Under review as a conference paper at ICLR 2026

NEURAL POSTERIOR ESTIMATION WITH LATENT BASIS
EXPANSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural posterior estimation (NPE) is a likelihood-free amortized variational in-
ference method that approximates projections of the posterior distribution. To
date, NPE variational families have been either simple and interpretable (such as
the Gaussian family) or highly flexible but black-box and potentially difficult to
optimize (such as normalizing flows). In this work, we parameterize variational
families via basis expansions of the latent variables. The log density of our varia-
tional distribution is a linear combination of latent basis functions (LBFs), which
may be fixed a priori or adapted to the problem class of interest. Our training
and inference procedures are computationally efficient even for problems with
high-dimensional latent spaces, provided only a low-dimensional projection of
the posterior is of interest, owing to NPE’s automatic marginalization capabili-
ties. In numerous inference problems, the proposed variational family exhibits
better performance than existing variational families used with NPE, including
mixtures of Gaussians (mixture density networks) and normalizing flows, as well
as outperforming an existing basis expansion method for variational inference.

1 INTRODUCTION

Neural Posterior Estimation (NPE) is an increasingly popular approach to Bayesian inference (Pa+
pamakarios & Murrayl 2016} |Cranmer et al., 2020; |Dax et al., 2021} [Ward et al.| [2022). In NPE,
a neural network is trained exclusively with synthetic data—Ilatent variables drawn from the prior
paired with its observations—to learn the inverse mapping from an observation to its latent variables.
Once trained, this network can produce posterior approximations for real data in a single forward
pass. In contrast to traditional (ELBO-based) variational inference, NPE does not require likelihood
evaluations. Furthermore, when the generative model contains both parameters of interest and nui-
sance variables, NPE can automatically marginalize over the nuisance parameters during training:
by simulating complete data and then discarding the nuisance variables to create training pairs, the
method infers posterior projections for the parameters of interest (Ambrogioni et al., [2019).

Despite these advantages, NPE shares with traditional ELBO-based variational inference a funda-
mental trade-off between the flexibility of the variational family and the tractability of optimization.
Simple variational families like Gaussians enable stable optimization, yet often lack the expressive-
ness needed for complex posterior geometries. More flexible alternatives such as Gaussian mixture
models and normalizing flows add flexibility but create potentially difficult optimization landscapes
with shallow local optima. Recent theoretical work (McNamara et al.,|2024a) has established con-
ditions for global convergence in NPE that hold for simple Gaussian variational families, but these
results do not extend to the more expressive families commonly deployed in practice.

In this work, we propose a variational family specialized for NPE, which leverages NPE’s automatic
marginalization capabilities and likelihood-free nature. Unlike standard variational inference, where
nuisance variables must be modeled in the variational distribution, NPE applications typically
require posteriors over just a few scientifically relevant parameters: high-dimensional posterior
samples do not directly aid in interpretation but must instead be post-processed to estimate low-
dimensional interpretable quantities. Because NPE does not require the calculation of likelihoods,
this post-processing can often be incorporated directly into the Bayesian model, resulting in a low-
dimensional latent space of interest. In these low-dimensional settings, even numerical integration is
computationally feasible, freeing us from the usual requirement of closed-form normalization.

Under review as a conference paper at ICLR 2026

We leverage this freedom by parameterizing the log density of variational distributions through
latent basis expansions: a neural network processes observations to produce coefficients for linear
combinations of basis functions over the latent space. This approach yields distributions in the expo-
nential family—among the most flexible classes available (Pacchiardi & Dutta, [2022; Khemakhem
et al., [2020; |Sriperumbudur et al., [2017)—while maintaining favorable optimization properties. The
resulting method, which we refer to as Latent Basis Function NPE (LBF-NPE), optimizes over the
class of all exponential families of a fixed dimension K by adaptively fitting the basis functions,
denoted s, (z) € RE. Simultaneously, amortization is performed by fitting a separate network
f+(z) € RE that maps observations x to coefficients of these basis functions (Section .

In Section[d] we introduce and analyze several variants of LBF-NPE. For a variant with fixed basis
functions, such as B-splines or wavelets, optimization is convex despite the log-normalizer, providing
stable training that has proven elusive for more complex variational families, and ensuring stable
convergence to global optima under the conditions presented by [McNamara et al.| (2024a)). Alter-
natively, both coefficients f, () and basis functions s, (z) can be fitted jointly through alternating
optimization that exploits marginal convexity in each component. We employ stereographic projec-
tion reparameterization to address identifiability issues in this adaptive setting, constraining outputs
to the unit hypersphere and stabilizing training.

We demonstrate superior performance of LBF-NPE across diverse inference problems, from synthetic
benchmarks to real scientific applications (Section[6). LBF-NPE consistently converges to global
optima on multimodal problems where mixture density networks converge to shallow local minima.
LBF-NPE with just 20 basis functions achieves order-of-magnitude improvements in KL divergence
over both MDNs and normalizing flows on complex 2D posteriors. The method successfully captures
multimodal posteriors in astronomical object detection and substantially outperforms MDN baselines
on cosmological redshift estimation using the LSST DESC DC2 survey dataset.

2 BACKGROUND

2.1 ELBO-BASED VARIATIONAL INFERENCE

In variational inference (VI), numerical optimization is used to select an approximation ¢(z) of
the posterior distribution of some model p(z, x) on observables x and latent variables z. The most
common variational objective, the evidence lower bound (ELBO), targets minimization of the reverse
KL divergence (Blei et al.,|2017; |Zhang et al., 2019} Kingma & Welling| 2019)) by constructing the
variational quantity

p(z)

BLBO (1) i= By og (422) < logp(e) m

and performing maximization in 7 for a fixed choice of z. Optimization of the ELBO continues to
pose a longstanding difficulty in VI. Firstly, even simple variational families such as the Gaussian can
exhibit problematic optimization landscapes without a careful choice of parameterization. Targeting
the ELBO, even in the non-amortized setting, is generally a nonconvex problem (Liu et al.| 2023aj;
Dombkel 2020; Domke et al., [2023)). Secondly, and most significantly in our setting, ELBO-based
variational inference does not provide a way to marginalize over nuisance latent variables. For a
model p(z, &, x) on latent variables {z, £} and observed variables 2, ELBO-based methods typically
cannot compute the quantity p(z,z) = [p(z,&, z)d€ required to target their objective function.

2.2 NEURAL POSTERIOR ESTIMATION

In amortized variational inference, the shared parameters of a deep neural network define variational
approximations for arbitrary observations z (Ganguly et al.,|2024; McNamara et al.,|2024a)). Precisely,
a variational approximation for latent variable z is given by ¢(z;7) with parameters 7. Rather than
fitting these parameters separately for each z, the amortized approach defines 7 = f,(x) for a neural
network fy with parameters ¢. This inference network, once fit, yields the variational posterior
q(z; f¢(x)) for arbitrary « by a single forward pass (Kingma & Welling, 2019; Ambrogioni et al.,
2019). Neural posterior estimation (NPE) (Papamakarios & Murrayl 2016) targets an expectation of
the forward KL divergence for amortized VI:

Lnpe(¢) = Epo)KL (p(z | 2) || a(2 | 2)) . 2)

Under review as a conference paper at ICLR 2026

Here, the integral over p(z), the marginal of the model p(z, £, x), indicates that the NPE objective
averages over all possible draws from the generative process instead of averaging over observations x
from some finite training set. The objective is equivalent (up to a constant) to

ENPE((rb) = 7Ep(z,a:) log Q(Z, fd?(z))v 3

where g4 (2; 1) = q(z; fs(x)) for any z. Equation (3) admits unbiased estimation of its gradient with
stochastic draws (z, z) ~ p(z, £,) from the joint model, readily obtained by ancestral sampling, even
in the presence of nuisance latent variables &. Explicitly, we can sample (z, 2) ~ p(z, z) by simulating
an entire sequence p(2)p(&1 | 2)p(&2 | &) - p(&r | €n—1)p(z | £1) and discarding variables that
are not the target for inference. The expected forward KL objective has been independently derived
and analyzed in several related works (Bornschein & Bengio, |2015; |Ambrogioni et al.| 2019).

3 LBF-NPE: BASIS EXPANSIONS FOR AMORTIZED LOG DENSITY
ESTIMATION

We propose an amortized method to fit complex multimodal variational distributions, called Latent
Basis Function NPE (LBF-NPE). The method fits a basis function network sy, : z —> R¥, which

(1) (K)]

evaluates K basis functions [s¢ ;---+ 8, | for any point z in the latent space. The inference

network f, : +— 1 € RX maps observations to coefficients of the basis functions. The number
of basis functions K is fixed ahead of time, and larger K may be used to increase expressivity (see
Appendix [E). The variational parameters to be fit are neural network weights ¢ and 1, for each of the

networks f4 and s,,. Below, we first construct an exponential family defined by the basis functions
(Section3.1)) and then give the fitting routine for fs and s, (Section [3.2).

3.1 THE VARIATIONAL FAMILY

Fix z € X. Let I C R< denote the latent space and let {SEZ) (2)}X | be a collection of basis functions
defined by parameters . Selecting more basis functions (larger K') leads to a more expressive
variational distribution, but also a higher-dimensional optimization problem. For a value z € I, let

sy(2) = [35/)1), . sfbK)]T € RX. Our variational family is parameterized by coefficients € RX,
and has the density function
q(z;m) o< h(z) exp (7" s4(2)) -)
We aim to select 7 and 1) such that ¢(z;7) = p(z |). The log density is
log ¢(z;m) = log h(z) + 1" sy(2) = C,)

where C is the log of the normalizing constant. This variational family (Equation[d) is an exponential
family (Wainwright & Jordan, |2008; |Srivastava et al.,|2014). The vector of basis functions s, (z) is
the sufficient statistic, 7 is the natural parameter vector, and h(z) is any finite base measure on the
latent space I (i.e., [, h(z) is finite).

We represent the K -dimensional quantity s, (z) as the output of a deep neural network with input
z. Because the number and form of the basis functions s, (z) are arbitrary, the expressivity of this
variational family is far greater than that of “classical” exponential families, such as the Gaussian
family. As K — o0, the set of all exponential family distributions is arbitrarily rich: any distribution
can be represented as an infinite-dimensional exponential family distribution (Khemakhem et al.|
2020; |Sriperumbudur et al., 2017).

3.2 THE AMORTIZED VARIATIONAL OBJECTIVE & GRADIENT ESTIMATOR

The formulation of Section is non-amortized: it requires selecting a single 7 for ¢(z;n) to
approximate the posterior for a single x. In NPE, we consider the amortized problem, where we
define the posterior for arbitrary x. We set n = f4(x), and thus require fitting two separate networks,
fo and s,,. We fit the variational parameters, ¢ and), by minimizing the NPE objective function,
given in general in Section[2.2] Our specific variational objective (up to constants) is thus

Duneee(6.) = ~Eyte) (fo) Tou2) — 1og ([e (fole) s 01 62)) ©

Under review as a conference paper at ICLR 2026

where the log-normalizer takes the form of the log of an integral with respect to the base measure
h. Estimation of the log-normalizer cannot be done unbiasedly by Monte Carlo sampling due to
the Jensen gap (Adil Khan et al.l2015). For training, we only require stochastic gradients, which
can be computed using importance sampling. Focusing on the log-normalizer for now, we let
kg p(m,2) = fo(x) " sy(2). We suppress the dependence on x for now, as it is fixed in the integral.
Let J(¢,v) := [expky.(Z)dh (Z). The gradient can be computed by estimating an expectation
with respect to an exponentially tilted transformation of h. Let V4 o denote the gradient with respect
to either ¢ or . Then, we have

Vg l0g J(6,0) = ﬁ Vo (61) ™
=7 | (TobasE)] - expy (In()dz ®)
_ o (ke (BRG) Y
7/[v¢’wk¢’w() (fexp%,zp()h(z’)dz’>d ®
=: /Waw’%w(@]'Q¢,w(5)d5, (10)

where we recognize an expectation with respect to ¢4 ., an exponentially tilted density that depends
on the current values of ¢, 1. This integral can be estimated by the use of self-normalized importance
sampling (SNIS) with a proposal distribution r(Z) (Owen, 2013):

P
. Vo.pkep(Zi)] w(Z)
/[Vw’%,w(Nas.w(2)dz =Y . ;
j=1 Zk 1 w(Zk)
where w(z) = W and 21, ..., 7k “Y r. The gradient estimator is thus biased for the true

gradient, similar to other gradient estimators targeting the forward KL from the family of “wake-sleep”
algorithms, but consistent as P — oo (Le et al.,[2019; Bornschein & Bengio, |2015; McNamara et al.,
2024b)). Algorithm|I]details our gradient computation procedure.

