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Abstract

Temporal Knowledge Graphs (TKGs) repre-
sent dynamic facts as timestamped relations
between entities. TKG completion involves
forecasting missing or future links, requiring
models to reason over time-evolving structure.
While LLMs show promise for this task, exist-
ing approaches often overemphasize supervised
fine-tuning and struggle particularly when his-
torical evidence is limited or missing. We in-
troduce RECIPE-TKG, a lightweight and data-
efficient framework designed to improve accu-
racy and generalization in settings with sparse
historical context. It combines (1) rule-based
multi-hop retrieval for structurally diverse his-
tory, (2) contrastive fine-tuning of lightweight
adapters to encode relational semantics, and
(3) test-time semantic filtering to iteratively re-
fine generations based on embedding similarity.
Experiments on four TKG benchmarks show
that RECIPE-TKG outperforms previous LLM-
based approaches, achieving up to 22.4% rela-
tive improvement in Hits@ 10. Moreover, our
proposed framework produces more semanti-
cally coherent predictions, even for the samples
with limited historical context.

1 Introduction

Temporal Knowledge Graphs (TKGs) are
widely used to represent dynamic, real-
world knowledge across domains such as

news (Boschee et al., 2015; Leetaru and Schrodt,
2013), biomedicine (Chaturvedi, 2024), and
finance (Dukkipati et al., 2025). They capture
facts as time-stamped relational tuples (subject,
relation, object, timestamp), modeling how
interactions evolve over time (Tresp et al., 2015).
A core task in this setting is TKG completion,
which involves predicting missing or future links
based on observed temporal interactions. This
task requires reasoning over both relational and
temporal structure, with downstream applications
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Figure 1: Example of LLM-based TKG reasoning. Prior
methods rely on 1-hop historical context, leading to
memorization or hallucination. RECIPE-TKG incorpo-
rates richer structural and relational context by sampling
and filtering, enabling more plausible predictions.

in forecasting and decision support (Trivedi et al.,
2017; Jin et al., 2020).

The rise of Large Language Models (LLMs) has
sparked interest in using pretrained generative mod-
els for TKG completion, driven by their generaliza-
tion capability and emergent reasoning skills (Liao
et al., 2024; Luo et al., 2024; Lee et al., 2023).
While LLM reasoning is often benchmarked on
math or logic-based tasks (Lewkowycz et al., 2022;
Wang et al., 2025), TKG completion provides a
complementary testbed that emphasizes two reason-
ing challenges: 1. Integrating temporal, structural,
and relational information in the reasoning process,
and 2. Relational generalization under sparse or
indirect historical interactions. Recent prompting-
based and fine-tuned LLM methods (Lee et al.,
2023; Liao et al., 2024; Luo et al., 2024; Xia et al.,
2024a) report promising results. However, closer
inspection reveals that their predictions often re-
flect shallow pattern matching rather than deeper
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temporal or relational reasoning. As illustrated in
Figure 1, these models frequently favor entities that
are lexically similar or locally frequent in the input,
even when more plausible completions exist based
on the graph structure.

These limitations are particularly evident in
sparse-context settings, where the query includes
little prior interaction between the subject and po-
tential target entities. In such cases, extrapolation
from multi-hop or indirect paths is required. With-
out sufficient structural grounding, LLMs, whether
zero-shot or fine-tuned, often produce predictions
that are disconnected from the graph. Although
standard metrics like Hits @k may improve, it is un-
clear whether such gains reflect true relational rea-
soning or memorization of shallow patterns. More-
over, prior work lacks systematic analysis across
input regimes, especially for queries requiring gen-
eralization beyond observed history.

In this paper, we investigate how LLMs reason
over temporal knowledge graphs. Our analysis
shows that performance drops sharply when his-
torical evidence is missing or structurally shallow,
exposing a gap in current modeling approaches. To
close this gap, we propose RECIPE-TKG, a LLM-
based method consisting of three components:

* A rule-based multi-hop sampling strategy
that enriches the prompt with structurally and
temporally diverse neighbors, providing better
grounding for predictions.

* A contrastive fine-tuning objective applied
to lightweight adapter layers on a small subset
of data, which shapes the embedding space
around relational semantics.

¢ A semantic similarity-based filtering mech-
anism that selects outputs at inference time
using embedding proximity.

Experiments on four benchmarks show that
RECIPE-TKG outperforms previous LLM base-
lines with relative gains on Hits@1/3/10 ranging
from 8% to 22.4% and returns more contextually
plausible outputs, especially in challenging low-
context settings. These results suggest that LLMs
can be steered into more effective and reliable TKG
forecasters when guided by the right context and
training objectives.

2 Challenges in TKG Completion with
LLMs

Despite recent progress in adapting LLMs to TKG
completion, these models often default to surface-
level patterns in the input and fail to generate accu-
rate predictions when structural or temporal cues
are indirect, missing, or require multi-hop reason-
ing. To guide the design of our framework, we con-
duct a detailed empirical analysis of recent LLM-
based approaches (Lee et al., 2023; Liao et al.,
2024) and examine some core challenges.

2.1 Grounding Predictions in Historical
Context

Temporal Knowledge Graph completion requires
models to reason over limited, evolving contexts. A
key distinction in this setting is whether the correct
object of a query has been observed in the sam-
pled history. We define a prediction as historical
if the ground-truth entity appears in the retrieved
context prior to the query time, and non-historical
otherwise. This distinction is crucial because exist-
ing LL.M-based methods perform well on histori-
cal predictions but exhibit significant performance
drops in non-historical cases, where memorization
is insufficient and extrapolation is required.

Figure 2(a) shows that model performance im-
proves with longer history: Hits@10 is below 0.3
with only one retrieved fact but exceeds 0.5 with
20-50 facts. This consistent trend for both in-
context learning and fine-tuned models highlights
the importance of providing sufficient historical
evidence. Figure 2(b) further reveals that over 25%
of gold targets require multi-hop reasoning, while
4% are unreachable due to missing links, making
shallow sampling inadequate for many queries.

These effects are further amplified on non-
historical predictions. As shown in Figure 2(c),
LLMs exhibit strong performance on historical pre-
dictions (e.g., 80—-83% Hits@10), as opposed to
below 5% when the target is non-historical. This
gap reflects a reliance on lexical overlap or mem-
orized associations, calling for a retrieval mech-
anism that recovers semantically and temporally
relevant multi-hop context.

