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Abstract

In the post-training of large language models (LLMs), Reinforcement Learning from Human
Feedback (RLHF) is an effective approach to achieve generation aligned with human prefer-
ences. Direct Preference Optimization (DPO) allows for policy training with a simple binary
cross-entropy loss without a reward model. The objective of DPO is regularized by reverse
KL divergence that encourages mode-seeking fitting to the reference policy. Nonetheless,
we indicate that minimizing reverse KL divergence could fail to capture a mode of the ref-
erence distribution, which may hurt the policy’s performance. Based on this observation,
we propose a simple modification to DPO, H-DPO, which allows for control over the en-
tropy of the resulting policy, enhancing the distribution’s sharpness and thereby enabling
mode-seeking fitting more effectively. In our experiments, we show that H-DPO outper-
formed DPO across various tasks, demonstrating superior results in pass@k evaluations for
mathematical tasks. Moreover, H-DPO is simple to implement, requiring only minor modi-
fications to the loss calculation of DPO, which makes it highly practical and promising for
wide-ranging applications in the training of LLMs.

1 Introduction

Large language models (LLMs) have exhibited remarkable performance across various tasks (OpenAI et al.,
2023; Dubey et al., 2024). However, large datasets often include data created for various purposes, and the
models trained on these datasets are not always suitable for users’ specific needs. Additionally, some datasets
include malicious text and code related to cyberattacks, posing risks of misuse by humans or the AI itself
(Bender et al., 2021; Bai et al., 2022; Ji et al., 2023; Shevlane et al., 2023).

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Bai et al., 2022) is an
effective approach to make an LLM follow human instructions and suppressing undesired outputs. In RLHF,
a reward model is trained based on data evaluated according to human preferences. The LLM then learns
to maximize rewards, aligning its outputs with human preferences. To prevent significant deviation from
the original model, regularization using reverse KL divergence is added to the reward maximization process,
and RL algorithms such as PPO (Schulman et al., 2017) are employed.

However, RLHF has issues such as high computational costs, the reliance on a learned reward model, and
the inherent instability and hyperparameter sensitivity of RL algorithms. To address these problems, Direct
Policy Optimization (DPO) (Rafailov et al., 2023) has emerged and is now widely used. DPO proposes a loss
function that directly optimizes the policy through a change of variables, eliminating the need for the reward
model and allowing training with a simple binary cross-entropy loss. While more stable and lightweight
than RLHF, DPO can optimize the same objective function as RLHF, which involves reward maximization
and regularization with the reverse KL divergence. Other types of divergences have also been proposed to
prevent deviation from the original model (Wang et al., 2024a), but reverse KL divergence, which enables
mode-seeking estimation, is generally preferred for performance.

We point out that minimizing reverse KL divergence can cause the mode of the fitted distribution to fail to
capture the mode of the target distribution. As shown in Figure 1, consider fitting a unimodal distribution to
a multimodal distribution. We call the way of fitting a distribution mode-seeking when one of the modes of
target distribution is captured by the fitted model as shown in the right side of Figure 1, and mode-covering
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when all the modes are covered as shown in the left side of Figure 1. In the case of mode-seeking, the
fitted distribution discards other modes of the target distribution, resulting in smaller variance than the
target distribution. However, reverse KL minimization can fail at mode-seeking fitting due to its nature of
preserving variance, as illustrated in the left side of Figure 1.
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Figure 1: For a Gaussian mixture model πref, π̂ that
minimizes DKL (left) and π̂ that minimizes Dα =
−αH(π) + H(π, πref) with α = 0.6 (right). Using Dα

results in successful mode-seeking estimation.

To enable variance reduction and encourage mode-
seeking estimation, we generalize the loss function of
DPO, named H-DPO, which allows for controlling
the distribution’s entropy H(π) by modifying the
regularization term. H-DPO can adjust the entropy
of generations of the LLM during training using the
hyperparameter α in Equation (9) introduced later.
By setting α less than 1, it encourages the entropy
to be reduced so that achieves mode-seeking fitting
more successfully. The right side of Figure 1 demon-
strates that our regularizer Dα, a modification to
the reverse KL, enables mode-seeking fitting even in
cases where reverse KL fails, as shown on the left.

