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Abstract

Hateful memes have emerged as a significant001
concern on the Internet. These memes, which002
are a combination of image and text, often003
convey messages vastly different from their in-004
dividual meanings. Detecting hateful memes005
requires the system to jointly understand the006
visual and textual modalities. Our investiga-007
tion reveals that the embedding space of ex-008
isting CLIP-based systems lacks sensitivity009
to subtle differences in memes that are vital010
for correct hatefulness classification. We pro-011
pose constructing a hatefulness-aware embed-012
ding space through retrieval-guided contrastive013
training. Our approach achieves state-of-the-014
art performance on the HatefulMemes dataset015
with an AUROC of 87.0, outperforming much016
larger fine-tuned Large Multimodal Models017
like Flamingo and LLaVA. We demonstrate018
a retrieval-based hateful memes detection sys-019
tem, which is capable of identifying hatefulness020
based on data unseen in training. This allows021
developers to update the hateful memes detec-022
tion system by simply adding new examples023
without retraining — a desirable feature for real024
services in the constantly evolving landscape025
of hateful memes on the Internet.026

Disclaimer: This paper contains content for027

demonstration purposes that may be disturbing to028

some readers.029

1 Introduction030

The growth of social media has been accompa-031

nied by a surge in hateful content. Hateful memes,032

which consist of an image accompanied by texts,033

are becoming a prominent form of online hate034

speech. This material can perpetuate stereotypes,035

incite discrimination, and even catalyse real-world036

violence. To provide users the option of not see-037

ing it, hateful memes detection systems have gar-038

nered significant interest in the research commu-039

nity (Kiela et al., 2021; Suryawanshi et al., 2020b,a;040

Prediction: Benign ✗ Benign ✓ Benign ✓

Figure 1: Illustrative examples from Kiela et al. 2021.
The meme on the left is hateful, the middle one is a
benign image confounder, and the right one is a benign
text confounder. We show HateCLIPper’s (Kumar and
Nandakumar, 2022) prediction below each meme. Hate-
CLIPper misclassifies the hateful meme on the left as
benign.

Pramanick et al., 2021a; Liu et al., 2022; Hossain 041

et al., 2022; Prakash et al., 2023; Sahin et al., 2023). 042

Correctly detecting hateful memes remains diffi- 043

cult. Previous literature has identified a prominent 044

challenge in classifying "confounder memes", in 045

which subtle differences in either image or text may 046

lead to a completely different meaning (Kiela et al., 047

2021). As shown in Figure 1, the top left and top 048

middle memes share the same caption. However, 049

one of them is hateful and the other benign de- 050

pending on the accompanying images. Confounder 051

memes resemble real memes on the Internet, where 052

the combined message of images and texts con- 053

tribute to their hateful nature. Even state-of-the-art 054

models, such as HateCLIPper (Kumar and Nan- 055

dakumar, 2022), exhibit limited sensitivity to nu- 056

anced hateful memes. 057

We find that a key factor contributing to mis- 058

classification is that confounder memes are located 059

in close proximity in the embedding space due 060

to the similarity of text or image content. For 061

instance, HateCLIPper’s embedding of the con- 062

founder meme in Figure 1 has a high cosine simi- 063

larity score with the left anchor meme even though 064

they have opposite meanings. This poses chal- 065

lenges for the classifier to distinguish harmful and 066

benign memes. 067

We propose “Retrieval-Guided Contrastive 068
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Learning” (RGCL) to learn hatefulness-aware vi-069

