.091± 0.002 0.133± 0.004 0.133± 0.003

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.878± 0.002 0.848± 0.006 0.88± 0.002 0.861± 0.004 0.858± 0.005 0.853± 0.005
Precision 0.877± 0.002 0.848± 0.007 0.883± 0.002 0.864± 0.004 0.86± 0.005 0.856± 0.005

Recall 0.876± 0.002 0.846± 0.006 0.879± 0.002 0.86± 0.004 0.856± 0.005 0.852± 0.005

RF
Accuracy 0.855± 0.002 0.832± 0.006 0.816± 0.003 0.758± 0.011 0.819± 0.005 0.79± 0.006
Precision 0.859± 0.003 0.835± 0.006 0.82± 0.003 0.763± 0.01 0.822± 0.005 0.794± 0.006

Recall 0.855± 0.003 0.831± 0.006 0.815± 0.003 0.757± 0.011 0.817± 0.005 0.788± 0.005

SVM
Accuracy 0.876± 0.002 0.852± 0.006 0.882± 0.002 0.863± 0.004 0.863± 0.005 0.86± 0.004
Precision 0.875± 0.002 0.855± 0.007 0.888± 0.002 0.875± 0.003 0.867± 0.005 0.867± 0.004

Recall 0.874± 0.002 0.85± 0.006 0.881± 0.002 0.863± 0.004 0.863± 0.005 0.86± 0.004

Overall
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.858± 0.002 0.839± 0.005 0.887± 0.001 0.858± 0.005 0.866± 0.003 0.848± 0.006 0.794± 0.003 0.778± 0.006
NMI 0.898± 0.003 0.881± 0.004 0.915± 0.003 0.89± 0.005 0.903± 0.001 0.884± 0.005 0.849± 0.001 0.834± 0.007
UKL 0.151± 0.002 0.155± 0.003 0.083± 0.001 0.094± 0.003 0.304± 0.003 0.293± 0.003 0.397± 0.009 0.382± 0.007

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.886± 0.001 0.875± 0.005 0.898± 0.003 0.877± 0.005 0.885± 0.002 0.872± 0.004 0.828± 0.004 0.818± 0.005
Precision 0.889± 0.001 0.878± 0.004 0.901± 0.002 0.879± 0.005 0.888± 0.002 0.874± 0.003 0.829± 0.003 0.821± 0.005

Recall 0.885± 0.001 0.873± 0.005 0.898± 0.003 0.876± 0.005 0.883± 0.002 0.87± 0.004 0.825± 0.003 0.816± 0.005

RF
Accuracy 0.825± 0.004 0.794± 0.005 0.852± 0.003 0.823± 0.007 0.858± 0.003 0.836± 0.004 0.808± 0.004 0.792± 0.008
Precision 0.831± 0.004 0.797± 0.006 0.857± 0.003 0.825± 0.008 0.861± 0.003 0.838± 0.004 0.811± 0.004 0.795± 0.008

Recall 0.824± 0.004 0.793± 0.005 0.852± 0.003 0.823± 0.008 0.857± 0.003 0.835± 0.004 0.807± 0.004 0.791± 0.008

SVM
Accuracy 0.888± 0.001 0.876± 0.004 0.894± 0.002 0.871± 0.003 0.887± 0.002 0.878± 0.004 0.835± 0.003 0.83± 0.005
Precision 0.893± 0.001 0.886± 0.004 0.902± 0.001 0.887± 0.003 0.892± 0.002 0.884± 0.004 0.839± 0.003 0.834± 0.005

Recall 0.887± 0.001 0.876± 0.004 0.894± 0.002 0.871± 0.003 0.886± 0.003 0.877± 0.003 0.834± 0.003 0.829± 0.005

Table 6: Overall results on CARS196. Metrics over entire test dataset in representation space and
downstream classification (LR, RF, and SVM) over 10 seed in manually class imbalanced experiments
(Imbalanced) and control experiments (Balanced) for CARS196.

Subgroup Gap
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.861± 0.003 0.83± 0.005 0.854± 0.002 0.819± 0.008 0.83± 0.002
NMI −0.013± 0.004 0.106± 0.013 −0.016± 0.005 0.124± 0.014 −0.018± 0.006 0.11± 0.016
UKL −0.093± 0.004 0.011± 0.011 −0.033± 0.002 0.01± 0.003 −0.038± 0.006 0.012± 0.005

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.002± 0.003 0.147± 0.023 0.003± 0.003 0.12± 0.013 0.004± 0.007 0.115± 0.018
Precision 0.336± 0.004 0.407± 0.013 0.355± 0.008 0.402± 0.013 0.353± 0.008 0.403± 0.013

Recall 0.351± 0.004 0.439± 0.016 0.368± 0.008 0.426± 0.015 0.367± 0.008 0.431± 0.014

RF
Accuracy 0.001± 0.006 0.115± 0.021 0.002± 0.004 0.315± 0.022 0.002± 0.008 0.231± 0.024
Precision 0.358± 0.005 0.396± 0.013 0.374± 0.006 0.441± 0.013 0.362± 0.007 0.429± 0.014

Recall 0.373± 0.005 0.409± 0.015 0.387± 0.006 0.502± 0.013 0.376± 0.008 0.481± 0.016

SVM
Accuracy 0.003± 0.004 0.086± 0.022 0.002± 0.003 0.039± 0.013 0.002± 0.006 0.055± 0.018
Precision 0.33± 0.006 0.332± 0.023 0.35± 0.008 0.283± 0.024 0.347± 0.011 0.328± 0.018

Recall 0.347± 0.004 0.338± 0.027 0.363± 0.008 0.27± 0.027 0.361± 0.011 0.327± 0.018

Subgroup Gap
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.858± 0.002 0.839± 0.005 0.887± 0.001 0.858± 0.005 0.866± 0.003 0.848± 0.006 0.794± 0.003 0.778± 0.006
NMI −0.014± 0.004 0.116± 0.014 −0.011± 0.004 0.148± 0.014 −0.013± 0.001 0.109± 0.016 −0.018± 0.002 0.083± 0.015
UKL −0.03± 0.003 0.005± 0.004 −0.129± 0.002 0.005± 0.005 −0.047± 0.005 0.011± 0.006 −0.034± 0.013 0.023± 0.011

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.002± 0.002 0.117± 0.018 0.003± 0.005 0.155± 0.019 0.001± 0.004 0.131± 0.017 0.004± 0.005 0.12± 0.016
Precision 0.352± 0.006 0.396± 0.014 0.334± 0.006 0.438± 0.012 0.343± 0.005 0.404± 0.011 0.357± 0.004 0.392± 0.009

Recall 0.365± 0.006 0.418± 0.018 0.347± 0.006 0.46± 0.016 0.356± 0.005 0.431± 0.013 0.371± 0.004 0.421± 0.01

RF
Accuracy 0.0± 0.006 0.26± 0.023 0.0± 0.005 0.221± 0.022 0.0± 0.004 0.168± 0.015 0.003± 0.005 0.141± 0.02
Precision 0.378± 0.005 0.441± 0.011 0.379± 0.005 0.458± 0.01 0.361± 0.006 0.425± 0.008 0.361± 0.004 0.393± 0.012

