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Abstract001

Temporal Knowledge Graphs (TKGs) repre-002
sent dynamic facts as timestamped relations003
between entities. TKG completion involves004
forecasting missing or future links, requiring005
models to reason over time-evolving structure.006
While LLMs show promise for this task, exist-007
ing approaches often overemphasize supervised008
fine-tuning and struggle particularly when his-009
torical evidence is limited or missing. We in-010
troduce RECIPE-TKG, a lightweight and data-011
efficient framework designed to improve accu-012
racy and generalization in settings with sparse013
historical context. It combines (1) rule-based014
multi-hop retrieval for structurally diverse his-015
tory, (2) contrastive fine-tuning of lightweight016
adapters to encode relational semantics, and017
(3) test-time semantic filtering to iteratively re-018
fine generations based on embedding similarity.019
Experiments on four TKG benchmarks show020
that RECIPE-TKG outperforms previous LLM-021
based approaches, achieving up to 22.4% rela-022
tive improvement in Hits@10. Moreover, our023
proposed framework produces more semanti-024
cally coherent predictions, even for the samples025
with limited historical context.026

1 Introduction027

Temporal Knowledge Graphs (TKGs) are028

widely used to represent dynamic, real-029

world knowledge across domains such as030

news (Boschee et al., 2015; Leetaru and Schrodt,031

2013), biomedicine (Chaturvedi, 2024), and032

finance (Dukkipati et al., 2025). They capture033

facts as time-stamped relational tuples (subject,034

relation, object, timestamp), modeling how035

interactions evolve over time (Tresp et al., 2015).036

A core task in this setting is TKG completion,037

which involves predicting missing or future links038

based on observed temporal interactions. This039

task requires reasoning over both relational and040

temporal structure, with downstream applications041

The code is available at this anonymous repository.

Figure 1: Example of LLM-based TKG reasoning. Prior
methods rely on 1-hop historical context, leading to
memorization or hallucination. RECIPE-TKG incorpo-
rates richer structural and relational context by sampling
and filtering, enabling more plausible predictions.

in forecasting and decision support (Trivedi et al., 042

2017; Jin et al., 2020). 043

The rise of Large Language Models (LLMs) has 044

sparked interest in using pretrained generative mod- 045

els for TKG completion, driven by their generaliza- 046

tion capability and emergent reasoning skills (Liao 047

et al., 2024; Luo et al., 2024; Lee et al., 2023). 048

While LLM reasoning is often benchmarked on 049

math or logic-based tasks (Lewkowycz et al., 2022; 050

Wang et al., 2025), TKG completion provides a 051

complementary testbed that emphasizes two reason- 052

ing challenges: 1. Integrating temporal, structural, 053

and relational information in the reasoning process, 054

and 2. Relational generalization under sparse or 055

indirect historical interactions. Recent prompting- 056

based and fine-tuned LLM methods (Lee et al., 057

2023; Liao et al., 2024; Luo et al., 2024; Xia et al., 058

2024a) report promising results. However, closer 059

inspection reveals that their predictions often re- 060

flect shallow pattern matching rather than deeper 061
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temporal or relational reasoning. As illustrated in062

Figure 1, these models frequently favor entities that063

are lexically similar or locally frequent in the input,064

even when more plausible completions exist based065

on the graph structure.066

These limitations are particularly evident in067

sparse-context settings, where the query includes068

little prior interaction between the subject and po-069

tential target entities. In such cases, extrapolation070

from multi-hop or indirect paths is required. With-071

out sufficient structural grounding, LLMs, whether072

zero-shot or fine-tuned, often produce predictions073

that are disconnected from the graph. Although074

standard metrics like Hits@k may improve, it is un-075

clear whether such gains reflect true relational rea-076

soning or memorization of shallow patterns. More-077

over, prior work lacks systematic analysis across078

input regimes, especially for queries requiring gen-079

eralization beyond observed history.080

In this paper, we investigate how LLMs reason081

over temporal knowledge graphs. Our analysis082

shows that performance drops sharply when his-083

torical evidence is missing or structurally shallow,084

exposing a gap in current modeling approaches. To085

close this gap, we propose RECIPE-TKG, a LLM-086

based method consisting of three components:087

• A rule-based multi-hop sampling strategy088

that enriches the prompt with structurally and089

temporally diverse neighbors, providing better090

grounding for predictions.091

• A contrastive fine-tuning objective applied092

to lightweight adapter layers on a small subset093

of data, which shapes the embedding space094

around relational semantics.095

• A semantic similarity-based filtering mech-096

anism that selects outputs at inference time097

using embedding proximity.098

Experiments on four benchmarks show that099

RECIPE-TKG outperforms previous LLM base-100

lines with relative gains on Hits@1/3/10 ranging101

from 8% to 22.4% and returns more contextually102

plausible outputs, especially in challenging low-103

context settings. These results suggest that LLMs104

can be steered into more effective and reliable TKG105

forecasters when guided by the right context and106

training objectives.107

2 Challenges in TKG Completion with 108

LLMs 109

Despite recent progress in adapting LLMs to TKG 110

completion, these models often default to surface- 111

level patterns in the input and fail to generate accu- 112

rate predictions when structural or temporal cues 113

are indirect, missing, or require multi-hop reason- 114

ing. To guide the design of our framework, we con- 115

duct a detailed empirical analysis of recent LLM- 116

based approaches (Lee et al., 2023; Liao et al., 117

2024) and examine some core challenges. 118

2.1 Grounding Predictions in Historical 119

Context 120

Temporal Knowledge Graph completion requires 121

models to reason over limited, evolving contexts. A 122

key distinction in this setting is whether the correct 123

object of a query has been observed in the sam- 124

pled history. We define a prediction as historical 125

if the ground-truth entity appears in the retrieved 126

context prior to the query time, and non-historical 127

otherwise. This distinction is crucial because exist- 128

ing LLM-based methods perform well on histori- 129

cal predictions but exhibit significant performance 130

drops in non-historical cases, where memorization 131

is insufficient and extrapolation is required. 132

Figure 2(a) shows that model performance im- 133

proves with longer history: Hits@10 is below 0.3 134

with only one retrieved fact but exceeds 0.5 with 135

20–50 facts. This consistent trend for both in- 136

context learning and fine-tuned models highlights 137

the importance of providing sufficient historical 138

evidence. Figure 2(b) further reveals that over 25% 139

of gold targets require multi-hop reasoning, while 140

4% are unreachable due to missing links, making 141

shallow sampling inadequate for many queries. 142

These effects are further amplified on non- 143

historical predictions. As shown in Figure 2(c), 144

LLMs exhibit strong performance on historical pre- 145

dictions (e.g., 80–83% Hits@10), as opposed to 146

below 5% when the target is non-historical. This 147

gap reflects a reliance on lexical overlap or mem- 148

orized associations, calling for a retrieval mech- 149

anism that recovers semantically and temporally 150

relevant multi-hop context. 151

These findings motivate the first component of 152

RECIPE-TKG: a rule-based, graph-aware multi- 153

hop sampling strategy that retrieves structurally 154

diverse and temporally aligned facts to support 155

stronger contextual grounding, particularly for non- 156

historical predictions. 157
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Figure 2: Prediction failures under sparse or shallow history. (a) Accuracy vs. history length shows longer
contexts support better reasoning. (b) Most non-historical targets require multi-hop reasoning, but are unreachable
with 1-hop sampling. (c) Accuracy drops sharply on non-historical predictions for both ICL and SFT.

