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ABSTRACT

Modern machine learning models with high accuracy often exhibit poor uncer-
tainty calibration: the output probabilities of the model do not reflect its accuracy,
and tend to be over-confident. Existing post-calibration methods such as tem-
perature scaling recalibrate a trained model using rather simple calibrators with
one or few parameters, which can have a rather limited capacity. In this paper,
we propose Neural Rank Preserving Transforms (NRPT), a new post-calibration
method that adjusts the output probabilities of a trained classifier using a calibra-
tor of higher capacity, while maintaining its prediction accuracy. NRPT learns
a calibrator that preserves the rank of the probabilities through general mono-
tonic transforms, individualizes to the original input, and allows learning with any
loss function that encourages calibration. We show experimentally that NRPT
improves the expected calibration error (ECE) significantly over existing post-
calibration methods such as (local) temperature scaling on large-scale image and
text classification tasks. The performance of NRPT can further match ensemble
methods such as deep ensembles, while being much more parameter-efficient. We
further demonstrate the improved calibration ability of NRPT beyond the ECE
metric, such as accuracy among top-confidence predictions, as well as optimizing
the tradeoff between calibration and sharpness.

1 INTRODUCTION

Modern machine learning models such as deep neural networks have achieved high performance on
many challenging tasks, and have been put into production that impacts billions of people (LeCun
et al., 2015). It is increasingly critical that the outputs of these models are comprehensible and
safe to use in downstream applications. However, high-accuracy classification models often exhibit
the failure mode of miscalibration: the output probabilities of these models do not reflect the true
accuracies, and tend to be over-confident (Guo et al., 2017; Lakshminarayanan et al., 2017). As
the output probabilities are typically comprehended as (an estimate of) true accuracies and used
in downstream applications, miscalibration can negatively impact the decision making, and is espe-
cially dangerous in risk-sensitive domains such as medical AI (Begoli et al., 2019; Jiang et al., 2012)
or self-driving cars (Michelmore et al., 2018). It is an important question how to properly calibrate
these models so as to make the output probabilities more trustworthy and safer to use.

Existing methods for uncertainty calibration can roughly be divided into two types. Diversity-based
methods such as ensembles (Lakshminarayanan et al., 2017; Wen et al., 2020) and Bayesian net-
works (Gal & Ghahramani, 2016; Maddox et al., 2019; Dusenberry et al., 2020) work by aggre-
gating predicted probability over multiple models or multiple times on a randomized model. These
methods are able to improve both the accuracy and the uncertainty calibration over a single deter-
ministic model (Ovadia et al., 2019). However, deploying these models requires either storing all
the ensemble members and/or running multiple random variants of the same model, which makes
them memory-expensive and runtime-inefficient. On the other hand, post-calibration methods work
by learning a calibrator on top of the output probabilities (or logits) of an existing well-trained
model (Platt et al., 1999; Zadrozny & Elkan, 2001; 2002; Guo et al., 2017; Ding et al., 2020). For
a K-class classification model that outputs logits z = z(x) ∈ RK , post-calibration methods learn
a calibrator f : RK → RK using additional holdout data, so that f(z) is better calibrated than the
original z. The architectures of such calibrators are typically simple: A prevalent example is the
temperature scaling method which learns fT (z) = z/T with a single trainable parameter T > 0 by
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Figure 1: Post-calibration training curves on a WideResNet-28-10 on CIFAR-100. Temperature scaling
minimizes the training and validation NLL reasonably well (and improves the ECE), but still underfits the
NLL. Matrix scaling learns a higher-capacity matrix calibrator and minimizes the training NLL better, but
does not improve the ECE since the calibrator does not maintain the accuracy and is encouraged to improve the
accuracy instead of calibration. Our Neural Rank-Preserving Transforms (NRPT) learns a higher-capacity
calibrator that preserves the accuracy, and improves both the training/validation NLL as well as the ECE.

minimizing the negative log-likelihood (NLL) loss on holdout data. Such simple calibrators add no
overhead to the existing model, and is empirically shown to improve the calibration significantly on
a variety of tasks and models (Guo et al., 2017).

Despite its empirical success, the design of post-calibration methods is not yet fully satisfactory:
In practice, simple calibrators such as temperature scaling often underfit the calibration loss on its
training data, whereas more complex calibrators can often overfit—see Figure 1 for a quantitative
illustration of this effect. While the underfitting of simple calibrators are perhaps due to their lim-
ited expressive power, the overfitting of complex calibrators is also believed to be natural since
the holdout dataset used for training the calibrators are typically small (e.g. a few thousands of
examples). One concrete example is the matrix scaling method which learns a matrix calibrator
fW,b(z) = Wz + b involving O(K2) trainable parameters. When K is large, matrix scaling often
tend to overfit and hurt calibration, despite being a strict generalization of temperature scaling (Guo
et al., 2017). It is further observed that the overfitting cannot be easily fixed by applying common
regularizations such as L2 on the calibrator (Kull et al., 2019). These empirical evidence seems to
suggest that complex calibrators with a large amount of parameters are perhaps not recommended
in designing post calibration methods.

