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ABSTRACT

Recent advancements in brain-computer interfaces (BCIs) have enabled the decod-
ing of lexical tones from intracranial recordings, offering the potential to restore
the communication abilities of speech-impaired tonal language speakers. How-
ever, data heterogeneity induced by both physiological and instrumental factors
poses a significant challenge for unified invasive brain tone decoding. Traditional
subject-specific models, which operate under a heterogeneous decoding paradigm,
fail to capture generalized neural representations and cannot effectively leverage
data across subjects. To address these limitations, we introduce Homogeneity-
Heterogeneity Disentangled Learning for neural Representations (H2DiLR), a
novel framework that disentangles and learns both the homogeneity and hetero-
geneity from intracranial recordings across multiple subjects. To evaluate H2DiLR,
we collected stereoelectroencephalography (sEEG) data from multiple participants
reading Mandarin materials comprising 407 syllables, representing nearly all Man-
darin characters. Extensive experiments demonstrate that H2DiLR, as a unified
decoding paradigm, significantly outperforms the conventional heterogeneous de-
coding approach. Furthermore, we empirically confirm that H2DiLR effectively
captures both homogeneity and heterogeneity during neural representation learning.

1 INTRODUCTION

The human language system, with its intricate and expansive syntactic structure, enables rich and
complex communication. Decoding spoken language from within human brains has emerged as a
significant topic of interest in neuroscience (Anumanchipalli et al., 2019; Willett et al., 2023; Feng
et al., 2023; Lu et al., 2023; Liu et al., 2023). The decoding of vocal tone from brain measurements (Lu
et al., 2023; Liu et al., 2023) is of particular research interest, due to the prominence of tonal languages,
which make up over 60% of the world’s languages (Yip, 2002) and are spoken by approximately
one-third of the global population (Dryer & Haspelmath, 2013). In these languages, tone plays a
critical role in distinguishing lexical meaning at the syllable level.

Mandarin, for instance, is a widely spoken tonal language that has an extensive inventory of over
50,000 characters, with each associated with a syllable composed of an initial, a final, and a tone (Du-
anmu, 2007). Mandarin features four tones, each characterized by starting pitch height and contour.
The same initial and final components can yield entirely different semantic meanings when uttered
with different tones, as illustrated in Fig. 1. For instance, the syllable formed by the initial /b/ and
the final /a/ can represent vastly different concepts depending on the tone: a high-level tone (Tone 1)
signifies ‘eight’ (八), a rising pitch contour (Tone 2) indicates ‘pull’ (拔), a low falling-rising tone
(Tone 3) means ‘handle’ (把), and a high falling tone (Tone 4) translates to ‘father’ (爸). Consequently,
precise tone identification is crucial for brain sentence decoding of tonal languages.

Recent studies have shown the feasibility of decoding tones using non-invasive neurophysiological
signals such as electroencephalogram (EEG) (Yang et al., 2021; Li et al., 2021a) and more promisingly,
intracranial recordings such as electrocorticography (ECoG) (Liu et al., 2023). While EEG provides a
non-invasive method, ECoG offers superior spatiotemporal resolution and reduced signal attenuation,
leading to better decoding performance and interpretability. Nonetheless, the heterogeneity evoked by
both physiological and instrumental factors is a major challenge for invasive brain neural decoding.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In particular, physiological variations among subjects and discrepancies in electrode configuration
due to diverse electrode implantation conditions prevent unified decoding across subjects. Conversely,
developing heterogeneous models for each subject leads to poor generalization ability due to data
scarcity, which is primarily due to the cumbersome process of intracranial data acquisition and
the inability of participants to wear electrodes for long time periods. Thus, efficiently integrating
heterogeneous intracranial recordings from multiple subjects to enable consistent decoding remains a
critical challenge.
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Figure 1: Illustration of H2DiLR for unified lexical tone
decoding with sEEG from multiple participants. In the homo-
heterogeneity disentanglement (H2D) stage, the continuous
latent representations from the encoders are disentangled into
H2D representations, which are constructed by discretized
code embeddings in a shared codebook (homogeneous tone
articulation neural codes) and private codebooks (heteroge-
neous personalized neural codes). The learned H2D repre-
sentations are utilized for tone decoding in the second stage.

To tackle this, we propose a two-
stage neural representation learn-
ing framework called Homogeneity-
Heterogeneity Disentangled Learning
for neural Representations (H2DiLR)
that captures both homogeneous and
heterogeneous information from in-
tracranial recordings across multiple
subjects, enabling unified neural de-
coding. The intuition behind our
proposed H2DiLR is straightforward:
although physiological and instru-
mental differences exist among dif-
ferent subjects (heterogeneity), the
same brain regions in different in-
dividuals exhibit similar functions
during the tone production process
(homogeneity). Figure 1 provides an
overview of H2DiLR in the context of
lexical tone decoding. Concretely, in
the homogeneity-heterogeneity disen-
tanglement (H2D) stage (first stage),
we perform neural feature extraction
from the novel perspective of vector
quantization (Van Den Oord et al.,
2017), where the learned latent neural
embedding (neural code) captures dis-
criminative pattern-aware information. We further maintain online-optimizable codebooks to store
these learned neural codes as matching templates for disentangled neural representation learning: one
shared codebook for all subjects to capture homogeneity, while private codebooks for each subject
capture heterogeneity. The disentangled H2D neural representations are then used for tone decoding
in the second stage.

We comprehensively evaluate the effectiveness of H2DiLR using stereoelectroencephalography
(sEEG) data collected from multiple participants reading Mandarin materials containing 407 sylla-
bles. Compared to previous tone decoding studies that focused on smaller subsets of syllables, our
study has greater practical relevance. Extensive experiments demonstrate that H2DiLR outperforms
traditional subject-specific decoding paradigms by a significant margin. Moreover, we empirically
show that H2DiLR successfully disentangles homogeneous and heterogeneous components in the
learned neural representations, as evidenced by visualizations of neural codes and subject categoriza-
tion tests. H2DiLR, as a general-purpose framework for homogeneity-heterogeneity disentangled
neural representation learning, can be applied to various neural decoding applications. Overall, our
contributions are as follows:

(1) We introduce a neural representation learning framework, H2DiLR, which disentangles ho-
mogeneity and heterogeneity, enabling unified neural decoding across multiple subjects with
heterogeneous recordings caused by physiological and instrumental factors;

(2) To the best of our knowledge, we are the first to perform unified tone decoding across subjects
on a comprehensive set of 407 Mandarin syllables, covering nearly all Mandarin characters,
providing results of greater practical significance.

(3) Extensive experiments demonstrate the effectiveness of H2DiLR, with an average top-1 tone
decoding accuracy improvement of 12.2% over conventional subject-specific models. Moreover,
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we empirically verify that H2DiLR successfully captures both homogeneous and heterogeneous
neural representations.