2.2 Limitations of Supervised Fine-Tuning158

Supervised fine-tuning (SFT) is widely used to159

adapt LLMs to TKG tasks, and prior work such160

as GenTKG (Liao et al., 2024) reports notable im-161

provements over prompting-based strategies (Lee162

et al., 2023). However, our re-evaluation under163

controlled conditions shows that much of this im-164

provement originates not from fine-tuning itself,165

but from differences in sampling strategies and166

evaluation setups.167

Evaluation Frameworks Explain Much of the168

Gap. LLMs produce open-ended text that re-169

quires careful postprocessing to extract valid entity170

predictions. While Lee et al. (2023) uses a basic171

evaluation setup, GenTKG applies a more refined172

pipeline with canonicalization and output filtering,173

making direct comparisons misleading.174

To disentangle these effects, we re-evaluate both175

prompting-based strategies and fine-tuned models176

with different sampling and evaluation pipelines177

under a unified framework. We compare naive sam-178

pling used in Lee et al. (2023) and TLR sampling179

(Liao et al., 2024), and two evaluation settings (ba-180

sic eval and GenTKG eval (Liao et al., 2024)).181

As shown in Table 1, replacing the evaluation code182

alone increases Hits@1 from 25.8% to 34.4%. TLR183

sampling strategy adopted in GenTKG provides a184

modest improvement (35.1%) compared to ICL185

sampling, while fine-tuning adds only a small ad-186

ditional gain (36.4%). This suggests that a large187

portion of the reported gain stems from implemen-188

tation choices, not from the model’s improved rea-189

soning capabilities.190

Fine-Tuning Alone Does Not Improve General-191

ization. As established in Section 2.1, both ICL192

and fine-tuned models struggle with non-historical193

predictions, where the correct answer does not ap-194

Table 1: Re-evaluation of ICL and SFT methods using
consistent decoding and evaluation. The reported gains
of GenTKG stem primarily from evaluation setup and
sampling, with limited impact from fine-tuning.

Method Hits@1 Hits@3 Hits@10

Reported in GenTKG

ICL (naive sampling + basic eval) 0.258 0.430 0.510
+ Fine-Tuning (TLR sampling + eval) 0.369 0.480 0.535

Re-evaluated under consistent setup

ICL (naive sampling) + GenTKG eval 0.344 0.464 0.523
ICL (TLR sampling) + GenTKG eval 0.351 0.473 0.527
SFT (TLR sampling) + GenTKG eval 0.364 0.476 0.532

pear in the retrieved history. These failures persist 195

across a range of input sizes and are especially 196

severe when the gold entity requires multi-hop rea- 197

soning, which is not supported by current sampling 198

methods. Fine-tuning improves memorization of 199

patterns seen during training but does not provide 200

the relational inductive bias needed to reason about 201

unseen or indirectly connected entities. 202

Motivating Contrastive Fine-Tuning. To ad- 203

dress this limitation, we propose a contrastive 204

fine-tuning objective that goes beyond correctness- 205

based supervision. Rather than reinforcing output 206

repetition, it explicitly trains the model to differen- 207

tiate between semantically plausible and implau- 208

sible candidates based on relational compatibility. 209

In contrast to SFT, which rewards surface-level 210

alignment with training data, contrastive learning 211

reshapes the embedding space to support relational 212

discrimination and generalization. 213

This motivates the second component of 214

RECIPE-TKG: fine-tuning lightweight LoRA (Hu 215

et al., 2022) adapters using a contrastive objective 216

to improve relational generalization and reduce hal- 217

lucinations in sparse history settings. 218
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Figure 3: Overview of RECIPE-TKG. RECIPE-TKG follows a three-stage framework: (1) History Sampling,
which retrieves query-relevant facts via a two-phase strategy combining rule-based retrieval and context-guided
expansion; (2) Contrastive Learning, which jointly optimizes entity embeddings using contrastive and cross-
entropy losses. Positive/negative pairs are sampled from the subgraph, and embeddings are generated via a learnable
encoder; (3) Test-time Filtering, where predicted entities are iteratively verified by a semantic filter. Unsatisfactory
outputs are refined using a statistical generator until confident predictions are obtained.

3 Preliminaries219

Problem Formulation. A Temporal Knowledge220

Graph is a collection of time-stamped facts repre-221

sented as quadruples (s, p, o, t), where s and o are222

subject and object entities, p is a relation, and t223

denotes the timestamp of the event. Formally, a224

TKG is denoted as G = (V,R, E , T ), where V is225

the set of entities,R the relations, E the event facts,226

and T the time indices. Each time step t defines a227

historical snapshot Gt ⊆ E .228

The forecasting task involves predicting a miss-229

ing entity in a future quadruple. Given a query of230

the form (s, p, ?, t) or (?, p, o, t) and a set of his-231

torical snapshots {G1, . . . ,Gt−1}, the model must232

return the most plausible entity that completes the233

query at time t.234

Low-Rank Adaptation (LoRA) To reduce235

the number of trainable parameters, we adopt236

LoRA (Hu et al., 2022), which re-parameterizes237

the weight update as238

ĥ(x) =W0x+ABx, (1)239

where W0 is a frozen pretrained weight and A,240

B are trainable low-rank matrices.241

4 Method242

In this section, we present RECIPE-TKG, a three-243

stage LLM-based lightweight (see Appendix B)244

framework for temporal knowledge forecasting.245

The complete framework is illustrated in Figure 3. 246

4.1 RBMH: Rule-Based Multi-Hop History 247

Sampling 248

The first stage of RECIPE-TKG focuses on retriev- 249

ing a compact yet informative history from the 250

temporal knowledge graph G. For a given query 251

(sq, pq, ?, T ), we aim to retrieve historical facts 252

{(s, p, o, t) ∈ G | t < T} that are temporally valid 253

and structurally relevant. Our sampling process 254

combines rule-based retrieval with context-guided 255

expansion to provide richer support for reasoning, 256

particularly in sparse or non-historical settings. 257

Stage 1: Temporal Logical Rule-based Sam- 258

pling. We begin by retrieving subject-aligned 1- 259

hop facts using a rule-based procedure adapted 260

from TLR (Liao et al., 2024), which learns re- 261

lational rules of the form pq ⇐ {pb1 , . . . , pbk} 262

through 1-step temporal random walks, capturing 263

event regularities. We retrieve historical quadruples 264

(s, p, o, t) such that s = sq and p appears in the rule 265

body for the query relation pq. See Appendix A.1 266

for the details. 267

However, this 1-hop retrieval cannot reach facts 268

involving semantically relevant but structurally dis- 269

tant entities. Due to the fixed number of learned 270

rules, this stage often retrieves fewer than N 271

quadruples, the maximum the LLM can handle. 272

This motivates a second stage to expand context 273

with more diverse and informative facts. 274
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Stage 2: Context-guided Multi-hop Expansion275