These findings motivate the first component of
RECIPE-TKG: a rule-based, graph-aware multi-
hop sampling strategy that retrieves structurally
diverse and temporally aligned facts to support
stronger contextual grounding, particularly for non-
historical predictions.



70 A.

ICL
SFT

60

2+ hops
8.2%

50 Hits@10: 0.037

Hits@10: 0.010
40

Hits@10 (%)

30

20

10

D S
NS
Number of Historical Facts in Context

S v v > X 5 O
o

2-hop
17.5%

Historical

Hits@10: 0.706

ICL
Hits@10:
0.002

SFT
Hits@10:

cL
Hits@10:
0.827

0.806

JCe

1-hop
74.3%

Figure 2: Prediction failures under sparse or shallow history. (a) Accuracy vs. history length shows longer
contexts support better reasoning. (b) Most non-historical targets require multi-hop reasoning, but are unreachable
with 1-hop sampling. (c) Accuracy drops sharply on non-historical predictions for both ICL and SFT.

2.2 Limitations of Supervised Fine-Tuning

Supervised fine-tuning (SFT) is widely used to
adapt LLMs to TKG tasks, and prior work such
as GenTKG (Liao et al., 2024) reports notable im-
provements over prompting-based strategies (Lee
et al., 2023). However, our re-evaluation under
controlled conditions shows that much of this im-
provement originates not from fine-tuning itself,
but from differences in sampling strategies and
evaluation setups.

Evaluation Frameworks Explain Much of the
Gap. LLMs produce open-ended text that re-
quires careful postprocessing to extract valid entity
predictions. While Lee et al. (2023) uses a basic
evaluation setup, GenTKG applies a more refined
pipeline with canonicalization and output filtering,
making direct comparisons misleading.

To disentangle these effects, we re-evaluate both
prompting-based strategies and fine-tuned models
with different sampling and evaluation pipelines
under a unified framework. We compare naive sam-
pling used in Lee et al. (2023) and TLR sampling
(Liao et al., 2024), and two evaluation settings (ba-
sic eval and GenTKG eval (Liao et al., 2024)).
As shown in Table 1, replacing the evaluation code
alone increases Hits@1 from 25.8% to 34.4%. TLR
sampling strategy adopted in GenTKG provides a
modest improvement (35.1%) compared to ICL
sampling, while fine-tuning adds only a small ad-
ditional gain (36.4%). This suggests that a large
portion of the reported gain stems from implemen-
tation choices, not from the model’s improved rea-
soning capabilities.

Fine-Tuning Alone Does Not Improve General-
ization. As established in Section 2.1, both ICL
and fine-tuned models struggle with non-historical
predictions, where the correct answer does not ap-

Table 1: Re-evaluation of ICL and SFT methods using
consistent decoding and evaluation. The reported gains
of GenTKG stem primarily from evaluation setup and
sampling, with limited impact from fine-tuning.

Method Hits@1 Hits@3 Hits@10
Reported in GenTKG

ICL (naive sampling + basic eval) 0.258 0.430 0.510
+ Fine-Tuning (TLR sampling + eval)  0.369 0.480 0.535
Re-evaluated under consistent setup

ICL (naive sampling) + GenTKG eval ~ 0.344 0.464 0.523
ICL (TLR sampling) + GenTKG eval 0.351 0.473 0.527
SFT (TLR sampling) + GenTKG eval ~ 0.364 0.476 0.532

pear in the retrieved history. These failures persist
across a range of input sizes and are especially
severe when the gold entity requires multi-hop rea-
soning, which is not supported by current sampling
methods. Fine-tuning improves memorization of
patterns seen during training but does not provide
the relational inductive bias needed to reason about
unseen or indirectly connected entities.

Motivating Contrastive Fine-Tuning. To ad-
dress this limitation, we propose a contrastive
fine-tuning objective that goes beyond correctness-
based supervision. Rather than reinforcing output
repetition, it explicitly trains the model to differen-
tiate between semantically plausible and implau-
sible candidates based on relational compatibility.
In contrast to SFT, which rewards surface-level
alignment with training data, contrastive learning
reshapes the embedding space to support relational
discrimination and generalization.

This motivates the second component of
RECIPE-TKG: fine-tuning lightweight LoRA (Hu
et al., 2022) adapters using a contrastive objective
to improve relational generalization and reduce hal-
lucinations in sparse history settings.
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Figure 3: Overview of RECIPE-TKG. RECIPE-TKG follows a three-stage framework: (1) History Sampling,
which retrieves query-relevant facts via a two-phase strategy combining rule-based retrieval and context-guided
expansion; (2) Contrastive Learning, which jointly optimizes entity embeddings using contrastive and cross-
entropy losses. Positive/negative pairs are sampled from the subgraph, and embeddings are generated via a learnable
encoder; (3) Test-time Filtering, where predicted entities are iteratively verified by a semantic filter. Unsatisfactory
outputs are refined using a statistical generator until confident predictions are obtained.

3 Preliminaries

Problem Formulation. A Temporal Knowledge
Graph is a collection of time-stamped facts repre-
sented as quadruples (s, p, 0,t), where s and o are
subject and object entities, p is a relation, and ¢
denotes the timestamp of the event. Formally, a
TKG is denoted as G = (V, R, E,T), where V is
the set of entities, R the relations, £ the event facts,
and 7 the time indices. Each time step ¢ defines a
historical snapshot G; C £.

The forecasting task involves predicting a miss-
ing entity in a future quadruple. Given a query of
the form (s, p,?,t) or (?,p,o0,t) and a set of his-
torical snapshots {Gy, ..., G;—1}, the model must
return the most plausible entity that completes the
query at time t.

Low-Rank Adaptation (LoRA) To reduce
the number of trainable parameters, we adopt
LoRA (Hu et al., 2022), which re-parameterizes
the weight update as

h(z) = Wox + ABu, (1)
where W is a frozen pretrained weight and A,

B are trainable low-rank matrices.

4 Method

In this section, we present RECIPE-TKG, a three-
stage LLM-based lightweight (see Appendix B)
framework for temporal knowledge forecasting.

The complete framework is illustrated in Figure 3.