sion and language joint representations. We align070

the embeddings of same-class examples that are se-071

mantically similar with pseudo-gold positive exam-072

ples and separate the embeddings of opposite-class073

examples with hard negative examples. We dy-074

namically retrieve these examples during training075

and train with a contrastive objective in addition to076

cross-entropy loss. RGCL achieves higher perfor-077

mance than state-of-the-art large multimodal sys-078

tems on the HatefulMemes dataset with far fewer079

model parameters. We demonstrate that the RGCL080

embedding space enables the use of K-nearest-081

neighbor majority voting classifier. The encoder082

trained on HarMeme (Pramanick et al., 2021a) can083

be applied to HatefulMemes (Kiela et al., 2021)084

without additional training while maintaining high085

AUC and accuracy using the KNN majority voting086

classifier, even outperforming the zero-shot perfor-087

mance of large multi-modal models. This allows088

efficient transfer and update of hateful memes de-089

tection systems to handle the fast-evolving land-090

scape of hateful memes in real-life applications.091

We summarise our contribution as follows:092

1. We propose Retrieval-Guided Contrastive093

Learning for hateful memes detection which094

learns a hatefulness-aware embedding space095

via an auxiliary contrastive objective with dy-096

namically retrieved examples. We propose to097

leverage novel pseudo-gold positive examples098

to improve the quality of positive examples.099

2. Our proposed approach achieves state-of-the-100

art performance on both the HatefulMemes101

dataset and the HarMeme dataset, showing102

its capacity to generalise effectively across103

various domains of hateful memes.104

3. We demonstrate that the retrieval-based KNN105

majority voting classifier on the learned em-106

bedding space outperforms the zero-shot per-107

formance of large multimodal models of a108

much larger scale. This allows easy updat-109

ing and extension of hateful meme detection110

systems without retraining.111

2 Related Work112

Hateful Meme Detection Systems in previous113

work can be categorised into three types: Object114

Detection (OD)-based vision and language models,115

CLIP (Radford et al., 2021) encoder-based systems,116

and Large Multimodal Models (LMM).117

OD-based models such as VisualBERT (Li et al., 118

2019), OSCAR (Li et al., 2020), and UNITER 119

(Chen et al., 2020) use Faster R-CNN (Ren et al., 120

2015) based object detectors (Anderson et al., 2018; 121

Zhang et al., 2021) as the vision model. The use 122

of such object detectors results in high inference 123

latency (Kim et al., 2021). 124

CLIP-based systems have gained popularity for 125

detecting hateful memes due to their simpler end- 126

to-end architecture. HateCLIPper (Kumar and Nan- 127

dakumar, 2022) explored different types of modal- 128

ity interaction for CLIP vision and language repre- 129

sentations to address challenging hateful memes. In 130

this paper, we show that such CLIP-based models 131

can achieve better performance with our proposed 132

retrieval-guided contrastive learning. 133

LMMs like Flamingo (Alayrac et al., 2022) and 134

LENS (Berrios et al., 2023) have demonstrated 135

their effectiveness in detecting hateful memes. 136

Flamingo 80B achieves a state-of-the-art AUROC 137

of 86.6, outperforming previous CLIP-based sys- 138

tems although requiring an expensive fine-tuning 139

process. 140

Contrastive Learning is widely used in vision 141

tasks (Schroff et al., 2015; Song et al., 2016; Har- 142

wood et al., 2017; Suh et al., 2019), however, its ap- 143

plication to multimodally pre-trained encoders for 144

hateful memes has not been well-explored. Lippe 145

et al. (2020) incorporated negative examples in con- 146

trastive learning for detecting hateful memes. How- 147

ever, due to the low quality of randomly sampled 148

negative examples, they observed a degradation in 149

performance. In contrast, our paper shows that by 150

incorporating dynamically sampled positive and 151

negative examples, the system is capable of learn- 152

ing a hatefulness-aware vision and language joint 153

representation. 154

3 RGCL Methodology 155

In each training example {(Ii, Ti, yi)}Ni=1, Ii ∈ 156

RC×H×W is the image portion of the meme in 157

pixels; Ti is the caption overlaid on the meme; 158

yi ∈ {0, 1} is the meme label, where 0 stands for 159

benign, 1 for hateful. 160

We leverage a Vision-Language (VL) encoder 161

to extract image-text joint representations from the 162

image and the overlaid caption: 163

gi = F(Ii, Ti) (1) 164

We encode the training set with our VL encoder to 165
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obtain the encoded retrieval vector database G:166