2 RELATED WORK

Brain Language Decoding. With the mature application of biomedical circuits and the advance-
ment of deep learning, the in-depth exploration of the perceptual and processing mechanisms of the
human brain in response to language and speech has attracted increasing research attention in neuro-
science. Recent studies have demonstrated the feasibility of decoding language and speech intentions
from both non-invasive (Défossez et al., 2023; Tang et al., 2023; Sereshkeh et al., 2018; Si et al., 2021;
Deng et al., 2010; DaSalla et al., 2009; Chi et al., 2011) and invasive neural recordings (Moses et al.,
2019; Makin et al., 2020; Moses et al., 2021; Angrick et al., 2019). Early studies primarily focused on
the binary classification of language components such as syllables, phonemes, and words from non-
invasive brain signals like functional magnetic resonance imaging (fMRI), functional near-infrared
spectroscopy (fNIRS), and electroencephalography (EEG)(DaSalla et al., 2009; Deng et al., 2010;
Chi et al., 2011). Similar to language decoding, recent work has also demonstrated the feasibility of
non-invasively decoding perceived music(Denk et al., 2023). In contrast to non-invasive approaches,
intracranial electroencephalography, such as electrocorticography (ECoG), offers superior spatial
resolution and signal-to-noise ratios, leading to more robust decoding performance (Willett et al.,
2023; Metzger et al., 2023). Anumanchipalli et al. (2019) pioneered sentence-level English decoding
using recurrent neural networks (RNNs) to predict Mel-frequency cepstral coefficients (MFCC)
from ECoG signals, which were then converted into speech via a vocoder (Anumanchipalli et al.,
2019). Beyond non-tonal languages, accurate recognition of lexical tones is crucial for decoding
tonal languages from brain signals due to their distinctive pitch articulation and their critical role
in differentiating lexical meaning(Yang et al., 2021; Li et al., 2021a; Liu et al., 2023; Lu et al.,
2023; Li et al., 2021b). For instance, Liu et al. (2023) employed long short-term memory (LSTM)
networks to predict Mel spectrograms from ECoG signals, successfully generating sound waves of
syllables /mi/ and /ma/ along with their corresponding four tones using the Griffin-Lim algorithm.
However, these studies are often limited by small datasets, as data is typically recorded from patients
undergoing neurosurgery, resulting in restricted data availability. Guo & Chen (2022) performed
multi-class classification of four tones across vowels /a/, /i/, /o/, and /u/ using manually extracted
features from fNIRS. Despite these advancements, existing studies are mostly confined to tone
decoding on limited syllables, using small subject-specific datasets. In this work, we expand upon
prior research by performing full-spectrum tone decoding across all possible syllables in Mandarin
Chinese using stereoelectroencephalography (sEEG). Additionally, we propose a unified brain tone
decoding framework that integrates neural recordings from multiple subjects.

Heterogeneity in Neural Representation Learning. Benefiting from large-scale training corpora,
recent breakthroughs in natural language processing (NLP) have demonstrated the exceptional
capabilities of large language models as general-purpose task solvers (Brown et al., 2020). Similarly,
in computer vision (CV), generative models have shown remarkable performance when trained on
extensive datasets (Ho et al., 2020). However, these advances often rely on the assumption that data
is independent and identically distributed (IID), which is rarely applicable to neural representation
learning due to the heterogeneity inherent in neurological data acquisition. Heterogeneity in neural
data manifests in various ways, including physiological and neural differences across individuals,
variations in electrode configurations during data collection, and fluctuations in neural activity
across recording sessions (Wu et al., 2023). To address these challenges, several researchers have
attempted to train universal models—primarily spatiotemporal encoders—by combining data from
multiple subjects or sessions to overcome the heterogeneity caused by physiological and neural
variability (Zhang et al., 2024; Cai et al., 2023; Jiang et al., 2024; Ye et al., 2024; Fazli et al., 2009;
Autthasan et al., 2022; Liu et al., 2021; Ng & Guan, 2024). However, most existing approaches
assume homogeneous experimental setups, where the number and placement of electrodes are
consistent across subjects. In addressing heterogeneity due to different electrode configurations,
LaBraM (Jiang et al., 2024) and MMM (Yi et al., 2023) introduced pre-training strategies based
on the standardized 10-20 and 10-10 EEG acquisition systems to mitigate channel compatibility
issues during model training. However, these methods are restricted to non-invasive EEG systems,
limiting their applicability to broader neural decoding tasks. BIOT (Yang et al., 2023) tackled data
heterogeneity by introducing handcrafted embeddings to align neural representations across subjects.
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Figure 2: Overview of the proposed H2DiLR learning paradigm compared to the heterogeneous
learning paradigm. The VQ encoders, decoders, a shared codebook, and private codebooks are
learnable and trained in a self-supervised manner during the H2D stage. It is worth noticing that the
VQ decoders are discarded after stage one. In the neural decoding stage, all encoders and codebooks
are frozen for H2D representation generation, which is used for further decoding with transformers.
The red lines and marks denote loss propagation.

However, BIOT primarily focuses on developing encoder architectures for multi-dataset training
and does not sufficiently address the nuances of homogeneity and heterogeneity across subjects or
datasets. In contrast, this work proposes a novel learning paradigm that disentangles and models both
homogeneity and heterogeneity from heterogeneous neural data, enabling unified neural decoding
across subjects.

3 HOMOGENEITY-HETEROGENEITY DISENTANGLED LEARNING FOR NEURAL
REPRESENTATION

We first present the overall learning paradigm of H2DiLR in comparison to other existing learning
paradigms in Sec. 3.1. We then propose unified pattern-aware neural tokenization (UPaNT) in
Sec. 3.2, the prerequisite for homogeneity-heterogeneity disentanglement (H2D). The details of H2D
are elaborated in Sec. 3.3, along with the corresponding model architectures described in Sec. 3.4.

3.1 LEARNING PARADIGM OF H2DILR

Managing heterogeneity caused by physiological or instrumental factors remains a fundamental
challenge in neural representation learning. As illustrated in Fig. 2-(a), existing approaches typically
adopt a purely heterogeneous training paradigm, wherein subject-specific models are trained indepen-
dently for each individual. This learning paradigm effectively handles heterogeneity with apparent
drawbacks: the lack of unified neural representation learning capability across individuals and poor
generalization of learned representations, particularly in invasive scenarios with limited data.

To overcome these limitations, we propose a novel learning paradigm named H2DiLR, which contains
an H2D stage and a neural decoding (ND) stage, as shown in Fig. 2. In the H2D stage, we learn
neural representations that capture both homogeneous and heterogeneous features by leveraging
data from all subjects in an unsupervised, task-agnostic manner through vector-quantized (VQ) style
reconstruction(Van Den Oord et al., 2017). We will elaborate on VQ in Sec. 3.2. At a high level,
H2D stores homogeneous information in a shared, trainable codebook accessible to all subjects,
while subject-specific private codebooks capture heterogeneous information. In the ND stage, the
parameters of encoders and cookbooks are frozen for H2D representation extraction. A lightweight
transformer is adopted for specific downstream neural decoding tasks in a supervised manner.