4.1 RBMH: Rule-Based Multi-Hop History
Sampling

The first stage of RECIPE-TKG focuses on retriev-
ing a compact yet informative history from the
temporal knowledge graph G. For a given query
(8¢,pq,7,T), we aim to retrieve historical facts
{(s,p,0,t) € G|t < T} that are temporally valid
and structurally relevant. Our sampling process
combines rule-based retrieval with context-guided
expansion to provide richer support for reasoning,
particularly in sparse or non-historical settings.

Stage 1: Temporal Logical Rule-based Sam-
pling. We begin by retrieving subject-aligned 1-
hop facts using a rule-based procedure adapted
from TLR (Liao et al., 2024), which learns re-
lational rules of the form p, < {py,,...,pp, }
through 1-step temporal random walks, capturing
event regularities. We retrieve historical quadruples
(s,p,0,t) such that s = s, and p appears in the rule
body for the query relation p,. See Appendix A.1
for the details.

However, this 1-hop retrieval cannot reach facts
involving semantically relevant but structurally dis-
tant entities. Due to the fixed number of learned
rules, this stage often retrieves fewer than N
quadruples, the maximum the LLM can handle.
This motivates a second stage to expand context
with more diverse and informative facts.



Stage 2: Context-guided Multi-hop Expansion
We then samples additional historical facts from
G. The candidate pool includes any quadruples not
retrieved in Stage 1 whose subjects differ from s,.

This stage is designed to support multi-hop rea-
soning by identifying facts that may not directly
connect to the query subject but are structurally and
semantically relevant. Each candidate (s, p, o, t) is
assigned a composite weight:

W= wy - wy - (W + We + Wep), 2)

where w,, downweights unreachable or distant
nodes, wy penalizes high-frequency triples, w; pri-
oritizes temporal recency, w,. favors co-occurrence
with the query subject or relation, and w,, rein-
forces connectivity with the initial TLR context.
To sample from candidate pool, We first select
the top 10 x M candidates by score to form a re-
duced pool. From this pool, we sample M quadru-
ples with probabilities proportional to their weights.
This soft filtering strategy preserves diversity while
prioritizing high-quality candidates, avoiding over-
reliance on only the highest-scoring facts. Our two-
stage RBMH sampling method supports reasoning
beyond immediate neighbors and avoids overfitting
to shallow or overly common facts. The overall
design motivation, formal definitions, hyperparam-
eters and algorithms are provided in Appendix A.2.

4.2 Contrastive Fine-Tuning for Structured
Reasoning

To improve generalization beyond memorized en-
tity associations, we introduce a contrastive fine-
tuning objective that supplements the standard next-
token prediction loss, helping to disambiguate plau-
sible from implausible predictions, especially when
historical context is sparse or indirect.

Relation-Guided Contrastive Pair Construction.
Our design is guided by the international relations
principle, The enemy of my enemy is my friend,
which reflects relational patterns common in geopo-
litical TKGs and motivates how we position enti-
ties in embedding space. Inspired by this structure,
we first categorize relations into positive, nega-
tive, and neutral types using GPT-40, minimizing
the inclusion of neutral cases (see Appendix C.1).
Given a sampled subgraph (Figure 3), we treat each
unique entity as an anchor and examine its 1-hop
neighbors. A neighbor is assigned as a positive
sample if it connects via a positive relation, or a

negative sample if it connects via a negative rela-
tion. If both types of edges exist, the neighbor is
excluded to avoid contradiction. Neutral relations
are ignored. This process forms contrastive groups
that are used to calculate the contrastive loss.

Entity Embedding Encoding. Since an entity
typically spans multiple tokens, we adopt a multi-
stage process to compute its representation. First,
the entity string is tokenized. Each resulting token
is then passed through the model’s embedding layer
(embedder), which produces an embedding vector.
These token embeddings {h1, ha, ..., hi} are sub-
sequently aggregated into a single entity-level em-
bedding e using a trainable attention aggregator.
The final embedding is a weighted sum:

k
e = Z)\jhj’ (3)
7=1

where \; are attention weights satisfying A=
1. Both the embedding layer and the aggregator
are learnable modules, jointly optimized during
fine-tuning.

Training Objective. The overall loss function is

defined as:
L = o Leontrastive + (1 - a) : Ece(ov 0p)> 4)

where L. denotes the cross-entropy loss between
the predicted token o, and the ground truth o,
L contrastive represents the contrastive loss, and o €
[0, 1] is a balancing hyperparameter.

The contrastive loss is formulated as:

Nc
1
Ecomrastive = T max <0a
N, 2
1=

lai — posill? = lla; = negil[* +m)  (5)

where NN, is the number of contrastive groups,
and a; denotes the embedding of the anchor entity.
For each group, pos; is the hardest positive, defined
as the farthest positive entity from the anchor in the
embedding space, while neg; is the closest negative.
This formulation emphasizes challenging examples
and enforces a margin m to improve the separation
between positive and negative pairs.

This training objective encourages the model
to pull the most distant positive samples closer to
the anchor and push the nearest negatives farther
away. This dynamic adjustment refines the seman-
tic structure of the latent space, enabling better



entity discrimination and improving downstream
reasoning performance. More details can be found
at Appendix C.

4.3 Similarity-Based Test-Time Filtering

Recent work shows that language models can im-
prove inference without parameter updates by using
lightweight test-time strategies (Snell et al., 2024;
Ji et al., 2025). Building on this idea, we intro-
duce a semantic similarity-based filtering method
to reduce hallucinations by removing predictions
misaligned with the input context.

Our filtering approach is motivated by two em-
pirical observations:

1. Models often generate non-historical entities
that have low semantic alignment with the
input context, especially in sparse settings de-
spite higher similarity scores correlating with
correctness (Figure 4).

2. In many cases, the ground truth entity already
appears in the historical context H, yet the
model produces a non-historical prediction
that yields negligible gain in accuracy.

These patterns suggest that enforcing semantic
consistency and reconsidering salient entities from
the input can correct many low-quality predictions.
Rather than rejecting or reranking predictions with
fixed rules, we apply an adaptive refinement strat-
egy grounded in semantic similarity.

Semantic Consistency Verification. We embed
the generated prediction p and the input context ¢
using a sentence transformer model to compute a
similarity score:

¢(p, ¢) = cos-sim(E(p), E(c)) (6)
E(z) = SentenceTransformer(z) € R  (7)

where E(-) denotes the output vector of a pre-
trained transformer model. We use this similarity
as a proxy for contextual alignment. A predic-
tion is accepted if its similarity score exceeds a
learned threshold 7, or if it already appears in the
retrieved history H. Otherwise, we regenerate until
a satisfactory prediction is found, or fall back to
history-aware scoring.
This process is formalized as:

D ifpe Horp(p,c) >

/

p = if p(p,c) <7
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Figure 4: Distribution of semantic similarity values for
correctly and incorrectly classified samples to the input
context.