In this paper, we show that in contrast to the prior belief, large calibrators do not necessarily overfit;
it is rather a lack of accuracy constraint on the calibrator that may have caused the overfitting.
Observe that matrix scaling, unlike temperature scaling, is not guaranteed to maintain the accuracy
of the model: it applies a general affine transform z 7→ Wz + b on the logits and can modify their
rank (and thus the predicted top label), whereas temperature scaling is guaranteed to preserve the
rank. When trained with the NLL loss, a calibrator that does not maintain the accuracy may attempt
to improve the accuracy at the cost of hurting (or not improving) the calibration.

Motivated by this observation, this paper proposes Neural Rank-Preserving Transforms (NRPT), a
method for learning calibrators that maintain the accuracy of the model, yet are complex enough for
yielding better calibration performance than simple calibrators such as temperature scaling. Our key
idea is that a sufficient condition for the calibrator to maintain the accuracy is for it to preserve the
rank of the logits: any mapping that preserves the rank of the logits will not change the predicted top
label. We instantiate this idea by designing a family of calibrators that perform entrywise monotone
transforms on each individual logit (or log-probability): for a K-class classification problem, NRPT
scales each logit as zi → f(zi, x), where zi ∈ R is the i-th logit (1 ≤ i ≤ K), x ∈ Rd is the original
input features, and f : R× Rd → R is monotonically increasing in its first argument but otherwise
arbitrary. As f is monotone, we have f(z1, x) ≤ f(z2, x) if z1 ≤ z2, and thus f preserves the rank
of the logits. This method strictly generalizes temperature scaling (which uses f(zi, x) = zi/T )
and local temperature scaling (which uses f(zi, x) = zi/T (x)) (Ding et al., 2020). The fact that
f can depend on x further helps improve the expressivity of f and allows great flexibility in the
architecture design. We compare our instantiation of NRPT against temperature scaling and matrix
scaling in Figure 1, in which we see that NRPT is indeed able to fit the training loss better than
temperature scaling and does not suffer from overfitting.
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Our contributions We propose Neural Rank-Preserving Transforms (NRPT), an improved
method for performing uncertainty post-calibration on a trained classifier while maintaining its ac-
curacy (Section 3). NRPT learns calibrators that scale the logits using general monotone transforms,
are individualized to the original input features, and allow learning with any calibration loss func-
tion (not restricted to those that correlates with the accuracy). We show experimentally that NRPT
improves the expected calibration error (ECE) significantly over existing post-calibration methods
on large-scale image and text classification tasks such as CIFAR-100, ImageNet, and MNLI (Sec-
tion 4.1). NRPT can further match diversity-based methods such as deep ensembles, while using
a much less number of additional parameters. We further demonstrate the strong calibration abil-
ity of NRPT beyond the ECE, by showing that it improves on the accuracy among top-confidence
predictions, as well as the tradeoff between ECE and sharpness of prediction (Section 4.2).

Due to the space constraint, we defer the discussions of additional related work to Appendix A and
additional experimental details and results to the later Appendices.

2 BACKGROUND ON UNCERTAINTY CALIBRATION

We consider K-class classification problems where X ∈ Rd is the input (features), Y ∈ [K] :=
{1, . . . ,K} is the true label, and (X,Y ) follows some underlying joint distribution. Let p̂ : Rd →
∆K be a prediction model (for example, a neural network learned from data) that maps inputs to
probabilities, where ∆K := {(p1, . . . , pK) : pi ≥ 0,

∑
i pi = 1} is the set of all probability distri-

butions on [K]. We say p̂ is perfectly calibrated if
P(Y = k | p̂(X) = p) = pk for all p ∈ ∆K , k ∈ [K].

In other words, a model is perfectly calibrated if when the model predicts p̂(X) = p, the conditional
distribution of Y is exactly p. It is difficult to evaluate perfect calibration from finite data, as for
almost all p we do not receive samples that satisfy the exact conditioning p̂(x) = p. This motivates
considering alternative scalar metrics for calibration that can be estimated from data.

ECE The Expected Calibration Error (ECE) is a commonly used metric that measures calibration
through grouping examples according to the confidence (i.e. the top predicted probability) (Naeini
et al., 2015; Guo et al., 2017). Let {(xi, yi)}ni=1 be the evaluation dataset on which we wish to
evaluate the calibration of a model p̂. Define the intervals Im = (m−1M , mM ], where M > 0 is
a (fixed) number of bins, and partitions the examples into M bins according to the confidence:
Bm = {i : maxk p̂(xi)k ∈ Im}. Define the accuracy and confidence within Bm as

acc(Bm) :=
1

Bm

∑
i∈Bm

1
{

arg max
k

p̂(xi)k = yi

}
and conf(Bm) :=

1

Bm

∑
i∈Bm

max
k

p̂(xi)k

The ECE is then defined as the (weighted) average difference between accuracy and confidence:

ECE(p̂) :=

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|. (1)