Using our proposed loss with α < 1, the estimated
policy distribution is expected to be sharper or more
deterministic, which we consider a beneficial feature
rather than a problem. Traditional LLMs use a softmax function with a temperature parameter to represent
distributions over raw outputs, where the temperature is set to 1 during training. When LLMs are evaluated,
a lower value such as 0.6 often performs better (Xu et al., 2022; OpenAI et al., 2023; Zhu et al., 2024). This
post-training sharpening lacks guarantees of optimality for the objective function. In contrast, our proposed
method trains the language model using an objective function aimed at sharpening the distribution, ensuring
that this sharper distribution aligns with the objective function.

Our main contribution is the alignment method H-DPO, which allows controlling entropy and encourages
mode-seeking fitting more than DPO. The implementation of H-DPO is simple, requiring minimal modifi-
cations to DPO. Experiments included alignment based on Mistral-7B (Jiang et al., 2023) with the Zephyr
framework (Tunstall et al.; 2023). Compared to DPO, our proposed method allows for more diverse gener-
ations without losing performance, and shows superior accuracy and coverage across various tasks.

2 Related Work

Alignment Language models trained through next-token prediction have rapidly advanced and show
strong performance on many tasks in zero-shot or few-shot settings (Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2023). Fine-tuning using human preferences and instructions, known as alignment,
has proven effective in improving instruction following and reducing harmful outputs (Christiano et al., 2017;
Bai et al., 2022; Touvron et al., 2023; Ouyang et al., 2022). A prominent method for alignment is RLHF;
however, it encounters issues such as high computational costs, significant memory requirements, and the
instability of reinforcement learning (Schulman et al., 2017; Engstrom et al., 2020; Ahmadian et al., 2024).
To address these issues, DPO (Rafailov et al., 2023) has been proposed. DPO eliminates the need to model
the reward function and employ reinforcement learning algorithms, evolving in various directions (Liu et al.,
2024; Gheshlaghi Azar et al., 2024; Song et al., 2024). Wang et al. (2024a); Zeng et al. (2024) enable adjust-
ing the diversity of generated responses by changing the regularization of reverse KL. Wang et al. (2024a)
extends this to f -divergence other than reverse KL divergence, arguing that adjusting α in α-divergence
allows for a trade-off between diversity and performance. As α-divergence interpolates between reverse KL
and forward KL, using larger α makes the mode-seeking property diminish, which may increase diversity
but deteriorate performance. Our study proposes a different method to balance diversity and performance
while maintaining or strengthening the mode-seeking property of reverse KL.
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Diversity in Language Models The importance of diversity in the responses generated by language
models has been emphasized in numerous studies. Achieving more diverse text generation with high quality
is crucial, despite the existing quality-diversity trade-off (Nenkova et al., 2007; Clarke et al., 2008; Hashimoto
et al., 2019; Zhang et al., 2021). Diversity can be adjusted through various methods, such as sampling-based
techniques like changing the temperature (Fan et al., 2018; Holtzman et al., 2020; Wang et al., 2024b),
manipulating prompts (Arora et al., 2023; Li et al., 2023), or during DPO as mentioned in the previous
section (Wang et al., 2024a; Zeng et al., 2024). Studies such as Wang et al. (2024a); Zeng et al. (2024)
have examined changes in diversity due to objective functions in post-training, but have not considered
the impact of temperature adjustments, which are commonly manipulated when using language models.
Our study investigates the effects of both objective function modifications in post-training and temperature
adjustments on diversity.

In recent LLMs, there has been a growing emphasis not only on the accuracy of a single response but also
on the coverage — the fraction of problems solved by any generated sample (Kulal et al., 2019; Chen et al.,
2021; Roziere et al., 2023; Brown et al., 2024). In such evaluations, diversity in the generated outputs
contributes to improved coverage (Wang et al., 2024b). The importance of coverage is partly due to the
presence of verifiers that can assess the correctness of generated answers, particularly in mathematical and
coding tasks. These verifiers allow for selecting correct outputs from multiple candidates as the answer.
Some studies (Kulal et al., 2019; Chen et al., 2021; Roziere et al., 2023) have demonstrated significant
improvements in correctness through repeated sampling in coding tasks, while Brown et al. (2024) showed
that even relatively lightweight models could outperform frontier models in coverage by increasing the number
of generated samples in mathematical tasks. In tasks such as chat, where precise verification is challenging,
the performance can still be enhanced through methods such as majority voting (Wang et al., 2023) or by
using reward models and trained verifiers (Cobbe et al., 2021; Lightman et al., 2024; Hosseini et al., 2024;
Wang et al., 2024c; Kang et al., 2024) to use repeated samples effectively.