Algorithm 1: Gradient Computation for LBF-NPE
Inputs: Sampling model p(z, x); networks f, and s,;; proposal distribution r(z).

Sample batch {(z;, z;)} 2., & p(z,)
/+ Gradient for log-normalizer =*/

Propose z1,...,z2p ~ 1

Compute k7 := kg, w(@i, 2) = fo(xz) w(%), i€[B] j € [P]
Compute unnormallzed weights w} = exp (kih() i €[B],j € [P]
Compute U}, ,, = Zf L wZV(»J) , 1€[B]

/+ Gradient non- tllted inner product =*/
Compute V(Zﬂ/) = V¢»’¢1k¢,¢(‘%‘i7 Zz) = qu(xi)TSw(Zi)

/+ Compute combined gradient =/

Return Vg = —L 30 VI — UL,

4 VARIANTS & PROPERTIES OF LBF-NPE

We now motivate the construction of the LBF-NPE variational family by examining aspects of its
optimization routine. As a result of parameterizing and targeting the log-density (cf. ﬂ . both
our construction and optimization routine depend entirely on the inner product f,(z

elaborate on some key properties and variants of LBF-NPE that stem from this observatlon

Under review as a conference paper at ICLR 2026

4.1 AFFINE GRADIENTS

In Section we showed that the gradient of the objective for LBF-NPE depends only on the
gradient of ky, (z,2) = f,(x) " s4(2), via the relation

Vo.w Lisenee(9,9) = —Eyzw) [Vouke.o(@,2) = Eq,) [V .ukoy(, 2)]] (11

where ¢, denotes the exponentially tilted density constructed in Section[3.2} Accordingly, the form
of gradient updates for the LBF-NPE procedure is extremely simple; in fact, holding v constant,
the gradient with respect to ¢ is that of an affine function of the network outputs f. The same
relationship holds when taking gradients for) holding ¢ constant. Targeting such simple functions for
optimization, besides being simple to implement, benefits from a convex formulation (see Section 4.2]
below). The invariance of the inner product k,, 4 under arbitrary rescalings of f and s, on the other
hand, complicates optimization: this motivates a variant of LBF-NPE that reparameterizes outputs to
unit norm (see Section [@.4).

4.2 CONVEXITY

McNamara et al.| (2024a) show that neural posterior estimation (NPE) optimizes a convex functional
objective function provided that the variational family is log-concave in f, the inference network.
This ensures the forward KL objective of NPE (cf. Equation [3) is convex in f. Recent advances in
the study of wide networks via the neural tangent kernel (NTK) (Jacot et al., [2018]) have shown that
fitting network parameters to minimize convex loss functionals (e.g., mean squared error) follows
kernel gradient descent dynamics to a global optimum in the infinite-width limit (Jacot et al., 2018},
McNamara et al., [2024a).

The amortized forward KL objective function that we target (cf. Equation [6) benefits from these same
properties. For an arbitrary collection of basis functions, the objective function L gr.npg remains a
convex functional in f. Likewise, for fixed f, L;gr.npE is @ convex functional in s. We formalize this
in the proposition below.

Proposition 1. The functional

L) = Byt (1)) oz [exw (1) 7s(2) dn)))
is marginally convex in the argument f and s, respectively.

A proof and additional discussion are provided in Appendix [B] Proposition [I|shows that in the case
where either f or s are fixed, the resulting functional that is optimized is fully convex, rather than just
marginally so. This observation motivates a variant of LBF-NPE where the basis functions are fixed
a priori (see Section4.3).

4.3 FIXED BASIS FUNCTIONS

Rather than adaptively fitting basis functions s, the practitioner may simply use a fixed basis defined
ahead of time. This approach is motivated by the convexity of the resulting functional in f, as
well as the approaches of related work based on basis expansion parameterizations, which use fixed
orthonormal eigenfunctions (cf. Section[5). In this variant of LBF-NPE, the objective function
L(¢,) collapses to the marginal L(¢) for optimization. As we elaborate in Section4.2] LBF-NPE
has a convex formulation in this setting, which empirically results in advantageous optimization
trajectories relative to competing methods (we demonstrate this in Section [6.T]).

Several choices of basis may be of interest to practitioners. EigenVI, a related basis-expansion method
for VI (cf. Section E]), utilizes a (truncated) orthonormal basis of eigenfunctions, such as Bernstein,
Legendre, or Hermite polynomials (Cai et al.,|2024)). Selecting a large K improves faithfulness to the
complete basis, but doing so increases the dimension of the optimization problem, exponentially so
in multiple dimensions. Further, as generally such basis functions are global (i.e., nonzero on all of
the latent space I), in this design every basis function contributes to the density value ¢(z) at every
point z; this may make it difficult to control the local behavior of the fitted density.

An alternative approach is to model log ¢(z; 1) = log q(z; f4(x)) via a local basis expansion. We
specialize to B-splines (Appendix [A.I)) and wavelets (Appendix [A.2)) in our experiments, two rich

Under review as a conference paper at ICLR 2026

families that we recommend for practitioners. In this framework, each basis function is nonzero only
in a small neighborhood of the latent support. Locality of the basis functions simplifies optimization
by inducing a sparser problem than a set of global basis functions would. For a single Monte Carlo
draw (z*,2*) ~ p(z,z), the gradient —V, log q(2*;7) |;=f,(2+) is nonzero at only a few indices
because many basis functions are zero at any given z*.

4.4 REDUCING DEGENERACY THROUGH STEREOGRAPHIC PROJECTION

As noted in Section[4.1] both gradients and the log-density itself only depend on the inner product
f4(z) sy (2). Adaptively learning both the inference network f, and basis function network sy,
thus suffers from an inherent lack of identifiability: different rescalings or rotations of the vectors
defined by f, and sy, can lead to the same loss function values, since the loss function (Equation [6)
only depends on the inner product. To mitigate this degeneracy, we propose a variant of LBF-NPE
that uses stereographic projection reparameterization to normalize the output tensor onto the unit
hypersphere. Specifically, for a K-dimensional coefficient or basis function vector, we construct
a neural network that outputs a (K — 1)-dimensional vector u. We then apply the stereographic

1—||ul|?
T el
R¥ such that ||y|| = 1. This normalization mitigates identifiability issues, and the reparameterization
yields strong results in our experiments (see Appendix [D|for additional discussion). Our loss function
takes the following form when we apply this reparameterization:

projection reparameterization: y = () which maps u € RE~! to a unit vector y €

Lisrnee(9,¥) = Epz,2) (—wf(b(x)T&p(z) + log (/ exp (wf¢(m)T§¢(g)) d5)> ;o (12)

where f¢() and §(-) are reparameterized network outputs, and w is a fixed scaling factor.

5 RELATED WORK

Exponential family distributions are a common class of distributions for both traditional variational
inference and NPE. In the simplest cases, Gaussian, Bernoulli, and other “simple” exponential
families are used (Liu et al.,[2023a; |Cranmer et al., [2020; Blei et al., [2017). Typically, however, these
distributions are not parameterized in canonical form (where 7 = f,(x) is the natural parameter of the
family). However, for NPE, [McNamara et al. (2024a)) recommends using the canonical parameteriza-
tion even for simple families such as the Gaussian to benefit from convex loss (Section #.2). General
exponential families parameterized by neural networks were first proposed in |Pacchiardi & Dutta
(2022)) to represent the likelihood function for likelihood-free settings. Akin to Approximate Bayesian
Computation (ABC) methods, this approach aims to learn low-dimensional summary statistics of =
to represent the likelihood, and subsequently performs inference with potentially expensive MCMC
or ABC routines. We compare to this approach in Appendix [E.6] To our knowledge, LBF-NPE is
the first method to utilize neural exponential families to represent the posterior distribution and to
use this family within the amortized inference setting. LBF-NPE is also unique in exploiting the low
dimensionality of the posterior projections of interest.

Parameterizing variational distributions via basis expansions is a relatively new line of research; a
recent non-amortized approach, EigenVI (Cai et al., |2024)), presents an algorithm for optimizing a
score-based divergence with a variational family parameterized via a linear combination of orthogonal
eigenfunctions. Key limitations of this approach are i) the lack of amortization and ii) the necessity of
utilizing orthogonal, fixed eigenfunctions as the basis: truncation of these bases necessarily introduces
approximation error. In our case, s, is unrestricted: the basis functions can be arbitrary, and so a
fixed number K may be sufficient for some classes of posteriors (cf. Section[6.2).

Mixtures of Gaussians and normalizing flows are other common choices of variational families for
NPE (Gershman et al.||2012; |Papamakarios & Murray, |2016; Papamakarios et al.| 2021; Rezende
& Mohamed, 2015). Although more flexible than simple exponential families, these parameteriza-
tions may suffer from convergence to shallow local optima during optimization (cf. Section[6.I)).
We compare LBF-NPE to mixtures of Gaussians, normalizing flows, as well as EigenVI in our
experiments.

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

In numerical experiments, we fit a variety of complex posterior distributions using LBF-NPE. In
Sections [6.T]and [6.4] we infer one-dimensional posterior projections using the variant of our method
with fixed basis functions, whereas in Sections and we infer two-dimensional posterior
projections using adaptive basis functions. Additional details about each of these experiments appear

in Appendix

NPE with various alternative variational families serves as our primary benchmarks; we can compare
to these methods quantitatively by assessing the NPE objective with each choice of variational
distribution. We benchmark NPE with variational families based on mixture density networks
(MDNs), RealNVP, and neural spline flows (Papamakarios & Murray, [2016; |Durkan et al.,[2019)). In
addition to the results in this section, additional results appear in Appendix [E] including results from
comparisons to two non-NPE-based variational inference methods: EigenVI (Appendix [E.5) and a
score-matching neural-likelihood-based method for likelihood-free inference (Appendix [E.6).

6.1 Toy EXAMPLE: SINUSOIDAL LIKELIHOOD

We first exhibit the advantages of LBF-NPE’s convex variational objective by demonstrating consistent
convergence on a highly multimodal problem with fixed basis functions (cf. Section . The model
draws an angle z ~ Unif[0, 27] followed by « | z ~ N (sin(2z),0?) for fixed 02 = 1. The
exact posteriors p(z | x) have up to four modes, depending on the realization x. We compare
LBF-NPE, using a fixed collection of 14 B-spline functions of degree two on a mesh of [0, 27]
(see Appendix [A.]] for additional detail on B-splines), and a mixture density network (MDN)
(Bishopl 1994} Papamakarios & Murrayl 2016), using a mixture of five Gaussian distributions. These
variational distributions both have 14 distributional parameters for each observation x. Additional
experimental details are given in Appendix [D] Figure [I] shows that for 20 different runs of the
optimization routine, LBF-NPE consistently converges to the same solution, whereas the MDN
sometimes converges to a suboptimal local optimum. Visualizations of posterior approximations
from both methods are provided in Appendix

LBF-NPE (ours) MDN

e
o
e
o

o

ot
@
=~ Ut

o
w

Negative Log Likelihood
¢ © o ¢
SCRNS
Negative Log Likelihood

e
o

(

0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
Training Step Training Step

Figure 1: Negative log likelihood of our method and the MDN. Each model is trained with 20
different random seeds, and the records are smoothed using a Gaussian filter with o = 20.0.

6.2 COMPLEX MULTIVARIATE REPRESENTATIONS IN 2D

We showcase LBF-NPE on three test problems in two dimensions, named “banded”, “ring”, and
“spiral,” and visualized in the left column of Figure 2] Each model consists of two-dimensional latent
variable z € R? and observation z € R, and in some cases nuisance latent variables as well. Further
details of the generative processes for these three problems are provided in Appendix [D](Sections[D.2]

to[D.4).