The ECE is a sensible calibration metric since it is a binned approximation of the top-label cal-
ibration error (TCE) that measures the difference between accuracy and confidence under exact
conditioning:

TCE(p̂) := E
[∣∣∣∣P(arg max

k
p̂(X)k = Y | max

k
p̂(X)k

)
−max

k
p̂(X)k

∣∣∣∣].
Debiased ECE Recent work shows that the ECE has an inherent positive bias and proposes the
Debiased ECE that approximately removes this bias using Gaussian bootstrapping (Kumar et al.,
2019):

DECE(p̂) := ECE(p̂)−

(
ER1:M

[
M∑
m=1

|Bm|
n
|conf(Bm)−Rm|

]
− ECE(p̂)

)
,

where Rm ∼ N(acc(Bm), acc(Bm)(1−acc(Bm))
|Bm| ). Kumar et al. (2019) showed that the debiased ECE

is a typically more accurate estimator of the TCE than ECE, especially when the TCE is relatively
small. In our experiments, we use both the ECE and the debiased ECE for evaluating calibration.
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NLL The Negative Log-Likelihood (NLL), typically used as loss function for training classifiers,
is also a measure of calibration:

NLL(p̂) :=
1

n

n∑
i=1

− log p̂(xi)yi . (2)

NLL is a proper scoring rule (Lakshminarayanan et al., 2017) in the sense that the population min-
imizer over all possible p̂ is achieved at the ground truth conditional distribution p? (Hastie et al.,
2009). In general, the NLL measures the distance between p̂ and p?, and is thus a joint metric of
accuracy and calibration.

Predictive entropy (sharpness) While we are mostly concered about the accuracy and calibration
of a model, these two metrics alone do not fully guarantee a proper uncertainty quantification. For
example, any high-accuracy model can be calibrated in a “trivial” way such that the ECE becomes
exactly 0, by mapping the confidence on all examples to be equal to the (overall) accuracy of the
model, and rescaling the non-top probabilities accordingly. In order to prevent such trivial calibra-
tion, we additionally measure the sharpness of the predictions using the predictive entropy (Laksh-
minarayanan et al., 2017):

PEnt(p̂) =
1

n

n∑
i=1

K∑
k=1

−p̂(xi)k log p̂(xi)k.

Lower predictive entropies indicate sharper predictions (i.e. predictions closer to delta distributions
than the uniform distribution). In general, the predictive entropy is not necessarily related to the cal-
ibration; however, for models that have the same accuracies, we observe that the predictive entropy
is typically negatively correlated with calibration—sharper predictions are usually less calibrated.

3 RANK PRESERVING TRANSFORMS

We now introduce our main algorithm Neural Rank-Preserving Transforms (NRPT) for performing
post-calibration on trained classifiers. Throughout this section, we consider K-class classification
problems (K ≥ 2), and let ẑ : Rd → RK denote the input-to-logit mapping of a trained classi-
fier. The predicted probabilities of the model is the softmax of the logits: p̂(x) = σSM(ẑ(x)) =
[exp(ẑ(x)k)/

∑
j∈[K] exp(ẑ(x)j)]k.

Temperature Scaling We begin by reviewing temperature scaling, a simple yet strong baseline
method for post-calibration. Temperature scaling recalibrates a model by scaling down the logits
using a single temperature parameter T > 0:

fT (ẑ) = fT (ẑ1, . . . , ẑK) = [ẑ1/T, . . . , ẑK/T ] = ẑ/T, (3)

and using σSM(fT (ẑ)) as calibrated probabilities. The parameter T is typically learned by mini-
mizing the NLL loss on a hold-out calibration dataset. Temperature scaling clearly preserves the
rank of the logits, and is observed to improve both the NLL and the ECE on test data by learning a
temperature parameter that is typically above one (Guo et al., 2017) on large, over-confident models.
However, as we have seen in Figure 1, temperature scaling often does not minimize the (training)
NLL on the calibration dataset well due to its limited model capacity.

Individualization The first building block of our algorithm is to individualize (or localize) tem-
perature scaling, an idea recently proposed in the Local Temperature Scaling (LTS) method Ding
et al. (2020): Each input x ∈ Rd can have its own temperature T (x) > 0. This still preserves the
rank of the logits, but can substantially increase the capacity of the calibrator as now the temperature
can adapt to the raw input. Formally, we calibrate the model by scaling down the logits using an
individualized temperature model Tθ(x) > 0:

fTθ (ẑ;x) = [ẑ1/Tθ(x), . . . , ẑK/Tθ(x)]. (4)

We require the temperature model Tθ(x) to always output a positive scalar, but can otherwise have
arbitrary architectures. In our experiments, we find LTS with the right choice of architecture can
consistently outperform temperature scaling.
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Rank-preserving transforms via general monotone calibrators We now introduce our key idea
of performing general monotone calibration, which preserves the rank of the logits and can be even
more flexible than local temperature scaling. Our key observation is that the fundamental property
that allows (local) temperature scaling (3) and (4) to preserve the rank is their monotone property:

ẑi ≤ ẑj guarantees f(ẑ)i ≤ f(ẑ)j .