Figure 3 illustrates how filtering interacts with
the generation process to improve robustness.

Historical Relevance Fallback. If repeated gen-
erations yield unsatisfactory predictions, we fall
back to the historical candidates . Each candi-
date h € H is scored by:

P(h)=B-f(h)+ A =p)-r(h) )

where f(h) is the frequency of A in the input his-
tory and r(h) captures recency. This mechanism
biases the selection toward historically grounded
entities when semantic alignment fails.

Threshold Selection. The threshold 7 is opti-
mized to best separate correct and incorrect pre-
dictions based on empirical distributions of ¢(p, c).
We describe the optimization objective and quanti-
tative justification in Appendix D, along with im-
plementation details and discuss its generalizability
in Appendix E.

S Experiments

5.1 Experimental Setup

Proposed method. We refer to our full method as
RECIPE-TKG, which combines rule-based multi-
hop history sampling (RBMH Sampling), con-
trastive fine-tuning denoted as CFT, and Test-time
Filtering.

Language Models. Our primary experiments are
conducted on LLaMA-2-7B (Touvron et al., 2023),
a widely used open-source model in LLM-based
TKG completion research (Liao et al., 2024; Luo
et al., 2024). To ensure modern relevance, we also
evaluate LLaMA-3-8B (Meta Al, 2024). Prompts
and implementation details are provided in Ap-
pendix C.2 and C.4



Table 2: Temporal link prediction results on temporal-aware filtered Hits@1/3/10. LLM-based models are
implemented based on LLaMA2-7B. Best results for each metric are highlighted in bold, and the best results among
LLM-based models are underlined. The last row shows the relative improvement (A) of RECIPE-TKG over the

best-performing LLM-based baseline.

Datasets ICEWS14 ICEWS18 GDELT YAGO
Models Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10 | Hits@1 Hits@3 Hits@10
RE-NET (Jin et al., 2020) 0.260 0.401 0.548 0.165 0.297 0.447 0.117 0.202 0.333 - - -
. RE-GCN (Li et al., 2021) 0.313 0473 0.626 0.223 0.367 0.525 0.084 0.171 0.299 0.468 0.607 0.729
Embedding-based
XERTE (Han et al., 2020) 0.330 0.454 0.570 0.209 0.335 0.462 0.085 0.159 0.265 0.561 0.726 0.789
TANGO (Han et al., 2021) 0.272 0.408 0.550 0.191 0.318 0.462 0.094 0.189 0.322 0.566 0.651 0.718
Timetraveler (Sun et al., 2021) | 0.319 0.454 0.575 0.212 0.325 0.439 0.112 0.186 0.285 0.604 0.770 0.831
Rule-based TLogic (Liu et al., 2022) 0.332 0.476 0.602 0.204 0.336 0.480 0.113 0.212 0.351 0.638 0.650 0.660
CoH (Xia et al., 2024b) 0.242 0.397 0.512 0.168 0.282 0.427
LLM-based PPT (Xu et al., 2023) 0.289 0.425 0.570 0.169 0.306 0.454
HFL (Xu et al., 2025) 0.277 0.427 0.573 0.178 0.304 0.455 - - - - - -
ICL (Lee et al., 2023) 0.344 0.464 0.523 0.164 0.302 0.382 0.090 0.172 0.242 0.738 0.807 0.823
GenTKG (Liao et al., 2024) 0.364 0.476 0.532 0.200 0.329 0.395 0.099 0.193 0.280 0.746 0.804 0.821
RECIPE-TKG 0.393 0.526 0.651 0.224 0.369 0.516 0.095 0.192 0.327 0.811 0.880 0.930
A 8.0% 10.5% 22.4% 12.0% 12.2% 13.4% -4.0% -0.5% 16.8% 8.7% 9.0% 13.0%
Table 3: Ablation study on ICEWS14 with
Datasets. We evaluate RECIPE-TKG on four y

commonly adopted benchmark datasets: ICEWS14
and ICEWSI1S, both derived from the ICEWS
project (Boschee et al., 2015), GDELT (Leetaru
and Schrodt, 2013), and YAGO (Mahdisoltani et al.,
2013). Detailed dataset statistics are provided in
Appendix H.

Evaluation Metrics. We choose temporal-aware
filtered Hits@ 1/3/10 as our evaluation metrics, fol-
lowing prior work (Gastinger et al., 2023).

Baselines. We compare RECIPE-TKG against
three categories of methods. Embedding-based
methods include RE-NET (Jin et al., 2020), RE-
GCN (Li et al., 2021), xERTE (Han et al., 2020),
TANGO (Han et al., 2021), and TimeTraveler (Sun
et al.,, 2021). Rule-based method includes
TLogic (Liu et al., 2022). LLM-based methods in-
clude ICL (Lee et al., 2023), GenTKG (Liao et al.,
2024), PPT (Xu et al., 2023), CoH (Xia et al.,
2024b), and HFL (Xu et al., 2025). Additional
information about baseline methods is included in
Appendix G.

5.2 Main Results

Results in Table 2 show that RECIPE-TKG con-
sistently performs well across four benchmark
datasets, surpassing both embedding-based and
LLM-based baselines on nearly all evaluation met-
rics. On ICEWS14 and YAGO, RECIPE-TKG es-
tablishes new state-of-the-art results, achieving up
to 11.9% relative improvement over the strongest
competing methods. For ICEWS18, it exceeds
the best LLM-based baseline by a substantial mar-
gin, with a 30.6% relative gain in Hits@10, and
achieves comparable performance to RE-GCN, the

LLaMA2-7B. Comparison of training paradigms across
different history sampling strategies. The bold results
show the original combinations of components in prior
works and our method.