LBF-NPE is able to approximate these complex posteriors nearly perfectly using only 20 adaptive
basis functions s,,. Both the amortization function f, and the basis functions s, are parameterized
using deep neural networks. For additional implementation details, we refer the reader to Appendix [D]
We follow Algorithm [1]and evaluate both the variational posterior q(z; f(2), sy (2)) and the exact

Under review as a conference paper at ICLR 2026

Truth LBF-NPE (ours) NSF RealNVP

ANA N
[Sl(s) (S (S][s]

Figure 2: Example posteriors of three problems in two dimensions. NSF refers to Neural Spline Flow.

Bands

Ring

Spiral

Table 1: Forward/reverse KL divergence and NLL of LBF-NPE (ours), NSF (Neural Spline Flow),
RealNVP, and MDN on three 2D test cases. Lower values indicate better posterior approximation.

Forward KL Divergence \ Reverse KL Divergence \ NLL
LBF-NPE | NSF | RealNVP | MDN | LBF-NPE | NSF | RealNVP | MDN | LBF-NPE | NSF | RealNVP | MDN

Bands 0.0048 0.016 0.015 0.182 0.0014 0.0099 0.011 0.156 -0.060 0.151 0.157 1.389
Ring 0.0054 0.017 0.024 0.205 0.0027 0.013 0.014 0.204 0.030 0.621 0.733 1.031
Spiral 0.187 0.201 0.545 0.948 0.188 0.322 0.666 1.973 0.838 0.727 0.859 2.788

posterior p(z | «) on a fine mesh grid that covers the support of the posterior. Qualitative results appear
in Figure 2] and quantitative results appear in Table [T]for held-out test points. LBF-NPE outperforms
the MDN and multiple types of normalizing flow on both metrics. We provide additional visualizations
of the variational approximations found by LBF-NPE and its competitors in Appendix

6.3 OBIJECT DETECTION

We apply LBF-NPE with adaptive basis functions to the

problem of object detection in astronomical images. We

use a generative model resembling the scientific model

of [Liu et al.| (2023b). In brief, this generative pro-

cess first independently samples star locations [q,ly ~ p
Unif ([0, 16] x [0, 16]) and star fluxes f1, f2 ~ N(p, 0?)

for two objects. Afterward, a latent noise-free image I is

rendered by convolving these point sources with a point-

spread function (PSF). Finally, given I, the intensity of
each pixel (j, k), for j, k € {1,...,16} is independently -
drawn as z;; ~ Poisson(I;), reflecting Poisson shot
noise.

Figure [3] shows two examples of the noisy observations

x, along with the posterior approximations for the loca- |

tions of each. The posterior distribution for this problem

is multimodal with a high degree of separation between gjoyre 3: Two example posteriors (left)
modes. LBF-NPE parameterizes this shape effectively. For .qnditional on the observed images
LBF-NPE, we further vary the number of basis functions (jghy). In each case, LBF-NPE correctly
K = 9,20, 36, 64. Examining the form of the fitted basis ecovers the locations of the two objects.
functions across varying K (Appendix [E.3) is particularly

illustrative of the advantages of the adaptive approach to

fitting the basis functions.

Under review as a conference paper at ICLR 2026

6.4 CASE STUDY: REDSHIFT ESTIMATION

The redshift of galaxies is a key quantity of interest as it charac- Tgple 2: Held-out NLL of the
terizes their distances from Earth. Redshift measures the extent to rye redshift z.
which electromagnetic waves are “stretched” to redder wavelengths

as objects move away from Earth. The distribution of redshifts

.) Method NLL
across many objects is a powerful probe of cosmology (Malz &
Hogg 2022). Redshift estimation from photometric data (images) LBE-NPE -57,220
is referred to as photo-z estimation. We extend the methodology of NSF -55,389
the Bayesian Light Source Separator (BLISS) package (Liu et al.) MDN -50,648

2023Db), a state-of-the-art package for probabilistic object detection
in astronomical images, for this task, by adding a redshift density
estimation “head” to the existing BLISS network. To each detected object, we associate a redshift
probability density function fitted by LBF-NPE with a fixed B-spline basis family. LSST DESC DC2
Simulated Sky Survey dataset (LSST DESC et al.l 2021)) serves as the generative model, providing
simulated (z,x) pairs, where z denotes redshift and x are the astronomical images. This highly
realistic dataset consists of mock catalogs of astronomical images produced by directly modeling
known physical quantities of the universe using empirical priors and physics-informed modeling
choices. Appendix [D]provides further details of the experimental setting.

We compare LBF-NPE to variational families based on neural spline flow (NSF) and a mixture
density network (MDN), all embedded with the BLISS framework. The MDN uses five Gaussian
components, in keeping with state-of-the-art work on photo-z estimation (Merz et al., 2025)); more
than five components did not improve the quality of fit. The only difference between the two
approaches is the parameterization choice of the variational family. We compute the negative log-
likelihood (NLL) of a held-out test set of 153,000 astronomical objects. Table E] shows that LBF-NPE
with the B-spline variational family parameterization outperforms both the MDN and the NSF.

7 DISCUSSION & LIMITATIONS

LBF-NPE models the log density of the variational distribution as a linear combination of expressive
basis functions, which is beneficial for several reasons. First, log-space modeling results in a
multiplicative influence of different basis functions. Regions of latent space can effectively be
“zeroed-out” more easily in this context compared to performing the modeling in density space
directly. Second, our model of the log density results in an unconstrained optimization problem in
fo and sy: the coefficients and basis functions may be either positive or negative, whereas other
density estimation methods may require nonnegativity or other constraints on the coefficients or basis
functions to obtain a valid density that integrates to unity (Cai et al.||2024; |Koo & Kim), |1996} Kirkby
et al.l [2023)).

Using basis expansions to parameterize variational distributions is a recent and exciting innovation
in variational inference. Relative to EigenVI, LBF-NPE performs better with fewer basis functions
(Appendix[E.5). This may be due to removing the orthogonality constraints and adaptively fitting basis
functions: by averaging across posteriors for arbitrary z, our approach ensures the basis functions are
implicitly regularized, preventing overfitting to any single instance. Appendix [E]contains additional
discussion and visualization of fitted basis functions s.

The main limitation of LBF-NPE is the difficulty of sampling from the variational distribution.
LBF-NPE directly fits the log density of the variational distribution, but samples from this density are
typically needed for inference. The low dimensionality of many NPE targets ensures that sampling
is straightforward: inverse transform sampling is readily applicable (cf. Appendix [C). For higher-
dimensional targets, importance sampling may be adequate to estimate functionals with respect to the
variational distribution.

Despite this sampling challenge, our approach demonstrates that basis expansion methods offer a
compelling middle ground between optimization simplicity and expressivity for NPE. Future work
could explore new bilevel optimization approaches (Xiao & Chen,2025)) to jointly learn adaptive basis
functions alongside their coefficients. Additionally, extending our approach beyond low-dimensional
targets to high-dimensional targets with simplifying structure—such as known or assumed conditional
independencies—could broaden the applicability of basis expansion methods.

Under review as a conference paper at ICLR 2026

REFERENCES

M. Adil Khan, G. Ali Khan, T. Ali, and A. Kilicman. On the refinement of Jensen’s inequality.
Applied Mathematics and Computation, 262:128-135, 2015.

Luca Ambrogioni, Umut Giiclii, Julia Berezutskaya, Eva van den Borne, Yagmur Giicliitiirk, Max
Hinne, Eric Maris, and Marcel van Gerven. Forward amortized inference for likelihood-free
variational marginalization. In International Conference on Artificial Intelligence and Statistics,

2019.

Jason Ansel, Edward Yang, Horace He, et al. PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation. In 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems. ACM, 4 2024.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18(19):1-53, 2017.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex
neural networks. In Advances in Neural Information Processing Systems, 2005.

Christopher M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Aston University,
Birmingham, UK, 1994.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859-877, 2017.

Jorg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In International Conference on
Learning Representations, 2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Diana Cai, Chirag Modi, Charles C. Margossian, Robert M. Gower, David M. Blei, and Lawrence K.
Saul. EigenVI: score-based variational inference with orthogonal function expansions. In Advances
in Neural Information Processing Systems, 2024.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

LSST Dark Energy Science Collaboration, Bela Abolfathi, Robert Armstrong, et al. DESC DC2 data
release note, 2022.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Carl d. Boor. A Practical Guide to Splines. Springer Verlag, New York, 1978.

Maximilian Dax, Stephen R Green, Jonathan Gair, Jakob H Macke, Alessandra Buonanno, and
Bernhard Scholkopf. Real-time gravitational wave science with neural posterior estimation.
Physical review letters, 127(24):241103, 2021.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. ArcFace: Additive angular margin
loss for deep face recognition. In Conference on Computer Vision and Pattern Recognition, 2019.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

Justin Domke. Provable smoothness guarantees for black-box variational inference. In International
Conference on Machine Learning, 2020.

Justin Domke, Robert M. Gower, and Guillaume Garrigos. Provable convergence guarantees for
black-box variational inference. In Neural Information Processing Systems, 2023.

10

Under review as a conference paper at ICLR 2026

Conor Durkan, Artur Bekasov, lain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems, 2019.

Paul H. C. Eilers and Brian D. Marx. Flexible smoothing with B-splines and penalties. Statistical
Science, 11(2):89 — 121, 1996.

Ankush Ganguly, Sanjana Jain, and Ukrit Watchareeruetai. Amortized variational inference: A
systematic review. Journal of Artificial Intelligence Research, 78:1-49, 1 2024.

Samuel Gershman, Matt Hoffman, and David Blei. Nonparametric variational inference. In Interna-
tional Conference on Machine Learning, 2012.

Derek Hansen, Ismael Mendoza, Runjing Liu, Ziteng Pang, Zhe Zhao, Camille Avestruz, and Jeffrey
Regier. Scalable Bayesian inference for detection and deblending in astronomical images. In ICML
Workshop on Machine Learning for Astrophysics, 2022.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Similarity-Based Pattern
Recognition, 2015.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Neural Information Processing Systems, 2018.

Glenn Jocher et al. YOLOVS. https://github.com/ultralytics/yolov5, 2020.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvirinen. Variational autoencoders
and nonlinear ICA: A unifying framework. In Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research,
2020.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and
Trends in Machine Learning, 12(4):307-392, 2019.

J. Lars Kirkby, Alvaro Leitao, and Duy Nguyen. Spline local basis methods for nonparametric density
estimation. Statistics Surveys, 17:75-118, 2023.

Ja-Yong Koo and Woo-Chul Kim. Wavelet density estimation by approximation of log-densities.
Statistics & Probability Letters, 26(3):271-278, 1996.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. In Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence, 2019.

Jongmin Lee, Joo Young Choi, Ernest K Ryu, and Albert No. Neural tangent kernel analysis of deep
narrow neural networks. In International Conference on Machine Learning, 2022.

Runjing Liu, Jon D. McAuliffe, Jeffrey Regier, and LSST Dark Energy Science Collaboration.
Variational inference for deblending crowded starfields. Journal of Machine Learning Research,
24(179):1-36, 2023a.

Runjing Liu, Jon D. McAuliffe, Jeffrey Regier, and LSST Dark Energy Science Collaboration.
Variational inference for deblending crowded starfields. Journal of Machine Learning Research,
24(179):1-36, 2023b.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. SphereFace: Deep
hypersphere embedding for face recognition. In Conference on Computer Vision and Pattern
Recognition, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

11

https://github.com/ultralytics/yolov5

Under review as a conference paper at ICLR 2026

LSST DESC, Bela Abolfathi, David Alonso, Robert Armstrong, Eric Aubourg, et al. The LSST
DESC DC2 simulated sky survey. The Astrophysical Journal Supplement Series, 253(1):31, 3
2021.

David J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural
Computation, 4(3):448-472, 1992a. doi: 10.1162/neco.1992.4.3.448.

David J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 05 1992b. ISSN
0899-7667. doi: 10.1162/neco0.1992.4.3.415. URL https://doi.org/10.1162/necol
1992.4.3.415.

Alex I. Malz and David W. Hogg. How to obtain the redshift distribution from probabilistic redshift
estimates. The Astrophysical Journal, 928(2):127, 2022.

Declan McNamara, Jackson Loper, and Jeffrey Regier. Globally convergent variational inference. In
Advances in Neural Information Processing Systems, 2024a.

Declan McNamara, Jackson Loper, and Jeffrey Regier. Sequential Monte Carlo for inclusive
KL minimization in amortized variational inference. In Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, 2024b.