We then samples additional historical facts from276

G. The candidate pool includes any quadruples not277

retrieved in Stage 1 whose subjects differ from sq.278

This stage is designed to support multi-hop rea-279

soning by identifying facts that may not directly280

connect to the query subject but are structurally and281

semantically relevant. Each candidate (s, p, o, t) is282

assigned a composite weight:283

w = wn · wf · (wt + wc + wcp), (2)284

where wn downweights unreachable or distant285

nodes, wf penalizes high-frequency triples, wt pri-286

oritizes temporal recency, wc favors co-occurrence287

with the query subject or relation, and wcp rein-288

forces connectivity with the initial TLR context.289

To sample from candidate pool, We first select290

the top 10 ×M candidates by score to form a re-291

duced pool. From this pool, we sample M quadru-292

ples with probabilities proportional to their weights.293

This soft filtering strategy preserves diversity while294

prioritizing high-quality candidates, avoiding over-295

reliance on only the highest-scoring facts. Our two-296

stage RBMH sampling method supports reasoning297

beyond immediate neighbors and avoids overfitting298

to shallow or overly common facts. The overall299

design motivation, formal definitions, hyperparam-300

eters and algorithms are provided in Appendix A.2.301

4.2 Contrastive Fine-Tuning for Structured302

Reasoning303

To improve generalization beyond memorized en-304

tity associations, we introduce a contrastive fine-305

tuning objective that supplements the standard next-306

token prediction loss, helping to disambiguate plau-307

sible from implausible predictions, especially when308

historical context is sparse or indirect.309

Relation-Guided Contrastive Pair Construction.310

Our design is guided by the international relations311

principle, The enemy of my enemy is my friend,312

which reflects relational patterns common in geopo-313

litical TKGs and motivates how we position enti-314

ties in embedding space. Inspired by this structure,315

we first categorize relations into positive, nega-316

tive, and neutral types using GPT-4o, minimizing317

the inclusion of neutral cases (see Appendix C.1).318

Given a sampled subgraph (Figure 3), we treat each319

unique entity as an anchor and examine its 1-hop320

neighbors. A neighbor is assigned as a positive321

sample if it connects via a positive relation, or a322

negative sample if it connects via a negative rela- 323

tion. If both types of edges exist, the neighbor is 324

excluded to avoid contradiction. Neutral relations 325

are ignored. This process forms contrastive groups 326

that are used to calculate the contrastive loss. 327

Entity Embedding Encoding. Since an entity 328

typically spans multiple tokens, we adopt a multi- 329

stage process to compute its representation. First, 330

the entity string is tokenized. Each resulting token 331

is then passed through the model’s embedding layer 332

(embedder), which produces an embedding vector. 333

These token embeddings {h1, h2, . . . , hk} are sub- 334

sequently aggregated into a single entity-level em- 335

bedding e using a trainable attention aggregator. 336

The final embedding is a weighted sum: 337

e =
k∑

j=1

λjhj , (3) 338

where λj are attention weights satisfying
∑

j λj = 339

1. Both the embedding layer and the aggregator 340

are learnable modules, jointly optimized during 341

fine-tuning. 342

Training Objective. The overall loss function is 343

defined as: 344

L = α · Lcontrastive + (1− α) · Lce(o, op), (4) 345

where Lce denotes the cross-entropy loss between 346

the predicted token op and the ground truth o, 347

Lcontrastive represents the contrastive loss, and α ∈ 348

[0, 1] is a balancing hyperparameter. 349

The contrastive loss is formulated as: 350

Lcontrastive =
1

Nc

Nc∑
i=1

max
(
0, 351

∥ai − posi∥2 − ∥ai − negi∥2 +m
)

(5) 352

where Nc is the number of contrastive groups, 353

and ai denotes the embedding of the anchor entity. 354

For each group, posi is the hardest positive, defined 355

as the farthest positive entity from the anchor in the 356

embedding space, while negi is the closest negative. 357

This formulation emphasizes challenging examples 358

and enforces a margin m to improve the separation 359

between positive and negative pairs. 360

This training objective encourages the model 361

to pull the most distant positive samples closer to 362

the anchor and push the nearest negatives farther 363

away. This dynamic adjustment refines the seman- 364

tic structure of the latent space, enabling better 365
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entity discrimination and improving downstream366

reasoning performance. More details can be found367

at Appendix C.368

4.3 Similarity-Based Test-Time Filtering369

Recent work shows that language models can im-370

prove inference without parameter updates by using371

lightweight test-time strategies (Snell et al., 2024;372

Ji et al., 2025). Building on this idea, we intro-373

duce a semantic similarity-based filtering method374

to reduce hallucinations by removing predictions375

misaligned with the input context.376

Our filtering approach is motivated by two em-377

pirical observations:378

1. Models often generate non-historical entities379

that have low semantic alignment with the380

input context, especially in sparse settings de-381

spite higher similarity scores correlating with382

correctness (Figure 4).383

2. In many cases, the ground truth entity already384

appears in the historical context H, yet the385

model produces a non-historical prediction386

that yields negligible gain in accuracy.387

These patterns suggest that enforcing semantic388

consistency and reconsidering salient entities from389

the input can correct many low-quality predictions.390

Rather than rejecting or reranking predictions with391

fixed rules, we apply an adaptive refinement strat-392

egy grounded in semantic similarity.393

Semantic Consistency Verification. We embed394

the generated prediction p and the input context c395

using a sentence transformer model to compute a396

similarity score:397

ϕ(p, c) = cos-sim(E(p), E(c)) (6)398

E(x) = SentenceTransformer(x) ∈ Rd (7)399

where E(·) denotes the output vector of a pre-400

trained transformer model. We use this similarity401

as a proxy for contextual alignment. A predic-402

tion is accepted if its similarity score exceeds a403

learned threshold τ , or if it already appears in the404

retrieved historyH. Otherwise, we regenerate until405

a satisfactory prediction is found, or fall back to406

history-aware scoring.407

This process is formalized as:408

p′ =


p if p ∈ H or ϕ(p, c) ≥ τ
regenerate(p) if ϕ(p, c) < τ

argmaxh∈H ψ(h) after k attempts
(8)409

Figure 4: Distribution of semantic similarity values for
correctly and incorrectly classified samples to the input
context.

Figure 3 illustrates how filtering interacts with 410

the generation process to improve robustness. 411

Historical Relevance Fallback. If repeated gen- 412

erations yield unsatisfactory predictions, we fall 413

back to the historical candidates H. Each candi- 414

date h ∈ H is scored by: 415

ψ(h) = β · f(h) + (1− β) · r(h) (9) 416

where f(h) is the frequency of h in the input his- 417

tory and r(h) captures recency. This mechanism 418

biases the selection toward historically grounded 419

entities when semantic alignment fails. 420

Threshold Selection. The threshold τ is opti- 421

mized to best separate correct and incorrect pre- 422

dictions based on empirical distributions of ϕ(p, c). 423

We describe the optimization objective and quanti- 424

tative justification in Appendix D, along with im- 425

plementation details and discuss its generalizability 426

in Appendix E. 427

5 Experiments 428

5.1 Experimental Setup 429

Proposed method. We refer to our full method as 430

RECIPE-TKG, which combines rule-based multi- 431

hop history sampling (RBMH Sampling), con- 432

trastive fine-tuning denoted as CFT, and Test-time 433

Filtering. 434

Language Models. Our primary experiments are 435

conducted on LLaMA-2-7B (Touvron et al., 2023), 436

a widely used open-source model in LLM-based 437

TKG completion research (Liao et al., 2024; Luo 438

et al., 2024). To ensure modern relevance, we also 439

evaluate LLaMA-3-8B (Meta AI, 2024). Prompts 440

and implementation details are provided in Ap- 441

pendix C.2 and C.4 442
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Table 2: Temporal link prediction results on temporal-aware filtered Hits@1/3/10. LLM-based models are
implemented based on LLaMA2-7B. Best results for each metric are highlighted in bold, and the best results among
LLM-based models are underlined. The last row shows the relative improvement (∆) of RECIPE-TKG over the
best-performing LLM-based baseline.

Datasets ICEWS14 ICEWS18 GDELT YAGO
Models Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Embedding-based

RE-NET (Jin et al., 2020) 0.260 0.401 0.548 0.165 0.297 0.447 0.117 0.202 0.333 - - -
RE-GCN (Li et al., 2021) 0.313 0.473 0.626 0.223 0.367 0.525 0.084 0.171 0.299 0.468 0.607 0.729
xERTE (Han et al., 2020) 0.330 0.454 0.570 0.209 0.335 0.462 0.085 0.159 0.265 0.561 0.726 0.789
TANGO (Han et al., 2021) 0.272 0.408 0.550 0.191 0.318 0.462 0.094 0.189 0.322 0.566 0.651 0.718
Timetraveler (Sun et al., 2021) 0.319 0.454 0.575 0.212 0.325 0.439 0.112 0.186 0.285 0.604 0.770 0.831

Rule-based TLogic (Liu et al., 2022) 0.332 0.476 0.602 0.204 0.336 0.480 0.113 0.212 0.351 0.638 0.650 0.660

LLM-based
CoH (Xia et al., 2024b) 0.242 0.397 0.512 0.168 0.282 0.427 - - - - - -
PPT (Xu et al., 2023) 0.289 0.425 0.570 0.169 0.306 0.454 - - - - - -
HFL (Xu et al., 2025) 0.277 0.427 0.573 0.178 0.304 0.455 - - - - - -
ICL (Lee et al., 2023) 0.344 0.464 0.523 0.164 0.302 0.382 0.090 0.172 0.242 0.738 0.807 0.823
GenTKG (Liao et al., 2024) 0.364 0.476 0.532 0.200 0.329 0.395 0.099 0.193 0.280 0.746 0.804 0.821
RECIPE-TKG 0.393 0.526 0.651 0.224 0.369 0.516 0.095 0.192 0.327 0.811 0.880 0.930