G = {(gi, yi)}Ni=1 (2)167

We index this retrieval database with Faiss (John-168

son et al., 2019) to perform training and retrieval-169

based KNN classification.170

As shown in Figure 2, the VL encoder comprises171

a frozen CLIP encoder followed by a trainable mul-172

tilayer perceptron (MLP). The frozen CLIP encoder173

encodes the text and image into embeddings that174

are then fused into a joint vision-language embed-175

ding before feeding into the MLP.176

We use HateCLIPper (Kumar and Nandakumar,177

2022) as our frozen CLIP encoder. In Sec.4.4, we178

compare different choices of the frozen CLIP en-179

coder to demonstrate that our approach does not180

depend on any particular base model.181

3.1 Retrieval Guided Contrastive Learning182

For each meme in the training set (the “anchor183

meme”), we collect three types of contrastive learn-184

ing examples: (1) pseudo-gold positive; (2) hard185

negative; (3) in-batch negative to train our proposed186

retrieval-guided contrastive loss.187

(1) Pseudo-gold positive examples are same-188

label samples in the training set that have high189

similarity scores under the embedding space. Incor-190

porating these examples pulls same-label memes191

with similar semantic meanings closer in the em-192

bedding space.193

(2) Hard negative examples (Schroff et al., 2015)194

are opposite-label samples in the training set that195

have high similarity scores under the embedding196

space. These examples are often confounders of197

the anchor memes. By incorporating hard nega-198

tive examples, we enhance the embedding space’s199

ability to distinguish between confounder memes.200

(3) For a training sample i, the set of in-batch201

negative examples (Yih et al., 2011; Henderson202

et al., 2017) are the examples in the same batch that203

have a different label as the sample i. In-batch neg-204

ative examples introduce diverse gradient signals in205

the training and this causes the randomly selected206

in-batch negative memes to be pushed apart in the207

embedding space.208

Next, we describe how we obtain these exam-209

ples to train the system with Retrieval-Guided Con-210

trastive Loss.211

3.1.1 Finding pseudo-gold positive examples 212

and hard negative examples 213

For a training sample i, we obtain the pseudo-gold 214

positive example and hard negative example from 215

the training set with Faiss nearest neighbour search 216

(Johnson et al., 2019) which computes the similar- 217

ity scores between sample i’th embedding vector gi 218

and any target embedding vector gj ∈ G. The en- 219

coded retrieval vector database G is updated after 220

each epoch. 221

We denote the pseudo-gold positive example’s 222

embedding vector: 223

g+
i = argmax

gj∈G/gi

sim(gi,gj) · h(yi, yj), (3) 224

225

h(yi, yj) :=

{
1 if yj = yi

−1 if yj ̸= yi
. (4) 226

Similarly for the hard negative example’s embed- 227

ding vector: 228

g−
i = argmax

gj∈G
sim(gi,gj) · (1− h(yi, yj)). (5) 229

We use cosine similarity for similarity measures. 230

We denote the embedding vectors for the in- 231

batch negative examples as {g−
i,1,g

−
i,2, ...,g

−
i,n−}. 232

We concatenate the hard negative example with the 233

in-batch negative examples to form the set of nega- 234

tive examples G−
i = {g−

i ,g
−
i,1,g

−
i,2, ...,g

−
i,n−} 235

3.1.2 RGCL training and inference 236

Following previous work (Kumar and Nandakumar, 237

2022; Kiela et al., 2021; Pramanick et al., 2021b), 238

we use logistic regression to perform memes classi- 239

fication as shown in Figure 2. We denote the output 240

from the logistic regression as ŷi for sample i. 241

To train the logistic classifier and the MLP 242

within the VL Encoder, we optimise a joint loss 243

function. The loss function consists of our pro- 244

posed Retrieval-Guided Contrastive Loss (RGCL) 245

and the conventional cross-entropy (CE) loss for 246

logistic regression: 247

Li = LRGCL
i + LCE

i 248

= LRGCL
i + (yi log ŷi + (1− yi) log(1− ŷi)),

(6)
249

where the RGCL loss is computed as: 250

LRGCL
i = L(gi,g

+
i ,G

−
i ) 251

= − log
esim(gi,g

+
i )

esim(gi,g
+
i ) +

∑
g∈G−

i
esim(gi,g)

.

(7)

252

3



Figure 2: Model overview. (1) Using Vision-Language (VL) Encoder F to extract the joint vision-language
representation for a training example i. Additionally, the VL Encoder encodes the training memes into a retrieval
database G. (2) During training, pseudo-gold and hard negative examples are obtained using the Faiss nearest
neighbour search. During inference, K nearest neighbours are obtained using the same querying process to perform
the KNN-based inference. (3) During training, we optimise the joint loss function L. (4) For inference, we use
conventional logistic classifier and our proposed retrieval-based KNN majority voting. For a test meme i, we denote
the prediction from logistic regression and KNN classifier as ŷi and ŷ′i, respectively.