3.2 UNIFIED PATTERN-AWARE NEURAL TOKENIZATION

Prerequisites for Homogeneity-heterogeneity Disentanglement. To successfully disentangle ho-
mogeneity and heterogeneity in neural recordings across multiple subjects, neural representation
learning must meet two key requirements: (i) Unify the latent representation space of hetero-
geneous neural recordings for neural decoding. This property allows the neural representation
learning algorithm to handle data heterogeneity and build a single decoding model; (ii) Extract
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Figure 3: Illustration of the proposed Homogeneity-heterogeneity Disentanglement (H2D) for m
subjects, which contains encoders {Ei}mi=1, decoders {Di}mi=1, and a shared codebook CS and
private codebooks {CP

i }mi=1 for quantization. For each sample, νL tokens are selected from its
embedding and discretized with the shared codebook, while the rest of (1− ν)L tokens are quantized
by the corresponding private codebook The red lines and marks denote training loss propagation.

features with explicit semantic patterns for further H2D. Take speech decoding for an example.
The articulation of speech involves the intricate coordination of oral organs, including the tongue,
larynx, vocal tract, and others. During vocalization, these organs exhibit explicit muscle movements
associated with specific states under neural control (Jürgens, 2009). For instance, the muscles in
the larynx bring the vocal cords closer to realize pitch voicing. Consequently, extracting neural
representations associated with the opening and closing of the vocal cords is critical for lexical tone
decoding. Likewise, capturing additional critical articulation patterns, such as manner of articulation
(MOA) and place of articulation (POA), will benefit neural representation learning.

Driven by the above design principles, we propose unified pattern-aware neural tokenization (UPaNT)
to characterize neural patterns (pitch articulation in our case) in a unified manner during neural
representation learning based on vector-quantized (VQ) autoencoding (Van Den Oord et al., 2017)).
It’s important to note that UPaNT, without H2D, could be considered a homogeneous training
paradigm since it manages to learn neural representations from multiple subjects in a unified manner.
The concept of vector quantization (VQ) was initially introduced for learning discrete representations
in the context of natural images. Holistically, VQ discretizes the continuous latent representations
generated by the encoder by substituting them with the nearest quantized embeddings from an online
optimizable codebook and further reconstructs the original input with quantized representations. The
discretized embeddings in the codebook demonstrate explicit semantic information (Zhou et al.,
2022). In vision representation learning, for example, these discretized embeddings often correspond
to interpretable patterns like color and texture.

Consider we collect intracranial recordings fromm subjects, {Si}mi=1, given the same neural decoding
task. We assume substantial differences exist among them sets of recordings {Si}mi=1 due to electrode
configuration variations among subjects. Xi ∈ RNi×T×Ci denotes the set of recordings collected
from subject i with different number of data samples Ni, different number of channels Ci, and the
same segment length T . The neural recordings X are first mapped into latent feature, z = Ei(x, θi) ∈
RL×D, in the continuous latent space by a set of encoders {Ei(·; θi)}mi=1 parameterized by network
parameters {θi}mi=1. A finite VQ codebook of K key-value pairs, C = {(k, e(k))}k∈[K], where
each code k owns its learnable code embedding e(k) ∈ RD, can discretize each token in z by a
quantization function Q(·, ·):

Mj = Q(zj ; C) = argmink∈[K]‖zj − e(k)‖2, (1)

where zj ∈ R1×D denotes the jth token of z with 1 ≤ j ≤ L, Mj ∈ [K]L is code mapping indices.

With assigned M , the latent feature z can be indexed and quantized to the VQ embedding by the
closest 1-of-K embedding vectors in the codebook C as ẑj = e(Mj). Then, a set of decoders
{Di(·;ψi)}mi=1 parameterized by {ψi}mi=1 maps the VQ embedding ẑ back to the input space to
reconstruct the original neural recordings x̂:

x̂ = Di(ẑ;ψi) = Di(e(M);ψi), (2)
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Since differentiation through the quantization in Eq. (1) is ill-posed during gradient backward,
the straight-through-estimator (STE) (Bengio et al., 2013) is employed as the approximation, i.e.,
(e(Mj) + zj)− zj . Overall, the learning objective of VQVAE on X includes Lrec for reconstruction
of autoencoders, Lcode for the codebook learning, and Lcommit for quantization:

LVQ =

m∑
i=1

‖Xi − X̂i‖2︸ ︷︷ ︸
Lrec

+ ‖sg[Zi]− Ẑi‖22︸ ︷︷ ︸
Lcode

+β ‖Zi − sg[Ẑi]‖22︸ ︷︷ ︸
Lcommit

,

(3)

where sg[·] denotes the stop gradient operation and β > 0 is a hyper-parameter set to 0.25 by default.

3.3 HOMOGENEITY-HETEROGENEITY DISENTANGLEMENT

We formalize homogeneity-heterogeneity disentanglement (H2D) based on UPaNT. To capture
the homogeneous and heterogeneous neural representations, we first define a shared codebook
CS = {(k, eS(k))}k∈[KS ] to maintain the common neural embeddings with high-level semantic
patterns extracted from all subjects under the same task. We also keep m private codebooks {CP

i }mi=1

to encode the unique patterns of m different subjects, where CS
i = {(k, ePi (k))}k∈[KP ]. Given

the nth neural recording sample xn,i from subject i, we first rank all tokens in the continuous
encoded feature zn,i with the similarity between the tokens and the corresponding selected nearest
code embeddings in the shared codebook CS , Rn,i = rank

(
{‖Zn,i,j − eS(Mn,i,j)‖}Lj=1

)
, where

rank(·) denotes the ascending ranking. Based on the ranking result, we split the tokens into the
homogeneous group and the heterogeneous group, where the top-νL tokens (the most similar kS
tokens for CS) are quantized with the shared codebook, while the rest νL tokens quantized using the
corresponding private codebook of subject i. The partition factor ν ∈ [0, 1] to balance homogeneous
and heterogeneous representations. The H2D quantization can be formulated as:

Ẑn,i,j =

{
eS(Mn,i,j), Rn,i(j) ≤ νL
ePi (Mn,j). Rn,i(j) > νL

(4)

The shared codebook CS and the private codebooks CP
i are then updated with two different strategies.

The shared codebook is updated by:

Ẑn,i,j = (1− α)Zn,i,j + αẐn,i,j , Rn,i(j) ≤ νL, (5)

where α is the momentum coefficient for the exponential moving average (EMA). Note that the EMA
update of the codebook in Eq. (5) reduces the training instability caused by updating conflicts of the
certain code from latent tokens of different subjects (Razavi et al., 2019). The private codebooks are
updated as follows:

Lpri
n,i =

L∑
j=1

‖sg[Zn,i,j ]− Ẑn,i,j‖22, Rn,i(j) > νL. (6)

Note that Lpri
n,i is applied only to the rest νL tokens. We use the commitment loss to align latent

embeddings to the relevant codes as the same design as in VQVAE:

Lcomm
i,j =

L∑
j=1

‖Zn,i,j − sg[Ẑn,i,j ]‖22. (7)

Meanwhile, our proposed H2D adopts unsupervised autoencoding as the pretext task during neural
representation learning using the reconstruction loss from Eq. (3). Overall, the learning objective of
H2D is defined as:

LH2D =

m∑
i=1

Ni∑
j=1

Lrec
i,j + Lpri

n,i + βLcomm
i,j . (8)

For simplicity, we set the homogeneous neural representation component to have the same number of
tokens as the heterogeneous component, i.e., ν = 0.5. The size for the shared codebook KS is set to
be m×KP , resulting in a total code size of K = 2mKP from all codebooks.
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Table 1: Comparison with heterogeneous (supervised and self-supervised methods), homogeneous
(UPaNT), and heterogeneity-homogeneity disentanglement approach (H2DiLR) for brain tone decod-
ing. CL denotes contrastive learning, and MM denotes masked modeling on sEEG. Top-1 accuracy
(%) for fine-tuning evaluations are reported. Bold and underline denote the best and second best.