∆ 8.0% 10.5% 22.4% 12.0% 12.2% 13.4% -4.0% -0.5% 16.8% 8.7% 9.0% 13.0%

Datasets. We evaluate RECIPE-TKG on four443

commonly adopted benchmark datasets: ICEWS14444

and ICEWS18, both derived from the ICEWS445

project (Boschee et al., 2015), GDELT (Leetaru446

and Schrodt, 2013), and YAGO (Mahdisoltani et al.,447

2013). Detailed dataset statistics are provided in448

Appendix H.449

Evaluation Metrics. We choose temporal-aware450

filtered Hits@1/3/10 as our evaluation metrics, fol-451

lowing prior work (Gastinger et al., 2023).452

Baselines. We compare RECIPE-TKG against453

three categories of methods. Embedding-based454

methods include RE-NET (Jin et al., 2020), RE-455

GCN (Li et al., 2021), xERTE (Han et al., 2020),456

TANGO (Han et al., 2021), and TimeTraveler (Sun457

et al., 2021). Rule-based method includes458

TLogic (Liu et al., 2022). LLM-based methods in-459

clude ICL (Lee et al., 2023), GenTKG (Liao et al.,460

2024), PPT (Xu et al., 2023), CoH (Xia et al.,461

2024b), and HFL (Xu et al., 2025). Additional462

information about baseline methods is included in463

Appendix G.464

5.2 Main Results465

Results in Table 2 show that RECIPE-TKG con-466

sistently performs well across four benchmark467

datasets, surpassing both embedding-based and468

LLM-based baselines on nearly all evaluation met-469

rics. On ICEWS14 and YAGO, RECIPE-TKG es-470

tablishes new state-of-the-art results, achieving up471

to 11.9% relative improvement over the strongest472

competing methods. For ICEWS18, it exceeds473

the best LLM-based baseline by a substantial mar-474

gin, with a 30.6% relative gain in Hits@10, and475

achieves comparable performance to RE-GCN, the476

Table 3: Ablation study on ICEWS14 with
LLaMA2-7B. Comparison of training paradigms across
different history sampling strategies. The bold results
show the original combinations of components in prior
works and our method.

ICL SFT CFT
H@1 H@3 H@10 H@1 H@3 H@10 H@1 H@3 H@10

Lee et al. (2023) 0.344 0.464 0.523 0.360 0.469 0.530 0.363 0.479 0.529
TLR (Liao et al., 2024) 0.351 0.473 0.527 0.364 0.476 0.532 0.367 0.476 0.532
RBMH 0.364 0.500 0.572 0.389 0.519 0.582 0.392 0.521 0.580

top embedding-based approach on this dataset. Al- 477

though RECIPE-TKG does not outperform the rule- 478

based method TLogic on GDELT, it attains the 479

highest Hits@10 score (32.7%) among all LLM- 480

based models and remains competitive on Hits@1 481

and Hits@3. These results highlight the effective- 482

ness of RECIPE-TKG and further positions LLM- 483

based methods as strong candidates for foundation 484

models in temporal knowledge graph completion. 485

6 Analysis 486

6.1 Ablation Study 487

We conducted ablation studies to evaluate key com- 488

ponents of our framework against prior works. We 489

compare three sampling methods ( Lee et al. (2023), 490

TLR (Liao et al., 2024), and our RBMH Sampling) 491

and three training paradigms (in-context learning, 492

supervised fine-tuning, and contrastive fine-tuning) 493

on ICEWS14 using LLaMA2-7B. As shown in Ta- 494

ble 3, bold results indicate original combinations 495

from prior works and RECIPE-TKG w/o filter- 496

ing. The results show that RBMH Sampling con- 497

sistently improves performance across all training 498

paradigms by retrieving structurally diverse and se- 499

mantically relevant context. While CFT performs 500

comparably to SFT with the same sampling strat- 501

7



Table 4: Effect of removing RECIPE-TKG components.

SETTINGS Hits@1 Hits@3 Hits@10

RECIPE-TKG w/o CFT 0.364 0.501 0.643
RECIPE-TKG w/o RBMH Sampling 0.364 0.483 0.581
RECIPE-TKG w/o Filtering 0.392 0.521 0.580
RECIPE-TKG 0.393 0.526 0.651

Figure 5: Hits@10 grouped by number of historical
facts. RECIPE-TKG consistently outperforms ICL and
GenTKG across all history lengths, with particularly
strong improvements when the input history is sparse.

egy, it shows clear advantages when historical con-502

text is sparse. As discussed in Appendix I.1, con-503

trastive models generate predictions semantically504

closer to the ground truth, even when exact matches505

aren’t possible, promoting structure-aware general-506

ization beyond surface-level accuracy, especially in507

sparse settings where lexical cues are insufficient.508

Table 4 provides additional insights into the509

effects of each of the three components, espe-510

cially test-time filtering. When comparing the CFT-511

RBMH setting with and without Test-time Filtering,512

we observe a substantial boost in Hits@10 from513

0.580 to 0.651, underscoring the effectiveness of514

our test-time refinement mechanism. Notably, com-515

bining test-time filtering with RBMH Sampling and516

Test-time Filtering (RECIPE-TKG) yields the best517

performance across all metrics.518

6.2 Performance Gains Across Input Regimes519

To evaluate how historical input affects model per-520

formance, we group queries by the number of re-521

trieved facts and compare Hits@10 across methods.522

These bins align with Figure 2(a), allowing direct523

comparison with prior failure patterns. As shown in524

Figure 5, RECIPE-TKG outperforms both ICL and525

GenTKG across all groups, with especially large526

gains in the low-history regime.527

Two key insights emerge. First, prior failures528

on short-history queries were not due to intrinsic529

difficulty, but rather to shallow retrieval. Since all530

methods are evaluated on the same query set, the531

Table 5: Comparison between LLaMA2-7B and
LLaMA3-8B on ICEWS14.

Model LLaMA2-7B LLaMA3-8B
hit@1 hit@3 hit@10 hit@1 hit@3 hit@10

ICL 0.344 0.464 0.523 0.351 0.484 0.578
RECIPE-TKG 0.393 0.526 0.651 0.367 0.529 0.658

strong gains from RECIPE-TKG (reaching over 532

60% Hits@10 for history length 0 to 2) indicate 533

that even sparse queries can be completed accu- 534

rately when provided with deeper, multi-hop con- 535

text. This validates the effectiveness of RBMH 536

Sampling in recovering structurally and temporally 537

relevant support. 538

Second, RECIPE-TKG continues to outperform 539

baselines even with longer histories (10–50 facts), 540

where other methods begin to plateau. This sus- 541

tained advantage reflects the contributions of CFT 542

and Test-time Filtering, which improve generaliza- 543

tion and reduce hallucinations. 544

Overall, these results show that RECIPE-TKG 545

not only addresses the limitations of shallow con- 546

text but also improves reasoning and prediction 547

quality across a wide range of query types. 548

6.3 Case Study: Performance of Llama3-8b 549

As shown in Table 5, LLaMA3-8B performs com- 550

parably to LLaMA2-7B, supporting our choice of 551

the latter for most experiments. Moreover, this 552

choice of base model enables a fair comparison 553

with prior work using fine-tuned models. Under 554

both backbones, RECIPE-TKG consistently out- 555

performs ICL, demonstrating its robustness and 556

generalizability across different LLMs. 557

7 Conclusion 558

We introduced RECIPE-TKG, a framework that im- 559

proves LLM-based temporal knowledge graph fore- 560

casting through multi-hop sampling, contrastive 561

fine-tuning, and semantic filtering. Our approach 562

shows consistent gains in accuracy, particularly in 563

sparse settings where previous methods fail. By 564

aligning retrieved context with relational structure 565

and refining predictions at inference time, RECIPE- 566

TKG enhances reasoning capabilities without large- 567

scale retraining, demonstrating the effectiveness of 568

modular strategies for temporally grounded knowl- 569

edge reasoning. 570
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Limitations571