3.2 Retrieval-based KNN classifier253

We extend our analysis beyond the conventional254

logistic regression employed in recent models like255

HateCLIPper. We introduce a retrieval-based KNN256

majority voting classifier. This majority voting257

strategy relies on the inherent discrimination capa-258

bility of the trained joint embedding space. Only259

when the trained embedding space successfully260

splits hateful and benign examples will majority261

voting achieve reasonable performance.262

For a test meme t, we retrieve K memes located263

in close proximity within the embedding space264

from the retrieval vector database G (see Eq. 2).265

We keep a record of the retrieved memes’ labels266

yk and similarity scores sk = sim(gk, gt) with the267

test meme t, where gt is the embedding vector of268

the test meme t. We perform similarity-weighted269

majority voting to obtain the prediction:270

ŷ′t = σ(
K∑
k=1

ȳk · sk), (8)271

where σ(·) is the sigmoid function and272

ȳk :=

{
1 if yk = 1

−1 if yk = 0
. (9)273

We conduct experiments in Sec. 4.2 to show that274

applying RGCL leads to much better performance275

with retrieval-based KNN inference than using only276

the cross-entropy loss.277

4 RGCL experiments278

We evaluate the performance of the system on the279

HatefulMemes dataset (Kiela et al., 2021) and the280

HarMeme dataset (Pramanick et al., 2021a). The 281

HarMeme dataset consists of COVID-19-related 282

memes collected from Twitter. These memes are 283

labelled with three classes: very harmful, partially 284

harmful, and harmless. Following previous work 285

(Cao et al., 2022; Pramanick et al., 2021b), we 286

combine the very harmful and partially harmful 287

memes into hateful memes and regard harmless 288

memes as benign memes. The dataset statistics are 289

shown in Appendix C. 290

To make a fair comparison, we adopt the eval- 291

uation metrics commonly used in hateful meme 292

classification (Kumar and Nandakumar, 2022; Cao 293

et al., 2022; Kiela et al., 2021): Area Under the Re- 294

ceiver Operating Characteristic Curve (AUC) and 295

Accuracy (Acc). 296

We tune the hyperparameters on the develop- 297

ment split. We develop our system on the Hateful- 298

Memes and use the same hyperparameter settings 299

for training on HarMeme. The experiment setup 300

and hyperparameter settings are detailed in Appen- 301

dices A and B. 302

4.1 Comparing RGCL with baseline systems 303

Table 1 presents the experimental results with logis- 304

tic regression. Our Retrieval-Guided Contrastive 305

Learning (RGCL) approach is compared to a range 306

of baseline models including Object-detector (OD) 307

based models, Large Multimodal Models (LMM) 308

and CLIP-based systems. On the HatefulMemes 309

dataset, RGCL obtains an AUC of 87.0% and an 310

accuracy of 78.8%, outperforming all baseline sys- 311

tems, including the 200 times larger Flamingo-80B. 312

OD-based models 313
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ERNIE-Vil (Yu et al., 2021), UNITER (Chen et al.,314

2020) and OSCAR (Li et al., 2020) performs simi-315

larly with AUC scores of around 79%.316

LMMs317

Flamingo-80B (Alayrac et al., 2022) is the previ-318

ous state-of-the-art model for HatefulMemes, with319

an AUC of 86.6%. We also fine-tune LLaVA320

(Liu et al., 2023) (Vicuna-13B Chiang et al.,321

2023) with the procedure in Appendix D. LLaVA322

achieves 77.3% accuracy and 85.3% AUC, per-323

forming worse than the much larger Flamingo, but324

better than OD-based models.325

CLIP-based systems326

PromptHate (Cao et al., 2022) and HateCLIPper327

(Kumar and Nandakumar, 2022), built on top of328

CLIP (Radford et al., 2021), outperform both the329

original CLIP and OD-based models. HateCLIPper330

achieves an AUC of 85.5%, surpassing the original331

CLIP (79.8% AUC) but falling short of Flamingo-332

80B (86.6% AUC). Our system, utilising Hate-333

CLIPper’s modelling, improves over HateCLIPper334

by nearly 3% in accuracy, reaching 78.8%. For the335

AUC score, our system achieves 87.0%, surpassing336

the previous state-of-the-art Flamingo-80B.337

For HarMeme, RGCL obtained an accuracy of338

87%, outperforming HateCLIPper with an accu-339

racy of 84.8%, PromptHate with an accuracy of340

84.5% and LLaVA with an accuracy of 83.3%.341

Our system’s state-of-the-art performance on the342

HarMeme dataset further emphasises RGCL’s ro-343

bustness and generalisation capacity to different344

types of hateful memes.

Table 1: Comparing RGCL with baseline systems. Best
performance is in bold.

HatefulMemes HarMeme
Model AUC Acc. AUC Acc.

Object Detector based models

ERNIE-Vil 79.7 72.7 - -
UNITER 79.1 70.5 - -
OSCAR 78.7 73.4 - -

Fine-tuned Large Multimodal Models

Flamingo-80B1 86.6 - - -
LLaVA (Vicuna-13B) 85.3 77.3 90.8 83.3

Systems based on CLIP

CLIP 79.8 72.0 82.6 76.7
MOMENTA 69.2 61.3 86.3 80.5
PromptHate 81.5 73.0 90.9 84.5
HateCLIPper2 85.5 76.0 89.7 84.8
HateCLIPper w/ RGCL 87.0 78.8 91.8 87.0

Table 2: Retrieval-based KNN classifier results on Hate-
fulMemes

Model AUC Acc.