Wang et al. (2024b) explored the relationship between diversity and coverage, demonstrating that greater
diversity in generated outputs leads to a more significant improvement in coverage for larger values of k in
pass@k, which denotes the probability that the correct answer is included in the k generated outputs. Our
study shows that using the proposed objective can increase diversity while maintaining a certain level of
accuracy, achieving favorable performance in pass@k evaluations.

Mode-Seeking and Mode-Covering When minimizing a certain divergence to bring two probability
distributions closer, attention is often given to whether the fitting or divergence is mode-seeking or mode-
covering (mass-covering) (Huszár, 2015; Shannon et al., 2020; Ke et al., 2021; Li & Farnia, 2023; Wang et al.,
2024a). When fitting a distribution to a multimodal distribution, if the fitted distribution captures one of the
modes, this fitting is called mode-seeking. If it covers all the modes, it is termed mode-covering. Accordingly,
divergences facilitating such fittings when minimized are similarly referred to as mode-seeking and mode-
covering divergences, respectively. The reverse KL divergence, which is used in RLHF and DPO training, is
considered mode-seeking compared to forward KL and other f -divergence Shannon et al. (2020); Li & Farnia
(2023). Policy learning using mode-seeking divergence often performs better than mode-covering divergence
(Ke et al., 2021; Wang et al., 2024a). In this study, we propose a new regularizer to replace the minimization
of reverse KL divergence in the objective function of DPO, aiming to achieve better performance through
enhanced mode-seeking property.

3 Preliminaries

3.1 Reinforcement Learning from Human Feedbacks (RLHF)

In the context of LLM training, RLHF is a process of aligning an LLM to human preferences after pre-training,
typically consisting of three steps: supervised fine-tuning (SFT), reward modeling, and RL fine-tuning.

Supervised Fine-Tuning (SFT) SFT is the process of adapting an already pre-trained LLM to specific
tasks by optimizing the model parameters using a task-specific dataset. Using high-quality data related to
the task, the model is optimized through supervised learning to obtain πSFT.
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Reward Modeling Next, a reward model is trained to reflect human preferences in RL. Let rϕ(x, y) be a
reward model parameterized by ϕ, where x is a prompt and y is a completion. It is typically assumed that
human preference for a pair of completions follows the Bradley-Terry (BT) model (Bradley & Terry, 1952),
where the probability of preferring y1 to y2 is represented using a difference of rewards:

p(y1 ≻ y2 | x) = σ(r(x, y1) − r(x, y2)), (1)

where σ(x) = 1
1+exp(−x) is a sigmoid function. The larger the value of r(x, y) is, the more preferable a

completion y is to a prompt x.

Using a labeled dataset D = {xi, yi
w, yi

l}N
i=0 with user preferences, where yi

w is preferred to yi
l for prompt xi,

the loss function for training the reward model is formulated by minimizing the negative log-likelihood:

L(rϕ) = −E(x,yw,yl∼D)[log σ(rϕ(x, yw) − rϕ(x, yl))]. (2)

RL Fine-Tuning Finally, the language model is fine-tuned, using the trained reward model, to maximize
the following objective function:

J(πθ) =Ex∼D,y∼πθ
[rϕ(x, y)] − βDKL(πθ(y | x)||πref(y | x)), (3)

where β is a hyperparameter that controls the deviation from πref. πθ is trained to maximize the reward
while being regularized by the reverse KL divergence to not deviate too much from πref. Typically, πref is
fixed to πSFT while πθ is initialized with πSFT.

3.2 Directed Preference Optimization (DPO)

In RLHF, the need to train the reward model and apply an online RL algorithm such as PPO imposes
significant computational and memory costs. DPO suggests a method for directly learning to reflect human
preferences in a supervised manner without using the reward model by mapping language model policies
and reward functions. The objective function is equivalent to that of RLHF, and the optimal policy that
maximizes Equation (3) when the reward model is optimal is derived as follows:

π∗(y | x) = 1
Z(x)πref(y | x) exp

(
r∗(x, y)

β

)
, (4)

where Z(x) is the partition function. From this equation, the optimal reward can be expressed using the
optimal policy:

r∗(x, y) =β log π∗(y | x)
πref(y | x) + β log Z(x). (5)

Using this optimal reward function to calculate the probability distribution of the BT model, the computa-
tionally challenging partition function Z(x) cancels out as follows:

p∗(y1 ≻ y2 | x) = σ

(
β log π∗(y1 | x)