Although RECIPE-TKG adopts a structured three-572

stage framework, it is still built on clean, fully573

observed temporal knowledge graphs, which may574

not reflect real-world scenarios. The rule mining575

step requires offline learning before sampling, and576

must be repeated if the TKG changes. Moreover,577

the framework assumes full observability of histori-578

cal events, while in practice, such information may579

be incomplete or noisy. Future work may explore580

more robust designs that support dynamic updates581

and reasoning under partially observed histories.582

License and Ethics583

All datasets used in this study are publicly available584

and licensed for academic research. Specifically,585

ICEWS14, ICEWS18, GDELT, and YAGO have586

been widely adopted in prior work on temporal587

knowledge graphs. No personally identifiable in-588

formation (PII) or sensitive content is present in589

any of the datasets.590

We use LLaMA-2 and LLaMA-3 models un-591

der Meta’s official research license, and all model592

adaptations are conducted in compliance with their593

intended use for academic and non-commercial594

research. The training and evaluation procedures595

are entirely conducted on benchmark data, and no596

human subjects are involved.597

We adhere to the ethical guidelines set forth by598

the ACL Code of Ethics, including transparency,599

reproducibility, and the responsible use of language600

models. Our work poses minimal risk of harm601

and does not involve content generation, human602

annotation, or interaction with real users.603
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A Rule-Based Multi-Hop History774

Sampling Details775

A.1 TLR Algorithm776

Algorithm 1 shows the TLR retrieval procedure777

used in our framework, reproduced from (Liao778

et al., 2024).779

Algorithm 1 TLR Retrieval
Input: Temporal knowledge graph G, query
(sq, rq, ?, T ), learned rules T R
Output: A set of retrieved facts Gsq(sq, rq, T )

1: Gsq(sq, rq, T )← ∅
2: for fact← (sq, rq, o, t < T )) ∈ G do
3: Gsq(sq, rq, T )← Gsq(sq, rq, T ) ∪ fact
4: end for
5: for top k rules w.r.t. rq ← rb ∈ T R do
6: Get a list rb ← {rb1 , rb2 , · · · , rbk}
7: end for
8: for fact← (sq, r ∈ rb, o, t < T ) ∈ G do
9: Gsq(sq, rq, T )← Gsq(sq, rq, T ) ∪ fact

10: end for
11: return Gsq(sq, rq, T )

A.2 Context-guided Multi-hop Expansion780

Details781

A.2.1 Weight Formulation Discussion782

We adopt a multiplicative combination of the783

weight components rather than a simple sum to784

for two reasons. First, the neighbor weight wn acts785

as a hard constraint: it equals zero if the subject786

or object of a candidate quadruple is not reachable787

from the query, effectively filtering out irrelevant788

facts. Second, the frequency weight wf is designed789

to down-weight commonly repeated triples while790

preserving their relative order. This logarithmic791

scaling ensures that rare but structurally relevant792

facts are not overshadowed. Together, the multi-793

plicative form enables a soft prioritization across794

dimensions while preserving hard structural con-795

straints.796

A.2.2 Weight Component797

The five weight components of equation 2 are de-798

fined as follows:799

Neighbor weight wn ensures that structurally800

closer quadruples receive higher scores:801

wn = exp (−γ1 · (hops + hopo − 1)) ,802

where hops and hopo denote the shortest hop dis-803

tances from the subject and object to the query804

subject. The weight decays exponentially with in- 805

creasing distance, and vanishes to zero when either 806

hops or hopo is infinite, corresponding to cases 807

where the entity is not reachable from the query 808

subject in the graph. Importantly, all structural 809

statistics (e.g., hop distance, co-occurrence counts, 810

and context connectivity) are computed over the 811

subgraph excluding quadruples with timestamps 812

after the query time T . 813

Frequency weight wf reduces the dominance 814

of frequent triples (history quadruples excluding 815

timestamp): 816

wf =
1

γ2 · log(nspo) + 1
, 817

where nspo is the count of the subject-predicate- 818

object triple. This logarithmic form discourages 819

over-sampling of repetitive patterns while maintain- 820

ing frequency order. 821

More precisely, for any two triples with fre- 822

quency counts n1 < n2, the corresponding weights 823

satisfy: 824

w(n1) > w(n2), and
w(n1)

w(n2)
=

log(n2) + 1

log(n1) + 1
, 825

assuming all other components of the weight func- 826

tion are equal. This shows that the multiplicative 827

formulation preserves the relative ranking induced 828

by frequency, while still suppressing the absolute 829

dominance of highly frequent triples. 830

Time weight wt favors temporally recent events: 831

wt = exp

(
−γ3 ·

T − t
δ

)
, 832

where T is the timestamp of the query, t is the 833

timestamp of the event quadruple (with T > t), δ 834

is the time granularity (e.g., δ = 24 in ICEWS14), 835

and γ3 controls the decay rate. 836

Connection weight wc promotes inclusion of 837

frequently co-occurring entity pairs: 838

wc =
log(1 + γ4 · nso)

1 + log(1 + γ4 · nso)
, 839

where nso is the co-occurrence count of the subject- 840

object pair prior to T , and γ4 is a smoothing param- 841

eter. This bounded function emphasizes structural 842

relevance while limiting hub bias. 843

Contextual priority weight wcp encourages 844

sampling quadruples that remain connected to the 845

initial TLR sampled subgraph: 846

wcp =

{
1, if s ∈ ETLR or o ∈ ETLR,

0, otherwise,
847
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Figure 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations.

where ETLR is the set of all 1-hop neighbors identi-848

fied in the TLR stage. This guides the expansion849

toward semantically coherent subgraphs.850

A.2.3 Hyperparameter Sensitivity851

Experiment852

Figure 6 presents the performance in ICL-RBMH853

setting under varying sampling hyperparameters.854

We perturb each of the four γi parameters individ-855

ually (two settings per parameter), while keeping856

others fixed, and compare them against the default857

configuration. Across all variants, model perfor-858

mance remains stable, indicating that RBMH Sam-859

pling is robust to hyperparameter choices. More-860

over, ICL-RBMH consistently outperforms the861

baseline ICL-TLR across all settings.862

The sampling hyperparameter configurations863

and their corresponding performance metrics are864

summarized in Table 6, including mean and stan-865

dard deviation to reflect stability.866

Table 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations on ICEWS14.

ID γ1 γ2 γ3 γ4 Hits@1 Hits@3 Hits@10

default 0.6 0.6 0.01 0.1 0.364 0.500 0.572
γ1-1 0.4 0.6 0.01 0.1 0.366 0.501 0.569
γ1-2 0.8 0.6 0.01 0.1 0.368 0.504 0.575
γ2-1 0.6 0.4 0.01 0.1 0.364 0.500 0.572
γ2-2 0.6 0.8 0.01 0.1 0.364 0.500 0.572
γ3-1 0.6 0.6 0.05 0.1 0.363 0.498 0.569
γ3-2 0.6 0.6 0.002 0.1 0.368 0.506 0.573
γ4-1 0.6 0.6 0.01 0.2 0.368 0.503 0.575
γ4-2 0.6 0.6 0.01 0.05 0.365 0.502 0.571

Mean 0.366 0.501 0.571
Std 0.0020 0.0024 0.0021

Baseline (ICL-TLR) 0.351 0.473 0.527

A.3 RBMH Algorithm 867

Algorithm 2 Rule-based Multi-hop history sam-
pling
Input: Temporal knowledge graph G, query
(sq, rq, ?, T ), learned rules T R, maximum history
length N , scoring function F , a set of TLR re-
trieved facts Gsq(sq, rq, T )
Output: A set of retrieved facts G(sq, rq, T )

1: M ← N− len(Gsq(sq, rq, T ))
2: if M = 0 then
3: G(sq, rq, T )← Gsq(sq, rq, T )
4: return G(sq, rq, T )
5: end if
6: C ← {(s, r, o, t,F(s, r, o, t)) | (s, r, o, t) ∈
G, t < T}

7: Ctop ← Top10M (C)
8: Csample ←WeightedSample(Ctop, M)
9: Gmh(sq, rq, T )← {(s, r, o, t) | (s, r, o, t, w) ∈
Csample}

10: G(sq, rq, T )← Gsq(sq, rq, T )∪Gmh(sq, rq, T )
11: return G(sq, rq, T )

B Computational Efficiency Analysis 868

RECIPE-TKG is designed to be parameter-efficient 869

and computationally lightweight while maintaining 870

strong performance. This section quantifies various 871

aspects of efficiency in our framework. 872

Parameter Efficiency Our framework fine-tunes 873

a small fraction of the total parameters in the 874

base LLM. For LLaMA2-7B, we update only LoRA 875

adapters (with rank 8, applied to query and value 876

projections across 32 transformer layers) and a self- 877

attention pooling module for entity embedding ag- 878

gregation. The trainable parameter count is approx- 879

imately 54.3M, which constitutes just 0.81% of the 880

base model’s 6.74B parameters. This parameter- 881

efficient design enables effective fine-tuning while 882

keeping most of the pre-trained knowledge intact. 883

Rule Mining Efficiency The temporal logical 884

rule mining process in our RBMH sampling strat- 885

egy is highly efficient. Table 7 shows the time 886

required for rule extraction across all datasets us- 887

ing 15 CPU processes (averaged over 5 runs). The 888

process completes in under 20 seconds even for 889

the largest dataset, representing negligible compu- 890

tational overhead. Furthermore, the extracted rules 891

capture persistent temporal patterns and are not 892

highly sensitive to minor dataset changes, allowing 893
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for infrequent updates when the knowledge graph894

evolves.895

Table 7: Rule mining time across datasets (in seconds).