Further, this is satisfied for (3) and (4) since the calibrator applies an entrywise, monotonically
increasing function to each logit. Motivated by this, we consider general monotone calibrators of
the form

fθ(ẑ;x) = [gθ(ẑ1;x), . . . , gθ(ẑK ;x)], g(z, x) is monotonically increasing in z for all x. (5)

Observe that both temperature scaling (g(zi;x) = zi/T ) and local temperature scaling (g(zi;x) =
zi/T (x)) as special cases of (5), and under this perspective are still limited in capacity as the g used
in both cases are linear in zi given any x. To let the calibrator be more expressive, we would rather
like to learn an arbitrary g under the monotonicity constraint.

Instantiation via monotone two-layer networks We now explain how we design a function class
gθ(z;x) that is monotone in z for any x and not too restricted in its expressivity. Existing techniques
for building such monotone function classes include either classical non-parametric methods such
as isotonic regression (Barlow & Brunk, 1972), or sophisticated tricks such as parametrizing the
derivative d

dz gθ(z;x) using a non-negative neural network (Wehenkel & Louppe, 2019). However,
for the purpose designing calibrators, we prefer a simpler parametric class that enables efficient
gradient-based learning. We acheive this by using a class of two-layer neural networks in zi with
coefficients depending on x:

gθ(zi;x) :=

M∑
j=1

ajφ

(
1

Tθj (x)

(
zi − bθj (x)

))
,

where aj ≥ 0, Tθj (x) > 0, and φ is a monotonically increasing nonlinearity.

(6)

It is straightforward to see that (6) is guaranteed to be monotonically increasing in zi for any x as
desired. Further, by choosing a proper φ and using a large number of neurons M , (6) can express a
fairly large class of monotonic functions in zi for any fixed x. We also note that (6) recovers local
temperature scaling (4) if we take φ(t) = t to be the identity mapping (as g becomes linear in zi in
that case), and therefore has a strictly higher expressivity.

Architectural choices For implementing the calibrator (5) and (6), in theory one is free to use any
architecture as long as Tθj (x) > 0 is guaranteed. However, we observe experimentally that reusing
the representation of the trained classifier and weight sharing can help improve the calibration
performance. In all our experiments, we choose [Tθj (x), bθj (x)] to be a two-layer neural network of
the last hidden layer (the pre-logit layer) of the trained classifier, with shared weights:

[Tθ1(x), . . . , TθM (x)] = σtemp

(
Atempσ(WĤ(x) + b)

)
,

[bθ1(x), . . . , bθM (x)] = Abiasσ(WĤ(x) + b),
(7)

where Ĥ : Rd → Rdhid is the last hidden layer of the trained classifier, and W ∈ RN×dhid ,
b ∈ RN , and Atemp, Abias ∈ RM×N are the trainable parameters. We further use a strictly positive
nonlinearity σtemp to guarantee the temperatures are positive and not too small.

Flexible loss functions Our final observation is that our calibrator (5) and (6) can be trained with
not only the NLL loss, but any other loss function that encourages calibration. This is only possible
for rank-preserving calibrators—calibrators that do not preserve the accuracy have to be trained
using a loss that jointly encourages high accuracy and calibration (such as the NLL), otherwise the
calibrator may hurt the accuracy for the sake of getting good calibration.

We specifically propose to use the ECE (1) directly as a loss function for training the calibrator.
Notice that even though the ECE is non-smooth in the model outputs (due to the binning and the
non-smoothness of the argmax prediction rule), it still has a non-trivial gradient since the average
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confidence conf(Bm) is differentiable with respect to the model outputs. We find that training
with the ECE loss can often result in better calibration, at the cost of reducing the sharpness (see
Section 4) for details). We remark that Kumar et al. (2018) has considered training the MMCE
(maximum mean calibration error), a kernelized version of the ECE loss; however, we are not aware
of prior work that has considered training the ECE directly to the best of our knowledge.

Summary of algorithm We summarize our NRPT algorithm as follows: Build a calibrator
fθ(z;x) using the rank-preserving transform gθ(zi;x) defined in (5), (6), (7); Train the calibra-
tor fθ via minimizing any desired loss (e.g. NLL or ECE) on a holdout calibration dataset; Output
the calibrated model p̂(x) = σSM(fθ(ẑ(x), x)).

4 EXPERIMENTS

4.1 CALIBRATION ON IMAGE AND TEXT CLASSIFICATION

Tasks and models We perform calibration experiments on the three benchmark tasks:

• CIFAR-100, splitted into 45K/5K/10K as train/calibration/val data. We train a WideResNet-28-
10 (Zagoruyko & Komodakis, 2016) on the train split, achieving 80.36% accuracy.

• ImageNet ILSVRC2012 (Deng et al., 2009), splitted into 1.1M/100K/50K as train/calibration/val
data. We train a WideResNet-50-2 on the train split, achieving 76.27% top-1 acccuracy.