πref(y1 | x) − β log π∗(y2 | x)
πref(y2 | x)

)
. (6)

The loss function for πθ is derived as the maximum likelihood estimation of the BT model from a human
preference dataset D:

LDPO = −Ex,yw,yl∼D

[
log σ

(
β log πθ(yw | x)

πθ(yl | x) − β log πref(yw | x)
πref(yl | x)

)]
. (7)

Thus, DPO can align language models with human preferences without learning a reward model.
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4 Entropy Controllable Directed Preference Optimization

In DPO, reverse KL divergence is used as a regularizer that controls the deviation from πref. The reverse
KL divergence is defined as DKL(πθ||πref) =

∫
πθ(y | x) log πθ(y|x)

πref(y|x) dy. Here, the integrand is zero for
regions where πθ(y | x) = 0, meaning that only the regions supported by πθ(y | x) affect the divergence.
Consequently, fitting by minimizing the reverse KL divergence is known to be mode-seeking and generally
performs better than other divergences such as forward KL (Ke et al., 2021; Wang et al., 2024a).

However, in this study, we discuss cases where even using reverse KL divergence can fail to achieve mode-
seeking fitting with respect to the target distribution. We verify such cases through preliminary experiments
and show that controlling the entropy of the distribution enables more effective mode-seeking fitting. To
control the entropy of the output probability by language models in DPO, we propose H-DPO, which
incorporates such entropy-controllable optimization into DPO.

4.1 Mode-seeking Property

As a preliminary experiment on the mode-seeking property of reverse KL divergence, we fit a Gaussian
distribution to a mixture of two Gaussian components. Specifically, given a Gaussian mixture model πref,
we compute the location and scale parameters of a Gaussian distribution π that minimize the reverse KL
divergence DKL(π||πref). If the fitting is mode-seeking, the estimated Gaussian distribution should capture
one of the components of the mixture model. However, as shown in Figure 1, despite the reverse KL
minimization, which is supposed to have the mode-seeking property, the fitting may look mode-covering, not
mode-seeking. In this case, if π is a language model, it is likely to generate from valleys where πref has a low
probability, possibly leading to degraded performance of π.

The cause of such mode-covering fitting could be the inherent property of reverse KL divergence minimization,
which aims to preserve some variance. If π captures only one component, its variance should be smaller
compared to πref as a whole because it must ignore the other component. As shown on the left side of
Figure 1, however, reverse KL minimization does not take this into account, resulting in mode-covering
estimation.

We consider an objective that can reduce variance or entropy as a remedy. To adjust the entropy of π,
we note that the reverse KL divergence can be decomposed into entropy and cross-entropy components as
follows:

DKL(π||πref) =
∫

(π(x) log π(x) − π(x) log πref(x))dx

= −H(π) + H(π, πref).
(8)

By attaching a coefficient α to the entropy H(π), we can derive another objective that can control entropy:
Dα = −αH(π) + H(π, πref)†. By making α less than 1, we can reduce the entropy while fitting between
distributions. The right side of Figure 1 shows the distribution π that minimizes Dα as α decreases from 1.
By reducing α from 1 to a smaller value, it can achieve the mode-seeking fitting. Details of the preliminary
experiments related to Figure 1 are provided in Appendix A.1.

The effectiveness of the mode-seeking property has been verified in Wang et al. (2024a), and strengthening
the mode-seeking property by reducing α is an attractive feature. However, even in cases where π and πref
have the same number of modes (e.g., when both are unimodal distributions), allowing π to fit πref with Dα

can result in π becoming a sharper distribution than πref. Although this might seem problematic, it could be
beneficial in language model training. For better performance at inference time, the sampling temperature is
often set below 1 (Xu et al., 2022; OpenAI et al., 2023; Zhu et al., 2024). This means the distribution learned
at a temperature of 1 is sharpened by reducing the temperature. However, there is no guarantee that the
sharpened distribution is optimal for the DPO objective function. The distribution learned by maximizing
our objective function with a small α also becomes sharp, but unlike adjusting sampling temperature at
inference time, it becomes sharp in a manner consistent with the objective function. The following section
introduces how to incorporate such entropy adjustment using α into DPO.

†Note that, for α ̸= 1, Dα(p||q) is not a divergence because it is not zero even when p = q.
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4.2 H-DPO

As discussed in the previous section, by decomposing the reverse KL divergence into its entropy and cross-
entropy components, we can adjust the entropy with α. The objective function for DPO with entropy
adjustment is shown below:

JH-DPO = Ex∼D,y∼π [r(x, y)] − βDα(π||πref)
= Ex∼D,y∼π [r(x, y)] + αβH(π) − βH(π, πref).