Recall 0.389± 0.005 0.485± 0.009 0.39± 0.005 0.476± 0.011 0.375± 0.006 0.45± 0.009 0.374± 0.004 0.426± 0.012

SVM
Accuracy 0.002± 0.002 0.047± 0.015 0.0± 0.003 0.076± 0.013 0.0± 0.004 0.063± 0.018 0.002± 0.005 0.073± 0.02
Precision 0.349± 0.006 0.267± 0.03 0.335± 0.006 0.29± 0.026 0.339± 0.007 0.297± 0.03 0.354± 0.007 0.364± 0.015

Recall 0.362± 0.005 0.258± 0.032 0.349± 0.006 0.273± 0.029 0.353± 0.007 0.295± 0.03 0.368± 0.006 0.372± 0.016

Table 7: Gap study on CARS196. Average gaps in representation space and downstream classification
(LR, RF, and SVM) over 10 seeds between minoritized and majoritized classes in manually class
imbalanced experiments (Imbalanced) and control experiments (Balanced) for CARS196.

C.2 CUB200

Additional results for all loss and batch mining strategies for the manually class imbalanced experi-
ments and balanced controls for CUB200 are located in Tables 9 and 10. K-Means was also tested as
a downstream classifier but showed poor performance. The impact of varying imbalance in the manu-
ally class imbalanced experiments in the upstream embedding, and all tested downstream classifiers
is displayed in Table 9. Additional results for benchmarking of further fairness improvement methods
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Table 8: Benchmarking additional fairness improvement methods in downstream classification on
CARS196 (Classes). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CARS196 in class imbalanced experiments with upstream
embedding trained on imbalanced dataset.

(a) Domain-Independent Training

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.812 ± 0.011 0.834 ± 0.009 0.820 ± 0.008 0.842 ± 0.008 0.869 ± 0.005 0.836 ± 0.007 0.742 ± 0.007
PRECISION 0.834 ± 0.009 0.861 ± 0.004 0.847 ± 0.004 0.872 ± 0.004 0.878 ± 0.005 0.865 ± 0.009 0.804 ± 0.008
RECALL 0.811 ± 0.011 0.833 ± 0.009 0.818 ± 0.008 0.840 ± 0.008 0.869 ± 0.005 0.834 ± 0.008 0.740 ± 0.008

Gap
ACCURACY 0.001 ± 0.027 0.010 ± 0.018 0.017 ± 0.021 0.018 ± 0.018 0.120 ± 0.018 0.022 ± 0.017 0.094 ± 0.021
PRECISION 0.304 ± 0.021 0.275 ± 0.021 0.313 ± 0.019 0.247 ± 0.027 0.398 ± 0.015 0.236 ± 0.022 0.289 ± 0.016
RECALL 0.260 ± 0.024 0.218 ± 0.022 0.258 ± 0.018 0.182 ± 0.027 0.398 ± 0.018 0.175 ± 0.022 0.177 ± 0.016

(b) Oversampling

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.851 ± 0.007 0.862 ± 0.004 0.853 ± 0.006 0.875 ± 0.004 0.878 ± 0.004 0.875 ± 0.005 0.820 ± 0.005
PRECISION 0.854 ± 0.006 0.864 ± 0.004 0.855 ± 0.006 0.877 ± 0.004 0.880 ± 0.005 0.876 ± 0.004 0.822 ± 0.005
RECALL 0.853 ± 0.006 0.862 ± 0.004 0.853 ± 0.006 0.875 ± 0.004 0.878 ± 0.004 0.875 ± 0.004 0.821 ± 0.005

Gap
ACCURACY 0.128 ± 0.023 0.099 ± 0.014 0.102 ± 0.020 0.097 ± 0.019 0.136 ± 0.017 0.108 ± 0.018 0.109 ± 0.019
PRECISION 0.398 ± 0.012 0.386 ± 0.017 0.391 ± 0.014 0.383 ± 0.015 0.422 ± 0.014 0.387 ± 0.013 0.387 ± 0.011
RECALL 0.423 ± 0.015 0.403 ± 0.017 0.414 ± 0.014 0.396 ± 0.019 0.436 ± 0.017 0.406 ± 0.015 0.413 ± 0.012
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Figure 8: Impact of varying imbalance between the minoritized and majoritized classes on various
downstream classifiers (RF, LR and SVM) in the manually class imbalanced CARS196 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase for all
classifiers downstream with more imbalance introduced to the upstream training data.

in downstream classification of "imbalanced" embeddings (aside from naive use of balanced datasets)
are shown in Table 11. Benchmarking of fairness improvement methods in downstream classification
for bird color are shown in Table 12. Per-subgroup and overall results for CUB200 color experiments
with standard margin-distance and PARADE are displayed in Table 13.

C.3 CELEBA

Additional results for all loss and batch mining strategies for the CelebA dataset are located in
Tables 14 and 15. Additional PARADE results for subgroup gaps excluding Fitzpatrick Skintone VI
(as mentioned in Section 6.3) are located in Table 16.
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Overall
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.79± 0.002 0.782± 0.005 0.786± 0.003 0.78± 0.005 0.775± 0.006 0.766± 0.006
NMI 0.872± 0.002 0.859± 0.003 0.861± 0.003 0.856± 0.004 0.856± 0.003 0.85± 0.005
UKL 0.397± 0.003 0.449± 0.007 0.076± 0.001 0.076± 0.001 0.113± 0.003 0.113± 0.002

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.815± 0.002 0.81± 0.005 0.815± 0.002 0.827± 0.006 0.809± 0.004 0.818± 0.005
Precision 0.817± 0.002 0.811± 0.005 0.822± 0.001 0.831± 0.006 0.815± 0.004 0.822± 0.005

Recall 0.815± 0.002 0.81± 0.005 0.816± 0.002 0.827± 0.006 0.81± 0.004 0.818± 0.005

RF
Accuracy 0.776± 0.002 0.787± 0.007 0.757± 0.003 0.735± 0.009 0.768± 0.002 0.758± 0.004
Precision 0.785± 0.003 0.793± 0.006 0.762± 0.003 0.737± 0.01 0.774± 0.002 0.762± 0.004

Recall 0.776± 0.002 0.787± 0.007 0.757± 0.003 0.735± 0.009 0.769± 0.002 0.758± 0.004

SVM
Accuracy 0.813± 0.002 0.811± 0.007 0.81± 0.002 0.82± 0.007 0.808± 0.004 0.815± 0.004
Precision 0.823± 0.003 0.821± 0.007 0.827± 0.002 0.843± 0.005 0.818± 0.003 0.829± 0.004

Recall 0.813± 0.002 0.811± 0.007 0.811± 0.002 0.82± 0.006 0.808± 0.003 0.815± 0.004