ICL
H@l H@3 H@I10

SFT
H@l H@3 H@I0

CFT
H@l H@3 H@I0

0.360 0.469 0.530
0.364 0.476 0.532
0.389 0.519 0.582

0.363 0.479 0.529
0.367 0.476 0.532
0.392 0.521 0.580

Lee et al. (2023) 0.344 0.464 0.523
TLR (Liao et al., 2024) [0.351 0.473 0.527
RBMH 0.364 0.500 0.572

top embedding-based approach on this dataset. Al-
though RECIPE-TKG does not outperform the rule-
based method TLogic on GDELT, it attains the
highest Hits@10 score (32.7%) among all LLM-
based models and remains competitive on Hits@ 1
and Hits@3. These results highlight the effective-
ness of RECIPE-TKG and further positions LLM-
based methods as strong candidates for foundation
models in temporal knowledge graph completion.

6 Analysis

6.1 Ablation Study

We conducted ablation studies to evaluate key com-
ponents of our framework against prior works. We
compare three sampling methods ( Lee et al. (2023),
TLR (Liao et al., 2024), and our RBMH Sampling)
and three training paradigms (in-context learning,
supervised fine-tuning, and contrastive fine-tuning)
on ICEWS14 using LLaMA2-7B. As shown in Ta-
ble 3, bold results indicate original combinations
from prior works and RECIPE-TKG w/o filter-
ing. The results show that RBMH Sampling con-
sistently improves performance across all training
paradigms by retrieving structurally diverse and se-
mantically relevant context. While CFT performs
comparably to SFT with the same sampling strat-



Table 4: Effect of removing RECIPE-TKG components.

SETTINGS Hits@1 Hits@3 Hits@10
RECIPE-TKG w/o CFT 0.364  0.501 0.643
RECIPE-TKG w/o RBMH Sampling | 0.364  0.483 0.581
RECIPE-TKG w/o Filtering 0.392  0.521 0.580
RECIPE-TKG 0.393  0.526 0.651

IcL
GenTKG
RECIPETKG

Hits@10 (%)

Number of Historical Facts (Grouped as in Figure 2a)

Figure 5: Hits@10 grouped by number of historical
facts. RECIPE-TKG consistently outperforms ICL and
GenTKG across all history lengths, with particularly
strong improvements when the input history is sparse.

egy, it shows clear advantages when historical con-
text is sparse. As discussed in Appendix I.1, con-
trastive models generate predictions semantically
closer to the ground truth, even when exact matches
aren’t possible, promoting structure-aware general-
ization beyond surface-level accuracy, especially in
sparse settings where lexical cues are insufficient.

Table 4 provides additional insights into the
effects of each of the three components, espe-
cially test-time filtering. When comparing the CFT-
RBMH setting with and without 7est-time Filtering,
we observe a substantial boost in Hits@ 10 from
0.580 to 0.651, underscoring the effectiveness of
our test-time refinement mechanism. Notably, com-
bining test-time filtering with RBMH Sampling and
Test-time Filtering (RECIPE-TKG) yields the best
performance across all metrics.

6.2 Performance Gains Across Input Regimes

To evaluate how historical input affects model per-
formance, we group queries by the number of re-
trieved facts and compare Hits @ 10 across methods.
These bins align with Figure 2(a), allowing direct
comparison with prior failure patterns. As shown in
Figure 5, RECIPE-TKG outperforms both ICL and
GenTKG across all groups, with especially large
gains in the low-history regime.

Two key insights emerge. First, prior failures
on short-history queries were not due to intrinsic
difficulty, but rather to shallow retrieval. Since all
methods are evaluated on the same query set, the

Table 5: Comparison between LLaMA2-7B and
LLaMA3-8B on ICEWS14.

Model LLaMA2-7B LLaMA3-8B
hit@1 hit@3 hit@10 | hit@1 hit@3 hit@10

ICL 0.344 0464 0523 | 0351 0484 0578

RECIPE-TKG | 0.393 0.526  0.651 | 0.367 0.529  0.658

strong gains from RECIPE-TKG (reaching over
60% Hits@10 for history length 0 to 2) indicate
that even sparse queries can be completed accu-
rately when provided with deeper, multi-hop con-
text. This validates the effectiveness of RBMH
Sampling in recovering structurally and temporally
relevant support.

Second, RECIPE-TKG continues to outperform
baselines even with longer histories (10-50 facts),
where other methods begin to plateau. This sus-
tained advantage reflects the contributions of CFT
and Test-time Filtering, which improve generaliza-
tion and reduce hallucinations.

Overall, these results show that RECIPE-TKG
not only addresses the limitations of shallow con-
text but also improves reasoning and prediction
quality across a wide range of query types.

6.3 Case Study: Performance of Llama3-8b

As shown in Table 5, LLaMA3-8B performs com-
parably to LLaMA2-7B, supporting our choice of
the latter for most experiments. Moreover, this
choice of base model enables a fair comparison
with prior work using fine-tuned models. Under
both backbones, RECIPE-TKG consistently out-
performs ICL, demonstrating its robustness and
generalizability across different LLMs.

7 Conclusion

We introduced RECIPE-TKG, a framework that im-
proves LLM-based temporal knowledge graph fore-
casting through multi-hop sampling, contrastive
fine-tuning, and semantic filtering. Our approach
shows consistent gains in accuracy, particularly in
sparse settings where previous methods fail. By
aligning retrieved context with relational structure
and refining predictions at inference time, RECIPE-
TKG enhances reasoning capabilities without large-
scale retraining, demonstrating the effectiveness of
modular strategies for temporally grounded knowl-
edge reasoning.



Limitations

Although RECIPE-TKG adopts a structured three-
stage framework, it is still built on clean, fully
observed temporal knowledge graphs, which may
not reflect real-world scenarios. The rule mining
step requires offline learning before sampling, and
must be repeated if the TKG changes. Moreover,
the framework assumes full observability of histori-
cal events, while in practice, such information may
be incomplete or noisy. Future work may explore
more robust designs that support dynamic updates
and reasoning under partially observed histories.

License and Ethics

All datasets used in this study are publicly available
and licensed for academic research. Specifically,
ICEWS14, ICEWS18, GDELT, and YAGO have
been widely adopted in prior work on temporal
knowledge graphs. No personally identifiable in-
formation (PII) or sensitive content is present in
any of the datasets.

We use LLaMA-2 and LLaMA-3 models un-
der Meta’s official research license, and all model
adaptations are conducted in compliance with their
intended use for academic and non-commercial
research. The training and evaluation procedures
are entirely conducted on benchmark data, and no
human subjects are involved.