Dataset ICEWS14 ICEWS18 GDELT YAGO

Time (s) 6.89 ± 0.08 16.72 ± 0.07 10.78 ± 0.08 2.73 ± 0.02

Training Overhead Table 8 compares training896

time per epoch between standard supervised fine-897

tuning and our contrastive fine-tuning on 1024 sam-898

ples. The contrastive objective introduces no ad-899

ditional training time, demonstrating its compu-900

tational efficiency despite the improved semantic901

learning.902

Table 8: Training time per epoch on 1024 samples.

Training Mode Time (s) ∆%

Fine-tuning (FT) 824.31 -
FT + Contrastive Loss 821.51 -0.34%

Inference Overhead Table 9 quantifies the run-903

time impact of our test-time filtering mechanism.904

On 1,000 test samples, filtering increases inference905

time by 16.6%, which is reasonable considering the906

consistent performance improvements in Hits@10907

across all datasets. The filtering step provides a fa-908

vorable trade-off between computational cost and909

accuracy gain.910

Table 9: Inference time on 1,000 samples.

Setting Time (s) ∆%

No filtering 2316.48 -
With filtering 2700.67 +16.60%

C Training Details911

C.1 Relation Classification912

The prompt used for relation classification is pro-913

vided in Figure 7.914

In cases where a neighbor is connected to the915

anchor via both a positive and a negative relation,916

it is excluded in training to avoid ambiguity.917

Figure 8 shows the distribution of relation types918

across four datasets. Positive and negative relations919

appear in roughly balanced proportions, while neu-920

tral relations are consistently less common. No-921

tably, YAGO exhibits a distinct relation distribu-922

tion where the majority of relations are classified as923

neutral. Upon inspection, we find that this reflects924

the actual semantic nature of the relations in the 925

dataset, which are mostly descriptive or taxonomic 926

rather than sentiment-oriented. Consequently, the 927

contrastive learning component has limited impact 928

on YAGO, as it relies on meaningful distinctions be- 929

tween positive and negative relations. The observed 930

performance gain on YAGO is therefore primarily 931

attributed to improvements in history sampling and 932

Test-time filtering. 933

C.2 Prompt 934

To guide the language model in performing tempo- 935

ral knowledge completion, we adopt a structured, 936

instruction-style prompt format shown in Figure 9. 937

The prompt defines the task explicitly: given a 938

chronological list of historical events represented 939

as quadruples, the model must predict the missing 940

object entity for a future temporal query. 941

Each historical fact is formatted 942

as {time}:[{subject}, {relation}, 943

{object_label}.{object}] where 944

{object_label} is a unique identi- 945

fier associated with the entity (e.g., 946

3380.Joseph_Robinette_Biden). This la- 947

beling scheme facilitates consistent reference 948

resolution and improves post-processing via 949

regex-based extraction. The final input ends 950

with the query, and the model is asked to gen- 951

erate the correct object in fully qualified form 952

{object_label}.{object}. 953

This prompt format is applied consistently across 954

both in-context learning and fine-tuning setups. 955

C.3 LoRA Formulation 956

We follow the standard LoRA setup (Hu et al., 957

2022). Given a frozen pretrained weight matrix 958

W0 ∈ Rd×k, LoRA introduces two trainable low- 959

rank matrices A ∈ Rd×r and B ∈ Rr×k with 960

r ≪ min(d, k), such that the original forward 961

transformation h(x) =W0x is modified as: 962

ĥ(x) =W0x+ABx. (10) 963

This design allows efficient fine-tuning by only 964

training A and B, while keeping the pretrained 965

weights W0 frozen. In our experiments, we adopt 966

the default LoRA implementation from the PEFT 967

library (Mangrulkar et al., 2022). 968

C.4 Implementation Details 969

We fine-tune LLaMA-2-7B and LLaMA-3-8B models 970

using LoRA adapters. All trainings are conducted 971
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Prompt for Relation Classification

You are analyzing relation labels from a political event knowledge graph, where each relation
reflects an action or request within a geopolitical context.
Classify the sentiment of the given relation as one of the following:

• positive (e.g., promoting peace, aid, cooperation)

• negative (e.g., violence, repression, aggression)

• neutral (e.g., procedural or ambiguous actions)

Avoid selecting "neutral" unless the relation is genuinely ambiguous or purely procedural in
nature.

Figure 7: Prompt used for relation classification.

ICEWS14 ICEWS18 GDELT YAGO0

20

40

60

80

100

120

140

positive
negative
neutral

Figure 8: Distribution of relation types in four datasets
after automatic classification.

on 2 H100 GPUs in bfloat16 precision. We set972

maximum history length to 50 in history sampling973

according to the context length of LLaMA-2-7B. For974

fine-tuning, we train 1024-shots data for 50 epochs975

with the batch size of 512, the learning rate of 3e-4,976

the context length of 4096, the target length of 128,977

the LoRA rank of 8, the LoRA dropout rate of 0.05.978

For RECIPE-TKG, we train 6024-shots data (1024979

aligned with GenTKG and 5000 randomly sampled980

by seed 42) for 10 epochs, and other settings keep981

unchanged. Contrastive tuning uses a margin of 1.0982

and loss weight α = 0.2 to balance cross-entropy983

and contrastive objectives.984

Entities are tokenized using the native tokenizer985

of the LLM and embedded via the model’s em-986

bedding layer. A lightweight attention aggregator987

produces final entity embeddings, jointly trained988

with the model.989

C.5 Hyperparameter Sensitivity Experiment990

As shown in Figure 10, varying α from 0.2 to 0.8991

leads to marginal fluctuations across all evalua-992

Table 10: Performance under different contrastive
weight settings on ICEWS14.

Weight α Hits@1 Hits@3 Hits@10

0.2 0.392 0.521 0.580
0.5 0.389 0.521 0.579
0.8 0.392 0.520 0.576

Mean 0.391 0.521 0.578
Std 0.0014 0.0006 0.0020

tion metrics. These results suggest that the model 993

is robust to the choice of α, and that CFT con- 994

tributes consistently across a wide range of weight- 995

ing schemes. Table 10 presents the sensitivity of 996

model performance to the contrastive weight α. 997

The consistently small standard deviations across 998

metrics suggest that the model is robust to varia- 999

tions in α. 1000

D Test-Time Filtering 1001

Embedding Model. To compute semantic sim- 1002

ilarity between predictions and context, we use 1003

the all-mpnet-base-v2 model (Song et al., 2020; 1004

Sentence-Transformers) from HuggingFace, a pre- 1005

trained sentence transformer with 768-dimensional 1006

output. We treat both the generated prediction 1007

string and the full in-context prompt as input se- 1008

quences and extract mean-pooled embeddings for 1009

similarity calculation. 1010

Similarity Distribution Analysis. We analyze 1011

the cosine similarity ϕ(p, c) between prediction and 1012

context across 7,371 test samples from ICEWS14 1013

using the contrastively tuned model. The average 1014
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Prompt Example

You must be able to correctly predict the next {object} from a given text consisting of multiple
quadruplets in the form of "{time}:[{subject}, {relation}, {object_label}.{object}]"
and the query in the form of "{time}:[{subject}, {relation}," in the end. You must generate
{object_label}.{object}.