(9)

Here, when α equals 1, it becomes the same objective function as that of standard DPO. By setting α to be
smaller than 1, the learning process aims to reduce the entropy. Similar to Wang et al. (2024a), we consider
a constrained optimization. By applying Lagrange multipliers under the constraints that π is a probability
distribution, i.e.,

∑
y π(y | x) = 1 and ∀y, π(y | x) ≥ 0, we obtain the following:

L(π, λ, C) = Ex∼D,y∼π[r(x, y) − αβ log π(y | x) + β log πref(y | x)] − λ

(∑
y

π(y | x) − 1
)

−
∑

y

C(y)π(y | x),

(10)
where λ and C are the dual variables. Solving this problem, the optimal policy π∗ can be derived as

π∗(y | x) = 1
Z(x)πref(y | x)1/α exp

(
r∗(x, y)

αβ

)
. (11)

From this equation, the reward function can be expressed using the policy as follows:

r∗(x, y) = αβ log π∗(y | x) − β log πref(y | x) + αβ log Z(x). (12)

When applying this reward function to the BT model and performing the maximum likelihood estimation,
the loss function using α is

LH-DPO = −Ex,yw,yl∼D

[
log σ

(
αβ log πθ(yw | x)

πθ(yl | x) − β log πref(yw | x)
πref(yl | x)

)]
. (13)

Comparing this equation to the DPO loss function in Equation (7), we can see that entropy adjustment
using α can be implemented by simply replacing the coefficient for πθ from β to αβ.

5 Experiments

In this section, we evaluate the performance of H-DPO in comparison to standard DPO using widely recog-
nized metrics.

5.1 Experimental Setup

We conducted DPO training based on Zephyr-7B-Beta (Tunstall et al., 2023; Tunstall et al.). We started
from zephyr-7b-sft-full, which is based on Mistral 7B (Jiang et al., 2023) and fine-tuned with UltraChat
(Ding et al., 2023). We performed DPO training on it with UltraFeedback (Cui et al., 2023). We evaluated
the performance when H-DPO was used instead of standard DPO. The hyperparameters during training
were the same as those of Zephyr-7B-beta, except for the variable α. The α was varied in the range from
0.8 to 1.2. Another model, Llama-3.2-1B (Dubey et al., 2024), was also used for the experiments, and the
results are detailed in Appendix A.3.

The evaluation tasks included diverse grade school math word problems (GSM8K (Cobbe et al., 2021)),
coding task (HumanEval (Chen et al., 2021)), multiple-choice question task (MMLU-Pro (Wang et al.,
2024d)) and instruction-following task (IFEval (Zhou et al., 2023)). The training was conducted with three
different seeds. Further experimental details are provided in Appendix A.4 and A.5.

6



Under review as submission to TMLR

5.2 Performance and Diversity

Table 1 shows the scores for each task when α was decreased. By reducing α by 0.05 to 0.1, performance
improved on all tasks compared to the conventional DPO (α = 1).

Table 2 presents diversity metrics when α was varied in H-DPO. When the temperature was set to 1, smaller
α values resulted in lower diversity, while larger α values increased diversity. This indicates that diversity
can be controlled through α. However, it should be noted that diversity changes with temperature, and the
optimal temperature varies depending on the value of α. Hence, even with a smaller α, diversity could be
increased if a higher temperature is used.

For MMLU-Pro, the scores and entropy with varying temperatures are shown in Figure 2. The left figure
illustrates the relationship between temperature and score, highlighting that smaller α values exhibit less
performance degradation and greater robustness to temperature selection. This is because entropy remains
low even when a higher temperature is used. The right figure shows the relationship between entropy and
score, where the entropy of the samples obtained at each temperature replaces the temperature shown in the
left figure. At the same score point, the entropy is larger when α is smaller. In other words, with a smaller
α, it is possible to achieve more diverse generations even with the same performance.

Table 1: Average scores of DPO and H-DPO with different α values on various tasks.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1) 26.40 ±1.76 28.77 ±0.45 31.83 ±0.17 59.63 ±0.72
H-DPO (α = 0.95) 27.77 ±1.39 30.70 ±0.39 32.37 ±0.03 60.17 ±0.34
H-DPO (α = 0.9) 28.83 ±2.32 29.63 ±0.45 32.30 ±0.17 60.93 ±0.50
H-DPO (α = 0.8) 28.66 ±1.23 27.77 ±0.67 31.93 ±0.19 59.90 ±0.59

Table 2: Comparison of DPO and H-DPO with various α values across different diversity metrics when
temperature is 1.