Overall
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.779± 0.006 0.788± 0.005 0.807± 0.004 0.8± 0.007 0.792± 0.003 0.795± 0.007 0.761± 0.004
NMI 0.857± 0.003 0.857± 0.004 0.873± 0.003 0.86± 0.005 0.866± 0.002 0.861± 0.005 0.848± 0.005 0.843± 0.004
UKL 0.139± 0.001 0.146± 0.002 0.056± 0.001 0.073± 0.001 0.274± 0.005 0.277± 0.005 0.336± 0.004 0.321± 0.007

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.813± 0.004 0.833± 0.004 0.824± 0.003 0.828± 0.005 0.82± 0.001 0.828± 0.005 0.802± 0.003 0.806± 0.004
Precision 0.82± 0.004 0.836± 0.004 0.828± 0.003 0.833± 0.005 0.826± 0.001 0.833± 0.006 0.808± 0.003 0.811± 0.004

Recall 0.814± 0.004 0.833± 0.004 0.824± 0.003 0.828± 0.005 0.82± 0.001 0.828± 0.005 0.803± 0.003 0.806± 0.005

RF
Accuracy 0.754± 0.003 0.754± 0.005 0.761± 0.006 0.768± 0.007 0.786± 0.004 0.789± 0.008 0.776± 0.003 0.774± 0.007
Precision 0.76± 0.004 0.755± 0.005 0.768± 0.007 0.774± 0.006 0.794± 0.004 0.792± 0.009 0.782± 0.003 0.778± 0.006

Recall 0.754± 0.003 0.755± 0.005 0.762± 0.006 0.768± 0.007 0.786± 0.004 0.789± 0.008 0.777± 0.003 0.774± 0.007

SVM
Accuracy 0.812± 0.002 0.828± 0.006 0.818± 0.002 0.816± 0.005 0.819± 0.002 0.83± 0.005 0.798± 0.001 0.808± 0.005
Precision 0.825± 0.003 0.848± 0.005 0.834± 0.002 0.852± 0.004 0.829± 0.003 0.845± 0.004 0.806± 0.002 0.816± 0.005

Recall 0.812± 0.002 0.828± 0.006 0.819± 0.002 0.817± 0.005 0.819± 0.002 0.831± 0.005 0.798± 0.001 0.808± 0.005

Table 9: Overall results on CUB200. Metrics over entire test dataset in representation space and
downstream classification (LR, RF, and SVM) over 10 seed in manually class imbalanced experiments
(Imbalanced) and control experiments (Balanced) for CUB200.

Subgroup Gap
Contrastive · Distance Margin · Distance Margin · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.011± 0.004 0.168± 0.028 0.008± 0.005 0.212± 0.029 0.01± 0.008 0.187± 0.031
NMI −0.009± 0.002 0.109± 0.015 −0.008± 0.005 0.112± 0.012 −0.009± 0.003 0.092± 0.017
UKL −0.112± 0.004 0.004± 0.011 −0.043± 0.002 0.0± 0.002 −0.05± 0.004 0.002± 0.004

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.014± 0.004 0.181± 0.029 0.008± 0.003 0.131± 0.027 0.009± 0.006 0.131± 0.031
Precision 0.333± 0.003 0.417± 0.012 0.337± 0.005 0.39± 0.014 0.331± 0.006 0.393± 0.015

Recall 0.354± 0.004 0.462± 0.016 0.356± 0.005 0.424± 0.018 0.351± 0.007 0.43± 0.016

RF
Accuracy 0.013± 0.004 0.121± 0.026 0.009± 0.005 0.325± 0.035 0.01± 0.006 0.255± 0.031
Precision 0.339± 0.007 0.386± 0.014 0.347± 0.006 0.428± 0.011 0.342± 0.007 0.418± 0.014

Recall 0.359± 0.006 0.391± 0.015 0.365± 0.006 0.495± 0.01 0.362± 0.007 0.478± 0.014

SVM
Accuracy 0.014± 0.003 0.106± 0.032 0.009± 0.004 0.043± 0.028 0.009± 0.006 0.058± 0.029
Precision 0.326± 0.008 0.36± 0.021 0.332± 0.008 0.301± 0.023 0.329± 0.006 0.329± 0.017

Recall 0.345± 0.007 0.362± 0.024 0.348± 0.008 0.278± 0.027 0.348± 0.006 0.323± 0.02

Subgroup Gap
Multisimilarity Proxy-NCA Triplet · Distance Triplet · Semi-hard

Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

UPSTREAM
EMBEDDING

Recall@1 0.008± 0.009 0.187± 0.031 0.01± 0.005 0.256± 0.03 0.009± 0.004 0.159± 0.031 0.009± 0.006 0.168± 0.036
NMI −0.008± 0.004 0.113± 0.016 −0.009± 0.004 0.142± 0.015 −0.007± 0.003 0.103± 0.016 −0.01± 0.006 0.082± 0.016
UKL −0.036± 0.002 −0.003± 0.003 −0.131± 0.003 −0.012± 0.005 −0.057± 0.006 −0.004± 0.009 −0.051± 0.005 0.014± 0.011

DOWNSTREAM
CLASSIFICATION

LR
Accuracy 0.009± 0.006 0.141± 0.032 0.007± 0.005 0.169± 0.027 0.011± 0.002 0.179± 0.031 0.011± 0.005 0.134± 0.031
Precision 0.337± 0.008 0.391± 0.016 0.337± 0.005 0.428± 0.018 0.335± 0.005 0.41± 0.014 0.336± 0.006 0.384± 0.014

Recall 0.356± 0.008 0.427± 0.019 0.356± 0.006 0.455± 0.019 0.355± 0.004 0.459± 0.016 0.357± 0.006 0.426± 0.016

RF
Accuracy 0.009± 0.006 0.282± 0.034 0.009± 0.009 0.214± 0.026 0.01± 0.005 0.192± 0.035 0.011± 0.004 0.175± 0.03
Precision 0.348± 0.006 0.428± 0.011 0.355± 0.01 0.436± 0.009 0.347± 0.006 0.409± 0.014 0.341± 0.007 0.393± 0.013

Recall 0.365± 0.005 0.48± 0.012 0.372± 0.01 0.443± 0.01 0.364± 0.007 0.44± 0.014 0.36± 0.006 0.437± 0.015

SVM
Accuracy 0.009± 0.003 0.048± 0.027 0.009± 0.003 0.063± 0.026 0.011± 0.003 0.071± 0.027 0.012± 0.002 0.082± 0.03
Precision 0.335± 0.005 0.307± 0.02 0.33± 0.006 0.347± 0.022 0.334± 0.006 0.324± 0.014 0.334± 0.005 0.34± 0.012

Recall 0.352± 0.004 0.284± 0.023 0.347± 0.004 0.299± 0.022 0.353± 0.006 0.315± 0.017 0.355± 0.005 0.356± 0.014

Table 10: Gap study on CUB200. Average gaps in representation space and downstream classification
(LR, RF, and SVM) over 10 seeds between minoritized and majoritized classes in manually class
imbalanced experiments (Imbalanced) and control experiments (Balanced) for CUB200.