(I) Zero shot based on Large Multimodal Models

Flamingo-80B 46.4 -
Lens (Flan-T5 11B) 59.4 -
InstructBLIP (Flan-T5 11B) 54.1 -
InstructBLIP (Vicuna 13B) 57.5 -
LLaVA (Vicuna 13B) 57.9 54.8

fine-tuned on HarMeme 56.3 54.3

(II) Train and retrieve on HarMeme

HateCLIPper 55.8 51.9
HateCLIPper w/ RGCL 60.0 (+4.2) 57.2 (+5.3)

(III) Train on HarMeme, retrieve on HatefulMemes

HateCLIPper 54.4 50.3
HateCLIPper w/ RGCL 66.6 (+12.2) 59.9 (+9.6)

(IV) Train and retrieve on HatefulMemes

HateCLIPper 84.6 73.3
HateCLIPper w/ RGCL 86.7 (+2.1) 78.3 (+5.0)

345

4.2 Performance with retrieval-based KNN 346

classifier 347

Online hate speech is constantly evolving, and it is 348

not practical to keep retraining the detection system. 349

We demonstrate that our system can effectively 350

transfer to the unseen domain of hateful memes 351

without retraining. 352

We train HateCLIPper with and without RGCL 353

using the HarMeme dataset and evaluate on the 354

HatefulMemes dataset. We report the performance 355

of the KNN classifier when using the HarMeme 356

and HatefulMemes dataset as the retrieval database 357

in Table 2 (II) and (III) respectively. We only use 358

the training set as the retrieval database to avoid 359

label leaking. 360

We compare our method with state-of-the-art 361

LMMs, including Flamingo (Alayrac et al., 2022), 362

Lens (Berrios et al., 2023), Instruct-BLIP (Ouyang 363

et al., 2022) and LLaVA (Liu et al., 2023) as shown 364

in Table 2 (I). We report the zero-shot performance 365

of these LMMs to replicate the scenario when 366

the model predicts the unseen domain of hateful 367

memes. Furthermore, we report the performance of 368

LLaVA fine-tuned on the HarMeme to align with 369

RGCL’s setting in Table 2 (II) and (III). 370

1Flamingo only reports AUC score on HatefulMemes.
Since Flamingo is not open-sourced, we are unable to re-
produce the accuracy.

2HateCLIPper only reports AUC score on HatefulMemes,
so we reproduce the system with their released code and obtain
the scores.
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Lastly, we also report the performance of our371

methods when trained and evaluated on Hateful-372

Memes in Table 2 (IV).373

(I) We report LMMs with diverse backbone374

language models, ranging from Flan-T5 (Chung375

et al., 2022) and the more recent Vicuna (Chiang376

et al., 2023). Among these models, Lens with377

Flan-T5XXL 11B performs the best, achieving an378

AUC of 59.4%. When LLaVA is fine-tuned on the379

HarMeme dataset and evaluated on the Hateful-380

Memes dataset, its performance does not improve381

beyond its zero-shot performance. Its accuracy382

drops from 54.8% in zero-shot to 54.3% in fine-383

tuned. These findings indicate that the fine-tuned384

LLaVA struggles to generalise effectively to di-385

verse domains of hateful memes.386

(II) When using the HarMeme as the retrieval387

database, our system achieves an AUC of 60.0%,388

surpassing both the baseline HateCLIPper’s AUC389

of 55.8% and the best LMM’s zero-shot AUC390

score.391

(III) When using the HatefulMemes dataset as392

the retrieval database, the HateCLIPper’s perfor-393

mance degrades, suggesting its embedding space394

lacks generalising capability to different domains395

of hateful memes. RGCL boosts the AUC to 66.6%,396

outperforming the baseline HateCLIPper by a large397

margin of 12.2% (54.4% for the HateCLIPper).398

RGCL achieves an accuracy of 59.9%, surpassing399

the baseline by 9.6% (50.3% for the HateCLIPper).400

RGCL’s AUC and accuracy score also surpass the401

zero-shot LMMs.402

(IV) When our system is trained and evaluated403

on the HatefulMemes dataset (the same system404

from Table 1), the KNN classifier obtains 86.7%405

AUC and 78.3% accuracy. These scores also406

surpass all baseline systems including fine-tuned407

LMMs in Table 1.408

4.3 Effects of incorporating pseudo-gold409

positive and hard negative examples410

In Table 3, we report a comparative analysis by411

examining performance when specific examples412

are excluded during the training process.413

When we omit the pseudo-gold positive samples,414

only in-batch positive examples are incorporated415

during the training. This results in an AUC degra-416

dation of 1.0% and accuracy degradation of 1.5%.417

When the hard negative examples are excluded,418

leaving only in-batch negative samples, the perfor-419

mance degrades 0.9% and 1.7% for AUC and ac-420

curacy, respectively. When removing both types of 421

examples, there is more performance degradation. 422

Both the pseudo-gold positive examples and the 423

hard negative examples are needed for accurately 424

classifying hateful memes. 425

Table 3: Ablation study on omitting Hard negative
and/or Pseudo-Gold positive examples on the Hateful-
Memes

Model AUC Acc.