We adhere to the ethical guidelines set forth by
the ACL Code of Ethics, including transparency,
reproducibility, and the responsible use of language
models. Our work poses minimal risk of harm
and does not involve content generation, human
annotation, or interaction with real users.
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A Rule-Based Multi-Hop History
Sampling Details
A.1 TLR Algorithm

Algorithm 1 shows the TLR retrieval procedure
used in our framework, reproduced from (Liao
et al., 2024).

Algorithm 1 TLR Retrieval

Input: Temporal knowledge graph G, query
(sq,7q,7,T), learned rules TR

Output: A set of retrieved facts G, (sq,7¢,T)

1: Gs (5q,7¢,T) <0

2: for fact < (sq,74,0,t <T)) € Gdo

3: Gs,(8¢:7¢, T) <= Gs, (54,74, T) U fact
4: end for

s: for top k rules w.r.t. v, < 1, € TR do
6: Get a list 1, < {7“1,1,7“1,2, ce. ,rbk}

7: end for

8: for fact < (sq,7 € 1p,0,t <T) € Gdo
9: Gs,(8¢:7¢, T) <= Gs, (54,74, T) U fact
10: end for

—
—

: return G _(sq,7¢, 1)

A.2 Context-guided Multi-hop Expansion
Details

A.2.1 Weight Formulation Discussion

We adopt a multiplicative combination of the
weight components rather than a simple sum to
for two reasons. First, the neighbor weight w,, acts
as a hard constraint: it equals zero if the subject
or object of a candidate quadruple is not reachable
from the query, effectively filtering out irrelevant
facts. Second, the frequency weight wy is designed
to down-weight commonly repeated triples while
preserving their relative order. This logarithmic
scaling ensures that rare but structurally relevant
facts are not overshadowed. Together, the multi-
plicative form enables a soft prioritization across
dimensions while preserving hard structural con-
straints.

A.2.2 Weight Component

The five weight components of equation 2 are de-
fined as follows:

Neighbor weight w,, ensures that structurally
closer quadruples receive higher scores:

wy, = exp (=1 - (hop, + hop, — 1)),

where hop, and hop, denote the shortest hop dis-
tances from the subject and object to the query
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subject. The weight decays exponentially with in-
creasing distance, and vanishes to zero when either
hop, or hop, is infinite, corresponding to cases
where the entity is not reachable from the query
subject in the graph. Importantly, all structural
statistics (e.g., hop distance, co-occurrence counts,
and context connectivity) are computed over the
subgraph excluding quadruples with timestamps
after the query time 7'.

Frequency weight w reduces the dominance
of frequent triples (history quadruples excluding
timestamp):

1

v2 - log(nspo) + 1’
where ngy, is the count of the subject-predicate-
object triple. This logarithmic form discourages
over-sampling of repetitive patterns while maintain-
ing frequency order.

More precisely, for any two triples with fre-
quency counts n; < ng, the corresponding weights
satisfy:

wf

w(ny)  log(ng) +1
w(ng)  log(ny) +1’
assuming all other components of the weight func-
tion are equal. This shows that the multiplicative
formulation preserves the relative ranking induced
by frequency, while still suppressing the absolute
dominance of highly frequent triples.

Time weight w, favors temporally recent events:

T—t)

1)
where T is the timestamp of the query, ¢ is the
timestamp of the event quadruple (with 7" > t), §
is the time granularity (e.g., § = 24 in ICEWS14),
and 3 controls the decay rate.
Connection weight w, promotes inclusion of
frequently co-occurring entity pairs:

and

w(ny) > w(ng),

Wy = exp <_'Y3 )

_ log(l + 4 - nso)
1+ log(1 + 4 - nso)’

where n, is the co-occurrence count of the subject-
object pair prior to T, and ~y,4 is a smoothing param-
eter. This bounded function emphasizes structural
relevance while limiting hub bias.

Contextual priority weight w., encourages
sampling quadruples that remain connected to the
initial TLR sampled subgraph:

wc,,:{

We

1, ifs € &rroro€ Enr,

0, otherwise,
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Figure 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations.

where EtrR is the set of all 1-hop neighbors identi-
fied in the TLR stage. This guides the expansion
toward semantically coherent subgraphs.

A.2.3 Hyperparameter Sensitivity
Experiment

Figure 6 presents the performance in ICL-RBMH
setting under varying sampling hyperparameters.
We perturb each of the four v; parameters individ-
ually (two settings per parameter), while keeping
others fixed, and compare them against the default
configuration. Across all variants, model perfor-
mance remains stable, indicating that RBMH Sam-
pling is robust to hyperparameter choices. More-
over, ICL-RBMH consistently outperforms the
baseline ICL-TLR across all settings.

The sampling hyperparameter configurations
and their corresponding performance metrics are
summarized in Table 6, including mean and stan-
dard deviation to reflect stability.

Table 6: Performance of ICL-RBMH under different
sampling hyperparameter configurations on ICEWS14.

ID Y12 V3 Y4 Hits@1 Hits@3 Hits@10
default | 0.6 0.6 0.01 0.1 | 0364 0.500 0.572
1-1 104 0.6 0.01 0.1 | 0366 0.501 0.569
y1-2 08 06 001 0.1 | 0368 0.504 0.575
-1 0.6 04 001 0.1 | 0364 0.500 0.572
¥2-2 0.6 0.8 0.01 0.1 | 0364 0.500 0.572
vs-1 106 06 0.05 0.1 | 0363 0.498 0.569
v3-2 | 0.6 0.6 0.002 0.1 | 0.368  0.506 0.573
-1 106 06 001 02| 0368 0.503 0.575
Y42 106 0.6 0.01 0.05| 0.365 0.502 0.571
Mean 0.366 0.501 0.571
Std 0.0020 0.0024 0.0021
Baseline (ICL-TLR) 0.351 0.473 0.527
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A.3 RBMH Algorithm

Algorithm 2 Rule-based Multi-hop history sam-
pling
Input: Temporal knowledge graph G, query
(s¢,7¢,7,T), learned rules 7R, maximum history
length N, scoring function F, a set of TLR re-
trieved facts G, (sq, 74, T)
Output: A set of retrieved facts G(sq, 74, T)
: M+ N—len(Gs,(sq,7¢,T))
if M = 0 then

G(sq,7¢:T) = Gs,(5¢,7¢:T)

return G(sq,rq,T)
end if
C « {(s,r,0,t,F(s,7,0,t)) | (s,7,0,t) €
g, t<T}
Ciop <= Topy0p/(C)
8: Csample <— WeightedSample(Ciop, M)
9: Gmh(Sq,7¢,T) < {(s,7,0,t) | (s,7,0,t,w) €
Csample}
G(8q;7q, T) <= Gs,(8¢:7¢, T)UGmn(5¢, 74, T)
return G(s,,rq, T')

AN S ol s

~
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11:

B Computational Efficiency Analysis

RECIPE-TKG is designed to be parameter-efficient
and computationally lightweight while maintaining
strong performance. This section quantifies various
aspects of efficiency in our framework.