C.4 LFW

Additional results for all loss and batch mining strategies for the LFW dataset are located in Tables 18
and 19. Per-subgroup results for LFW to demonstrate worst-group performance for the “White" sub-
group (as mentioned in Section 6.3) are located in Table 20. Benchmarking of fairness improvement
methods in downstream classification for bird color are shown in Table 21.
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Table 11: Benchmarking additional fairness improvement methods in downstream classification on
CUB200 (Classes). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CUB200-2011 in class imbalanced experiments with upstream
embedding trained on imbalanced dataset.

(a) Domain-Independent Training

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.782 ± 0.008 0.809 ± 0.004 0.794 ± 0.005 0.805 ± 0.004 0.823 ± 0.006 0.798 ± 0.005 0.749 ± 0.006
PRECISION 0.805 ± 0.011 0.840 ± 0.006 0.827 ± 0.005 0.847 ± 0.005 0.836 ± 0.006 0.842 ± 0.005 0.806 ± 0.006
RECALL 0.782 ± 0.008 0.809 ± 0.004 0.795 ± 0.005 0.805 ± 0.004 0.823 ± 0.006 0.798 ± 0.004 0.749 ± 0.005

Gap
ACCURACY 0.034 ± 0.033 0.003 ± 0.030 0.014 ± 0.031 0.024 ± 0.031 0.140 ± 0.030 0.024 ± 0.030 0.077 ± 0.031
PRECISION 0.340 ± 0.024 0.304 ± 0.031 0.301 ± 0.022 0.264 ± 0.028 0.410 ± 0.022 0.262 ± 0.032 0.270 ± 0.018
RECALL 0.308 ± 0.027 0.253 ± 0.035 0.249 ± 0.025 0.189 ± 0.031 0.415 ± 0.024 0.188 ± 0.036 0.177 ± 0.021

(b) Oversampling

METRIC ↓ Contr. (D) Margin (D) Margin (Sem.) Msim. ProxyNCA Triplet (D) Triplet (S)

Overall
ACCURACY 0.811 ± 0.005 0.828 ± 0.005 0.818 ± 0.004 0.832 ± 0.005 0.828 ± 0.005 0.829 ± 0.006 0.806 ± 0.005
PRECISION 0.814 ± 0.005 0.831 ± 0.005 0.822 ± 0.004 0.835 ± 0.005 0.833 ± 0.005 0.832 ± 0.006 0.811 ± 0.004
RECALL 0.812 ± 0.005 0.828 ± 0.005 0.819 ± 0.004 0.833 ± 0.005 0.828 ± 0.005 0.829 ± 0.006 0.807 ± 0.005

Gap
ACCURACY 0.182 ± 0.027 0.131 ± 0.028 0.129 ± 0.030 0.142 ± 0.035 0.170 ± 0.026 0.177 ± 0.032 0.135 ± 0.032
PRECISION 0.421 ± 0.011 0.386 ± 0.015 0.391 ± 0.016 0.391 ± 0.016 0.428 ± 0.016 0.409 ± 0.015 0.385 ± 0.013
RECALL 0.464 ± 0.015 0.420 ± 0.018 0.428 ± 0.018 0.426 ± 0.020 0.455 ± 0.017 0.457 ± 0.017 0.427 ± 0.015

Table 12: Benchmarking additional fairness improvement methods in downstream classification on
CUB200 (Color). Overall performance and subgroup gaps for Domain-Independent Training and
Oversampling (Wang et al., 2020b) on CUB200-2011 in bird color experiments.

(a) Domain-Independent Training

METRIC ↓ Margin (D)

Overall
ACCURACY 0.490 ± 0.005
PRECISION 0.896 ± 0.003
RECALL 0.489 ± 0.006

Gap
ACCURACY 0.426 ± 0.017
PRECISION 0.185 ± 0.108
RECALL 0.353 ± 0.108

(b) Oversampling

METRIC ↓ Margin (D)

Overall
ACCURACY 0.802 ± 0.002
PRECISION 0.816 ± 0.002
RECALL 0.802 ± 0.002

Gap
ACCURACY 0.143 ± 0.019
PRECISION 0.323 ± 0.063
RECALL 0.348 ± 0.064

C.5 EXPLORATION OF FAIRNESS - UTILITY TRADEOFF AND VARYING HYPERPARAMETERS IN
PARADE

We vary αSA and ρ in the PARADE objective to explore the relationship between the overall
performance, subgroup gap, and worst-group performance in PARADE. As stated in the main
paper, we optimize αSA and ρ via worst-group performance. Results of this analysis are displayed in
Figure 12. We use our exploration to expound on how to optimize for αSA and ρ. As seen in Figure 12,
a clear trend that inversely relates overall performance, and fairness as measured by subgroup gap and
worst-group performance is seen for the uniformity metric, UKL over the grid of αSA and ρ values
(Note that higher values of UKL correspond to worse performance). Recall@1 and NMI demonstrate
noisier relationships between overall performance and fairness; and several αSA, ρ choices appear to
select an optimal tradeoff. In Figure 12, for Recall@1, we observe that at the location αSA = 0.1,
ρ = 500. in the optimization grid, PARADE reaches peak overall performance and fairness (measured
by low subgroup gap and high performance for the worst-performing subgroup) simultaneously. Thus,
we could conclude that this choice of αSA and ρ represents an optimal tradeoff for utility and fairness
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Color overall overall black black blue blue brown brown

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.785± 0.003 0.786± 0.003 0.780± 0.006 0.777± 0.005 0.837± 0.016 0.841± 0.010 0.773± 0.005 0.779± 0.008
NMI 0.860± 0.001 0.861± 0.003 0.832± 0.005 0.837± 0.004 0.840± 0.025 0.863± 0.026 0.831± 0.013 0.838± 0.007
UKL 0.071± 0.002 0.076± 0.001 0.164± 0.002 0.153± 0.003 0.296± 0.004 0.275± 0.007 0.156± 0.004 0.148± 0.003

Precision 0.819± 0.003 0.822± 0.001 0.403± 0.007 0.412± 0.016 0.399± 0.053 0.401± 0.022 0.396± 0.005 0.390± 0.016
Recall 0.812± 0.003 0.816± 0.002 0.375± 0.007 0.384± 0.014 0.367± 0.052 0.366± 0.022 0.357± 0.008 0.351± 0.016

Accuracy 0.812± 0.003 0.815± 0.002 0.790± 0.009 0.798± 0.004 0.867± 0.009 0.877± 0.011 0.804± 0.001 0.812± 0.006

Color buff buff green green grey grey iridescent iridescent olive

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade

Recall@1 0.787± 0.008 0.792± 0.006 1.000± 0.000 1.000± 0.000 0.751± 0.015 0.754± 0.010 1.000± 0.000 1.000± 0.000 0.589± 0.038
NMI 0.789± 0.005 0.808± 0.015 −0.000± 0.000 −0.000± 0.000 0.853± 0.009 0.849± 0.004 1.000± 0.000 0.800± 0.447 −0.000± 0.000
UKL 0.349± 0.003 0.343± 0.004 0.262± 0.024 0.252± 0.021 0.142± 0.005 0.137± 0.002 0.369± 0.013 0.318± 0.017 0.164± 0.008