Paradigm Method Pre-training Backbone Subject 1 Subject 2 Subject 3 Subject 4 Avg.

Heterogeneous

SPaRCNet - CNN 34.94±2.17 36.73±5.88 27.10±3.22 27.10±1.43 31.47±3.16
FFCL - CNN+LSTM 37.47±2.40 37.71±5.42 26.61±3.18 29.47±1.69 32.82±3.17

TS-TCC CL CNN 39.59 ±1.68 41.47 ±2.78 28.82 ±1.75 32.33 ±2.17 35.55 ±2.09
CoST CL CNN 43.95 ±1.48 40.41 ±4.77 31.02 ±1.00 34.53 ±2.39 37.47 ±2.41

ST-Transformer - Transformer 39.02 ±2.39 37.22 ±4.68 27.51 ±2.11 29.63 ±2.98 33.35 ±3.04
NeuroBERT MM Transformer 42.20 ±1.86 43.10 ±2.76 29.80 ±1.98 32.65 ±2.89 36.94 ±2.37

H2DiLR (ours) ν = 0 Transformer 43.61 ±2.12 42.15 ±1.63 34.26 ±1.51 35.92 ±1.43 38.98 ±1.67

Homogeneous BIOT MM Transformer 42.45 ±6.99 40.90 ±5.87 33.55 ±2.95 33.88 ±1.89 37.47 ±2.26
H2DiLR (ours) UPaNT only Transformer 45.47 ±3.04 44.65 ±1.84 35.59 ±2.37 35.76 ±1.18 40.37 ±2.11

Disentanglement H2DiLR (ours) UPaNT+H2D Transformer 49.06 ±2.15 47.84 ±1.81 39.18 ±1.68 38.61 ±1.49 43.67 ±1.78

3.4 MODEL ARCHITECTURE

The architectures of VQ encoders, VQ decoders, and neural decoders can take on any arbitrary design,
provided that they effectively accomplish the reconstruction and disentanglement tasks in the H2D
stage, as well as the decoding task in the ND stage. In our work, we discover that very lightweight
architectures can achieve promising results in lexical tone decoding. The VQ encoders consist of five
1-D convolution layers with a kernel size of four and a stride of two. Due to varying input channel
numbers across different subjects, the channel dimension is first mapped to a uniform count of 64
by the stem layer and then progressively increased to 512 before being reduced back to 256. The
VQ-decoder adopts a symmetrical design to the VQ-encoder, wherein 1-D convolution layers are
substituted with transpose convolution layers. For the ND stage, we adopt a lightweight transformer
as the neural decoder with the multi-head self-attention (MSA) structure with pre-normalization and
residual connection as in ViT (Dosovitskiy et al., 2020). The patch embedding is performed by a
1-D convolution stem layer with a kernel size of five and stride five to ensure non-overlapping patch
embedding. The output dimension of the stem layer is 128, and the hidden dimension of the Feed
Forward Network (FFN) is set to 512. A fully connected layer is added to map the output to desired
decoding output formats. A detailed description of network architectures is provided in Tab. A2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data acquisition for tone decoding. We recruited four participants undergoing epilepsy monitor-
ing with stereo electroencephalograph (sEEG) electrodes implanted in an anonymous hospital (for
anonymous submission requirement and will be made public upon acceptance) to participate in this
study. The distribution of electrodes for all four participants is shown in Fig. 4. The experimental
protocol was approved by the Anonymous Hospital Institutional Review Board of Anonymous Uni-
versity. All participants gave their written, informed consent prior to testing. For each participant, we
selected contacts related to speech and excluded those located in the visual cortex and white matter.
All participants are asked to read 407 monosyllabic Mandarin characters, each with a unique tone,
three times, covering all common pronunciations of Mandarin characters. To make the pronunciation
process of the participants as similar as possible to normal speech, carrier words are added before
and after each character to form a sentence. Thus, in each trial, participants are required to read a
complete sentence containing the target syllable. The collected sEEG signals are downsampled to
1000 Hz with power line interference removed. See Appendix A for details.

Evaluation Protocols. We assess decoding performance using the top-1 accuracy (Acc). Data for
each participant is divided into an 80% training set and a 20% testing set, with 20% of the training
data further allocated for validation. We conduct the experiment five times using different random
seeds and reported the mean and standard deviation. Refer to Appendix B for implementation details.

4.2 DECODING PERFORMANCE COMPARISON

Baseline. We select representative approaches of both the heterogeneous learning and homoge-
neous learning paradigms as baselines in comparison to our proposed homogeneity-heterogeneity
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Right
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Posterior
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Figure 4: The anatomy of four participants mapped onto the standard Montreal Neurological Institute
template brain, with directions indicated. All chosen contacts for Participant 1 are situated in the
left hemisphere, while those for Participants 2 and 3 are in the right hemisphere. Participant Four’s
selected contacts are distributed across both hemispheres. The brain structures housing these chosen
contacts cover most regions associated with speech, including the Superior Temporal Gyrus (STG),
Middle Temporal Gyrus (MTG), ventral Sensorimotor Cortex (vSMC), Inferior Frontal Gyrus (IFG),
Precentral Gyrus, and Postcentral Gyrus. Additionally, signals from several subcortical structures are
recorded, such as the Thalamus, Hippocampus, Insula, and Amygdala.

disentangled learning paradigm (H2DiLR). For the heterogeneous learning paradigm, we consider
three supervised approaches featuring diverse backbone designs (Jing et al., 2023; Li et al., 2022;
Song et al., 2021). Additionally, we include three methods utilizing contrastive and masked modeling
pre-training (Woo et al., 2022; Eldele et al., 2021; Wu et al., 2022) for a fair comparison, as the H2D
stage of our H2DiLR can be regarded as a pre-training stage. Furthermore, we consider H2DiLR with
ν = 0, which indicates no shared codebook, as another variant within the heterogeneous learning
paradigm. For the homogeneous learning paradigm, we examine BIOT (Yang et al., 2023) and the
UPaNT component of H2DiLR.

Results comparison. We compare the performance of H2DiLR with baselines in Tab. 1. It is
observed that baselines of the heterogeneous training paradigm with pre-training outperform those
with no pre-training. Heterogeneous approaches generally suffer from the scarcity of data from indi-
vidual subjects, where self-supervised pre-training methods prove more effective in capturing neural
representations and subsequently improving decoding performance. Although BIOT can integrate
data from multiple individuals for homogeneous decoding, its performance does not significantly
outperform heterogeneous approaches and even yields worse results compared to heterogeneous
decoding methods with pre-training. This is due to the fact that BIOT eliminates data heterogeneity
in terms of channel count, sampling rate, and data length but fails to explore and utilize the inherent
heterogeneity and heterogeneity embedded in the brain recordings from multiple subjects. Compared
to BIOT and heterogeneous baselines, our proposed UPaNT demonstrates a better decoding perfor-
mance due to its pattern-aware feature extraction capabilities. With H2D, our proposed H2DiLR
further improves the decoding performance on top of UPaNT by disentangling the homogeneous and
heterogeneous neural representations, leading to a significant gain over existing approaches.