Parameter Efficiency Our framework fine-tunes
a small fraction of the total parameters in the
base LLM. For LLaMA2-7B, we update only LoRA
adapters (with rank 8, applied to query and value
projections across 32 transformer layers) and a self-
attention pooling module for entity embedding ag-
gregation. The trainable parameter count is approx-
imately 54.3M, which constitutes just 0.81% of the
base model’s 6.74B parameters. This parameter-
efficient design enables effective fine-tuning while
keeping most of the pre-trained knowledge intact.

Rule Mining Efficiency The temporal logical
rule mining process in our RBMH sampling strat-
egy is highly efficient. Table 7 shows the time
required for rule extraction across all datasets us-
ing 15 CPU processes (averaged over 5 runs). The
process completes in under 20 seconds even for
the largest dataset, representing negligible compu-
tational overhead. Furthermore, the extracted rules
capture persistent temporal patterns and are not
highly sensitive to minor dataset changes, allowing



for infrequent updates when the knowledge graph
evolves.

Table 7: Rule mining time across datasets (in seconds).

Dataset ICEWS14 ICEWS18 GDELT YAGO

Time (s) 6.89 +0.08 16.72 £ 0.07 10.78 £ 0.08 2.73+£0.02

Training Overhead Table 8 compares training
time per epoch between standard supervised fine-
tuning and our contrastive fine-tuning on 1024 sam-
ples. The contrastive objective introduces no ad-
ditional training time, demonstrating its compu-
tational efficiency despite the improved semantic
learning.

Table 8: Training time per epoch on 1024 samples.

Training Mode Time (s) A%

824.31
821.51

Fine-tuning (FT)

FT + Contrastive Loss -0.34%

Inference Overhead Table 9 quantifies the run-
time impact of our test-time filtering mechanism.
On 1,000 test samples, filtering increases inference
time by 16.6%, which is reasonable considering the
consistent performance improvements in Hits@10
across all datasets. The filtering step provides a fa-
vorable trade-off between computational cost and
accuracy gain.

Table 9: Inference time on 1,000 samples.

Setting Time (s) A%

2316.48
2700.67

No filtering

With filtering +16.60%

C Training Details

C.1 Relation Classification

The prompt used for relation classification is pro-
vided in Figure 7.

In cases where a neighbor is connected to the
anchor via both a positive and a negative relation,
it is excluded in training to avoid ambiguity.

Figure 8 shows the distribution of relation types
across four datasets. Positive and negative relations
appear in roughly balanced proportions, while neu-
tral relations are consistently less common. No-
tably, YAGO exhibits a distinct relation distribu-
tion where the majority of relations are classified as
neutral. Upon inspection, we find that this reflects
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the actual semantic nature of the relations in the
dataset, which are mostly descriptive or taxonomic
rather than sentiment-oriented. Consequently, the
contrastive learning component has limited impact
on YAGO, as it relies on meaningful distinctions be-
tween positive and negative relations. The observed
performance gain on YAGO is therefore primarily
attributed to improvements in history sampling and
Test-time filtering.

C.2 Prompt

To guide the language model in performing tempo-
ral knowledge completion, we adopt a structured,
instruction-style prompt format shown in Figure 9.
The prompt defines the task explicitly: given a
chronological list of historical events represented
as quadruples, the model must predict the missing
object entity for a future temporal query.

Each historical fact is formatted
as {time}:[{subject}, {relation},
{object_label}.{object}] where
{object_label} is a  unique identi-
fier associated with the entity (e.g.,
3380.Joseph_Robinette_Biden). This la-

beling scheme facilitates consistent reference
resolution and improves post-processing via
regex-based extraction. The final input ends
with the query, and the model is asked to gen-
erate the correct object in fully qualified form
{object_label}.{object}.

This prompt format is applied consistently across
both in-context learning and fine-tuning setups.

C.3 LoRA Formulation

We follow the standard LoRA setup (Hu et al.,,
2022). Given a frozen pretrained weight matrix
Wy € R4k LoRA introduces two trainable low-
rank matrices A € R¥" and B € R"™** with
r < min(d, k), such that the original forward
transformation h(x) = Wyx is modified as:

h(z) = Wox + ABz. (10)
This design allows efficient fine-tuning by only
training A and B, while keeping the pretrained
weights Wy frozen. In our experiments, we adopt
the default LoRA implementation from the PEFT
library (Mangrulkar et al., 2022).

C.4 Implementation Details

We fine-tune LLaMA-2-7B and LLaMA-3-8B models
using LoRA adapters. All trainings are conducted



Prompt for Relation Classification

You are analyzing relation labels from a political event knowledge graph, where each relation
reflects an action or request within a geopolitical context.
Classify the sentiment of the given relation as one of the following:

* positive (e.g., promoting peace, aid, cooperation)
* negative (e.g., violence, repression, aggression)

* neutral (e.g., procedural or ambiguous actions)

nature.

Avoid selecting "neutral” unless the relation is genuinely ambiguous or purely procedural in

J

Figure 7: Prompt used for relation classification.

positive
negative
neutral

ICEWS14 ICEWS18 GDELT YAGO

Figure 8: Distribution of relation types in four datasets
after automatic classification.

on 2 H100 GPUs in bfloat16 precision. We set
maximum history length to 50 in history sampling
according to the context length of LLaMA-2-7B. For
fine-tuning, we train 1024-shots data for 50 epochs
with the batch size of 512, the learning rate of 3e-4,
the context length of 4096, the target length of 128,
the LoRA rank of 8, the LoRA dropout rate of 0.05.
For RECIPE-TKG, we train 6024-shots data (1024
aligned with GenTKG and 5000 randomly sampled
by seed 42) for 10 epochs, and other settings keep
unchanged. Contrastive tuning uses a margin of 1.0
and loss weight o = 0.2 to balance cross-entropy
and contrastive objectives.