Precision 0.250± 0.006 0.253± 0.013 1.000± 0.000 1.000± 0.000 0.337± 0.014 0.338± 0.022 1.000± 0.000 1.000± 0.000 0.289± 0.077
Recall 0.209± 0.005 0.212± 0.012 1.000± 0.000 1.000± 0.000 0.292± 0.013 0.297± 0.021 1.000± 0.000 1.000± 0.000 0.173± 0.048

Accuracy 0.824± 0.003 0.824± 0.011 1.000± 0.000 1.000± 0.000 0.790± 0.007 0.796± 0.006 1.000± 0.000 1.000± 0.000 0.600± 0.033

Color olive orange orange red red white white yellow yellow

Method Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.620± 0.087 0.839± 0.010 0.863± 0.040 0.917± 0.018 0.919± 0.017 0.729± 0.012 0.706± 0.011 0.846± 0.003 0.862± 0.012
NMI 0.000± 0.000 0.701± 0.060 0.657± 0.036 0.839± 0.032 0.830± 0.033 0.792± 0.008 0.787± 0.010 0.842± 0.011 0.864± 0.005
UKL 0.151± 0.005 0.295± 0.004 0.277± 0.009 0.445± 0.003 0.411± 0.011 0.176± 0.003 0.166± 0.003 0.215± 0.005 0.202± 0.004

Precision 0.240± 0.063 0.302± 0.027 0.303± 0.079 0.555± 0.052 0.559± 0.048 0.387± 0.018 0.380± 0.012 0.503± 0.012 0.530± 0.022
Recall 0.160± 0.049 0.261± 0.024 0.263± 0.076 0.542± 0.053 0.544± 0.049 0.357± 0.018 0.342± 0.011 0.481± 0.011 0.509± 0.022

Accuracy 0.660± 0.060 0.867± 0.017 0.860± 0.028 0.923± 0.017 0.927± 0.009 0.752± 0.004 0.737± 0.002 0.879± 0.001 0.884± 0.008

Table 13: Absolute performance for all CUB200 subgroups. Metrics over each bird color subgroup in
the CUB200 test dataset respectively, in representation space and downstream classification (logistic
regressor) over 3 seeds for standard methods and PARADE in CUB200.
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Figure 9: Impact of varying imbalance between the minoritized and majoritized classes on various
downstream classifiers (RF, LR and SVM) in the manually class imbalanced CUB200 experiments.
(Note: the imbalance percentage 50− 50 is equivalent to the balanced setting). Gaps increase for all
classifiers downstream with more imbalance introduced to the upstream training data.

Overall
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.897± 0.002 0.888± 0.002 0.885± 0.002 0.922± 0.001 0.11± 0.002
NMI 0.91± 0.0 0.902± 0.001 0.901± 0.003 0.929± 0.0 0.61± 0.0
UKL 0.019± 0.001 0.017± 0.0 0.336± 0.013 0.237± 0.006 2.595± 0.055

DOWNSTREAM
CLASSIFICATION LR

Accuracy 0.891± 0.0 0.89± 0.001 0.692± 0.004 0.831± 0.002 0.017± 0.0
Precision 0.721± 0.0 0.721± 0.001 0.55± 0.003 0.652± 0.003 0.004± 0.0

Recall 0.74± 0.0 0.741± 0.001 0.546± 0.003 0.674± 0.003 0.011± 0.0

Table 14: Overall results on CelebA. Metrics over entire test dataset in representation space and
downstream classification (logistic regressor) over 3 seeds for standard methods and PARADE in
CelebA.

in PARADE as measured by Recall@1. By the other displayed metrics, we see that αSA = 0.1,
ρ = 500. demonstrates a reasonable utility-fairness tradeoff. Therefore, the choice of αSA = 0.1,
ρ = 500. would be optimal for PARADE in CUB200 bird color setting. Note that the choice of
where to operate within this trade-off should depend on the application that is being targeted. For
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Subgroup Gap
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.135± 0.008 0.128± 0.003 0.085± 0.009 0.122± 0.005 −0.023± 0.013
NMI −0.003± 0.004 −0.01± 0.002 −0.012± 0.003 −0.002± 0.003 −0.102± 0.002
UKL −0.054± 0.003 −0.052± 0.003 −0.04± 0.011 −0.03± 0.007 −0.015± 0.038

DOWNSTREAM
CLASSIFICATION LR

Accuracy 0.068± 0.002 0.069± 0.002 0.131± 0.006 0.082± 0.005 0.006± 0.002
Precision 0.087± 0.003 0.087± 0.004 0.146± 0.006 0.1± 0.007 0.001± 0.001

Recall 0.084± 0.002 0.083± 0.003 0.141± 0.007 0.098± 0.007 0.002± 0.001

Table 15: Gap study on CelebA. Average gaps in representation space and downstream classification
(logistic regressor) over 3 seeds between minoritized and majoritized classes (Fitzpatrick Skintone)
for standard methods and PARADE in CelebA.

Margin · Distance
PARADE Standard

UPSTREAM
EMBEDDING

Recall@1 −0.035± 0.006 0.005± 0.004
NMI −0.004± 0.003 0.004± 0.002
UKL 0.04± 0.011 0.084± 0.006

DOWNSTREAM
CLASSIFICATION (LR)

Precision 0.021± 0.006 0.039± 0.002
Recall 0.018± 0.006 0.029± 0.002

Accuracy 0.011± 0.005 0.018± 0.002

Table 16: Gap study on CelebA excluding Fitzpatrick Skintone VI. Average gaps in representation
space and downstream classification (logistic regressor) over 3 seeds between minoritized and
majoritized classes (Fitzpatrick Skintone) where the darkest skintone (VI) is excluded for standard
methods and PARADE in CelebA.

Skintones Overall Overall Skintone 1 Skintone 1 Skintone 2 Skintone 2 Skintone 3

Method Parade Margin (D) Parade Margin (D) Parade Margin (D) Parade

Recall@1 0.885± 0.002 0.922± 0.001 0.738± 0.005 0.858± 0.011 0.887± 0.004 0.930± 0.001 0.907± 0.001
NMI@1 0.901± 0.003 0.929± 0.000 0.933± 0.007 0.961± 0.000 0.923± 0.004 0.947± 0.001 0.927± 0.002
UKL 0.336± 0.013 0.237± 0.006 0.436± 0.020 0.419± 0.002 0.350± 0.014 0.260± 0.004 0.350± 0.012

Precision 0.550± 0.003 0.652± 0.003 0.398± 0.011 0.639± 0.005 0.566± 0.003 0.696± 0.002 0.558± 0.003
Recall 0.546± 0.003 0.674± 0.003 0.421± 0.014 0.656± 0.005 0.604± 0.003 0.739± 0.003 0.578± 0.003

Accuracy 0.692± 0.004 0.831± 0.002 0.578± 0.009 0.783± 0.004 0.707± 0.004 0.843± 0.002 0.716± 0.004

Skintones Skintone 3 Skintone 4 Skintone 4 Skintone 5 Skintone 5 Skintone 6 Skintone 6