• MNLI, one of the largest text classification tasks in the GLUE benchmark (Wang et al., 2018),
splitted into 350K/43K/20K as train/calibration/val data. We finetune a pretrained BERT-Base (De-
vlin et al., 2018) model, achieving 83.36% accuracy on the matched (MNLI-m) data and 83.77%
accuracy on the mismatched (MNLI-mm) data. Calibration performances are also evaluated on
MNLI-m and MNLI-mm separately.

Methods and evaluation metrics We implement our NRPT algorithm with a two-layer neural
network calibrator on top of the last hidden representation Ĥ of the trained classifier (see (6) and (7).)
In the case of BERT, Ĥ is the last encoder layer at the CLS token. For all three tasks, we choose
hidden dimension N = 512, the number or neurons M ∈ {5, 10}, and φ to be the leaky-relu
activation. We choose σtemp(t) = 0.2+relu6(t), so that Tθi(x) is guaranteed to be within [0.2, 6.2].

We compare our NRPT against the original uncalibrated model, as well as two existing post-
calibration methods: Temperature Scaling (TS, see (3)), a strong baseline method for post-
calibration (Guo et al., 2017), and Local Temperature Scaling (LTS, see (4)), a generalization
of temperature scaling that is observed to achieve state-of-the-art performance on a variety of com-
puter vision tasks (Ding et al., 2020)1. On CIFAR-100 and ImageNet we further compare with deep
ensembles (Lakshminarayanan et al., 2017), a representative diversity-based method with strong
calibration performance (Ovadia et al., 2019). We train the calibrators using either the NLL loss (2)
or the ECE loss (1) with unregularized minibatch SGD on the calibration data.2 We use “+E” in
{TS+E, LTS+E, NRPT+E} to indicate that a method is trained with the ECE loss. Additional archi-
tectural and training details can be found in Appendix B.

We evaluate the calibration methods on three metrics: the NLL, the ECE and debiased ECE (DECE),
as well as the predictive entropy (PEnt) for evaluating the sharpness of the calibrated predictions.

Results Table 1 summarizes our main results. We observe that NRPT and NRPT+E consistently
performs the best among each group in terms of both the NLL and the ECE metric. In particular,
the best test likelihood on CIFAR100 and ImageNet are achieved by NRPT and the best test ECE or
debiased ECE are achieved by either NRPT or NRPT+E. This justifies our intuition that maximizing
the expressivity of the calibrator while making sure it preserves the rank of the logits can indeed

1We remark that our method is partly motivated by the attempt to improve over matrix scaling. However,
we find matrix scaling consistently performs worse than temperature scaling, and thus we omit the results here.

2For temperature scaling, since there is only one trainable parameter, we can in theory obtain the exact
optimal solution on the entire dataset; however we observed that the SGD solution with proper learning rate
decay almost always coincides with the exact solution.
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Table 1: Comparison between NRPT and existing post-calibration methods. Metrics are reported in
terms of the mean and standard deviation over 4 random seeds.

Task Metric Uncal TS LTS NRPT TS+E LTS+E NRPT+E

CIFAR100

NLL 0.90 0.84 0.82 ±0.00 0.78 ±0.00 0.84 0.84 ±0.00 0.84 ±0.00

ECE 9.75 5.35 5.15 ±0.13 4.16 ±0.13 2.66 1.87 ±0.05 1.77 ±0.14

DECE 9.37 5.34 4.99 ±0.12 4.08 ±0.09 2.33 1.69 ±0.18 1.39 ±0.15

PEnt 0.44 0.76 0.74 ±0.0 0.71 ±0.01 1.01 1.00 ±0.00 1.02 ±0.02

ImageNet

NLL 0.97 0.96 0.94 ±0.00 0.93 ±0.00 0.96 0.96 ±0.00 0.95 ±0.00

ECE 4.66 3.31 2.25 ±0.06 1.62 ±0.06 2.54 1.71 ±0.04 1.60 ±0.04

DECE 4.65 3.36 2.25 ±0.03 1.45 ±0.03 2.50 1.71 ±0.10 1.50 ±0.03

PEnt 0.78 0.92 0.93 ±0.01 0.91 ±0.01 1.06 1.05 ±0.01 1.01 ±0.00

MNLI-m

NLL 0.49 0.43 0.43 ±0.00 0.43 ±0.00 0.43 0.47 ±0.01 0.43 ±0.00

ECE 7.52 1.43 1.09 ±0.13 0.88 ±0.04 1.48 1.67 ±0.11 1.13 ±0.18

DECE 7.53 1.37 0.63 ±0.05 0.35 ±0.14 1.40 1.29 ±0.17 0.79 ±0.15

PEnt 0.24 0.43 0.42 ±0.00 0.42 ±0.00 0.42 0.39 ±0.00 0.40 ±0.01

MNLI-mm

NLL 0.47 0.42 0.42 ±0.00 0.42 ±0.00 0.42 0.45 ±0.01 0.42 ±0.00

ECE 7.40 1.68 0.86 ±0.16 0.63 ±0.05 1.62 1.64 ±0.13 1.20 ±0.10

DECE 7.39 1.89 0.61 ±0.08 0.38 ±0.21 1.91 1.52 ±0.23 0.10 ±0.6

PEnt 0.24 0.42 0.41 ±0.00 0.41 ±0.00 0.42 0.39 ±0.00 0.40 ±0.01

improve the calibration performance and do not yield significant overfitting. As a side note, we find
that the choice of the loss function can substantially impact the behavior of the final calibrator: train-
ing with the NLL loss typically minimizes the test NLL well and improves the ECE by a reasonable
amount, whereas training on the ECE loss typically minimizes the test ECE better (at least on the
image tasks) at the cost of performing a little worse on the NLL and ECE.