2014-01-15: [Mehmet_Simsek, Make_statement, 5195.Other_Authorities_(Turkey)]
2014-01-20: [Nuri_al-Maliki, Consult, 3380.Joseph_Robinette_Biden]
2014-01-25: [Joseph_Robinette_Biden, Make_an_appeal, 3990.Massoud_Barzani]
2014-02-01: [Joseph_Robinette_Biden, Make_an_appeal_or_request,

Figure 9: Instruction-style prompt format for TKG forecasting.
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Figure 10: Effect of contrastive weight (α)

similarity score for correct predictions exceeds that1015

of incorrect ones by ∆µ = 0.057. This supports1016

our assumption that similarity can serve as a proxy1017

for semantic plausibility.1018

Novelty vs. Utility. We further observe that:1019

• 9.1% of predictions are non-historical despite1020

the gold answer being present inH.1021

• Among all non-historical predictions, only1022

1.5% are correct and improve Hits@10.1023

These findings indicate that many model gener-1024

ations deviate from the historical context unnec-1025

essarily and fail to yield substantial gains. They1026

motivate fallback to more salient entities when re-1027

generation fails.1028

Threshold Optimization. The optimal threshold1029

τ∗ is learned by maximizing separation between1030

correct (C) and incorrect (I) prediction similarities:1031

τ∗ = argmax
τ

[FC(τ)− FI(τ)] (11)1032

where F is the empirical CDF of cosine similarity1033

values over samples from C and I.1034

Fallback Scoring. If generation fails after k it- 1035

erations (we use k = 1), the model selects a final 1036

answer fromH using: 1037

f(h) =
count(h)
|H|

, (12) 1038

r(h) = 1− pos(h)
|H|

, (13) 1039

ψ(h) = β · f(h) + (1− β) · r(h), (14) 1040

where pos(h) denotes the rank of h in its occur- 1041

rence order. We set β = 0.6 in all experiments. 1042

We compute cosine similarities between pre- 1043

dicted entities and prompt context using the 1044

all-mpnet-base-v2 sentence transformer from 1045

HuggingFace. The threshold τ∗ is tuned on a devel- 1046

opment set by maximizing the separation between 1047

correct and incorrect predictions. 1048

Figure 11 examines the effect of the semantic 1049

filtering threshold τ . As the threshold increases, 1050

Hits@10 improves, peaking near τ = 0.6. Al- 1051

ways falling back to historical entities (τ = 1.0) 1052

slightly increases accuracy at the cost of explo- 1053

ration and computational efficiency. Threshold 1054

τ = 0.6 balances correction with flexibility, en- 1055

abling the model to revise low-quality outputs with- 1056

out overconstraining its generation space. 1057

E Cross-Dataset Filtering Performance 1058

To evaluate the robustness and generalization ca- 1059

pability of our test-time filtering approach, we an- 1060

alyze its performance across all four benchmark 1061

datasets. While the filtering mechanism was intro- 1062

duced primarily to reduce hallucinations in open- 1063

ended generation, an important question is whether 1064

this component generalizes well across different 1065

temporal knowledge domains or if its effectiveness 1066

is dataset-dependent. 1067
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Table 11: Effect of filtering across datasets.

Method Hits@1 Hits@3 Hits@10

ICEWS14

RECIPE-TKG 0.393 0.526 0.651
RECIPE-TKG w/o Filter 0.392 0.521 0.580

ICEWS18

RECIPE-TKG 0.224 0.369 0.516
RECIPE-TKG w/o Filter 0.242 0.382 0.437

GDELT

RECIPE-TKG 0.095 0.192 0.327
RECIPE-TKG w/o Filter 0.092 0.189 0.266

YAGO

RECIPE-TKG 0.811 0.880 0.930
RECIPE-TKG w/o Filter 0.759 0.822 0.842

Table 11 shows the impact of our similarity-1068

based filtering module across all datasets by com-1069

paring the full RECIPE-TKG framework against1070

a variant without filtering. The filtering module1071

consistently improves Hits@10 across all datasets,1072

with gains ranging from 7.1 percentage points1073

(ICEWS14) to 9.4 percentage points (GDELT).1074

Most notably, on the YAGO dataset, the filtering1075

mechanism substantially improves performance1076

across all metrics (Hits@1/3/10), suggesting partic-1077

ular effectiveness on datasets with more descriptive1078

entities and varied relation types.1079

These results demonstrate that the filtering mech-1080

anism’s effectiveness is not dependent on dataset-1081

specific properties, but rather reflects a general1082

principle: by enforcing semantic consistency be-1083

tween predictions and input context, we can en-1084

hance model performance across diverse temporal1085

knowledge domains. The observed consistency1086

suggests that contextual alignment serves as a reli-1087

able signal for identifying and correcting implausi-1088

ble outputs, regardless of the specific entities and1089

relations involved.1090

F Baseline Model Details 1091

We compare RECIPE-TKG against several base- 1092

line methods that reflect the dominant model- 1093

ing paradigms for TKG forecasting. Embedding- 1094

based methods include RE-GCN (Li et al., 2021), 1095

which applies relational graph convolutions to 1096

timestamped graph snapshots; xERTE (Han et al., 1097

2020), which combines subgraph sampling and 1098

path-based reasoning using attention for explain- 1099

ability; TANGO (Han et al., 2021), which uses neu- 1100

ral ODEs to learn continuous-time entity embed- 1101

dings; and TimeTraveler (Sun et al., 2021), which 1102

employs reinforcement learning to explore multi- 1103

hop temporal paths. Rule-based method includes 1104

TLogic (Liu et al., 2022) relies on extracted sym- 1105

bolic rules for forecasting. The results of these 1106

models are derived from Liao et al. (2024) 1107

We also replicate two recent LLM-based meth- 1108

ods. ICL (Lee et al., 2023) applies in-context learn- 1109

ing by prepending historical quadruples to a query 1110

and using greedy decoding with a regex-based an- 1111

swer extraction. GenTKG (Liao et al., 2024) per- 1112

forms parameter-efficient fine-tuning with LoRA 1113

adapters, and combines this with a rule-based his- 1114

tory sampling module. We use their official code- 1115

bases and replicate their evaluation pipelines for 1116

fair comparison. 1117

G Baseline Model Details 1118

We compare RECIPE-TKG against several base- 1119

line methods that reflect the dominant modeling 1120

paradigms for TKG forecasting. 1121

Embedding-based methods include RE- 1122

GCN (Li et al., 2021), which applies relational 1123

graph convolutions to timestamped graph snap- 1124

shots; RE-NET (Jin et al., 2020), which applies 1125

R-GCN (Schlichtkrull et al., 2018) for message 1126

passing for each snapshot and then uses tem- 1127

poral aggregation across multiple snapshots; 1128

xERTE (Han et al., 2020), which combines 1129

subgraph sampling and path-based reasoning 1130

using attention for explainability; TANGO (Han 1131

et al., 2021), which uses neural ODEs to learn 1132

continuous-time entity embeddings; and Time- 1133

Traveler (Sun et al., 2021), which employs 1134

reinforcement learning to explore multi-hop 1135

temporal paths. 1136

Rule-based method TLogic (Liu et al., 2022) 1137

relies on extracted symbolic rules for forecasting. 1138
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LLM-based methods We implement several re-1139