Entropy↑ Self-Bleu↓ Distinct-1↑ Distinct-2↑
H-DPO (α = 1.2) 1.718 0.252 0.313 0.690
H-DPO (α = 1.1) 1.483 0.293 0.296 0.652
DPO (α = 1) 1.323 0.326 0.289 0.633
H-DPO (α = 0.95) 1.223 0.339 0.277 0.611
H-DPO (α = 0.9) 1.113 0.364 0.272 0.590
H-DPO (α = 0.8) 0.977 0.391 0.268 0.574

5.3 Coverage Evaluation

As mentioned in the previous section, a smaller α enabled more diverse outputs at the same performance
level. Wang et al. (2024b) demonstrated that high diversity positively impacts coverage performance, where
coverage is evaluated using the pass@k metric. Coverage refers to the fraction of problems that can be solved
using any generated sample, and pass@k is the coverage achieved by using k samples (Kulal et al., 2019;
Chen et al., 2021). Chen et al. (2021) proposed an unbiased and stable calculation method for pass@k metric,
which is employed in our study. Coverage is particularly significant in tasks where correctness evaluation
is relatively straightforward, such as mathematical and coding tasks; hence, evaluations were conducted on
the GSM8K (math task) and HumanEval (coding task).

Figure 3 presents the pass@k evaluation results for various k values in GSM8K. Overall, reducing α leads to
better performance than standard DPO (α = 1). In standard DPO, for most values of k, the best coverage
when varying the temperature is achieved at a temperature of 0.5, which is smaller than the value of 1 used
during training. However, for smaller α values (e.g., α = 0.8), the best coverage is achieved with the same
training temperature of 1 when k is large. This implies that decreasing α (α = 0.8) and using a temperature
close to that used during training provides better results than simply lowering the temperature in standard
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Figure 2: Left: Accuracy on MMLU-Pro at various temperatures. Right: Accuracy on MMLU-Pro
at various entropy levels. The horizontal axis of the left figure is replaced with the entropy obtained from
sampling at each corresponding temperature.

DPO. This suggests that H-DPO, which allows using a model closer to the one used during training even at
test time, is superior to standard DPO in this setting.

Figure 4 presents the evaluation results of pass@k for various values of k on the HumanEval benchmark.
On HumanEval, there is a negligible difference between models with a small α and standard DPO when k
is large. However, interestingly, when k exceeds 100, the results improve for larger α values (α = 1.1).

5.4 Discussion

In the evaluation of the HumanEval coding task and GSM8K mathematical task, we observed that the opti-
mal values of α differed between these two task categories. This discrepancy can be attributed to differences
in task characteristics, which necessitate distinct sampling temperatures for effective generation. In math-
ematical tasks, where there is a single correct answer and precise reasoning is required, more deterministic
sampling with a lower temperature is preferable. In these cases, values of α less than 1 are suited, facilitating
more precise generations. Conversely, in coding tasks, multiple valid answers typically exist, and generating
diverse outputs increases the likelihood of producing correct responses. As a result, a sampling temperature
of 1 is more suitable for pass@k evaluations in such scenarios. Note that when the temperature exceeds the
training value of 1, a significant decline in performance is observed. In such cases, values of α greater than
1 further enhance diversity, as shown in Table 2, improving the probability of generating correct responses
in pass@k evaluations.

In summary, for tasks requiring accuracy and utilizing a temperature lower than 1, an α value slightly less
than 1, such as 0.9 or 0.95, is appropriate. Conversely, for tasks emphasizing diversity and employing a
temperature of 1, using an α value greater than 1, such as 1.1, yields better results.

As suggested by Figure 3 and 4, a practical approach to tuning the α parameter is to first train the model using
the standard DPO setting (α = 1) and then evaluate the performance changes by varying the temperature.
For HumanEval with smaller k values and GSM8K, performance improves when the temperature is slightly
reduced from 1, indicating that more accurate outputs are preferable, and this improvement aligns with
lowering α. Conversely, for HumanEval with larger k values, performance degrades as the temperature
decreases from 1, suggesting that diversity is critical in such cases, which explains the relatively better
performance with α > 1. In this way, α tuning can be guided by observing whether performance improves
or declines when the temperature deviates from 1.
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Figure 3: Coverage (pass@k) of H-DPO and DPO with various temperatures on GSM8K.
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Figure 4: Coverage (pass@k) of H-DPO and DPO with various temperatures on HumanEval.