We remark that the behaviors on MNLI are slightly different in that the best ECE is achieved by
NRPT instead of NRPT+E, potentially due to the language task being different from the image
tasks. However, we do observe that NRPT+E still performs best among those trained with ECE loss,
again demonstrating the benefit of the improved expressivity in the NRPT calibrator.

Comparison with deep ensembles; parameter efficiency We further compare NRPT against
deep ensembles (Lakshminarayanan et al., 2017) in Table 2. While deep ensembles in general can
improve the accuracy and achieve much better NLL and sharpness (PEnt) due to the higher model
capacity, we find that NRPT can consistently achieve a better ECE than an ensemble of 4 models,
and nearly match an ensemble of 8 models on CIFAR100. NRPT further has much less memory
overhead compared with the ensembles: the calibrators we used only has size 0.5% − 2% of the
original model, whereas even an ensemble of 2 models requires doubling the model size. We also
compare against Monte Carlo Dropout (Gal & Ghahramani, 2016) in Appendix C where we find
Dropout cannot simultaneously maintain the accuracy and achieve calibration as well as NRPT.

4.2 CALIBRATION PERFORMANCE BEYOND THE ECE

Accuracy among top-confidence predictions We investigate the calibration ability of NRPT be-
yond the ECE metric, by looking at how well it improves the rank of the confidence among the
individual examples. We measure the quality of the rank by visualizing the accuracy among top-
confidence predictions: we take the subset of the test set for which the calibrated confidence ranks
among the top x% (e.g. 20%, 10%), and evaluate the accuracy (or error rate) among these exam-
ples. Roughly speaking, the error should become lower as we decrease the percentage x, but we
can further compare this curve across different methods. In Figure 2a, we confirm that the NRPT
has a lower classification error than TS and LTS for the majority of the percentages, except at the
very tail. This can be further quantitatively measured by the PRR (prediction rejection ratio) metric,
where a higher PRR implies a better accuracy among top-confident examples (see Appendix D for
the details of PRR). In Table 3, we find that NRPT achieves better PRR than both TS and LTS.
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Table 2: Comparison between NRPT and deep ensembles.

Task Metric Uncal NRPT NRPT+E Ens-2 Ens-4 Ens-8

CIFAR100

ACC 80.36 80.36 80.36 82.42 83.56 84.10
NLL 0.90 0.78 ±0.00 0.84 ±0.00 0.72 0.63 0.59
ECE 9.75 4.16 ±0.13 1.77 ±0.14 4.77 2.63 1.71

DECE 9.37 4.08 ±0.09 1.39 ±0.15 4.75 2.53 1.23
PEnt 0.44 0.71 ±0.01 1.02 ±0.02 0.48 0.51 0.54

#params 1x 1.006x 1.006x 2x 4x 8x

ImageNet

ACC 76.27 76.27 76.27 77.29 77.76 -
NLL 0.97 0.93 ±0.00 0.95 ±0.00 0.90 0.87 -
ECE 4.66 1.62 ±0.06 1.60 ±0.04 2.43 1.79 -

DECE 4.65 1.45 ±0.03 1.50 ±0.03 2.31 1.73 -
PEnt 0.78 0.91 ±0.01 1.01 ±0.00 0.83 0.88 -

#params 1x 1.015x 1.015x 2x 4x -

Table 3: Prediction rejection ratio (PRR) metric (def in Appendix D). Higher the better.

Task Uncal TS LTS NRPT
CIFAR100 56.49% 54.28% ±0.00% 60.69% ±0.22% 61.84% ±0.37%

ImageNet 56.11% 55.69% ±0.00% 58.47% ±0.14% 58.65% ±0.07%

Tradeoff between sharpness and ECE For post-calibration methods that maintain the accuracy
of the model, the calibration (e.g. ECE) is typically negatively correlated to the sharpness of the
prediction (e.g. predictive entropy). We investigate the ability of NRPT in optimizing the tradeoff
when both metrics are desired. To test this, we train both {TS, LTS, NRPT} on a weighted com-
bination of the NLL and ECE loss αLNLL + C(1 − α)LECE, where use multiple weight values
α ∈ {0, 0.1, . . . , 0.7, 0.75, 0.8 . . . , 1}, and plot the resulting predictive entropy and ECE as a trade-
off curve. In Figure 2b, we see that NRPT achieves a nearly universally better tradeoff curve than TS
and LTS. This suggests that the improved expressivity in NRPT can be beneficial in practice when
more than one metrics are desired and it is necessary to manage the tradeoff.