cent LLM-based approaches. ICL (Lee et al., 2023)1140

applies in-context learning by prepending histor-1141

ical quadruples to a query and using greedy de-1142

coding with regex-based answer extraction. Gen-1143

TKG (Liao et al., 2024) performs parameter-1144

efficient fine-tuning with LoRA adapters, com-1145

bined with rule-based history sampling. PPT (Xu1146

et al., 2023) converts quadruples into natural lan-1147

guage prompts and uses masked token prediction1148

to leverage semantic information from pretrained1149

language models. CoH (Xia et al., 2024b) ex-1150

plores high-order histories step-by-step to better1151

utilize richer historical information for LLM rea-1152

soning. HFL (Xu et al., 2025) learns from histor-1153

ical facts across different time periods through a1154

multi-perspective sampling strategy that focuses1155

on mining relational associations. We use official1156

codebases where available and replicate evaluation1157

pipelines for fair comparison.1158

Note on embedding-based baselines Several1159

specialized embedding models for TKG com-1160

pletion (e.g., RotateQVS (Chen et al., 2022),1161

BoxTE (Messner et al., 2022), CGE (Ying et al.,1162

2024)) have shown strong performance but are1163

excluded from our main evaluation for three rea-1164

sons. First, they use different dataset splits (e.g.,1165

ICEWS14 with 72,826/8,941/8,963 train/valid/test1166

samples vs. our 74,845/8,514/7,371 split). Second,1167

embedding methods require task-specific mathe-1168

matical engineering, limiting cross-dataset gen-1169

eralizability, while LLM-based approaches ben-1170

efit from pre-trained knowledge and adaptability.1171

Third, there has been limited direct comparison be-1172

tween these paradigms in the literature. We include1173

only embedding-based methods using consistent1174

dataset splits for meaningful comparison.1175

H Dataset Statistics1176

We use four standard temporal knowledge graph1177

benchmarks. ICEWS14 and ICEWS18 are subsets1178

of the Integrated Crisis Early Warning System, con-1179

taining geopolitical event records with daily granu-1180

larity. GDELT provides global political event data,1181

filtered to the most frequent events for tractability.1182

YAGO consists of curated facts from a multi-year1183

period. The statistics for these datasets are pro-1184

vided in Table 12.1185

I More Analysis 1186

I.1 Analysis of Contrastive Fine-Tuning 1187

To complement the ablation results in Section 6.1, 1188

we analyze how contrastive fine-tuning affects 1189

model behavior in low-history regimes—settings 1190

where standard exact-match metrics such as 1191

Hits@k may fail to capture the semantic relevance 1192

of model predictions. 1193

Setup. We group ICEWS14 test samples by his- 1194

tory length and compute the semantic distance be- 1195

tween each model prediction and the gold entity. 1196

We compare three supervision settings: ICL, SFT, 1197

and contrastive FT, all evaluated under the same 1198

TLR history sampling. 1199

We define semantic distance using cosine simi- 1200

larity between predicted and gold entities in a sen- 1201

tence embedding space: 1202

ϕ(p, o) = 1− cos-sim(E(p), E(o)), (15) 1203

where E(·) denotes the sentence transformer used 1204

in Section 4.3. Lower ϕ indicates higher semantic 1205

alignment, even if the prediction does not exactly 1206

match the gold entity. 1207

Contrastive Tuning Improves Semantic Ground- 1208

ing. Figure 12 plots the semantic distance ϕ(p, o) 1209

against the retrieved history length. All models 1210

show the expected trend: greater history generally 1211

yields predictions closer to the gold entity in em- 1212

bedding space. However, the distinction between 1213

supervision strategies becomes clear in low-history 1214

regimes. In the encircled region (history length 1215

≤ 3), contrastive fine-tuning produces fewer high- 1216

distance predictions than both ICL and SFT. This 1217

demonstrates that contrastive learning enhances the 1218

model’s ability to infer plausible entities even when 1219

the input lacks strong historical evidence. 1220

Multi-hop Sampling Further Stabilizes Model 1221

Behavior. To examine how our sampling strategy 1222

affects model reasoning on sparse-history inputs, 1223

we repeat the same experiment using our proposed 1224

RBMH Sampling. For comparability, we compute 1225

semantic distances on the same subset of samples 1226

originally identified as short-history under TLR. 1227

As shown in Figure 13, contrastive-tuned mod- 1228

els under RBMH Sampling exhibit more uniform 1229

semantic behavior across history lengths. Unlike 1230

the steep drop-off observed under TLR, the seman- 1231

tic distance remains relatively stable, indicating 1232

that many samples previously limited by shallow 1233
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Table 12: Dataset statistics used in our experiments. Time granularity varies by dataset and influences temporal
resolution.

Dataset #Train #Valid #Test #Entities #Relations Time Gap

ICEWS14 74,845 8,514 7,371 7,128 230 1 day
ICEWS18 373,018 45,995 49,545 23,033 256 1 day
GDELT 79,319 9,957 9,715 5,850 238 15 mins
YAGO 220,393 28,948 22,765 10,778 24 1 year

context can now be grounded through richer struc-1234

tural and temporal cues. This supports our motiva-1235

tion in Section 2.1: one-hop sampling often fails1236

to provide the necessary relational evidence, and1237

multi-hop expansion is essential for enabling reli-1238

able reasoning, rather than the test instances being1239

inherently harder.1240

Qualitative Support. Figure 14 presents qual-1241

itative examples where contrastive-tuned models1242

produce predictions that are not exact matches but1243

remain relationally and contextually appropriate. In1244

contrast, ICL and SFT often produce surface-level1245

or unrelated completions. These examples, paired1246

with the distributional evidence above, underscore1247

how contrastive fine-tuning improves semantic gen-1248

eralization and interpretability, particularly when1249

Hits@k offers limited signal.1250

Case Study. To better understand the behavior1251

of RECIPE-TKG, we provide a case study1252

comparing the top-10 predictions of four methods1253

on a specific query. The ground-truth object is1254

High_Ranking_Military_Personnel_(Nigeria),1255

which is not explicitly present in the history. As1256

shown in Figure 15, none of the models are1257

able to perfectly predict the correct entity.1258

However, the predictions made by RECIPE-1259

TKG models are clearly more semantically1260

aligned with the ground truth. For example,1261

predictions such as Military_(Nigeria) and1262

Defense_Personnel_(Nigeria) closely ap-1263

proximate the true answer in meaning, whereas1264

other models (ICL and GenTKG) fail to capture1265

such relevant semantics. This demonstrates the1266

advantage of contrastive fine-tuning in shaping the1267

embedding space, allowing the model to produce1268

more relationally compatible predictions even1269

when exact matches are not observed in history.1270

J Use of AI Tools 1271

AI assistants were used to support writing (e.g., 1272

phrasing suggestions) and code generation (e.g., 1273

syntax templates). All such outputs were subject 1274

to thorough human verification, and the authors 1275

remain fully responsible for the content presented. 1276
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Figure 12: Semantic distance (ϕ) vs. history length on ICEWS14 under TLR sampling. The encircled region
highlights CL’s improved semantic grounding in sparse-history settings.

Figure 13: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under
RBMH Sampling. The model exhibits more stable behavior across history lengths.

Figure 14: Semantic distance (ϕ) vs. history length for the same TLR-identified sparse samples, but evaluated under
RBMH Sampling. CFT learns better with RBMH as it samples the deeper relationships between entities.
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Model Outputs
ICL-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Nigerian_Army
7. Nigerian_Army
8. Nigerian_Army
9. Nigerian_Army
10. Other_Authorities_/_Officials_(Nigeria)

RECIPE-TKG-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Aliyu_Mohammed_Gusau
6. Government_(Nigeria)
7. Military_(Nigeria)
8. Abdul_Aziz_Yari
9. Chief_of_Staff_(Nigeria)
10. Abdul_Aziz_Yari

GenTKG-LLaMA2-7b
1. Citizen_(Nigeria)
2. Boko_Haram
3. Suleiman_Abba
4. Other_Authorities_/_Officials_(Nigeria)
5. Nigeria
6. Aliyu_Mohammed_Gusau
7. Nigeria
8. Nigeria
9. Nigeria_Army
10. None

RECIPE-TKG-LLaMA3-8b
1. Citizen_(Nigeria)
2. Other_Authorities_/_Officials_(Nigeria)
3. Boko_Haram
4. Suleiman_Abba
5. Defense_/_Security_Ministry_(Nigeria)
6. Terrorist_(Boko_Haram)
7. Employee_(Nigeria)
8. Terrorist_(Nigeria)
9. Senior_Military_Official_(Nigeria)
10. Defense_Personnel_(Nigeria)

Ground-truth entity: High_Ranking_Military_Personnel_(Nigeria)

Figure 15: Top-10 predictions from four models. RECIPE-TKG produce semantically closer outputs to the ground
truth.
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