4.3 PRELIMINARY VERIFICATION OF H2D

Homogeneous representations correlate with tonal decoding. We first evaluate whether the
homogeneous representations learned by our proposed H2D capture unified neural features across
subjects in the context of tone decoding. Specifically, we visualize the neural codes learned in the
shared codebook of H2D in comparison to the codes learned by UPaNT using UMAP (McInnes
et al., 2018). Each neural code is assigned the tone class to which it is most frequently mapped
during the quantization process. As shown in Fig. 5, The neural codes learned by UPaNT w.r.t.
each tone class are scattered with no clear pattern, while the distribution of neural codes from the
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Visualization of Neural Codes
in Shared Codebook of H2D 

Visualization of Neural Codes
in Codebook of UPaNT 
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Figure 5: Comparison of UMAP visualization of
neural codes learned by H2D and UPaNT w.r.t
different tone classes.
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Figure 6: Reconstructed sEEG from the Amyg-
dala (Amyg), Superior Temporal Gyrus (STG), and
Middle Temporal Gyrus (MTG) in the H2D stage,
showing that H2D achieves disentangled quantiza-
tion while preserving heterogeneous information.

shared codebook of H2D demonstrates a clear separation between the Tone 1 and other tones. Since
the H2D training stage is unsupervised training, we hypothesize that such clustering effect might
correlate with the two key functions of the larynx: pitch voicing and modulation (lowering and rising
pitch) (Lu et al., 2023). This is consistent with the fact that Tone 2,3 and 4 involve pitch change but
not Tone 1. This finding and superior decoding performance, as seen in Tab. 1, prove that H2D better
captures tone-related neural features by disentangling homogeneity from heterogeneity during neural
representation learning.

Heterogeneous representations capture subject-specific information. To verify whether the
heterogeneous representations learned by our proposed H2D capture the heterogeneity, we propose a
subject classification task to determine whether the learned heterogeneous representation extracts
sufficiently discriminative information to classify sEEG signals from different subjects. In particular,
we adopt the same network architecture utilized for tone classification in this test and follow the same
experimental setup as described in Sec. 4.1. As shown in Tab. 2, using heterogeneous representations
yields a much higher subject classification performance but an inferior tone decoding performance
than the homogeneous representation, suggesting that the heterogeneous representation extracts more
subject-specific information rather than tone-related neural features. We also show in Fig. 6 that
heterogeneous representations capture instrumental heterogeneity to reconstruct sEEG from different
brain regions across subjects.

4.4 ABLATION STUDY

This section ablates three key designs and the scaling effect of the network parameters and subject
count. The average top-1 accuracy for tone decoding on all subjects is reported, and subject classi-
fication tasks are designed using the same experimental setup as Sec. 4.1. Furthermore, additional
experiments on diverse neural decoding tasks demonstrate the effectiveness of the proposed H2DiLR
as a general neural representation learning framework, detailed in Sec. C.1.

Ablation on ν. We first study how the heterogeneous and homogeneous representation partition
ratio ν influences the learned representations in terms of tone decoding and subject classification tasks.
By default, H2D sets ν = 0.5, and a higher value of ν indicates more homogeneous information
captured during representation learning. With a ν value of 1, H2D degenerates to the UPaNT. It is
observed in Tab. 2 that a smaller value of ν leads to better subject classification performance with
heterogeneous representation, indicating more heterogeneity captured. Also, a smaller value of ν
leads to inferior tone decoding performances with homogeneous representation. Results show that
ν = 0.5 strikes a good balance for H2D.

Ablation on codebook size and dimension. By default, H2DiLR utilizes a codebook size and
dimension of 256 and a fixed ν value of 0.5. We study how value changes in size and dimension affect
the reconstruction performance in the H2D stage and the tone decoding performance in the ND stage.
We use the mean squared error (MSE) as the reconstruction performance metric and report results in
Tab. 3 with the default settings greyed out. We observe that codebook sizes and dimensions larger
than 128 lead to quite similar reconstruction performances, while a size and dimension of 64 yield
much worse reconstruction performance due to the limited expressive capacity. It is worth noticing
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Table 2: Ablation on H2D codebook partition
ratio ν. Note that ‘Homo-’ and ‘Hetero-’ de-
note using homogeneous and heterogeneous
representation, respectively.

ν
Subject Tone

Homo- Hetero- Homo- Hetero- Homo+Hetero
0.25 71.7 85.5 35.2 36.9 42.78
0.5 71.9 82.6 38.0 37.9 43.67
0.75 73.1 80.7 38.5 35.4 41.31
1.0 73.5 - 40.4 - 40.37

Table 3: Ablation study on the codebook dimension
(dim.) and the total codebook size in the H2D stage
of H2DiLR.

Method UPaNT UPaNT+H2D

Value Code dim. Code size Code dim. Code size
MSE Acc. MSE Acc. MSE Acc. MSE Acc.

64 0.096 38.86 0.103 38.37 0.092 39.76 0.094 39.27
128 0.081 39.76 0.079 39.10 0.079 42.78 0.077 42.37
256 0.079 40.37 0.079 40.37 0.076 43.67 0.076 43.67
512 0.078 40.08 0.071 40.41 0.073 43.35 0.071 43.59

Table 4: Scaling-up network parameters (embedding dimension and layers) for better performances.
Method Encoder Transformer Subject 1 Subject 2 Subject 3 Subject 4 Avg.

UPaNT+H2D ConvNet-4-64 Transformer-4-128 49.06 ±2.15 47.84 ±1.81 39.18 ±1.68 38.61 ±1.49 43.67 ±1.78
UPaNT+H2D ConvNet-4-128 Transformer-4-128 50.38 ± 1.81 48.57 ± 1.69 40.04 ± 1.94 39.57 ± 1.68 44.64 ± 1.72
UPaNT+H2D ConvNet-4-64 Transformer-8-256 52.12 ± 1.95 49.62 ± 1.54 41.23 ± 1.73 40.36 ± 1.25 45.82 ± 1.63
UPaNT+H2D ConvNet-4-128 Transformer-8-256 52.27 ± 2.02 49.56 ± 1.87 41.39 ± 1.60 40.58 ± 1.54 45.95 ± 1.65

Table 5: Scaling-up participants count to verify the learned representations across participants.
Participant Count Participant 1 Participant 2 Participant 3 Participant 4
H2DiLR (m = 2) 46.25 ±1.89 45.73 ±1.83 - -
H2DiLR (m = 3) 48.16 ± 2.04 46.25 ± 1.61 38.22 ± 2.05 -
H2DiLR (m = 4) 49.06 ±2.15 47.84 ±1.81 39.18 ±1.68 38.61 ±1.49

that a better reconstruction does not necessarily mean a better decoding performance. We hypothesize
that neural codes that reconstruct signal the best might not be optimal for neural decoding.

Ablation on scaling-up network parameters. To verify the scaling-up effects of network parame-
ters, we double the embedding dimension and the depth of network blocks. ConvNet-N-D represents
a ConvNet encoder with N layers and a D-dimensional input embedding, with ConvNet-4-64 being
the baseline setup as in Tab. 1. For the Transformer, Transformer-N-D indicates a model with N layers
and a D-dimensional embedding, with Transformer-4-128 being the baseline. As demonstrated in Tab.
5, enlarging the Transformer model by both deepening and widening it (as in the Transformer-8-256
configuration) leads to more significant performance improvements compared to merely widening
the encoder. Moreover, the combined scaling of both the encoder and the Transformer models to their
larger configurations yields the highest performance enhancements across all participants tested.