Baseline RGCL 87.0 78.8

w/o Pseudo-Gold positive 86.0 77.3
w/o Hard negative 86.1 77.1
w/o Hard negative and Pseudo-gold
positive 85.5 76.8

4.4 Effects of different VL Encoder 426

We ablate the performance when incorporating 427

RGCL on various VL encoders. As shown in Ta- 428

ble 4, we experiment with various encoders in the 429

CLIP family: the original CLIP (Radford et al., 430

2021), OPENCLIP (Ilharco et al., 2021; Schuh- 431

mann et al., 2022; Cherti et al., 2023), and AltCLIP 432

(Chen et al., 2022). Our method boosts the per- 433

formance of all these variants of CLIP by around 434

3%. 435

To verify that our method does not depend on the 436

CLIP architecture, we carry out experiments with 437

ALIGN3 (Jia et al., 2021). As shown in Table 4, 438

RGCL enhances the AUC score by a margin of 439

4.4% over the baseline ALIGN model. 440

Table 4: Ablation study on various Vision-Language
Encoder on the HatefulMemes dataset

Model AUC Acc.

HateCLIPper 85.5 76.0
HateCLIPper w/ RGCL 87.0 (+1.5) 78.8 (+2.8)

CLIP 79.8 72.0
CLIP w/ RGCL 83.8 (+4.0) 75.8 (+3.8)

OpenCLIP 82.9 71.7
OpenCLIP w/ RGCL 84.1 (+1.2) 75.1 (+3.4)

AltCLIP 83.4 74.1
AltCLIP w/ RGCL 86.5 (+3.1) 76.8 (+2.7)

ALIGN 73.2 66.8
ALIGN w/ RGCL 77.6 (+4.4) 68.9 (+2.1)

3ALIGN only open-sourced the base model which is less
capable than the larger CLIP-based models.
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4.5 Effects of dense/sparse retrieval441

Pseudo-gold positive examples and hard negative442

examples can be obtained by dense and sparse re-443

trieval during training. To perform sparse retrieval,444

we carry out image-to-text transformation using445

object detection. We detail our approach for sparse446

retrieval in Appendix F.447

As shown in Table 5, using a variable number448

of objects in object detection performs the best in449

sparse retrieval. The AUC score is comparable with450

the dense retrieval baseline, however, the accuracy451

degrades by 0.7%. When using a fixed number452

of objects in object detection, the performance de-453

grades even more. Using dense retrieval to obtain454

the pseudo-gold positive examples and hard nega-455

tive examples achieves better performance.

Table 5: Ablation study of Dense retrieval and Sparse
retrieval to obtain pseudo-gold positive examples and
hard negative examples on the HatefulMemes dataset

Model AUC Acc.

Baseline with Dense Retrieval 87.0 78.8

w/ Variable No. of objects 87.0 78.1
w/ 72 objects 86.1 77.1
w/ 50 objects 85.9 78.6

456

4.6 Effects of loss function and similarity457

metrics458

Inner product (IP) and Euclidean L2 distance are459

also commonly used as similarity measures. Since460

Euclidean distance (L2) is a distance metric, we461

take its negative to serve as a measure of similarity.462

We tested these alternatives and found cosine simi-463

larity performs slightly better as shown in Table 6.464

Additionally, another popular loss function for465

ranking is triplet loss which compares a positive466

example with a negative example for an anchor467

meme. Our results in Table 6 suggest using triplet468

loss performs comparably to the default NLL loss.469

4.7 Qualitative Analysis470

We show confounder examples from Hateful-471

Memes in Table 7. In Table 7 (a), both the image472

and text confounders appear benign. Specifically,473

the image confounder (middle) presents a meme474

with the caption "This is the worst cancer I’ve ever475

seen," accompanied by an image of two doctors476

discussing the disease. The text confounder (right)477

shows a meme praising the flag of Israel with the478

caption "the flag flies high and proud." However,479

Table 6: Ablation study on the loss function and simi-
larity metrics on the HatefulMemes dataset. Similarity
metrics include cosine similarity, inner product and neg-
ative squared L2.

Loss Similarity AUC Acc.