Method Margin (D) Parade Margin (D) Parade Margin (D) Parade Margin (D)

Recall@1 0.937± 0.003 0.850± 0.002 0.893± 0.003 0.785± 0.017 0.838± 0.004 0.642± 0.018 0.628± 0.006
NMI@1 0.947± 0.001 0.927± 0.002 0.946± 0.000 0.943± 0.002 0.957± 0.004 0.948± 0.004 0.960± 0.009
UKL 0.241± 0.006 0.339± 0.012 0.240± 0.008 0.371± 0.012 0.288± 0.013 0.547± 0.010 0.483± 0.014

Precision 0.672± 0.003 0.471± 0.005 0.644± 0.003 0.355± 0.011 0.570± 0.001 0.258± 0.005 0.492± 0.021
Recall 0.708± 0.003 0.518± 0.005 0.695± 0.002 0.386± 0.011 0.602± 0.001 0.275± 0.005 0.511± 0.019

Accuracy 0.842± 0.003 0.632± 0.005 0.798± 0.002 0.545± 0.009 0.747± 0.002 0.430± 0.010 0.678± 0.015

Table 17: Absolute performance for all CelebA subgroups. Metrics over each Fitzpatrick Skintone
subgroup in the CelebA test dataset respectively, in representation space and downstream classification
(logistic regressor) over 3 seeds for standard methods and PARADE in CelebA.

example, here we use Recall@1 to determine the optimal choice of hyperparameters and validate
with the other two considered metrics. However, for LFW, which has a high population of singleton
classes (see Figure 7), NMI would be a better metric to use for selecting optimal point.

D IMPLEMENTATION DETAILS

D.1 DATASET ATTRIBUTE INFORMATION

Dataset manipulation for the CARS196 and CUB200 manually class imbalanced experimentsis
explained in Section 3.3.
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Sensitive Target class
II
III
IV
V
VI
I

Figure 10: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for Fitzpatrick Skintone CelebA experiments: the sensitive attribute embedding (left) and the class
label embedding (right).

Overall
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.268± 0.01 0.306± 0.008 0.329± 0.002 0.381± 0.004 0.187± 0.006
NMI 0.849± 0.005 0.859± 0.002 0.865± 0.001 0.869± 0.001 0.854± 0.001
UKL 0.118± 0.021 0.089± 0.014 0.129± 0.001 0.103± 0.001 1.815± 0.011

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.8± 0.0 0.804± 0.017 0.762± 0.002 0.8± 0.003 0.887± 0.002
Precision 0.789± 0.003 0.793± 0.016 0.767± 0.001 0.788± 0.004 0.878± 0.003

Recall 0.827± 0.0 0.831± 0.015 0.801± 0.003 0.823± 0.003 0.913± 0.002

Table 18: Overall results on LFW. Metrics over entire test dataset in representation space and
downstream classification (random forest) over 3 seeds for standard methods and PARADE in LFW.
Note: Due to the number of singleton classes in LFW, Recall@1 is not considered a good metric of
performance for this dataset.

Subgroup Gap
Arcface Margin · Distance N-Pair · N-Pair

PARADE Standard PARADE Standard Standard

UPSTREAM
EMBEDDING

Recall@1 0.039± 0.017 0.061± 0.017 0.075± 0.014 0.068± 0.013 0.054± 0.01
NMI 0.048± 0.011 0.057± 0.003 0.041± 0.003 0.048± 0.003 0.048± 0.003
UKL 0.176± 0.019 0.157± 0.011 0.163± 0.003 0.165± 0.005 0.357± 0.012

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.04± 0.01 0.038± 0.012 0.049± 0.005 0.038± 0.005 0.025± 0.004
Precision 0.036± 0.018 0.041± 0.014 0.04± 0.005 0.037± 0.007 0.025± 0.007

Recall 0.066± 0.017 0.076± 0.015 0.066± 0.006 0.071± 0.007 0.041± 0.006

Table 19: Gap study on LFW. Average gaps in representation space and downstream classification
(random forest) over 3 seeds between minoritized and majoritized classes (Race) for standard methods
and PARADE in LFW.

Asian Black Indian White
Margin · Distance

PARADE Standard PARADE Standard PARADE Standard PARADE Standard

UPSTREAM
EMBEDDING

Recall@1 0.262± 0.028 0.31± 0.014 0.289± 0.011 0.331± 0.016 0.238± 0.027 0.325± 0.032 0.338± 0.004 0.39± 0.004
NMI 0.894± 0.003 0.914± 0.005 0.858± 0.001 0.882± 0.005 0.948± 0.007 0.951± 0.007 0.862± 0.001 0.868± 0.0
UKL 0.304± 0.003 0.265± 0.003 0.456± 0.009 0.417± 0.013 0.141± 0.002 0.133± 0.005 0.137± 0.002 0.107± 0.001

DOWNSTREAM
CLASSIFICATION RF

Accuracy 0.81± 0.007 0.828± 0.008 0.827± 0.005 0.853± 0.007 0.772± 0.011 0.814± 0.012 0.754± 0.002 0.794± 0.003
Precision 0.715± 0.012 0.726± 0.013 0.743± 0.008 0.759± 0.014 0.664± 0.006 0.711± 0.01 0.747± 0.002 0.769± 0.004

Recall 0.713± 0.013 0.72± 0.014 0.751± 0.008 0.758± 0.01 0.657± 0.008 0.702± 0.011 0.773± 0.002 0.798± 0.003

Table 20: Absolute performance for all LFW subgroups. Metrics over each Race subgroup in the
LFW test dataset respectively, in representation space and downstream classification (random forest)
over 3 seeds for standard methods and PARADE in LFW.

For CUB200 bird color experiments, we utilized the labeled bird color attributes from Wah et al.
(2011). Each image can have multiple “primary color" labels. Therefore, we take the mode over
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Table 21: Benchmarking additional fairness improvement methods in downstream classification
on LFW. Overall performance and subgroup gaps for Domain-Independent Training and Oversam-
pling (Wang et al., 2020b) on LFW with Race attribute.

(a) Domain-Independent Training

METRIC ↓ ArcFace Margin (D) N-Pair

Overall
ACCURACY 0.759 ± 0.017 0.753 ± 0.002 0.861 ± 0.005
PRECISION 0.793 ± 0.010 0.786 ± 0.003 0.872 ± 0.003
RECALL 0.799 ± 0.012 0.792 ± 0.003 0.889 ± 0.003

Gap
ACCURACY 0.093 ± 0.011 0.095 ± 0.006 0.029 ± 0.009
PRECISION 0.030 ± 0.011 0.020 ± 0.009 0.029 ± 0.010
RECALL 0.040 ± 0.012 0.044 ± 0.008 0.026 ± 0.010

(b) Oversampling

METRIC ↓ ArcFace Margin (D) N-Pair

Overall
ACCURACY 0.775 ± 0.017 0.767 ± 0.004 0.881 ± 0.004
PRECISION 0.771 ± 0.014 0.762 ± 0.002 0.873 ± 0.005
RECALL 0.815 ± 0.014 0.807 ± 0.002 0.909 ± 0.004

Gap
ACCURACY 0.070 ± 0.012 0.072 ± 0.006 0.032 ± 0.006
PRECISION 0.020 ± 0.013 0.024 ± 0.009 0.027 ± 0.009
RECALL 0.023 ± 0.013 0.031 ± 0.011 0.036 ± 0.008

Sensitive Target class
White
Indian
Black
Asian

Figure 11: A t-SNE (Maaten & Hinton, 2008) visualization of the two distinct PARADE embeddings
for Race LFW experiments: the sensitive attribute embedding (left) and the class label embedding
(right).