Ablation on scaling-up subject count. As demonstrated in Tab. 1, we presented the decoding
performance improvement achieved by H2DiLR using data from all four participants (m = 4). To
provide a better understanding of how varying subject numbers affect model performance, we conduct
an additional ablation study focusing on varying the number of participants (ranging from 2 to 4).
Without loss of generality, we analyzed decoding performance with participants 1 and 2 for m = 2,
and participants 1, 2, and 3 for m = 3. The preliminary results, as seen from Tab. 5, indicate a
consistent trend: an increase in the number of participants leads to improved decoding performance.

5 CONCLUSION AND LIMITATION

This paper presents homogeneity-heterogeneity disentangled learning for neural representations
(H2DiLR), which disentangles and models the homogeneity and heterogeneity from intracranial
recordings of multiple subjects for neural decoding. Extensive tone decoding experiments on collected
sEEG of multiple participants reading Mandarin suggest that H2DiLR enables unified tone decoding
across subjects with superior performance compared to existing methods. We list three potential
limitations of this work: (1) The generalization of the trained H2DiLR on unseen new subjects, which
is of great practical value, remains to be explored. (2) Additional interpretability of the learned
neural codes is required. Establishing mapping between learned neural codes with functionalities of
different brain regions for better interpretability remains a promising future research direction. (3)
Due to the complexity of intracranial recording data acquisition, the current constraints prevent us
from expanding our subject pool further.
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APPENDIX

A TONE DECODING DATA AQUISITION

This work proposes to use stereotactic electroencephalography (sEEG) as a means of collecting
intracranial neurophysiological data for tone decoding. sEEG is a novel international technique that
has emerged in recent years as a localization method for epileptic foci. This technique simultaneously
records the brain electrical activity of epilepsy patients in different cranial structures, involving many
brain networks associated with advanced cognitive functions, such as the hippocampus, frontal lobe,
amygdala, cingulate gyrus, parietal lobe, and precuneus. Patients can undergo assessments and tests
of advanced cognitive functions during the interictal period (when there are no symptoms of epilepsy,
and the patient’s behavior is indistinguishable from that of a normal, healthy person). Therefore,
sEEG is currently recognized as an invasive method for studying advanced cognitive functions in
the human brain and does not pose additional risks, such as cranial trauma for patients during the
research process.

Table A1: Participant characteristics, including sex, age, education level, and handedness
Subject Number Subject 1 Subject 2 Subject 3 Subject 4

sex male male female female
age 20 25 19 19

education Bachelor’s High school Bachelor’s High school
handedness right handed right handed right handed right handed

In this study, we recruited four participants undergoing epilepsy monitoring with stereo electroen-
cephalograph (sEEG) electrodes implanted in an anonymous hospital (for anonymous submission
requirement and will be made public upon acceptance) to participate in this study. The distribution
of electrodes for all four participants is shown in Fig. 4. We also provide basic information on
participants, including sex, age, education level, and handedness in Tab. A1. The experimental
protocol was approved by the Anonymous Hospital Institutional Review Board of Anonymous Uni-
versity. All participants gave their written, informed consent before testing. For each participant, we
selected channels related to speech and excluded those located in the visual cortex and white matter.
All participants are asked to read 407 monosyllabic Mandarin characters, each with a unique tone,
three times, covering all common pronunciations of Mandarin characters. A comprehensive list of
characters and their corresponding syllables is provided in Tab. A4 through Tab. A7. To make the
pronunciation process of the participants as similar as possible to normal speech, carrier words are
added before and after each character to form a sentence. Therefore, in each trial, participants must
read a complete sentence containing the target syllable. For example, if the target syllable is ‘ài’,
the sentence presented and to be read by the participant is “我读爱三遍" (I read love three times).
Our reading material is carefully designed by Mandarin linguists to cover as many pronunciation
phenomenons as possible to enable a brain decoding algorithm with generality. The reading material
contains syllables of four tones subject to uniform distribution. It is worth noticing that there is an
additional neutral tone, which has no specific pitch contour and is typically used on less emphasized
syllables where the preceding syllable primarily influences its pitch. It is not considered a fifth
tone in addition to the four tones but rather a special tonal variation of Tone 4, which physically
manifests itself as a shortening of the length of the tone and a weakening of the strength of the tone.
Consequently, we do not treat the neutral tone as an additional fifth class.

Neural signals were recorded using a multi-channel electrophysiological recording device, specifically
the Neurofax EEG-1200 produced by Nihon Kohden Corporation, Japan, and were recorded at a
sampling rate of 2000Hz. Each channel was subjected to visual and quantitative inspection for
artifacts or excessive noise. We also record the audio signals of participants to provide time stamps
for slicing the targeted syllable from the sentence being read. The neural signals were low-pass
filtered at 300 Hz and notch filtered at 50 Hz, 100 Hz, 150 Hz, and 200 Hz to remove power line
interference. The signals were then downsampled to 1000 Hz. Signal fragments are padded to the
maximum length of 1000.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table A2: Detailed architecture specifications for models utilized in the H2D stage and ND stage in
this work. AvgPool stands for average pooling in ConvNet and rel. pos. denotes relative positional
encoding in Transformers.

H2D Stage ND Stage
ConvNet Transformer

Stem 4×1, 64, stride 2 5×1, 128, stride 5

Block 1
[

4×1, 128
AvgPool, stride 2

]
× 1

[MSA, 128, rel. pos.
1×1, 512
1×1, 128

]
× 1

Block 2
[

4×1, 256
AvgPool, stride 2

]
× 1

[ MSA, 128
1×1, 512
1×1, 128

]
× 1

Block 3
[

4×1, 512
AvgPool, stride 2

]
× 1

[ MSA, 128
1×1, 512
1×1, 128

]
× 1

Block 4 [4×1, 256] × 1

[ MSA, 128
1×1, 512
1×1, 128

]
× 1

# params. 1.55× 106 0.958× 106

B IMPLEMENTATION DETAILS

All our experiments are implemented by PyTorch and conducted on workstations with NVIDIA A100
GPUs. For all baselines (Woo et al., 2022; Eldele et al., 2021; Wu et al., 2022; Yang et al., 2023) with
open-source code, we reproduce results using the official code and setups provided by the authors.
We use the implementation provided by BOIT (Yang et al., 2023) for baselines with no publicly
available codes (Jing et al., 2023; Li et al., 2022; Song et al., 2021). For baselines with no pre-training
involved, we train each model with a fixed epoch number of 40. We use AdamW as the optimizer
with a base learning rate of 3e-4. Cosine annealing decay is adopted for learning rate scheduling. We
set β1, β2 = 0.9, 0.999 with a weight decay of 0.01. The batch size is set to 32. A dropout ratio of 0.1
is adopted. For the pre-training stage of baselines with pre-training, we follow the experimental setup
provided by the authors. Next, we give the pre-training details for our proposed UPaNT and H2D.
Following masked modeling methods (Bao et al., 2022; Li et al., 2023), we use AdamW (Loshchilov
& Hutter, 2019) optimizer with a base learning rate of 5e-5, β1, β2 = 0.9, 0.999, and the weight
decay of 0.01. A cosine learning rate schedule is also adopted. We train a fixed number of 1000
epochs during pre-training with batch size 32. For UPaNT and H2D, we use β = 0.25 and ν = 0.5
with a total codebook size of 256, i.e., K = 256 for UPaNT only and K = 32 for H2D. For the
fine-tuning stage of all approaches with pre-training, we adopt the same training setup as previously
described for baselines with no pre-training, with the only difference being a learning rate of 5e-5.