NLL
Cosine 87.0 78.8
Inner Product 86.1 78.2
L2 85.7 76.6

Triplet
Cosine 86.7 78.7
Inner Product 86.1 78.2
L2 85.7 76.8

when the text and image of these two memes are 480

combined, an extremely hateful and antisemitic 481

meme emerges (left). 482

HateCLIPper misclassifies the anchor meme 483

(left) as benign with a hateful probability of 0.454. 484

The high cosine similarity scores of the anchor 485

meme with the confounder memes (0.702 and 486

0.733 respectively) support the notion that these 487

memes, differing in only one modality, are posi- 488

tioned closely in the embedding space. The re- 489

sulting highly similar joint vision-language embed- 490

dings contribute to misclassification. 491

Our system correctly predicts the anchor meme’s 492

hatefulness with a probability of 0.999. Addition- 493

ally, our system demonstrates very low similar- 494

ity scores between the anchor meme and the con- 495

founder memes (-0.751 and -0.571 respectively). 496

Table 7 (b) and (c) demonstrate similar cases, 497

where our system separates confounder memes in 498

the embedding space. This implies that our pro- 499

posed RGCL effectively learns a hatefulness-aware 500

embedding space, placing the meme within the 501

embedding space with a comprehensive hateful un- 502

derstanding derived from both vision and language 503

components. 504

5 Conclusion 505

We introduced Retrieval-Guided Contrastive Learn- 506

ing to enhance any VL encoder in addressing chal- 507

lenges in distinguishing confounding memes. Our 508

approach uses novel auxiliary task loss with re- 509

trieved examples and significantly improves con- 510

textual understanding. Achieving an AUC score of 511

87.0% on the HatefulMemes dataset, our system 512

outperforms prior state-of-the-art models, includ- 513

ing the 200 times larger Flamingo-80B. Our ap- 514

proach also demonstrated state-of-the-art results on 515

the HarMeme dataset, emphasising its usefulness 516

across diverse meme domains. 517
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Table 7: Visualisation for the confounder memes in the HatefulMemes dataset. We present triplets of memes
including the hateful anchor memes, the benign image confounders and the benign text confounders. We show
the output hateful probability and predictions from HateCLIPper and our RGCL system. We provide the cosine
similarity score between the anchor meme and its corresponding confounder meme.

(a)

Anchor memes Image confounders Text confounders
Ground truth labels Hateful Benign Benign

Meme

HateCLIPper

Probability 0.454 0.000 0.001
Prediction Benign ✗ Benign Benign
Similarity with anchor - 0.702 0.733

HateCLIPper w/ RGCL (Ours)

Probability 0.999 0.000 0.000
Prediction Hateful ✓ Benign Benign
Similarity with anchor - -0.751 -0.571

(b)

Meme

HateCLIPper

Probability 0.038 0.000 0.001
Prediction Benign ✗ Benign Benign
Similarity with anchor - 0.898 0.913

HateCLIPper w/ RGCL (Ours)

Probability 1.00 0.000 0.000
Prediction Hateful ✓ Benign Benign
Similarity with anchor - -0.803 -0.769

(c)

Meme

HateCLIPper

Probability 0.385 0.001 0.005
Prediction Benign ✗ Benign Benign
Similarity with anchor - 0.869 0.781

HateCLIPper w/ RGCL (Ours)

Probability 0.996 0.000 0.000
Prediction Hateful ✓ Benign Benign
Similarity with anchor - -0.980 -0.998
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6 Limitation518

Various work defines hate speech differently, and519

they frequently use other terminology, such as on-520

line harassment, online aggression, cyberbullying,521

or harmful speech. United Nations Strategy and522

Plan of Action on Hate Speech stated that the def-523

inition of hateful could be controversial and dis-524

puted (Nderitu, 2020). Additionally, according to525

the UK’s Online Harms White Paper, harms could526

be insufficiently defined (Woodhouse, 2022). We527

restrict our definition of hate speech from the two528

datasets: HatefulMemes (Kiela et al., 2021) and529

HarMeme (Pramanick et al., 2021a) which may530

not cover all possible aspects of hate speech. In531

examining the error cases of our model, we find532

that the model is unable to recognise subtle facial533

expressions. This can be improved by using a more534

powerful vision encoder to enhance image under-535

standing. We leave this to future work.536

7 Ethical statement537

The HatefulMemes and HarMeme datasets were cu-538

rated and designed to help fight online hate speech539

for research purposes only. Throughout the re-540

search, we strictly follow the terms of use set by541

their authors.542

Our system is designed to alert social media543

users of hateful content. However, we recognise an544

ethical concern: the potential misuse of our system545

as training signals for image generative models for546

generating hateful memes. Such misuse could lead547

to the creation of hateful memes that are wrongly548

classified as benign by existing detection systems.549

We emphasise the ethical responsibility when using550

this system.551
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A Experiment Setup 828