Dataset Protected Attribute
Protected Attribute

Values

CUB200-2011 Color
Black, Blue, Brown, Buff, Green, Grey, Iridescent

Olive, Orange, Red, White, Yellow

CelebA
Fitzpatrick Skintone

Category I, II, III, IV, V, VI
LFW Race Asian, Black, Indian, White

Table 22: Summarizing attribute information. Protected attribute examined and associated values
taken by the protected attribute in each dataset analyzed w.r.t. a sensitive attribute in the main paper
(CUB200, CelebA, LFW).

all bird colors labeled for each image in order to determine a single bird color associated with the
image. For CelebA, we calculate the Fitzpatrick skintone based on the image pixel information for
each image. The calculation is described in Section D.2. For LFW, we construct the “Race" attribute
from labels of “White", “Black", “Asian," and “Indian" as labelled by Kumar et al. (2009). For each
of these attributes, the labelling provided by Kumar et al. (2009) has a float value, which we map
to binary values: the image is considered to have the attribute if the value is greater than 0, and the
image is considered to not have the attribute if the value is less than 0. Naturally, the labelling is not
necessarily correct for each image, as the confidence about the “Race" labelling can be quite low for
some images. We remove all images without at least one of these attributes, though we note that
these attributes do not encompass all races. Therefore, our analysis may not be relevant for other
races not labelled by Kumar et al. (2009).
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Figure 12: Exploring fairness-utility tradeoffs in PARADE on CUB200 over grid of αSA and ρ values.
Overall performance (left column), subgroup gap (middle column) and worst-group performance
(right column) over metrics Recall@1 (top row), NMI (middle row), and UKL (bottom row) in
PARADE on CUB200. αSA and ρ in PARADE objective (Section 4) varied from 0.1 to 0.9, and 1 to
3000, respectively.

D.2 FITZPATRICK SKINTONE CALCULATION

We follow the methods from Cheng et al. (2021) for calculation of Fitzpatrick Skintone based on
image pixel information. However, we calculate these values for CelebA, as opposed to CelebA-
HQ. As CelebA-HQ incorporates higher resolution images, but has fewer images, our process of
Fitzpatrick Skintone calculation on CelebA is slightly modified to account for lower resolution, and
differing image size.

In Cheng et al. (2021), two sample skin patches are selected from each image of CelebA-HQ to
determine the skintone. We select three sample skin patches, as we are forced to reduce the dimensions
of the patches to account for the smaller image size of CelebA. Additionally, we leverage facial
landmark attributes provided by CelebA Liu et al. (2015) in order to choose our sample patches.
Specifically, given the (x, y) landmarks for the left eye, right eye, and nose for each image, we choose
to sample square patches of size 20× 20 (all 3 color channels are selected) with the following center
points:

(xleft eye, ynose)

(xright eye, ynose)

(xnose, ynose)

The first two center points are intended to capture the likely location of the left and right cheeks,
respectively, as these are likely located below each eye and adjacent to the nose. The last center
point is the nose. We note that this protected attribute generation is not perfect. In some cases, such
label generation can accidentally use aspects of the background, if, the individual’s face position
in the image is not facing forward. Also, extreme lighting can lead to misclassification of skintone.
Nonetheless, we believe the procedure provides a good approximation of Fitzpatrick skintone category,
but do not recommend these attribute labels for use outside of fairness analysis.

30



Published as a conference paper at ICLR 2022

The selected sample patches are converted to CIELab-space to retrieve the L (luminance) and b
(yellow) values. We then calculate the Mean Individual Typology Angle (ITA) value:

ITA = arctan

(
L− 50

b

)
× 180◦

π

Table 23: Fitzpatrick Skin Tone Categories corresponding to Mean ITA values, information taken
from Cheng et al. (2021)

ITA Range Fitzpatrick Category Description

50 ≤ ITA I Extremely Light
40 ≤ ITA < 50 II Very Light
30 ≤ ITA < 40 III Light / Somewhat Light
20 ≤ ITA < 30 IV Dark / Somewhat Dark
10 ≤ ITA < 20 V Very Dark

ITA < 10 VI Extremely Dark

Based on the Mean ITA calculation, we classify each image into one of the 6 Fitzpatrick skintone
categories, as listed in Table 23. To calculate subgroup gaps, we calculate gaps between the mean
value over the 3 lightest Fitzpatrick skintones and the mean value over the 3 darkest Fitzpatrick
skintones.

D.3 TRAINING PARAMETERS

For CUB200 and CARS196, we did not perform hyperparameter search but followed reported
hyperparameters from Roth et al. (2020c) for best performance with an ImageNet Deng et al. (2009)
pretrained ResNet50 He et al. (2016) and frozen batch normalization layers. As detailed in Roth
et al. (2020c), we train for 150 epochs with embedding dimension 128, learning rate 0.00001
with no scheduler, and weight decay 0.0004. We train with a batch size of 128, with the Adam
optimizer Kingma & Ba (2015) over five seeds inclusive for the balance control datasets, and for
CUB200 color experiments; and seeds 0 − 9 for the manually class imbalanced experiments. For
training transforms, we normalize each image using color channel means (0.485, 0.456, 0.406) and
standard deviations (0.229, 0.224, 0.225), randomly crop the image and re-size to 224 × 224 and
horizontally flip with probability 0.5. For testing transforms, we normalize each image with the
aforementioned color channel means and standard deviations, resize to 256× 256, and center crop to
224× 224.

For CelebA and LFW, we performed hyperparameter search over the following hyperparameters:
architectures: ResNet50 He et al. (2016), and SE-Net50 (both with and without frozen batch
normalization layers); number of training epochs; learning rates; last linear layer learning rate
(differ from other layer learning rates); learning rate schedulers; embedding dimensions: 64, 128,
256; pre-training; image augmentations. We evaluated hyperparameter sets on a validation set we
cut from the typical training set (20% of training set), and chose the set of hyperparameters with
best recall@k score for CelebA and best NMI score for LFW. NMI is used for LFW due to the high
number of singleton classes present in the dataset (recall@1 is meaningless for singleton classes).

For CelebA, we train on the ResNet50 He et al. (2016) architecture with frozen batch normaliza-
tion layers, for 125 epochs with learning rate 0.00001, and no scheduler, weight decay 0.0004,
Adam Kingma & Ba (2015) optimizer, and batch size of 128. For training transforms, we normalize
each image using color channel means (0.5, 0.5, 0.5) and standard deviations (0.5, 0.5, 0.5), resize to
256× 256, center crop to 224× 224 and horizontally flip with probability 0.5. For testing transforms,
we normalize each image with the aforementioned color channel means and standard deviations,
resize to 256× 256, and center crop to 224× 224. We average over runs with seeds 0− 2, inclusive.