C ADDITIONAL ABLATION STUDY

C.1 VERIFICATION OF H2DILR ON SEIZURE PREDICTION

Our proposed Homogeneity-Heterogeneity Disentangled Learning for Neural Representations
(H2DiLR) is primarily inspired by the challenges of heterogeneous neural decoding from intracranial
recordings, particularly in tasks involving the decoding of lexical tones where electrode placement
and count may vary across subjects. To showcase its versatility, we extend the application of H2DiLR
beyond its initial focus. As a proof of concept, we demonstrate its effectiveness as a general neural
representation learning framework in a different neural decoding task—epilepsy seizure prediction.
This demonstrates H2DiLR’s adaptability and potential applicability across a range of complex neural
decoding challenges.

Dataset and Pre-processing. The publicly available CHB-MIT (Shoeb & Guttag, 2010) dataset
includes 637 recordings from 23 epileptic patients. Signals were collected from 22 bi-polar electrodes
placed according to the international 10-20 system of 256 Hz sampling frequency and 16-bit resolution.
Clinical experts annotated the start and end times of seizures through visual inspection. Only patients
whose channel configurations remained consistent throughout data collection were included in our
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Table A3: Comparison with heterogeneous (supervised and self-supervised methods), homogeneous
(UPaNT), and heterogeneity-homogeneity disentanglement approach (H2DiLR) for epileptic seizure
prediction. CL denotes contrastive learning, and MM denotes masked modeling with sEEG signals.
Top-1 accuracy (%) for fine-tuning evaluations are reported. Bold and underline denote the best and
second best results.

Paradigm Method Pre-training Backbone Acc(%) ↑ Sen(%) ↑ FPR(/h) ↓

Heterogeneous

SPaRCNet (Jing et al., 2023) - CNN 84.33±3.26 86.74±2.94 0.18±0.07
FFCL (Li et al., 2022) - CNN+LSTM 85.21±2.58 89.37±5.42 0.16±0.02

ST-Transformer (Song et al., 2021) - Transformer 85.74 ±2.39 91.84 ±3.26 0.22 ±0.05
TS-TCC (Eldele et al., 2021) CL CNN 86.16 ±1.68 90.42 ±2.78 0.20 ±0.04

CoST (Woo et al., 2022) CL CNN 88.45 ±1.98 92.19 ±4.77 0.18 ±0.04
NeuroBERT (Wu et al., 2022) MM Transformer 89.36 ±2.12 92.54 ±2.98 0.15 ±0.06

Homogeneous BIOT (Yang et al., 2023) MM Transformer 87.22 ±2.41 90.53 ±1.87 0.17 ±0.04
H2DiLR (Ours) UPaNT only Transformer 91.19 ±2.34 93.67 ±1.95 0.13 ±0.03

Disentanglement H2DiLR (Ours) UPaNT+H2D Transformer 93.97 ±2.16 94.82 ±1.27 0.10 ±0.02

study. For seizure prediction, a ’lead seizure’ is defined as one occurring after a seizure-free interval
of at least four hours. We set the seizure prediction horizon (SPH) and preictal interval length (PIL)
at 5 and 30 minutes, respectively. Interictal samples are generated using a 20-second non-overlapping
sliding window, and preictal samples with a 20% overlapping 20-second window to address sample
imbalance. All samples were normalized channel-wise by subtracting the mean and dividing by the
standard deviation to standardize the input data for further analysis.

We follow the same experimental setup as described in Sec. B and report the averaged accuracy (Acc),
sensitivity (Sen), and false positive rate (FPR) across all subjects over five random seeds in Tab. A3.
The prediction performance observed for the baseline approaches mirrors the patterns seen in the
lexical tone decoding task, where heterogeneous baselines with pre-training outperform those without,
demonstrating enhanced feature extraction capabilities. BIOT does not significantly outperform
the heterogeneous approaches and, in some cases, yields inferior results compared to pre-trained
heterogeneous decoding methods. This can be attributed to BIOT’s primary focus on addressing data
heterogeneity in terms of channel count, sampling rate, and data length without adequately tackling
the inherent heterogeneity in brain recordings across different subjects. This underscores a key
insight: unlike in computer vision and natural language processing, merely aggregating neurological
data into a larger dataset does not necessarily enhance performance. In contrast, our proposed UPaNT
showcases superior prediction performance due to its pattern-aware feature extraction capabilities.
Building on this, H2DiLR, through its ability to disentangle homogeneous and heterogeneous neural
representations, significantly enhances prediction performance.

D BROADER IMPACTS

The homogeneity-heterogeneity disentangled learning for neural representations (H2DiLR) pre-
sented in this paper aims to advance domains of both fundamental machine learning algorithms and
neuroscience.

From the standpoint of algorithmic progress, H2DiLR marks a leap forward in the field of neural
representation learning. By addressing the inherent data heterogeneity in neural recordings from
multiple subjects, H2DiLR offers a novel approach to disentangling homogeneous and heterogeneous
neural representations. This breakthrough has implications beyond the specific application domain of
tonal language decoding, as it lays the groundwork for developing more generalized and adaptable
neural representation learning algorithms. H2DiLR’s ability to capture both homogeneous and
heterogeneous neural patterns during representation learning provides researchers with a powerful tool
for uncovering underlying neural structures and dynamics that may be obscured by data heterogeneity.
Moreover, the framework’s capacity to learn generalized neural representations across diverse subjects
holds promise for realizing large models similar to LLM to facilitate a wide range of applications,
including cognitive neuroscience, clinical diagnosis, and brain-computer interface design.

In terms of practical applications, H2DiLR extends to the field of neural prosthesis, particularly in
the context of restoring communication abilities for speech-impaired individuals who speak tonal
languages. The ability to decode lexical tones from intracranial recordings using deep learning
algorithms has profound implications for speech prosthesis systems tailored to tonal language
speakers. By leveraging H2DiLR’s unified decoding paradigm, researchers and developers can design
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more robust and adaptive speech prosthesis systems that accommodate individual variations in neural
activity while also facilitating more natural and efficient communication for users.

From the perspective of neuroscience, the proposed H2DiLR has the potential to enhance the
interpretability and transferability of neural models, thereby contributing to the understanding of
brain function and dynamics. The disentanglement of homogeneous and heterogeneous neural
representations facilitated by H2DiLR provides researchers with a clearer insight into the underlying
neural processes involved in various cognitive tasks and behaviors. By mapping learned neural codes
and electrodes, H2DiLR helps elucidate how different brain regions encode information and interact
with each other, shedding light on the complex mechanisms underlying cognitive functions such as
language processing and motor control.

One concern with H2DiLR, as with any technology involving intracranial recordings, is the risk of
privacy invasion. Decoding thoughts or speech could potentially access highly personal information
without proper consent or awareness. If such data were misused or accessed by unauthorized parties,
it could lead to significant privacy breaches.
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Table A4: The first set of 407 Mandarin Chinese characters used as reading material, with corre-
sponding syllables organized by initial phonetic order. For infrequently used characters, participants
were presented directly with the syllable to pronounce.