Grant Merz, Xin Liu, Samuel Schmidt, Alex I. Malz, Tianqing Zhang, et al. Deepdisc-photoz: Deep
learning-based photometric redshift estimation for Rubin LSST. The Open Journal of Astrophysics,
8, 2025.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg,
1996. ISBN 0387947248.

Art B. Owen. Monte Carlo Theory, Methods and Examples, chapter 9, pp. 265-294. Stanford
University, 2013. Chapter on Importance Sampling. Available at https://artowen.su,
domains/mc/.

Lorenzo Pacchiardi and Ritabrata Dutta. Score matched neural exponential families for likelihood-free
inference. Journal of Machine Learning Research, 23(38):1-71, 2022.

George Papamakarios and Iain Murray. Fast e-free inference of simulation models with Bayesian
conditional density estimation. In Advances in Neural Information Processing Systems, 2016.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1-64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, and
others Killeen. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024—8035. Curran Associates, Inc., 2019.

Aakash Patel, Tianqing Zhang, Camille Avestruz, Jeffrey Regier, and The LSST Dark Energy Science
Collaboration. Neural posterior estimation for cataloging astronomical images with spatially
varying backgrounds and point spread functions. The Astronomical Journal, 170(3):155, 8 2025.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of the 32nd International Conference on Machine Learning, 2015.

Kihyuk Sohn. Improved deep metric learning with multi-class N-pair loss objective. In Advances in
Neural Information Processing Systems, 2016.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021.

Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvérinen, and Revant Kumar.
Density estimation in infinite dimensional exponential families. Journal of Machine Learning
Research, 18(57):1-59, 2017.

12

https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415
https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

Under review as a conference paper at ICLR 2026

Manoj Kumar Srivastava, Abdul Hamid Khan, and Namita Srivastava. Statistical Inference: Theory
of Estimation. PHI Learning, 2014.

J Michael Steele. Stochastic calculus and financial applications. Springer, New York, 2010.

The JAX Authors. Gpu memory allocation — jax documentation. https://docs. jax.dev/
en/latest/gpu_memory_allocation.html) 2024. Accessed: 2025-11-19.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
Conference on Computer Vision, volume 12356 of Lecture Notes in Computer Science, pp. 776—
794. Springer, 2020.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity
loss with general pair weighting for deep metric learning. In Conference on Computer Vision and
Pattern Recognition, 2019.

Daniel Ward, Patrick Cannon, Mark Beaumont, Matteo Fasiolo, and Sebastian Schmon. Robust neural
posterior estimation and statistical model criticism. Advances in Neural Information Processing
Systems, 2022.

Stephan Wojtowytsch. On the convergence of gradient descent training for two-layer ReLU-networks
in the mean field regime. arXiv preprint arXiv:2005.13530, 2020.

Quan Xiao and Tianyi Chen. Unlocking global optimality in bilevel optimization: A pilot study. In
The Thirteenth International Conference on Learning Representations, 2025.

Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via in-
variant and spreading instance feature. In Conference on Computer Vision and Pattern Recognition,
2019.

Cheng Zhang, Judith Biitepage, Hedvig Kjellstrom, and Stephan Mandt. Advances in variational
inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):2008-2026,
2019.

Dingyi Zhang, Yingming Li, and Zhongfei Zhang. Deep metric learning with spherical embedding.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
2020.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in Neural Information Processing Systems, 33, 2020.

13

https://docs.jax.dev/en/latest/gpu_memory_allocation.html
https://docs.jax.dev/en/latest/gpu_memory_allocation.html

Under review as a conference paper at ICLR 2026

A B-SPLINE & WAVELET BASIS FUNCTIONS

We give examples of two classes of local basis functions defined on the unit interval [0, 1]: B-splines
and wavelets. Without loss of generality, these definitions can be extended to construct the family
on any interval I = [a,b] for a,b € R. These families are potential candidates for a local basis
parameterization of the variational posterior.

A.1 B-SPLINES

For a choice of degree d > 1 and a uniformly spaced set of points {¢;}X |, the B-splines are a set of
local basis functions {bz(-d) (2)}X, that are defined recursively as follows (id. Boorl, |1978|; |Eilers &I
[1996):

B (z) =1 forall i, z, ifd =0 (13)
bgd)(z) -7 bl(-dfl)(z) n t; —z bEiIU(Z) d>1 (14)
(titd —ti) tivda—1 —ti tiva—1 —ti tiza—t; tiga—ti

The B-spline basis functions bgd) (z) are thus individually piecewise polynomial splines of degree d.

While each function bl(-d) is symmetric about the ith knot ¢; (or a midpoint of two knots), it is nonzero
for a range of only 2d knots, in accordance with the locality aspect described above (see Figure).

=

o
1

=

o
1

Basis Function Value
o
3
1

Basis Function Value
o
at
1

0-0 T 1 1 0‘0 1 1 I
0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00

z z

Figure 4: Example visualizations of B-Spline basis functions of degree 1 (left) and 2 (right). For
brevity, we only show a part of the basis functions.

A.2 WAVELETS

A collection of wavelet local basis functions on [0, 1] is defined relative to a “mother wavelet” function
denoted H. For ease of exposition, we consider the Haar wavelet (Koo & Kiml, [1996} [Steele, [2010)
given by

1,0<z < %
H(z)=< -1, <z<1 (15)
0, otherwise
Thereafter, the set of local basis functions b; is defined recursively as follows: writing each ¢ uniquely
asi =2 +k,j>0,0<k <27, wehave
bi(z) = 2/2H(2 - 2 — k). (16)

The local basis functions are thus defined as shifted and scaled versions of the mother wavelet H.
One can check that b;(z) is nonzero only on the interval [k - 277, (k + 1) - 277] fori = 2/ + k, so
the basis functions become nonzero on increasingly local regions even for moderate values of 7 (say,
i = 200). Wavelets are often described as being local with respect to both space and frequency as b;

becomes increasingly “spiky” as well due to the coefficient 27/2 l, 2010).

14

Under review as a conference paper at ICLR 2026

B CONVEXITY

B.1 CONVEXITY & CONVERGENCE OF LBF-NPE WITH FIXED BASIS FUNCTIONS

As referenced in Section in the setting where the basis functions s, are fixed ahead of time, the
objective function of LBF-NPE becomes a convex functional of the amortization network f. In this
case, our setting can be shown to be globally convergent under suitable regularity conditions on the
network architecture, in the asymptotic limit as the network width tends arbitrarily large. We restate
this result, proven in McNamara et al.|(2024a)), below.

Proposition. Ler X CR%and Y C RE. Let fy = f(-;¢) : X — RE be parameterized as a scaled
two-layer ReLU network of width p, i.e. f;i(z;¢) = % Z§=1 aijo(x wj) fori=1,..., K. Define
the loss functional

(x,n) = KL(p(z | z) [| ¢(z:m)),

and allow parameters ¢ = {a;;,w;},i =1,...,K,j =1,...pto evolve via the gradient flow ODE

B(t) = =V Ep)l(z, f(x;0(t)). Then we have the following results (under regularity conditions
(A1)~(A6)):

a) Ligrnee(9(t)) is precisely B, l(z, f(x; ¢(t)), optimized by the gradient flow above.
Further, the functional Mygr.nee(f) : f = Ep)l(z, f(2)) is a convex functional in f, with
a global optimum f*.

b) For the parameterization above, with ¢ following the gradient flow ODE, we have that there
exists T' > 0 such that

plglgo Migrnee(fr) < Migrnee(f*) + €,

where fp = f(:;¢(T)).

The proposition above, proven in (McNamara et al.,|2024al), states that gradient descent on the convex
functional E,,)¢(z, f(7; ¢)) converges arbitrarily close to its optimum in the infinite-width limit,
relying on universality results of shallow networks and NTK theory (Jacot et al., 2018} |Lee et al.
2022). Our parameterization of the variational distribution ¢ as an exponential family in LBF-NPE
falls into this setting when the basis functions are fixed, allowing us to directly apply results from
(McNamara et al., [2024a). We refer to the proofs therein rather than a restatement here.

Regularity conditions sufficient for the above to hold are provided below. They assume a well-behaved
functional M, a particular initialization of the width-p network, and uniform boundedness conditions
on gradients along the optimization trajectory. Although we emphasize that NTK-style results only
approximately explain the success of our method or other neural posterior estimation methods in
practice (the infinite-width limit can only be approximated by finite networks, and the continuous
gradient flow ODE is approximated by stochastic gradient descent), results like these prove that
LBF-NPE benefits from an advantageous optimization landscape asymptotically.

(A1) The data space X is compact.
(A2) Weights are initialized as a;; = 0, w; “ (0, I,).

(A3) The neural tangent kernel at initialization, K, (z,2') = Jf(z;¢)J f(2';¢) " at ¢ = ¢(0),
is dominated by some integrable random variable G, uniformly over x, z’.

(A4) The gradient V,,¢(x,n) is uniformly bounded for all z, 7.

(A5) The limiting NTK K, = lim,_, K is positive-definite (we note that existence of the
limit is guaranteed).

(A5) The functional Mjgg.npg is bounded below; and its minimizer f* has finite norm with
respect to the RKHS norm of the limiting NTK K.

(A6) The function ¢(x, n) is C-smooth in 7 for some C < oo.

15

Under review as a conference paper at ICLR 2026

B.2 CONVEXITY OF LBF-NPE

In this subsection, we prove the convexity of the joint functional L(f, s) in Proposition Neural
network theory and NTK-based analysis of this objective in s are beyond the scope of this work. We
prove marginal convexity in s, and appeal to previous NTK-based results (such as the above), which
motivate our empirical results: optimization of convex functionals of neural network outputs is ad-
vantageous compared to the optimization of nonconvex functionals due to the preferable optimization
landscape of the former (Bachl, 2017; Bengio et al.,|2005}; Jacot et al., 2018} 'Wojtowytschi [2020)).

We first present Holder’s inequality, which we’ll use in the proof.

Lemma 1 (Holder). If S is a measurable subset of R™ (with respect to Lebesgue measure), and f
and g are measurable real-valued functions on S, then Holder’s inequality is

[is@stoias < ([1 pdx)’l’ ([1ot dx)i’

Sor any p, q satisfying % + % -1

Holder’s inequality will be used to prove Proposition I] restated below.

Proposition 1. The functional

L) = Byt (10)7s(2) ~ o [exp (1) s(2) an())

is marginally convex in the argument f and s, respectively.

Proof. Ignore the outer expectation for now, and consider a fixed x, z drawn from p(z,z). The
inner product — f(x) " s(z) is clearly convex in s. We now turn to the more complicated expression,
log ([exp (f(z) "s(z)) dz’). Note that the integral is over z’ this expression and doesn’t depend
on the realization z. It still depends on s, however.

We prove this function is convex as follows. Let o € (0, 1), and consider functions s1, so. Then

g ([exw (7)o () + (1 =)sala)])))

exp (af (@) Ts1 (=) exp (1 — @) f(2) Ts2(=")) dh(=')

log

s)
log ([exp (f(z) Ts1(2))]" [exp (f(z) Tsa(z))] " dh(z’))
([e e ane)

where we have defined u(2’) = exp(f(x)s1(z")) and v(z') = exp(f(z)"s2(2')). Consider the
integral above, and apply Holder’s inequality with 1/p = avand 1/¢ = 1 — a. These sum to one as

required. We take f to be [u(2')]” and g to be [U(Z/)](lfa).

Continuing, we have

16

Under review as a conference paper at ICLR 2026

=log (/ [u(z)]" - [w(z/)] "~ dh(z’)) [this line repeated for clarity]
<log ([[iy e anen][[(en) ")]) Holder
= alog (/u(z')dh(z')) +(1—a)log </v(z’)dh(z')>

= atog ([exp(@) s) + (1=) ([ep(r) s Nan))

This was all that is required to show that the mapping s — log ([exp (f(z) " s(z’)) d2') is convex.
As the sum of two convex functions is convex, we’ve shown convexity of the integrand for any fixed
draw z,x ~ p(z,z). To conclude, we observe that by linearity of integration, this holds for the
integral as well.

O

C SAMPLING

Similar to EigenVI (Cai et al.| 2024), LBF-NPE does not easily admit sampling from the fitted
variational density. This is one limitation of the nonparametric nature of the density model in both of
these approaches to variational inference.