6 Conclusion

In this study, we proposed H-DPO, a generalization of DPO, and thoroughly examined its effectiveness. H-
DPO allows for the adjustment of entropy during training through the hyperparameter α, enabling the control
of distribution sharpness and achieving more effective mode-seeking fitting compared to standard DPO. This
new method allows trained models to generate more accurate and diverse outputs, better aligning with their
intended purposes. In the experiments, we aligned Mistral-7B-based models using the proposed method
and compared them with standard DPO. H-DPO demonstrated superior performance compared to DPO
across various tasks. In mathematical tasks, it showed excellent performance in pass@k evaluations. These
results confirmed that the diversity and quality of the generated outputs improved, establishing H-DPO as
a powerful method for improving the training process of LLMs. Moreover, H-DPO is extremely simple to
implement, requiring only minor modifications to existing DPO, which adds to its practicality and potential
for widespread application. The need to adjust α is a limitation of this method, and automating the search
of appropriate α values for each task can be a focus of future research.
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A Experimental Details

A.1 Preliminary Experiment with Gaussian Distribution

This section details the experiments shown in Figure 1. In this preliminary experiment, we use the proposed
regularization Dα(π||πref), where Dα is the same as the Kullback-Leibler divergence DKL when α = 1,
to estimate the Gaussian distribution π that is closest to the Gaussian Mixture Model (GMM) πref. The
experiments were conducted with GMMs πref consisting of 2, 3, and 4 Gaussian components, and the results
are shown in Figure 5, 7 and 8, respectively. For any πref, the weights of the components are equal, and
the standard deviations are 1 and 0.8 for the case of two components, 1, 0.8, and 0.5 for the case of three
components, and 1, 0.8, 0.5, and 0.3 for the case of four components. In those figures, the results of varying
the interval between the means of the Gaussian components are displayed in separate rows.

In the upper row of Figure 5, we observe that when α = 1, i.e. using the KL divergence, the fitting becomes
mode-covering. When α is reduced to 0.6, it successfully achieves mode-seeking fitting. In the middle row,
where the interval between the means of the components is larger, making mode-seeking fitting more feasible,
mode-seeking fitting is observed at α = 0.8. In the bottom row, where the interval is even larger, mode-
seeking fitting occurs even when minimizing the KL divergence, although the fitting targets the Gaussian
with the larger variance on the left. As α decreases, the fitting shifts to the Gaussian on the right, which
has smaller variance and higher probability.

In Figure 6, the values of Dα(π||πref) are represented using color as the location and scale parameters of
the Gaussian distribution π̂ are varied. As α decreases, the Dα(π||πref) values for mode-seeking π̂ become
smaller compared to those for mode-covering π̂.

Similar results are observed in Figure 7 and 8 for cases with 3 and 4 Gaussian components. When minimizing
the KL divergence, the fitting tends to be mode-covering or targets the component with larger variance.
However, reducing α results in the fitting successfully targeting the region with the highest probability in all
cases. As α decreases further, the variance of π̂ also becomes smaller.
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Figure 5: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that
minimizes Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals
between components are 4, 5, and 6, respectively. The standard deviations of each component are 1 and 0.8
from left to right.

Figure 6: Values of Dα(π||πref) for the normal distribution π with various location and scale parameters in
the experiment shown in Figure 5. For visibility, min(3, ln Dα(π||πref) − ln Dα(π̂||πref)) is plotted. The red
star indicates the parameters of π̂ that minimize Dα(π||πref), and these values are used to plot Figure 5.
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Figure 7: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that
minimizes Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals
between components are 3, 5, and 7, respectively. The standard deviations of each component are 1, 0.8 and
0.5 from left to right.
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Figure 8: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that
minimizes Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals
between components are 3, 5, and 7, respectively. The standard deviations of each component are 1, 0.8, 0.5
and 0.3 from left to right.
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A.2 Comparison with β tuning

From Table 1, we observed that performance improves by decreasing the value of α. This raised the possibility
that similar improvements might be achievable by tuning the β parameter in standard DPO. Therefore, we
compared the performance of H-DPO, which showed promising results with parameters (α = 0.9, β = 0.01),
against a DPO where β was similarly reduced (α = 1, β = 0.009). The results are presented in Table 4,
showing that tuning β in DPO does not achieve the same level of improvement as H-DPO. The accuracy
decreased in many tasks. The evaluation of coverage on the GSM8K dataset is shown in Figure 9, which
indicates that tuning β in DPO does not improve coverage either. These results suggest that the performance
enhancement obtained by tuning α to adjust the entropy cannot be replicated through β adjustment in DPO,
thus demonstrating the effectiveness of H-DPO.
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Figure 9: Coverage (pass@k) of H-DPO and DPO with various temperatures on GSM8K.