Characters Syllables Characters Syllables Characters Syllables

阿 ā 扯 chě 吊 diào

爱 ài 趁 chèn 叠 dié

安 ān 城 chéng 顶 dı̌ng

昂 áng 痴 chı̄ 丢 diū

袄 ǎo 虫 chóng 东 dōng

拔 bá 愁 chóu 豆 dòu

白 bái 初 chū 读 dú

板 bǎn chuā chuā 短 duǎn

帮 bāng 揣 chuāi 对 duì

保 bǎo 穿 chuān 蹲 dūn

杯 bēi 床 chuáng 夺 duó

本 běn 吹 chuı̄ 鹅 é

崩 bēng 春 chūn 恩 ēn

鼻 bí 戳 chuō ēng ēng

编 biān 次 cì 耳 ěr

标 biāo 葱 cōng 罚 fá

瘪 biě 凑 còu 反 fǎn

宾 bı̄n 粗 cū 方 fāng

病 bìng 窜 cuàn 肥 féi

伯 bó 脆 cuì 粉 fěn

补 bǔ 存 cún 风 fēng

擦 cā 搓 cuō 福 fú

财 cái 打 dǎ 否 fǒu

残 cán 带 dài 付 fù

仓 cāng 胆 dǎn 尬 gà

槽 cáo 党 dǎng 盖 gài

测 cè 到 dào 敢 gǎn

参 cān 德 dé 缸 gāng

层 céng 得 děi 告 gào

茶 chá dèn dèn 割 gē

柴 chái 等 děng 给 gěi

产 chǎn 底 dı̌ 根 gēn

唱 chàng 爹 diē 耕 gēng

超 chāo 电 diàn 共 gòng
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Table A5: The second set of 407 Mandarin Chinese characters used as reading material, with
corresponding syllables organized by initial phonetic order.

Characters Syllables Characters Syllables Characters Syllables

狗 gǒu 金 jı̄n 冷 lěng

估 gū 镜 jìng 力 lì

瓜 guā 窘 jiǒng 俩 liǎ

怪 guài 酒 jiǔ 连 lián

关 guān 举 jǔ 良 liáng

广 guǎng 捐 juān 料 liào

贵 guì 决 jué 列 liè

滚 gǔn 俊 jùn 林 lín

裹 guǒ 卡 kǎ 领 lı̌ng

哈 hā 开 kāi 柳 liǔ

孩 hái 砍 kǎn 龙 lóng

寒 hán 糠 kāng 楼 lóu

航 háng 靠 kào 路 lù

耗 hào 科 kē 卵 luǎn

河 hé 克 kè 轮 lún

黑 hēi 肯 kěn 罗 luó

恨 hèn 坑 kēng 滤 lü

恒 héng 孔 kǒng 略 lüè

烘 hōng 口 kǒu 马 mǎ

吼 hǒu 库 kù 买 mǎi

虎 hǔ 夸 kuā 慢 màn

画 huà 快 kuài 忙 máng

坏 huài 款 kuǎn 毛 máo

换 huàn 狂 kuáng 美 měi

慌 huāng 亏 kuı̄ 门 mén

悔 huı̌ 捆 kǔn 猛 měng

昏 hūn 阔 kuò 米 mı̌

货 huò 拉 lā 面 miàn

机 jı̄ 来 lái 苗 miáo

价 jià 懒 lǎn 灭 miè

尖 jiān 浪 làng 民 mín

桨 jiǎng 老 lǎo 命 mìng

交 jiāo 勒 lēi 谬 miù

姐 jiě 雷 léi 魔 mó
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Table A6: The third set of 407 Mandarin Chinese characters used as reading material, with corre-
sponding syllables organized by initial phonetic order. For infrequently used characters, participants
were presented directly with the syllable to pronounce.

Characters Syllables Characters Syllables Characters Syllables

谋 móu 盆 pén 乳 rǔ

木 mù 碰 pèng ruá ruá

拿 ná 皮 pí 软 ruǎn

奶 nǎi 偏 piān 锐 ruì

男 nán 票 piào 润 rùn

囊 náng 瞥 piē 弱 ruò

闹 nào 品 pı̌n 洒 sǎ

讷 nè 瓶 píng 赛 sài

内 nèi 破 pò 伞 sǎn

嫩 nèn 剖 pōu 嗓 sǎng

能 néng 普 pǔ 骚 sāo

泥 ní 骑 qí 涩 sè

年 nián 掐 qiā 森 sēn

娘 niáng 浅 qiǎn 僧 sēng

尿 niào 枪 qiāng 沙 shā

捏 niē 桥 qiáo 筛 shāi

您 nín 窃 qiè 闪 shǎn

凝 níng 琴 qín 伤 shāng

牛 niú 情 qíng 烧 shāo

农 nóng 穷 qióng 赊 shē

耨 nòu 球 qiú 谁 shuí

奴 nú 取 qǔ 神 shén

暖 nuǎn 劝 quàn 绳 shéng

挪 nuó 缺 quē 石 shí

女 nü 群 qún 手 shǒu

虐 nüè 然 rán 书 shū

哦 ó 让 ràng 刷 shuā

藕 ǒu 饶 ráo 帅 shuài

爬 pá 热 rè 栓 shuān

牌 pái 忍 rěn 爽 shuǎng

盘 pán 扔 rēng 水 shuı̌

旁 páng 日 rì 顺 shùn

抛 pāo 容 róng 硕 shuò

赔 péi 肉 ròu 死 sı̌
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Table A7: The fourth set of 407 Mandarin Chinese characters used as reading material, with
corresponding syllables organized by initial phonetic order.

Characters Syllables Characters Syllables Characters Syllables

松 sōng 午 wǔ 早 zǎo

搜 sōu 洗 xı̌ 则 zé

酥 sū 霞 xiá 贼 zéi

算 suàn 险 xiǎn 怎 zěn

岁 suì 向 xiàng 增 zēng

损 sǔn 笑 xiào 渣 zhā

锁 suǒ 写 xiě 债 zhài

塔 tǎ 心 xı̄n 展 zhǎn

抬 tái 形 xíng 涨 zhǎng

谈 tán 熊 xióng 找 zhǎo

躺 tǎng 修 xiū 遮 zhē

讨 tǎo 许 xǔ 这 zhè

特 tè 选 xuǎn 针 zhēn

藤 téng 学 xué 蒸 zhēng

替 tì 寻 xún 直 zhí

田 tián 芽 yá 肿 zhǒng

条 tiáo 烟 yān 州 zhōu

铁 tiě 养 yǎng 煮 zhǔ

停 tíng 药 yào 抓 zhuā

桶 tǒng 野 yě 拽 zhuāi

偷 tōu 衣 yı̄ 砖 zhuān

图 tú 银 yín 撞 zhuàng

团 tuán 鹰 yı̄ng 追 zhuı̄

腿 tuı̌ 哟 yō 准 zhǔn

吞 tūn 永 yǒng 捉 zhuō

拖 tuō 油 yóu 字 zì

挖 wā 雨 yǔ 总 zǒng

外 wài 元 yuán 走 zǒu

万 wàn 月 yuè 组 zǔ

忘 wàng 云 yún 钻 zuān

围 wéi 杂 zá 醉 zuì

文 wén 栽 zāi 尊 zūn

翁 wēng 暂 zàn 左 zuǒ

窝 wō 葬 zàng
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