In the low-dimensional case, sampling can be performed by inverse transform sampling. In this
approach, one uses the cumulative distribution function @ of ¢, defined as

2*

Q) =Pz <) = [gz
where ¢(z) is the fitted variational density (say, conditional on some datum z of interest). The
function @ is invertible. Sampling can be performed by drawing U ~ Unif[0, 1], and thereafter

computing .
Z=Q (U).

The result of this procedure is a draw Z ~ ¢(z). Computing and inverting cumulative distri-
bution functions in low dimensions is fairly straightforward. As outlined in the main text, this
low-dimensional setting is one we commonly find to be of use to practitioners, especially for the
types of problems we consider in our experiments in this work.

To sample from high-dimensional posteriors, several different approaches are available. One approach,
as outlined in (Cai et al.| 2024)), is sequential sampling, whereby one samples

Q(Zl)»(J(Z2 | 21)761(23 | 21722), .- -,Q(Zd | 21y - -7Zd—1)

in order. Each individual density above can be sampled using the inverse transform sampling approach
outlined above; conditioning within the exponential family parameterization is accomplished easily
by freezing already sampled indices and changing the variables of integration in the log integral.
More generally, one could also utilize rejection sampling or other Monte Carlo sampling algorithms.
As the unnormalized variational density has an extremely simple form, i.e. ¢(z) o exp(n'b(z)),
Markov chain Monte Carlo algorithms could also be an efficient way to sample from the distribution
defined by the fitted density. We present some selected results of Langevin sampling and inverse
transform sampling in Appendix [C.T|to illustrate the utility of these approaches.

C.1 RESULTS OF LANGEVIN DYNAMICS AND INVERSE TRANSFORM SAMPLING
We present the sampling results obtained via Langevin dynamics (Song et al., 2021) and inverse

transform sampling for the three 2D case studies: bands, ring, and spiral. In addition to
the inverse transform sampling described in the preceding section, we explore the use of Langevin

17

Under review as a conference paper at ICLR 2026

dynamics, a widely adopted method for generating samples in score-based generative models. This
approach iteratively updates a set of particles according to:

dzy = €V, logp(z; | x)dt + \/Zth,

where € = 0.001, dW; ~ N(0,1),and t € {1,2,...,1000}. Since our model provides a differen-
tiable approximation of logp(z; | z) through fy(z) " sy (), the gradient V, log p(z; | x) can be
directly estimated. This enables us to apply Langevin dynamics for posterior sampling.

For each of the bands, ring, and spiral case studies, we generate 10,000 samples and visualize
both the samples and their marginal densities in Figures[3]to[I0} As illustrated in these figures, both
Langevin dynamics and inverse transform sampling yield samples that closely match the estimated
posterior distributions.

Truth Estimated LD; dim 1 LD; dim 2

1.50-2 1.5e-2 9
1.0e-2 - 1.0e-2 o
5.0e-3 — 5.0e-3 o

Samples (LD) Samples (Inv) Inv; dim 1 Inv; dim 2

-
-

1.5e-2 =

£ 1.5e-2 —

1.0e-2 1.0e-2 o

>
=

- 5.0e-3 - 5.0e-3 =

Figure 5: Sampling results for bands. “LD” and Figure 6: Marginal density of samples for bands.
“Inv” denote Langevin dynamics and inverse trans- The green line indicates the estimated posterior
form sampling, respectively. density.

Truth Estimated LD; dim 1 LD; dim 2

2.0e-2 -

2.0e-2 -

1.0e-2 — 1.0e-2 o

C
C

Samples (LD) Samples (Inv) Inv; dim 1 Inv; dim 2

2.0e-2 —

2.0e-2 -

1.0e-2 o 1.0e-2 -

C
C

0.0

Figure 7: Sampling results for ring. “LD” and Figure 8: Marginal density of samples for ring.
“Inv” denote Langevin dynamics and inverse trans- The green line indicates the estimated posterior
form sampling, respectively. density.

18

Under review as a conference paper at ICLR 2026

Truth Estimated LD; dim 1 LD; dim 2

8.0e-2

8.0e-2 -

4.0e-2 =
4.0e-2 =

0.0 0.0
Samples (LD) Samples (Inv) Inv; dim 1 Inv; dim 2
8.0e-2
8.0e-2 =
(n 4.0e-2
4.0e-2 -
0.0 0.0

Figure 9: Sampling results for spiral. “LD” Figure 10: Marginal density of samples for
and “Inv” denote Langevin dynamics and inverse spiral. The green line indicates the estimated
transform sampling, respectively. posterior density.

D EXPERIMENTAL DETAILS

Code to reproduce results is provided at https://anonymous.4open.science/r/1bf_
npe-7252/(to be de-anonymized). We use PyTorch (Paszke et al., 2019} |Ansel et al.| [2024) and
JAX (Bradbury et al[2018)) . We also use the equinox library for deep learning in JAX (Kidger &
Garcia, [2021). For Section[6.4] the DC2 Simulated Sky Survey data is publicly available from the
LSST Dark Energy Science Collaboration (LSST DESC) (LSST DESC et al.| 2021} |Collaboration
et al.}2022). All experiments are conducted on an Ubuntu 22.04 server equipped with an NVIDIA
RTX 2080 Ti GPU.

D.1 Toy EXAMPLE: SINUSOIDAL LIKELIHOOD

In Section[6.1] we design a simple Bayesian model to evaluate the convergence behavior of LBF-NPE
and MDN. This statistical model is

z ~ Unif]0, 27],
x|z ~ N (sin(22),0?%),
where 02 = 1. This model induces a multimodal posterior:
P(z | z) o exp (—(sin(22) — z)?/(20%)) x [(0 < 2 < 27),
which exhibits two modes when x > 1 or x < —1, and four modes otherwise.

For LBF-NPE, we construct a multilayer perceptron (MLP) to predict the coefficient vector n = fy(z),
and the sufficient statistics b(z) € R are computed using B-spline basis functions with K = 14. The
MLP architecture consists of an input layer, four hidden layers, and an output layer, mapping = € R
ton € RX. Each hidden layer includes a full connection layer of 128 units, layer normalization, and a
ReLU activation. The output layer is linear. The B-spline basis comprises 14 degree-2 basis functions,
with knots at [0, 0, linspace(0, 2, num = K), 2w, 27]. Although the B-spline basis b(z) can be
evaluated recursively as described in Section[A.T] we precompute it on a grid to avoid redundant
computation during training. Specifically, we pick 1000 uniformly spaced points in the interval @, 27]
and approximate the integral | exp(n; b(z)) dz using the trapezoidal sum. For the term f,(z) "b(z)
we use the basis vector corresponding to the grid point closest to the true latent variable 2.

>

For MDN, we use the same MLP architecture, with output adapted to represent the parameters of a
mixture of Gaussian distributions with K = 14 components. The output vector has 10 parameters for
means and variances, and 4 additional parameters for the mixture weights. The MDN objective is

LMDN(’Y) = _Ep(:v,z) log q(z; tv(x))a (17)

19

https://anonymous.4open.science/r/lbf_npe-725A
https://anonymous.4open.science/r/lbf_npe-725A

Under review as a conference paper at ICLR 2026

where ~ are the neural network parameters, ¢, (z) denotes the predicted distribution parameters, and
q(z;) is the corresponding density.

The training procedures for LBF-NPE and MDN are identical apart from the loss function. At
each step, we sample 1024 latent—observed pairs (z, z) from the generative model and update model
parameters using the AdaBelief optimizer (Zhuang et al.,[2020) with a learning rate of 0.001. Training
proceeds for 50,000 steps and completes within one hour for both methods. Peak GPU memory usage
is approximately 8300MB. We hold out 1000 (z, z) pairs and track their negative log-likelihood
(NLL) over training, as shown in Figure[l| We apply Gaussian smoothing to the NLL curves with
standard deviation o = 20. This results in a smoothing kernel of size 161 = 4 x 20 x 2 + 1, with
weights given by G; = exp(—i?/(20?)) fori € {—80,...,80}. With the normalization constants
for G; omitted, the smoothed NLL at step j is computed as

80
NLLsmooth,j = Z NLL]‘_H . Gz
i=—80

D.2 2D CASE STUDIES: BANDS

The statistical model for the bands test case, as introduced in Section[6.2] is
21,22 Unif[—l, 1],
z = (z1,22),

z|z~N(21 — 2|, 0%),

where 02 = 1072. The resulting posterior forms two elongated bands in the 2D latent space
P(z | z) < exp (—(|z1 — 22| — 2)?/(202)) - (=1 < 21, 22 < 1), with its maxima occurring along
the lines where |21 — 29| = .

As the latent variable z is now two-dimensional, LBF-NPE encounters increased complexity due
to the larger number of basis functions required. In our LBF-NPE framework, both the coefficient
network fy and the sufficient statistic network s, are implemented as multilayer perceptrons (MLPs)
with four hidden layers, each containing 128 units. All layers use layer normalization to stabilize
optimization and ReLU activations. The network fs maps input € R to a coefficient vector in
RX, while s, maps z € R? to sufficient statistics in R¥. We set K = 20 for consistency with
other 2D case studies, though even K = 2 suffices to capture the posterior structure in this example
(see Appendix [E.3). The loss function for LBF-NPE follows Algorithm[I] where the integral term
[exp(n,” sy(2)) dz is approximated using a trapezoidal sum over a 100 x 100 uniform grid spanning
[—1,1]2. During training, we alternate between updating f, and sy: we train f, for 1000 steps
while holding s, fixed, then train s, for 1000 steps with f, fixed, and repeat this process until the
total training budget is exhausted. The choice of 1000 steps per phase is empirical; we observe
diminishing returns in the loss reduction beyond 1000 steps, indicating that each sub-network has
reached a near-optimal solution given the other is fixed. In addition, we use stereographic projection
to reparameterize the output of f and s..

For the MDN baseline, we use an MLP with the same architecture as fy, except that it outputs a
50-dimensional vector representing the parameters of a mixture of 10 Gaussian components. Each
component is parameterized by five values: two for the mean, two for the (diagonal) variance
(assuming zero covariance), and one for the mixture weight. The loss function is identical to that
described in Appendix

For the normalizing flow baseline, we adapt the classic coupling flow from (Dinh et al.l 2017) to
model the conditional posterior p(z |). Each coupling layer includes translation and scaling
sub-networks that are conditioned on x € R. These sub-networks are implemented as MLPs, each
taking as input the concatenation of the masked latent variable z and the conditioning variable x.
Each MLP consists of a single hidden layer with 128 units. We use 10 coupling layers to ensure
sufficient expressiveness. The resulting conditional density is given by:

q(z | x) = qn(hy(2;2)) - |det J],

where gy (+) denotes the standard Gaussian density, h,, (z; x) is the transformed latent variable via
the flow, and det J is the product of the Jacobian determinants from each flow transformation.

20

Under review as a conference paper at ICLR 2026

We train LBF-NPE, MDN, and the normalizing flow using the AdamW optimizer (Loshchilov &
Hutter}, [2019) with a learning rate of 10~° for 50,000 steps. The batch size is set to 1024, and
training completes in approximately 2 hours. Maximum GPU memory usage is around 8400MB. For
evaluation, we use a held-out set of 1000 (z,) pairs to compute the average forward and reverse
KL divergences. For each test observation z, LBF-NPE, MDN, and the normalizing flow estimate
the density ¢(z | x) over a 100 x 100 uniform grid on [—1,1]?. These estimated posteriors are
normalized such that their integral over the grid equals 1. The true posterior p(z |) is computed
analytically over the same grid, enabling pointwise comparison. We then calculate the forward and
reverse KL divergences between the estimated and true posteriors and report the average over all
1000 test cases in Table[T] For the illustrative posterior plots shown in Figure 2] we fix z = 0.7 and
visualize the estimated density ¢(z |) from each method over the same 100 x 100 grid.

D.3 2D CASE STUDIES: RING

The statistical model for the ring case study in Section[6.2]is defined as:

21, 22 ~ Unif[—1, 1],
z = (21, 22),
@ |z~ N([[2lI% o),
where 62 = 1072, The resulting posterior, P(z | #) o exp (—(||z]|* — x)?/(20?)) - I(-1 <
21, 22 < 1), forms a ring-shaped distribution in the latent space, with radius approximately /.