For LFW, we train on the ResNet50 He et al. (2016) architecture with frozen batch normalization
layers, for 125 epochs with initial learning rate 0.00001 for all model parameters except the last linear
layer, which has initial learning rate 0.0001, and a multi-step learning rate scheduler which reduces
the learning rate by a factor of 0.3 at epochs 50 and 100, weight decay 0.0004, Adam Kingma & Ba
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(2015) optimizer, and batch size of 64. For training transforms, we normalize each image using color
channel means (0.5, 0.5, 0.5) and standard deviations (0.5, 0.5, 0.5), resize to 256× 256, center crop
to 224× 224 and horizontally flip with probability 0.5. For testing transforms, we normalize each
image with the aforementioned color channel means and standard deviations, resize to 256× 256,
and center crop to 224× 224. We average over runs with seeds 0− 2, inclusive.

For each dataset we chose a set of loss and batch mining strategies that have historically been used
for the relevant task, encompassing a broad range of methods, and / or achieved good performance.
However, for n-pair loss and sampling, good performance was not achieved for the facial datasets
despite use in the past for facial recognition Sohn (2016). For manually class imbalanced experiments
with CARS196 and CUB200 and the associated balanced controls, we used: margin loss / distance-
weighted sampling, margin loss / semi-hard sampling, triplet loss / distance-weighted sampling, triplet
loss / semi-hard sampling, contrastive loss / distance-weighted sampling, multisimilarity loss, and
proxy-NCA loss. For the color experiments with CUB200, we used: margin loss / distance-weighted
sampling. For CelebA and LFW, we used: margin loss / distance-weighted sampling, arcface loss,
and n-pair loss and sampling. For all testing and evaluation experiments with PARADE, we used
margin loss and distance-weighted sampling, but PARADE can be used with any loss and mining
strategy.

DML-specific parameters Here we list the hyperparameters that we use for each evaluated loss
function and batch mining strategy, if applicable. Refer to A for explicit formulas associated with the
parameters here. We set γ = 0.2 in semi-hard mining. For distance-weighted mining, we set λ = 0.5
and clip the maximum distance to 1.4. In the triplet objective, we use γ = 0.2 for triplet loss. For
margin loss, the learning rate of the boundary β is set to 0.0005, with initial value 1.2 and triplet
margin γ = 0.2. For N-Pair uses embedding regularization parameter ν = 0.005. In Multisimilarity
loss, we use α = 2, β = 40, λ = 0.5 and ϵ = 0.1. Finally, for ArcFace, additive angular margin
penalty is set to γ = 0.5, while scaling parameter s = 16 and class centers are optimized with
learning rate 0.0005.

The two PARADE parameters, αSA and ρ, as described in Section 4, were optimized via worst-group
performance over a grid search. For CUB200, we set αSA = 0.3, ρ = 1500. For CelebA, we set
αSA = 0.1, ρ = 1000. For LFW, we set αSA = 0.3, ρ = 100.

D.4 FAIRNESS EVALUATION

For each dataset, we calculate subgroup gaps between the majoritized and minoritized subgroup
(CARS196, CUB200 class, CelebA) or between the worst-performing subgroup and other subgroups
(LFW). In CUB200 color experiments, due to the large number of subgroups, we calculate the gap
between the top 6 performing subgroups and the bottom 6 performing subgroups (there are 12 total
subgroups).

Upstream In the upstream embedding tasks, in which we denote ϕ as the embedding function for
the learned model, and use A(x) to denote the value of the attribute A for data point x, we calculate
recall@1 for data samples in X with associated class label Y and attribute a ∈ A as:

Recall@k =
1

|{x ∈ X : A(x) = a}|
∑

{x∈X:A(x)=a}

{
1 ∃x̃ ∈ NNk(x) : Y (x̃) = Y (x)

0 else

Note here that the nearest neighbors function is computed with respect to all x ∈ X , not exclusively
x ∈ X with attribute a ∈ A, but the input to the nearest neighbors function is exclusively {x ∈ X :
A(x) = a}. To calculate NMI, let C be the output of a clustering algorithm C on the entire dataset
X , i.e. C = C(X) and let C|S denote the output of clustering algorithm C restricted to some subset
S ⊂ X . The important note here is that the clustering algorithm is run over the entire dataset, but
C|S expresses the cluster labels only for S ⊂ X . Then, we measure NMI for data samples in X with
associated class label Y and attribute a ∈ A as:

NMI =
I(Y ({x ∈ X : A(x) = a}); C|{x∈X:A(x)=a})

H(Y ({x ∈ X : A(x) = a})) +H(C|{x∈X:A(x)=a})

We calculate UKL for data samples in X with attribute a ∈ A as:
UKL(X) = DKL

(
UD,Sϕ({x∈X:A(x)=a})

)
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where Sϕ({x∈X:A(x)=a}) denotes the singular values over ϕ({x ∈ X : A(x) = a}).

Downstream In the downstream tasks, for data samples in X with class label Y , and predictor Ŷ ,
let Y (x) express the value of the ground-truth label for data sample x and let Ŷ (x) express the value
of the predicted label. Then, we denote TP (y)

a the number of true positives with attribute a ∈ A:

TP (y)
a = {x ∈ X : A(x) = a, Y (x) = y, Ŷ (x) = y}

FP
(y)
a the number of false positives with attribute a ∈ A

FP (y)
a = {x ∈ X : A(x) = a, Y (x) = y, Ŷ (x) ̸= y}

and FN (y)
a the number of false negatives with attribute a ∈ A:

FN (y)
a = {x ∈ X : A(x) = a, Y (x) ̸= y, Ŷ (x) = y}

for y ∈ Y .

We calculate macro-averaged recall for data samples in X with associated class label Y and attribute
a ∈ A as:

Recall =
1

|Y |
∑
y∈Y

TP
(y)
a

TP
(y)
a + FN

(y)
a

where |Y | is the number of possible class labels, i.e. the size of the set of all possible values of Y . We
calculate macro-averaged precision for data samples in X with associated class label Y and attribute
a ∈ A as:

Precision =
1

|Y |
∑
y∈Y

TP
(y)
a

TP
(y)
a + FP

(y)
a

We calculate accuracy for data samples in X with associated class label Y and attribute a ∈ A as:

Accuracy =
|{x ∈ X : A(x) = a, Y (x) = Ŷ (x)}|

|{x ∈ X : A(x) = a}|

The subgroup gaps are then considered to be the difference between the metric value for the majori-
tized subgroup and the metric value for the minoritized subgroup (CARS196, CUB200, CelebA);
or between the metric value for each subgroup with better performance than the worst-performing
subgroup and the metric value for the worst-performing subgroup (LFW). As stated in Section D.4,
for CUB200 bird color experiments, the subgroup gaps were calculated between the top performing
50% of subgroups and bottom performing 50 of subgroups.
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