A work station equipped with NVIDIA RTX 829

3090 and AMD 5900X was used for the exper- 830

iments. PyTorch 2.0.1, CUDA 11.8, and 831

Python 3.10.12 were used for implementing 832

the experiments. HuggingFace transformer li- 833

brary (Wolf et al., 2019) was used for implement- 834

ing the pretrained CLIP encoder (Radford et al., 835

2021). Faiss (Johnson et al., 2019) vector similarity 836

search library with version faiss-gpu 1.7.2 837

was used to perform dense retrieval. Sparse re- 838

trieval was performed with rank-bm25 0.2.2 839
4. All the reported metrics were computed by 840

TorchMetrics 1.0.1. For LLaVA (Liu et al., 841

2023), we fine-tuned the model on a system with 4 842

A100-80GB. The runtime was 4 hours on the Hate- 843

fulMemes and 3 hours on the HarMeme. All the 844

metrics were reported based on the mean of three 845

runs with different seeds. 846
4https://github.com/dorianbrown/rank_bm25
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B Hyperparameter847

The default hyperparameter for all the models are848

shown in Table 8. The modelling hyperparame-849

ter is based on HateCLIPper’s setting (Kumar and850

Nandakumar, 2022) for a fair comparison. For vi-851

sion and language modality fusion, we perform852

element-wise product between the vision embed-853

dings and language embeddings. This is known854

as align-fusion in HateCLIPper (Kumar and Nan-855

dakumar, 2022). The hyperparameters associated856

with retrieval-guided contrastive learning are man-857

ually tuned with respect to the evaluation metric858

on the development set. With this configuration of859

hyperparameter, the number of trainable parame-860

ters is about 5 million and training takes around 30861

minutes.

Table 8: Default hyperparameter values for the
modelling and Retrieval-Guided Contrastive Learning
(RGCL)

Modelling hyperparameter Value

Image size 336
Pretrained CLIP model ViT-L-Patch/14
Projection dimension of MLP 1024
Number of layers in the MLP 3
Optimizer AdamW
Maximum epochs 30
Batch size 64
Learning rate 0.0001
Weight decay 0.0001
Gradient clip value 0.1
Modality fusion Element-wise product

RGCL hyperparameter Value

# hard negative examples 1
# pseudo-gold positive examples 1
Similarity metric Cosine similarity
Loss function NLL
Top-K for retrieval based inference 10

862

C Dataset statistics863

Table 9 shows the data split for the HatefulMemes864

and HarMeme dataset. To access the Facebook865

HatefulMemes dataset, one must follow the license866

from Facebook5. HarMeme is distributed for re-867

search purpose only, without a license for commer-868

cial use.869

D LLaVA experiments870

For fine-tuning LLaVA (Liu et al., 2023), we fol-871

low the original hyperparameters setting6 for fine-872

5https://hatefulmemeschallenge.com/#download
6https://github.com/haotian-liu/LLaVA

Table 9: Statistical summary of HatefulMemes and
HarMeme datasets

Datasets Train Test
#Benign #Hate #Benign #Hate

HatefulMemes 5450 3050 500 500

HarMeme 1949 1064 230 124

tuning on downstream tasks. For the prompt for- 873

mat, we follow InstructBLIP (Dai et al., 2023). For 874

computing the AUC and accuracy metrics, we also 875

follow InstructBLIP’s procedure. 876

E Ablation study on numbers of retrieved 877

examples 878

We experiment with using more than one hard neg- 879

ative and pseudo-gold positive gold examples in 880

training. 881

The inclusion of more than one examples for 882

both types of examples causes the performance 883

to degrade. This phenomenon aligns with recent 884

findings in the literature, as Karpukhin et al. (2020) 885

reported that the incorporation of multiple hard 886

negative examples does not necessarily enhance 887

performance in passage retrieval.

Table 10: Ablation study on omitting and using two
Hard negative and/or Pseudo-Gold positive examples
on the HatefulMemes

Model AUC Acc.

Baseline RGCL 87.0 78.8

w/ 2 Hard negative 85.9 77.3
w/ 4 Hard negative 85.7 76.0
w/ 2 Pseudo-Gold positive 86.6 78.5
w/ 4 Pseudo-Gold positive 86.3 77.4

888

F Sparse retrieval 889

We use VinVL object detector (Zhang et al., 2021) 890

to obtain the region-of-interest object prediction 891

and its corresponding attributes. 892

After obtaining these text-based image features, 893

we concatenate these text with the overlaid caption 894

from the meme to perform the sparse retrieval. We 895

use BM-25 (Robertson and Zaragoza, 2009) to per- 896

form sparse retrieval. For variable number of object 897

predictions, we set a region-of-interest bounding 898

box detection threshold of 0.2, a minimum of 10 899

bounding boxes, and a maximum of 100 bounding 900

boxes, consistent with the default settings of the 901

VinVL. 902
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