The network architectures and training configurations used in this case are identical to those described
in Appendix[D.2} An example posterior g(z | = 0.7) is visualized in Figure[2]

D.4 2D CASE STUDIES: SPIRAL

The spiral model is defined as follows:

b ~ Unif[0.1,0.5]
d ~ Unif[0.0, sy (27)]
0=s,"(d)
r=0bf
z1 = rcos(h)
29 = rsin(f)
(Z17Z2>

x|z~./\/(b,a)

where 02 = 1074, and s,(9) = 5(0v/1+ 62 + sinh™'(#)). The posterior is P(z | x) o
exp (—(5 —x)?/(20%)) -1(0 < 0 < 27,0.16 < r < 0.56).

Most training settings follow those in Appendix [D.2] except that we increase the number of coupling
layers in normalizing flow to 16. We observe minimal performance gain beyond this depth. For
visualization in Figure we display the estimated posterior g(z | = 0.35) over the 100 x 100 grid.

D.5 OBJECT DETECTION

We define the image generative model as follows:
ly,15 ~ Unif([0, 16] x [0, 16]),

f1, f2 NN(MaUQ)v
I =Image({l1,l2},{f1, f2},PSF),
xj, ~ Poisson(l;),

21

Under review as a conference paper at ICLR 2026

where 1 = 2000, 02 = 400%, and Image(-) and PSF(-) are defined below. Note that in our
implementation, flux values are constrained to be positive.

Algorithm 2: Tmage Algorithm 3: PSF
Inputs: list of source locations {l1, l2}; list Inputs: relative position matrix ;.
of source fluxes { f1, f2}; Compute
point-spread function PSF. di = —(rl;[..., 02 +rl;[..., 1%)/(20%4p)
Initialize pixel location matrix pl
for I;, f; in zip({l1, 12}, {f1, f2}) do Compute d; = exp(d;)/sum(exp(d;))
Compute relative location rl; = pl — I; Return d;.

Compute PSF density d; = PSF(rl;)
Compute I; = f; X d;

end

Compute I = 11 + I»

Return 1.

The pixel location matrix pl is a mesh grid of shape (H, W, 2) defined over [0.5,1.5,..., H — 0.5] x
[0.5,1.5,..., W — 0.5], where H and W are the height and width of the image, respectively. Each
source location [; is a 2D vector, and the term rl;[. .., 0] + rl;[. .., 1] is a matrix of shape (H, W).
We use o3qp = 1. Each source flux f; is a scalar. Before passing the image to the network, we
normalize it using min-max scaling: = (x — min(z))/(max(x) — min(x)).

Since the input is a 16 x 16 image, we employ a convolutional layer in our network to reduce
computational cost. The first layer of the model fy is a 2D convolution layer with kernel size 4,
increasing the channel dimension from 1 to 3. This is followed by a 2D max pooling layer and a
ReLU activation. The output is then flattened and passed through four MLP layers, each with 128
hidden units, layer normalization, and ReLU activations. Another model, sy, is an MLP with four
hidden layers, each also consisting of 128 units, layer normalization, and ReLU. The outputs of f,
and sy, are reparameterized via stereographic projection.

As each image contains two astronomical sources, we compute the loss separately for each source.
For the source located at I;, the first term in the loss is —w fy(2) " 8, (1;). Only 8, (1;) needs to be

evaluated per source; shared terms such as f, () and the integral term can be reused across both. We
approximate the integral using Monte Carlo integration with 22,500 random samples. The final loss is
the sum of the losses for both sources. For alternating optimization, we train one of f or s, for 300
steps at a time (shorter than the 1000-step updates used in the 2D case studies; see Appendix [D.2))
since convergence is typically achieved more rapidly in this setting. Optimization is performed using
the AdamW optimizer (Loshchilov & Hutter,|[2019) with a learning rate of 0.001. The total number
of training steps is 45,000, with overall training time under two hours.

For posterior visualization, we adopt the same procedure used in previous 2D case studies (see
Appendix , but evaluate the posterior over a 200 x 200 grid on the domain [0, 16]?. The estimated
posterior for a certain image is shown in Figure[3] To generate this posterior, we leverage a model
trained with K = 64. For results with other values of K (e.g., 9, 20, 36), we provide further
discussion in Appendix [E.3]

D.6 REDSHIFT ESTIMATION

Our redshift experiment extends the methodology of the Bayesian Light Source Separator (BLISS)
(Liu et al.L[2023a}|Hansen et al.,|2022; [Patel et al.,[2025)). For a given generative model of astronomical
images and latent quantities (locations; fluxes; type of object; redshift; etc.), BLISS utilizes neural
posterior estimation (Papamakarios & Murray, |2016)) to perform amortized variational inference. The
network architecture for BLISS operates on files of images, returning distributional parameters for
each object detected per tile. The architecture is thus convolutional in nature with several additional
image normalizations and other design choices suitable for astronomical image processing.

For samples of the generative model, we use images from two tracts of the LSST DESC DC2
Simulated Sky Survey (LSST DESC et al.| 2021} /Collaboration et al.} 2022}, numbers 3828 and 3829.

22

Under review as a conference paper at ICLR 2026

LBF-NPE does not sample the generative model on-the-fly in this setting, but only have access to a
finite number of draws from the training sets.

We utilize the BLISS preprocessing routines to produce training, validation, and test sets of images
along with ground-truth catalogs. Images, each of size 80 x 80, are processed in batches of 64 by the
BLISS inference network, which further splits these into 4 x 4-pixel tiles. The network is fit to the
training set to minimize the forward KL divergence using a learning rate of 0.001. All nuisance latent
variables are marginalized over, and we only score redshift variational posteriors, although BLISS
allows for easy addition of posteriors on other latent quantities in the computed NLL loss as well,
should the user desire to perform inference on these.

We adapt the neural network architecture from BLISS for redshift estimation. The complete architec-
tural details and parameter configurations are provided in Table 3] As shown in the table, the input
and output shapes of each layer are expressed as tuples, e.g., (bands, h, w) or (64, h, w),
where bands denotes the number of bands in the input astronomical images. In the DC2 dataset,
there are six bands: u, g, 1, i, z, y. The variables h and w represent the height and width of the image,
which are both set to 80 in our experiments. The model is composed primarily of three types of
layers: Conv2DBlock, C3Block, and Upsample. A Conv2DBlock is a composite module
consisting of a 2D convolution, group normalization, and a SiLU activation function. The C3Block
is adapted from the YOLOVS architecture (Jocher et al., [2020). It comprises three convolutional
layers with kernel size 1 and includes skip connections implemented via multiple bottleneck blocks
(parameterized by n). The Upsample layer performs spatial upscaling of the input tensor by a
specified factor. The architecture follows a U-shaped design with four downsampling steps followed
by two upsampling steps. To denote skip connections and input dependencies between layers, we
use the “Input From” column. For example, the entry “[-1, 9]” indicates that the current layer takes
as input the concatenation of the output from the previous layer and that from layer 9. The final
layer is a convolutional module with kernel size 1, producing an output of shape (n_coeff, h/4,
w/4),where n_coeff is the number of predicted coefficients per tile.

The forward KL divergence framework prescribes that predictions are only scored for true objects.
Accordingly, for each ground-truth redshift in the training set, we score the predicted NLL computed
from the variational distribution for the 4x4 pixel tile containing that object. BLISS makes this
transdimensional inference problem (a result of the number of objects per-tile being unknown a
priori) tractable by sharing parameters among objects within the same 4 x 4-pixel tile, at the cost of
the bias resulting from this approximation. For both the MDN and B-spline parameterization, we fit
to the training data for 30 epochs, and use the model weights that had the lowest held-out NLL on the
validation set to compute the test-set NLL. Training the inference network f, takes approximately
12 hours on a single NVIDIA GeForce RTX 2080 Ti GPU. We note that due to the approximations
involved with using a finite training set rather than true “simulated” draws, we can easily overfit to
the training and validation set. The procedure outlined above aims to mitigate these issues to the
extent possible.

23

Under review as a conference paper at ICLR 2026

Layer # Input From Input Shape Layer Type Config Output Shape
in_ch=bands; out_ch=64;

1 -1 (bands, h, w) Conv2DBlock (64, h, w)
kernel_size=5
in_ch=64; out_ch=64;

2 -1 (64, h, w) Conv2DBlock (64, h, w)
kernel_size=5

Sequence of in_ch=64; out_ch=64;
3 -1 (64, h, w) (64, h, w)
Conv2DBlock kernel_size=5; sequence_len=3

in_ch=64; out_ch=64;

4 -1 (64, h, w) Conv2DBlock (64, h/2, w/2)
kernel_size=3; stride=2
in_ch=64; out_ch=64;

5 -1 (64, h/2, w/2) C3Block (64, h/2, w/2)
n=3
in_ch=64; out_ch=128;

6 -1 (64, h/2, w/2) Conv2DBlock (128, h/4, w/4)
kernel_size=3; stride=2
in_ch=128; out_ch=128;

7 -1 (128, h/4, w/4) C3Block (128, h/4, w/4)
n=3
in_ch=128; out_ch=256;

8 -1 (128, h/4, h/4) Conv2DBlock (256, h/8, w/8)
kernel_size=3; stride=2
in_ch=256; out_ch=256;

9 -1 (256, h/8, w/8) C3Block (256, h/8, w/8)
n=3
in_ch=256; out_ch=512;

10 -1 (256, h/8, w/8) Conv2DBlock (512, h/l6, w/16)
kernel_size=3; stride=2
in_ch=512; out_ch=256;

11 -1 (512, h/16, w/16) C3Block (256, h/16, w/16)
n=3
scale=2;

12 -1 (256, h/16, w/16) Upsample (256, h/8, w/8)
mode="nearest"
in_ch=512; out_ch=256;

13 [-1,9] (512, h/8, w/8) C3Block (256, h/8, w/8)
n=3
scale=2;

14 -1 (256, h/8, w/8) Upsample (256, h/4, w/4)
mode="nearest"
in_ch=384; out_ch=256;

15 [-1, 6] (384, h/4, w/4) C3Block (256, h/4, w/4)
n=3
in_ch=256; out_ch=n_coeff;

16 -1 (256, h/4, w/4) Conv2D (n_coeff, h/4, w/4)

kernel_size=1

Table 3: Neural network architecture for redshift estimation.

24

Under review as a conference paper at ICLR 2026

D.7 ANGULAR DISTANCE OPTIMIZATION

As discussed in Section4.4] our method can be interpreted as performing angular distance optimiza-
tion, but with loss and gradient derived from a probabilistic space. This interpretation becomes evident
if we decouple the magnitude and directional components of the output tensors f, (), sy (2) € RE
through normalization techniques such as L2 normalization or stereographic projection reparameteri-
zation. Angular distance optimization is a common objective in modern machine learning pipelines,
contributing to both improved performance and consistent alignment between training and testing
metrics. Several widely-used loss functions, including the triplet loss (Hoffer & Ailonl 2015), N-pair
loss (Sohn, [2016), and multi-similarity loss (Wang et al.l 2019), incorporate angular distance in their
formulation. Cosine-based softmax loss functions are employed extensively for face recognition (Liu
et al.,|2017;|Wang et al., [2018};|Deng et al., 2019), and many contrastive learning algorithms (Chen
et al.l 2020; Tian et al., 2020; Ye et al.l [2019) utilize angular objectives to maximize the cosine
similarity between embeddings from positive pairs.

Our variational objective in Equation (6) is related to cosine-based softmax loss, whose general form
is

L =—wS,,, +log | exp(wS;,,) + Z exp(wS; ;) |, (18)
J#Yi
as described in Section and suggesting a more general form for our variational objective, namely

ﬁLBF_NpE(qS, ¥) =Epiz) —wf¢(x)T§¢,(z) +log (/ exp (wf¢(x)T§¢(z/)) dZ/)} , (19

where again f,(-) and 54 () are normalized outputs of neural networks (i.e., with unit norm) and w
is a scaling factor.

The key differences from the cosine-based softmax formulation are: (1) the summation is replaced by
an integral over the continuous latent space, and (2) the angular distance is computed between coeffi-
cient vectors and basis functions, rather than between learned embeddings. This connection offers
two main advantages. First, our theoretical guarantees on convexity and convergence may extend to
angular distance optimization problems, suggesting broader applicability. Second, our method can
leverage off-the-shelf improvements developed for angular optimization, such as SEC (Zhang et al.,
2020), which regularizes gradient updates to stabilize and accelerate training. Given that even simple
stereographic normalization already yields strong empirical results, we leave the integration of these
enhancements to future work.