50% 40% 30% 20% 10% 0%
Top x% confidence

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Cl
as

sif
ica

tio
n 

er
ro

r

TS
LTS
NRPT
Uncal

(a) Error within top-confidence predictions
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Figure 2: Comparison between TS, LTS, and NRPT in the calibration abilities. Each dot in (b) is obtained by
optimizing a weighted combination of the NLL and ECE loss. Shaded area in (a) and crosses in (b) indicate the
standard deviation over 4 random seeds.

5 CONCLUSION

We proposed Neural Rank-Preserving Transforms (NRPT), an improved technique for uncertainty
post-calibration, and showed that it outperforms existing post-calibration methods on benchmark
tasks. A number of interesting research questions remain open: for example, can we have a better
understanding on the choice of the architecture for the monotonic transforms used in NRPT? Can we
build calibrators that combine the advantages in standard post-calibration methods and ensemble-
like methods? We would like to leave these as future work.
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A ADDITIONAL RELATED WORK

Post-calibration methods Post-calibration for binary classification problems has been studied ex-
tensively in classical work, including non-parametric (bining type) methods such as histogram bin-
ning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002), Bayesian binning
into quantiles (Naeini et al., 2015), as well as parametric methods such as Platt scaling (Platt et al.,
1999) which re-fits a one-dimensional logistic regression model from the logit to the probability on
a holdout calibration dataset. Kumar et al. (2019) combines the advantage of non-parametric and
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parametric approachs in the scaling-bining calibrator, which first fits a parametric function to the
calibration dataset and then performs the binning.

While most binning type methods are defined for binary problems, they can be extended to multi-
class classification (K ≥ 3 classes) by performing the calibration on all the 1-vs-K−1 binary tasks,
and re-normalizing the calibrated probabilities (Zadrozny & Elkan, 2002). The parametric can also
be extended to the multi-class case with various degrees of freedom, including tempreature scaling,
vector scaling, and matrix scaling. Guo et al. (2017) tested the multi-class calibration methods on
a variefy of tasks and found that temperature scaling performs the best across the board. Local
Tempreature Scaling (Ding et al., 2020) proposes to use an individualized temperature for each
example; in this paper we implement . Dirichlet calibration (Kull et al., 2019) improves the per-class
calibration by using a different Dirichlet distribution for each class as the calibrator. MMCE (Kumar
et al., 2018) proposes to optimize a kernalized version of ECE for improving the calibration; however
they do not consider optimizing the original ECE directly.

Diversity-based uncertainty quantification Diversity-based uncertainty quantification can be
roughly divided into two types. Ensemble methods such as deep ensembles (Lakshminarayanan
et al., 2017) train an ensemble of models from different initializations (and with different SGD
noise), and find that the aggregated (average) predicted probability exhibit better uncertainty cali-
bration than a single deterministic model. As ensembles are memroy and runtime heavy, a recent line
of work proposes to make ensembles more efficient by either reducing the parameter count through
smart reparametrizations (Wen et al., 2020) or a single deterministic model that simulates the en-
sembles (Liu et al., 2020). A related line of work proposes to distill an ensemble of models (Malinin
& Gales, 2018; Malinin et al., 2020; Tran et al., 2020). We remark that either the efficient ensem-
bling approach or the distillation approach improves the uncertainty calibration through simulating
an ensemble, and can be used jointly with post-calibration methods.

Bayesian neural networks (MacKay, 1995) are capable of producing uncertainty estimates by na-
ture since it learns a distribution of networks (that can be used aggregatedly) rather than a single
network. Monte Carlo Dropout (Gal & Ghahramani, 2016) uses the randomized prediction capabil-
ity of Dropout to perform uncertainty calibration. SWAG (Maddox et al., 2019) performs uncertainty
calibration via an approximate Bayesian model averaging using the SGD iterates. Bayesian rank-
one factors (Dusenberry et al., 2020) is a Bayesian version of BatchEnsembles that learns a posterior
over the rank-one parametrization of ensembles.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 MODELS

NRPT We choose σ in (7) to be the ReLU activation and φ to be the leaky relu activation with
negative slope tuned in {0.5, 0.8, 1.5, 2.0}. The number of neurons M was tuned in {5, 10}. We
further initialize the Tθj (x) such that it has initial values (approximately) {0.5, 1.0, 1.5, . . . , 0.5M}
by properly initializing the bias within these networks.

LTS For LTS (local temperature scaling) we use an architecture that is similar to NRPT:

Tθ(x) = σtemp(a>σ(WĤ(x) + b)),

where H : Rd → Rdhid is the last hidden representation layer of the trained classifer, M ∈ Rdhid×N
and a ∈ RN . Similar as in NRPT, we choseN = 512 and σtemp(t) = 0.2+relu6(t). We remark that
our implementation is likely different from the implementation in (Ding et al., 2020) (and operates
on different base models). Nevertheless we find that our implementation is also a strong calibrator
that consistenly performs temperature scaling.