A.3 Experiments with Llama-3.2-1B

To further demonstrate the applicability of H-DPO across different models, we conducted experiments using
Llama-3.2-1B (Dubey et al., 2024). To differentiate these experiments from those performed with Zephyr,
we utilized a different dataset, the Anthropic HH dataset (Bai et al., 2022). The experimental setup was
consistent with Rafailov et al. (2023), where Llama-3.2-1B underwent SFT using only the preference com-
pletions from the dataset, followed by fine-tuning with H-DPO. The value of β was set to 0.01, while all
other hyperparameters matched those used in Rafailov et al. (2023).

The results of the experiments conducted on four tasks are presented in Table 3. Given the difficulty of the
tasks and the inherently low performance of the base model, consistent improvements were not observed in
HumanEval. However, we did observe performance improvements in other tasks.

Table 3: Average scores of DPO and H-DPO with different α values on various tasks when using the Llama-
3.2-1B model.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1) 4.97 ±0.31 2.73 ±1.43 14.20 ±0.14 22.60 ±0.08
H-DPO (α = 0.95) 5.50 ±0.80 0.73 ±0.52 14.27 ±0.19 22.93 ±0.27
H-DPO (α = 0.9) 4.40 ±0.19 0.57 ±0.28 14.13 ±0.12 23.67 ±0.10

A.4 Evaluation of Diversity

For the evaluation of diversity in Table 2, we used entropy, Self-BLEU (Zhu et al., 2018), and Distinct-1,
-2 (Li et al., 2016). Regarding the measurement of entropy, we used 200 prompts from the UltraFeedback
(Cui et al., 2023) test dataset, which was used in the training of DPO, and generated 25 responses for each
prompt. The maximum length of the responses was limited to 512, and the entropy was calculated using
the log probability of each response, normalized by the response length. Self-BLEU and Distinct-1, -2 were
also calculated using the same responses based on Zhu et al. (2018) and Li et al. (2016).

A.5 Other Details
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Table 4: Average scores of DPO and H-DPO on various tasks.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1, β = 0.01) 26.40 ±1.76 28.77 ±0.45 31.83 ±0.17 59.63 ±0.72
DPO (α = 1, β = 0.009) 25.13 ±1.22 26.37 ±1.34 31.93 ±0.10 59.53 ±0.35
H-DPO (α = 0.9, β = 0.01) 28.83 ±2.32 29.63 ±0.45 32.30 ±0.17 60.93 ±0.50
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Figure 10: Accuracy on IFEval with various
temperatures.

MMLU-Pro was evaluated using the official implementation
from Wang et al. (2024d). IFEval and GSM8K were imple-
mented using Gao et al. (2024), where IFEval was evaluated
in a 0-shot setting, and GSM8K was evaluated in an 8-shot
setting. HumanEval was evaluated using the official imple-
mentation from Chen et al. (2021). MMLU-Pro and IFEval
were evaluated using one sampling for all test data, and the
average accuracy and standard error at a temperature of 0 are
shown in Table 1 and 3. For GSM8K, 200 test data were used,
and for HumanEval, all test data were used, generating 200
responses for each prompt to calculate pass@k based on Chen
et al. (2021), as shown in Figure 3 and 4. The results for
pass@1 at a temperature of 0.1 are shown in Table 1 and 3.
The results for varying temperatures in MMLU-Pro, GSM8K,
HumanEval, and IFEval are shown in Figure 2 to 4 and 10.

B Broader Impact

As this paper primarily focuses on the algorithmic contributions to fine-tuning language models using DPO,
its direct societal impact is limited. However, the application of our methodology, particularly in the context
of RLHF, requires careful consideration of the feedback process. The individuals providing feedback play a
crucial role in shaping the behavior of the language model. Ensuring that the feedback discourages harmful,
malicious, or unethical outputs is essential for aligning the model with societal norms and ethical standards.
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