In our experiments, we utilize stereographic projection reparameterization to normalize the output
tensor onto the unit hypersphere. Precisely, u € RX~1 is transformed to RX via

2u 1- |u||2>
y= < ; ; (20)
Lo 271 A flulf?
ensuring that ||y|| = 1. This projection serves as a smooth and bijective transformation from Euclidean

space RX~1 onto the K-sphere SX = {z € R : ||z|| = 1}. Although this transformation changes
the form of the variational objective in the neural network outputs, and thus violates some assumptions
of our NTK framing from the perspective of convexity, strong empirical results suggest the benefits
of reparameterization, and also the importance of future work in understanding the success of neural
posterior estimation (NPE) techniques under arbitrary parameterizations. We hypothesize that the
advantageous properties of this normalization stem from the smooth gradient trajectories and mapping
to a compact space, discussed in more detail below.

We illustrate the stereographic normalization process in a 2D case, as shown in Figure In this
setting, a scalar input « € R is projected onto a vector y € R? lying on the 1-sphere (i.e., the unit
circle). For any given u, there exists a unique line connecting the point (u,0) and the north pole
N = (0,1). This line intersects the 1-sphere at a single point, which serves as the projection of u. By
drawing a vector from the origin to this intersection point, we obtain a unit vector y on the 1-sphere.
Notably, the location of the intersection reflects the magnitude of w: if ||u|| > 1, the intersection lies
on the upper half of the circle; if ||u|| < 1, it falls on the lower half.

25

Under review as a conference paper at ICLR 2026

Figure 11: Visualization of stereographic projection in 2D. A scalar u is mapped to a point on the
unit circle via intersection of the line connecting (u, 0) and the north pole N = (0, 1).

This reparameterization offers several advantages. First, the stereographic projection is differentiable
everywhere and provides well-behaved gradients throughout the domain. Second, the projection
naturally enforces unit-norm constraints without requiring additional normalization layers or manual
clipping, thus making training more stable and efficient.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EFFECT OF NORMALIZATION

We compare the output basis functions of the neural network with and without stereographic projection
normalization, demonstrating that normalization helps the network learn clearer boundaries between
different regions of the parameter space. Figure [I2] and Figure [I3] show the values of the 20-
dimensional basis functions (i.e., [sy(2)];, where i € {1,2,...,20}) evaluated over the plane
z € [—3,3] x [-3,3] for the spiral case study. It is evident that the model with normalization
exhibits more distinguishable and structured partition boundaries in z-space, while the model without
normalization suffers from blurry transitions and over-exposure artifacts, as seen in Figure [T3]
This highlights a key drawback of the non-normalized approach that it struggles to disentangle
the parameter space effectively. Normalization also enhances interpretability by promoting better
separation among basis functions. The estimated posterior density is expressed as a weighted linear
combination of these basis function densities. For a given target spiral, the neural network increases
the weights (i.e., [f4(z)];) for dimensions whose corresponding basis functions have high overlap
with the target density, and decreases weights for dimensions with low overlap.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

= =]
-~
\\

= =
(

[y
=

-
B

-2 -1 0 1 2
Basis Function Value

Figure 12: Density plot of 20-dim basis function (w/ stereographic projection normalization) over
plane z. Each subplot represents the density plot of a certain dimension.

E H = =
¢-.

E E = =
. C
W

—4 -2 0 2
Basis Function Value

Figure 13: Density plot of 20-dim basis function (w/o stereographic projection normalization) over
plane z. Each subplot represents the density plot of a certain dimension.

27

Under review as a conference paper at ICLR 2026

E.2 POSTERIOR COMPARISON

Truth LBF-NPE (ours) NSF RealNVP MDN

0.05

Obs:

0.26

Obs:

0.47

Obs:

0.68

Obs:

0.89

Obs:

Obs: 1.32

Obs: 1.53

Obs: 1.74

ll-QQIII
HESNNNNNY

Obs: 1.95

HERRNNNNAN

Z
7
7
7
-
—
=
—

v

Figure 14: Visual comparison of posterior densities estimated by different methods (LBF-NPE,
Normalizing Flow, MDN) against ground truth for ten representative observations.

Under review as a conference paper at ICLR 2026

Truth

=
&
i
2,
g
=
)
=

Z

RealNVP MDN

0.05

Obs:

0.15

Obs:

0.25

|

-
'

Obs:

0.35

Obs:

0.45

Obs:

0.95 Obs: 0.85 Obs: 0.75 Obs: 0.65 Obs: 0.55

Obs:

Figure 15: Visual comparison of posterior densities estimated by different methods (LBF-NPE,
Normalizing Flow, MDN) against ground truth for ten representative observations.

29

Under review as a conference paper at ICLR 2026

Truth LBF-NPE (ours) NSF RealNVP MDN

0.10

Obs:

0.14

Obs:

0.19

Obs:

0.23

Obs:

0.28

Obs:

0.32

Obs:

0.41 Obs: 0.37

0.50 Obs: 0.46 Obs:

Obs:

I I I

Figure 16: Visual comparison of posterior densities estimated by different methods (LBF-NPE,
Normalizing Flow, MDN) against ground truth for ten representative observations.

30

Under review as a conference paper at ICLR 2026

E.3 DIMENSIONS OF BASIS FUNCTIONS & FLEXIBILITY

The flexibility of our method is positively correlated with the dimensionality of the basis functions.
We demonstrate this by analyzing both the forward and reverse KL divergences, as well as the
basis function density plots, for models using basis functions of varying dimensions in the object
detection case study. To quantify this, we compute the forward and reverse KL divergence between
the estimated posterior distribution and a target mixture of Gaussians:

0.5 N (true locs of source 1,0.1?) + 0.5 N/ (true locs of source 2,0.17). (1)

The results, shown in Table[d] indicate that both forward and reverse KL divergences decrease as
the dimensionality of the basis functions increases. For example, the 64-dimensional basis functions
achieve the lowest forward KL divergence (1.524), while the 9-dimensional basis functions result in
the highest (3.397). A similar trend holds for reverse KL divergence. However, the marginal gain
from increasing dimensionality diminishes as the number of basis functions grows. Increasing from 9
to 20 dimensions yields a significant improvement in forward/reverse KL divergence (1.187/0.511),
but the improvement from 36 to 64 dimensions is relatively minor (0.246/0.287). This suggests that,
for a complex task like object detection, a basis function dimensionality under 100 is sufficient to
achieve near-optimal performance.

9-dim 20-dim 36-dim 64-dim
Forward KL Divergence 3397 2210 1.770 1.524

A Forward KL Divergence - -1.187 -0.440 -0.246
Reverse KL Divergence 2.380 1.869 1.360 1.073
A Reverse KL Divergence - -0.511 -0.509 -0.287

Table 4: Object detection: forward/reverse KL divergence for models of different basis function
dimensions.

The basis function density plots provide further intuition for this trend. As shown in Figures [I7]
to[20] the 64- and 36-dimensional basis functions can partition the z-space into fine-grained regions,
capturing detailed structure. In contrast, 20- and 9-dimensional basis functions fail to do so, resulting
in coarser approximations and reduced representational capacity.

Basis Function Value

Figure 17: Object detecion: density plot of 9-dim basis function over plane z. Each subplot represents
the density plot of a certain dimension.

31

Under review as a conference paper at ICLR 2026

.
7
.

-2 -1 0 1 2
Basis Function Value

Figure 18: Object detection: density plot of 20-dim basis function over plane z.

-1 0 1
Basis Function Value

Figure 19: Object detection: density plot of 36-dim basis function over plane z. For brevity, we only
show the first 20 dimensions

32

Under review as a conference paper at ICLR 2026

-1.5 =10 -0.5 0.0 0.5 1.0 1.5
Basis Function Value

Figure 20: Object detection: density plot of 64-dim basis function over plane z. For brevity, we only
show the first 20 dimensions

9-dim 20-dim 36-dim

Obs: 1

2

Obs:

3

Obs:

4

Obs:

Figure 21: Object detection: 9/20/36/64-dim basis functions and the corresponding estimated posterior
density.

33

Under review as a conference paper at ICLR 2026

Interestingly, in the ring case study, we observe that even a 2-dimensional basis function is sufficient
to recover the ring-shaped posterior. As shown in Figure 23] the estimated posterior using a 2-
dimensional basis function is visually nearly indistinguishable from the true posterior, with only
minor artifacts appearing when the observation x approaches extreme values (e.g., x = 1.95). This
observation is quantitatively supported by the KL divergence results in Table[5] where both forward
and reverse KL values are low (0.032/0.031) for the 2-dimensional case. These results demonstrate
that for simpler posterior structures, our method can achieve accurate inference with remarkably
low-dimensional basis functions.

2-dim 4-dim 9-dim 20-dim
Forward KL Divergence 0.032 0.0057 0.0056 0.0054

A Forward KL Divergence - -0.0263 -0.0001 -0.0002
Reverse KL Divergence 0.031 0.0032 0.0028 0.0027
A Reverse KL Divergence - -0.0278 -0.0004 -0.0001

Table 5: Ring: forward/reverse KL divergence for models of different basis function dimensions.

—
2 0 2

Basis Function Value

Basis Function Value

Figure 22: Ring: density plot of 2-dim basis func-
tion over plane z. Each subplot represents the
density plot of a certain dimension.

Figure 23: Ring: density plot of 4-dim basis func-
tion over plane z.

Basis Function Value

Figure 24: Ring: density plot of 9-dim basis function over plane z.

34

Under review as a conference paper at ICLR 2026

-2 -1 0 1 2

Basis Function Value

Figure 25: Ring: density plot of 20-dim basis function over plane z.

0.05

Obs:

0.68

Obs:

Obs: 1.32

/ \
NN N N N S

Figure 26: Ring: 2/4/9/20-dim basis functions and the corresponding estimated posterior density.

1.95

Obs:

35

Under review as a conference paper at ICLR 2026

E.4 TOWARDS HIGH DIMENSION

To evaluate the capability of our model in predicting high-dimensional posteriors, we construct a
50-dimensional annulus model defined as:

2152255250 Umf[O, 1],
z = (Zl,.. .7250),

x|z~ N(||2]1%0%),
where 02 = 1072,

In Figures |T_7| and we randomly select two pairs of dimensions (3, 14) and (43, 47), and visualize
the estimated posterior over these subspaces, i.e., ¢(z3, 214 |) and q(z43, 247 | ©). We discretize
each pair into a 100 x 100 grid and perform Monte Carlo integration over the remaining 48 dimensions
to obtain the estimated posterior on the chosen 2D subspace. The results show that the estimated
posteriors closely match the true posteriors, with minor discrepancies likely due to variance in the
Monte Carlo integration. The final two columns of each plot display the marginal densities, which
demonstrate that our model successfully captures the true marginal posterior distributions. This
good performance can also be verified by quantitative metrics. Our model attains 0.018 forward KL,
divergence and 0.022 reverse KL divergence on average over 50 dimensions.

Truth Estimated Density (dim 3) Density (dim 14)

Obs: 13.9

16.2

Obs:

18.1

Obs:

22.7

)’
7

s

e

Obs:

Figure 27: True and estimated posterior density over dimensions 3 and 14. The y-axis in the last two
columns represents the marginal density.

36

Under review as a conference paper at ICLR 2026

13.9

Obs:

Obs: 16.2

Obs: 18.1

22.7

Obs:

Figure 28: True and estimated posterior density over dimensions 43 and 47. The y-axis in the last

Truth

Estimated

two columns represents the marginal density.

37

Density (dim 43) Density (dim 47)

Est

3

-

e andl

Under review as a conference paper at ICLR 2026

E.5 EIGENVION 2D CASE STUDIES

We evaluate EigenVI (Cai et al, 2024) on three two-dimensional targets with thin or curved posterior
density patterns. We use a tensor product expansion with K = 16 basis functions per axis (K2 = 256
coefficients) and 50, 000 importance samples for fitting. The reconstructions capture only coarse
structure: for the diagonal bands, EigenVI recovers orientation but the two ridges are blurry; for the
ring, it fills the central hole and collapses mass inward; for the spiral, it loses the manifold and yields
blurry lobes. These failures arise from spectral bias of orthogonal expansions, which under-represent
the high-frequency content required by thin or strongly curved posterior. While increasing K can
help, computational and statistical costs scale as K¢ (here d = 2), making adequate resolution
impractical. In sum, with practical K, EigenVI is adequate for smooth densities but inadequate for
multimodal or topologically nontrivial two-dimensional targets.