B.2 TRAINING AND EVALUATION

CIFAR-100 The base WideResNet-28-10 on CIFAR-100 was trained with batchsize 128 for 200
epochs with a cosine learning rate with initial learning rate 0.1.
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ImageNet The base WideResNet-50-2 on ImageNet was trained with batchsize 256 (parallelized
onto 8 GPUs) for 100 epochs. The initial learning rate was 0.1, with a fixed decay of factor 0.1x at
the {30, 60, 80}-th epochs.

MNLI The BERT-base on MNLI was finetuned from the pretrained model with batchsize 32 for
3 epochs, with the AdamW optimizer and learning rate 2× 10−5.

All post-calibrators are trained with a one-cycle learning rate (Smith, 2017) and we tune the initial
learning rate within {1e-3, 3.1e-3, 1e-2, 3.1e-2}. All post-calibrators are trained with the same
batchsize as used in training the base model. The number of epochs for training the calibrators was
50 on CIFAR-100, 5 on ImageNet, and 6 on MNLI.

ECE as loss and evaluation metric We choose the number of bins to be 15 for evaluating the
ECE following the standard practice in (Guo et al., 2017) (and the body of recent work). However,
at train time, we tune the number of bins within {5, 10}, as we evaluate the train-time ECE loss on
small minibatches, which could benefit from a smaller number of bins.

Hyperparameter tuning All the hyperparameter tuning were conducted by further splitting the
calibration dataset into a training and development set, where we train with a grid of hyperparameters
on the train set and select the best on the development set.

C COMPARISON BETWEEN NRPT AND MONTE CARLO DROPOUT

We compare the calibration performance of NRPT and Monte Carlo Dropout (Gal & Ghahramani,
2016) on CIFAR-100, where we train a WideResNet-28-10 model for each drop probability, and
evaluate the calibration by aggregating over 8 random predictions at test time (each with a different
mask).

We observe a consistent trend on Dropout: increasing the drop probability improves the ECE at the
cost of hurting the accuracy, which is as expected since randomized predictions can naturally get
more calibrated but less accurate as we increase the level of randomization. Comparing NRPT+E
with Dropout, we see that NRPT+E achieves better ECE than Dropout up to drop probability 0.7; for
drop probability 0.8, the ECE is better than NRPT+E, however it comes at the cost of significantly
lower accuracy. For the NLL and predictive entropy metric, NRPT performs slightly better than
Drop 0.8 and slightly worse than Drop 0.7. However, Drop 0.7 also has a worse accuracy than
NRPT (which did not change the accuracy of the model). This suggests that NRPT may be preferred
over Dropout if maintaining the accuracy is crucial; Dropout can only achieve a better calibration
by huring the accuracy.

Table 4: Comparison between NRPT and Monte Carlo Dropout. “Drop 0.4” indicates the dropout
method with drop probability 0.4 and keep probability 0.6. All dropout methods are evaluated by
aggregating the randomized predictions over 8 masks.

Task Metric Uncal NRPT NRPT+E Drop 0.4 Drop 0.6 Drop 0.7 Drop 0.8

CIFAR100

ACC 80.36 80.36 80.36 80.91 80.21 78.92 77.61
NLL 0.90 0.78 ±0.00 0.84 ±0.00 0.75 0.74 0.76 0.81
ECE 9.75 4.16 ±0.13 1.77 ±0.14 4.91 3.03 2.55 1.01

DECE 9.37 4.08 ±0.09 1.39 ±0.15 4.71 2.96 2.19 0.50
PEnt 0.44 0.71 ±0.01 1.02 ±0.02 0.58 0.63 0.67 0.76

#params 1x 1.006x 1.006x 1x 1x 1x 1x

D DETAILS ON THE PRR METRIC

The PRR (prediction rejection ratio) metric is commonly used for quantitatively summarizing the
accuracy against top-confidence predictions, or equivalenty for evaluating the if the model can reli-
ably reject to predict (Malinin et al., 2020). The PRR metric is based on the AUC (area under curve)
on the accuracy among top-confidence curve as in Figure 3. We compare the curve of a method
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against that of an “oracle” rank of confidence (which perfectly ranks all wrong predictions of lower
confidence than all correct predictions), as well as a “random” rank of confidence illustrated by a
straight line. The PRR metric is then defined as

PRR(Method) :=
AUC(Random)−AUC(Method)

AUC(Random)−AUC(Oracle)
=

shaded area in green
shaded area in orange

.

A higher PRR indicates that the method achieves a better (closer to the oracle) rank of confidence.
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Figure 3: Illustration of the PRR metric.

E ACCCURACY AMONG MOST-CONFIDENT EXAMPLES ON IMAGENET

We plot the accuracy among most-confident examples on ImageNet in Figure 4. Similar as on
CIFAR-100 (Figure 2a), we see that NRPT achieves lower error rate than LTS and TS at most
confidence levels, except for the very tail.
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Figure 4: Accuracy among most-confident examples on ImageNet.
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