Truth LBF-NPE (ours) EigenVI

O -

Figure 29: EigenVI results for three 2D test cases. Along each axis, we fit 16 basis functions (i.e.,
K = 16 in their original paper); For their importance sampling, we draw 50,000 samples.

38

Under review as a conference paper at ICLR 2026

E.6 SCORE MATCHED NEURAL EXPONENTIAL FAMILIES ON 2D CASE STUDIES

We reproduce the method proposed in Score Matched Neural Exponential Families for Likelihood-
Free Inference (Pacchiardi & Dutta, [2022)) and evaluate its sampling quality on three two-dimensional
case studies. Their approach estimates the unnormalized probability p(x | z), in contrast to our focus
on p(z | x), and employs Exchange MCMC to draw posterior samples. As illustrated in the following
figure, the Exchange MCMC samples are suboptimal, often appearing overdispersed and misaligned
with the true density. In the bands case study, the samples fail to align with the ridges and instead
spread into low-density regions. In the ring case study, many samples are scattered inside the ring
rather than concentrating on its boundary where the density peaks. In the spiral case study, the bias is
most evident, with samples deviating substantially from the high-density spiral structure. We also
apply inverse transform sampling, which was not considered in the original paper. This approach
produces samples that more closely follow the true density across all three case studies, though in the
spiral example a residual bias is still visible.

Truth LBF-NPE SMNEF SMNEF-+ITS

/s
O

Figure 30: Sampling results of Score Matched Neural Exponential Families (SMNEF) for Likelihood-
Free Inference on three 2D case studies: SMNEF uses Exchange MCMC as its default sampling
setting. SMNEF+ITS is our variant of SMNEF, customized for low dimensional settings. For our
method, we use the inverse transform sampling.

39

Under review as a conference paper at ICLR 2026

E.7 COMPUTATIONAL COST

Table [6| compares the computational efficiency of several baseline models with the proposed LBF-
NPE across the 2D case studies, object detection, and redshift estimation. While LBF-NPE shows
slightly higher per-step runtime and memory usage than some baselines, its principal advantage is
its substantially faster convergence, requiring markedly fewer training steps, such as 8k in the 2D
case and 48k in the redshift task. This accelerated convergence results in competitive or superior total
training time across tasks, indicating that LBF-NPE achieves an effective optimization trajectory. A
notable detail is that, in the redshift experiments, the computational costs of all three methods appear
very similar. This is largely due to the dominant overhead from the convolutional U-shape network
used for image processing, which outweighs differences in the loss computation. Another point of
clarification is that the GPU memory usage reported here is lower than the values in Section[D.2](e.g.,
where peak usage is approximately 8400MB). This discrepancy arises because, for the computational
cost evaluation, we disable GPU memory preallocation in JAX (The JAX Authors| [2024), which
otherwise reserves roughly 75% of the available GPU memory.

Time per step GPU Memory Converge at

Case study Method (s/step) (MB) (steps) Time until converge (s)
Sinusoidal likelihood LBF-NPE 0.038 312 4k 152
(batch size: 1024) MDN 0.021 248 10k 210
LBF-NPE 0.127 970 8k 1016
2D case studies NSF 0.084 780 29k 2436
(batch size: 1024) RealNVP 0.082 690 25k 2050
MDN 0.044 430 13k 572
Object detection
(batch size: 1024) LBF-NPE 0.143 2230 15k 2145
. LBF-NPE 0.28 7319 48k 13440
(batlzﬁdssilzlg:t) NSF 0.28 7012 80k 22400
: MDN 0.26 6988 54k 14040

Table 6: Computational cost: For 2D case studies, we only report the computational cost for the
spiral case study, because the other two case studies have similar computational costs. The
"Converge at (steps)" refers to the maximum training steps to reach the performance reported in the
paper. NSF is the abbreviation of Neural Spline Flow.

40

Under review as a conference paper at ICLR 2026

E.8 REPEATED EXPERIMENTS

Across the following four tables, the reported 90% credible intervals (the second term in each table
entry) demonstrate that our LBF-NPE yields markedly more stable and reliable performance than the
competing approaches. In the repeated 2D experiments for both forward and reverse KL divergence,
LBF-NPE consistently attains intervals that are substantially narrower, often by an order of magnitude,
than those of NSF, RealNVP, and MDN, indicating that our posterior approximations are much less
sensitive to random initialisation. This advantage persists in the more challenging spiral case,
where LBF-NPE maintains tight credible intervals, while the baselines exhibit markedly inflated
uncertainty. A similar pattern is observed for the 2D case studies’ NLL results. Although NSF
achieves a slightly better mean NLL on spiral, the corresponding credible interval for LBF-NPE
is smaller, underscoring that our method achieves competitive accuracy with reduced run-to-run
variability. Finally, in the held-out redshift NLL experiment, the 90% credible interval of LBF-NPE
is more than a factor of two tighter than those of NSF and MDN, confirming that, beyond achieving
strong average performance, our method delivers significantly more concentrated and predictable
outcomes across repeated trials.

LBF-NPE NSF RealNVP MDN

Bands 0.0048 (+0.0003) 0.016(+0.003 0.0150005 0.182+o0.01)
Ring 0.0054 (+ 0.0005) 0.017 (£0004) 0.024 (+0.005) 0.205 (£ 0.02)
Spiral 0.187 (+ 0.004) 0.201 (001 0.545 007 0.948 (£ 0.09)

Table 7: Forward KL divergence of LBF-NPE (ours), NSF (Neural Spline Flow), ReaINVP, and
MDN on three 2D test cases. Lower values indicate better posterior approximation.

LBF-NPE NSF RealNVP MDN

Bands 0.0014 (+o0.0004y 0.0099 (0.001) 0.011 (+£0007) 0.156 (x0.02)
Ring 0.0027 (£ 0.0003) 0.013 (+0003) 0.014 (0003 0.204 + 0.01)
Spiral 0.188 (- 0.005) 0.322 (+0.04) 0.666 (£ 009 1.973 (+0.14)

Table 8: Reverse KL divergence of LBF-NPE (ours), NSF (Neural Spline Flow), ReaINVP, and MDN
on three 2D test cases. Lower values indicate better posterior approximation.

LBF-NPE NSF RealNVP MDN

Bands -0.060 (+0.07) 0.151(+023 0.157(+022 1.389 (+041)
Ring 0.030 (+0.03) 0.621(+0249 0.733(x0.11) 1.031(£0.18)
Spiral 0.838 (+0.13) 0.727 (025 0.859(+032) 2.788 (+031)

Table 9: Negative log-likelihood (NLL) of LBF-NPE (ours), NSF (Neural Spline Flow), RealNVP,
and MDN on three 2D test cases. Lower values indicate better posterior approximation.

LBF-NPE NSF MDN
NLL -57,220(+152) -55,389(+£379) -50,648 (+ 322

Table 10: Held-out NLL of the true redshift z. NSF is the abbreviation of Neural Spline Flow.

41

Under review as a conference paper at ICLR 2026

E.9 BAYESIAN NEURAL NETWORKS AS GENERATIVE MODELS

A Bayesian neural network (BNN) is a neural network in which each weight (and bias) is treated
as a probability distribution rather than a fixed value (MacKay, [1992ajb; Neal, [1996). When
making predictions, it marginalizes over these distributions to produce not just a prediction, but
also an estimate of uncertainty. We consider BNNs as generative models to illustrate that LBF-NPE
can perform posterior predictive inference while implicitly marginalizing over a high-dimensional
parameter space. In particular, we consider a two-layer fully connected BNN:

BNNy(z) = Linearg,(ReLU(Lineary, (z))), 61,02 ~ N(0,1), (22)

where 6, and 65 are the weight matrices of the first and second linear layers, respectively, and
ReLU(+) denotes the rectified linear unit activation. The network takes a one-dimensional input and
produces a one-dimensional output through a hidden layer of width 16. Throughout this experiment
we restrict attention to « € [0,10] and y € [—8, 8].

Let § = (61, 65) and let the dataset be
D = {(%i,¥i) }iz1, yi = BNNp(x;) +€;, n=5,

for a fixed draw of 6 from (0, I), and noise ¢; ~ N(0, 1). The posterior predictive distribution for
anew pair (¢, ') is

p(y | 2/, D) = / p(y/ | «'.6)p(0 | D) db, 23)

which involves integration over the high-dimensional weight vector 8. Our goal in this section is to
show that LBF-NPE can approximate the conditional density in (23)) without ever explicitly sampling
or optimizing over 6.

In our implementation, LBF-NPE parameterizes the conditional density via a basis-function network
sy and a coefficient network f,. The coefficient network fy takes as input the query variate 2’
together with the conditioning set D, while the basis-function network s,, takes 3’ as input. Together
they define
LBF-NPE(y', 2, D) ~ p(y' | 2/, D),

and are trained using Algorithm Both s, and f, are implemented as four-layer multilayer
perceptrons with 128 hidden units per layer; the resulting basis-function and coefficient vectors have
dimension 20. We optimize the parameters (1), ¢) with the AdamW optimizer (Loshchilov & Hutter,
2019), using a learning rate of 10~3 for 10,000 gradient steps.

The qualitative behavior of the learned posterior predictive distributions is shown in Figure[31] Across
the four panels, the underlying BNN functions (orange curves) exhibit markedly different slopes,
curvatures, and ranges, yet LBF-NPE recovers their overall shape from only n = 5 observations.
Moreover, the posterior highest-density interval (HDI) is wide in regions with sparse observations
and narrow in regions with many data points. For example, when no observation is available near
x € [0, 2] (top-left panel), the HDI is wide, whereas in regions densely populated with observations
(e.g., x € [2.5,5.0] in the bottom-left panel) the HDI becomes narrow. This pattern indicates that
LBF-NPE successfully captures the epistemic uncertainty induced by marginalization over the BNN
weights.

42

Under review as a conference paper at ICLR 2026

8 8
49 b] &
f ° —M
>~ 01 . = 0 2
=== Prediction

4 90% HDI 4

B BNN(x) B
e Observations
_8 T T T T T _8 T T T T T
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X
8 8
4 1 4

VJ) ®
()
[]
—4 - —4 -
—8 T T T T T —8 T T T T T
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
X X

Figure 31: Posterior predictive distributions obtained from LBF-NPE on four synthetic regression
problems generated by a Bayesian neural network (BNN). Each panel corresponds to a different
draw of the BNN weights. The orange curve is the true mapping & — BNNy(z), and the red dots
denote the n = 5 observed data points used for inference. The solid purple curve shows the pointwise
mode of the posterior predictive density produced by LBF-NPE, and the shaded region indicates the
associated 90% highest—density interval (HDI).

43

	Introduction
	Background
	ELBO-Based Variational Inference
	Neural Posterior Estimation

	LBF-NPE: Basis Expansions for Amortized Log Density Estimation
	The Variational Family
	The Amortized Variational Objective & Gradient Estimator

	Variants & Properties of LBF-NPE
	Affine Gradients
	Convexity
	Fixed Basis Functions
	Reducing Degeneracy through Stereographic Projection

	Related Work
	Experiments
	Toy Example: Sinusoidal Likelihood
	Complex Multivariate Representations in 2D
	Object Detection
	Case Study: Redshift Estimation

	Discussion & Limitations
	B-Spline & Wavelet Basis Functions
	B-Splines
	Wavelets

	Convexity
	Convexity & Convergence of LBF-NPE With Fixed Basis Functions
	Convexity of LBF-NPE

	Sampling
	Results of Langevin Dynamics and Inverse Transform Sampling

	Experimental Details
	Toy Example: Sinusoidal Likelihood
	2D Case Studies: Bands
	2D Case Studies: Ring
	2D Case Studies: Spiral
	Object Detection
	Redshift Estimation
	Angular Distance Optimization

	Additional Experimental Results
	Effect of Normalization
	Posterior Comparison
	Dimensions of Basis Functions & Flexibility
	Towards High Dimension
	EigenVI on 2D Case Studies
	Score Matched Neural Exponential Families on 2D Case Studies
	Computational Cost
	Repeated Experiments
	Bayesian neural networks as generative models