Entities are tokenized using the native tokenizer
of the LLM and embedded via the model’s em-
bedding layer. A lightweight attention aggregator
produces final entity embeddings, jointly trained
with the model.

C.5 Hyperparameter Sensitivity Experiment

As shown in Figure 10, varying « from 0.2 to 0.8
leads to marginal fluctuations across all evalua-
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Table 10: Performance under different contrastive
weight settings on ICEWS14.

Weight « Hits@1 Hits@3 Hits@10

0.2 0.392 0.521 0.580
0.5 0.389 0.521 0.579
0.8 0.392 0.520 0.576
Mean 0.391 0.521 0.578
Std 0.0014  0.0006  0.0020

tion metrics. These results suggest that the model
is robust to the choice of «, and that CFT con-
tributes consistently across a wide range of weight-
ing schemes. Table 10 presents the sensitivity of
model performance to the contrastive weight a.
The consistently small standard deviations across
metrics suggest that the model is robust to varia-
tions in a.

D Test-Time Filtering

Embedding Model. To compute semantic sim-
ilarity between predictions and context, we use
the all-mpnet-base-v2 model (Song et al., 2020;
Sentence-Transformers) from HuggingFace, a pre-
trained sentence transformer with 768-dimensional
output. We treat both the generated prediction
string and the full in-context prompt as input se-
quences and extract mean-pooled embeddings for
similarity calculation.

Similarity Distribution Analysis. We analyze
the cosine similarity ¢(p, ¢) between prediction and
context across 7,371 test samples from ICEWS14
using the contrastively tuned model. The average



Prompt Example

{object_label}.{object}.

You must be able to correctly predict the next {object} from a given text consisting of multiple
quadruplets in the form of "{time}: [{subject}, {relation}, {object_label}.{object}]"
and the query in the form of "{time}: [{subject}, {relation}," in the end. You must generate

2014-01-15: [Mehmet_Simsek, Make_statement, 5195.0ther_Authorities_(Turkey)]
2014-01-20: [Nuri_al-Maliki, Consult, 3380.Joseph_Robinette_Biden]
2014-01-25: [Joseph_Robinette_Biden, Make_an_appeal, 3990.Massoud_Barzani]
2014-02-01: [Joseph_Robinette_Biden, Make_an_appeal_or_request,
L J
Figure 9: Instruction-style prompt format for TKG forecasting.
05751 Fallback Scoring. If generation fails after £ it-
05501 erations (we use k = 1), the model selects a final
05251 answer from H using:
0.500} Hit@1 count(h
’ Hite3 f(n) = Sounh) (12)
0.475¢ Hit@10 K|
0.450} pos(h)
0.425| r(h) =1— ] (13)
04991 ‘ | Y(h)=pB-f(h)+ A =p)-r(h), (14
0.2 0.5 0.8

Contrastive Weight (a)

Figure 10: Effect of contrastive weight (a)

similarity score for correct predictions exceeds that
of incorrect ones by Ay = 0.057. This supports
our assumption that similarity can serve as a proxy
for semantic plausibility.

Novelty vs. Utility. We further observe that:

* 9.1% of predictions are non-historical despite
the gold answer being present in .

* Among all non-historical predictions, only
1.5% are correct and improve Hits@ 10.

These findings indicate that many model gener-
ations deviate from the historical context unnec-
essarily and fail to yield substantial gains. They
motivate fallback to more salient entities when re-
generation fails.

Threshold Optimization. The optimal threshold
7* is learned by maximizing separation between
correct (C) and incorrect (Z) prediction similarities:

" = arg max [Fe(T) — Fr(7)] (11)

where F' is the empirical CDF of cosine similarity
values over samples from C and Z.

16

where pos(h) denotes the rank of A in its occur-
rence order. We set 5 = (.6 in all experiments.

We compute cosine similarities between pre-
dicted entities and prompt context using the
all-mpnet-base-v2 sentence transformer from
HuggingFace. The threshold 7* is tuned on a devel-
opment set by maximizing the separation between
correct and incorrect predictions.

Figure 11 examines the effect of the semantic
filtering threshold 7. As the threshold increases,
Hits@10 improves, peaking near 7 = 0.6. Al-
ways falling back to historical entities (7 = 1.0)
slightly increases accuracy at the cost of explo-
ration and computational efficiency. Threshold
7 = 0.6 balances correction with flexibility, en-
abling the model to revise low-quality outputs with-
out overconstraining its generation space.

E Cross-Dataset Filtering Performance

To evaluate the robustness and generalization ca-
pability of our test-time filtering approach, we an-
alyze its performance across all four benchmark
datasets. While the filtering mechanism was intro-
duced primarily to reduce hallucinations in open-
ended generation, an important question is whether
this component generalizes well across different
temporal knowledge domains or if its effectiveness
is dataset-dependent.



0.65 Hit@1
Hit@3
0.60 Hit@10
0.55
0.50
0.45
0.40
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Filtering Threshold (1)

Figure 11: Effect of filtering threshold (7)

Table 11: Effect of filtering across datasets.

Method Hits@1 Hits@3 Hits@10

ICEWS14

RECIPE-TKG
RECIPE-TKG w/o Filter

0.393
0.392

0.526
0.521

0.651
0.580

ICEWS18

0.224
0.242

0.369
0.382

0.516

RECIPE-TKG w/o Filter 0.437

GDELT

RECIPE-TKG
RECIPE-TKG w/o Filter
!

0.095
0.092

0.192
0.189

0.327
0.266

\
RECIPE-TKG ‘
|

YAGO ‘

RECIPE-TKG
RECIPE-TKG w/o Filter

0.811
0.759

0.880
0.822

0.930
0.842

Table 11 shows the impact of our similarity-
based filtering module across all datasets by com-
paring the full RECIPE-TKG framework against
a variant without filtering. The filtering module
consistently improves Hits@ 10 across all datasets,
with gains ranging from 7.1 percentage points
(ICEWS14) to 9.4 percentage points (GDELT).
Most notably, on the YAGO dataset, the filtering
mechanism substantially improves performance
across all metrics (Hits@1/3/10), suggesting partic-
ular effectiveness on datasets with more descriptive
entities and varied relation types.

These results demonstrate that the filtering mech-
anism’s effectiveness is not dependent on dataset-
specific properties, but rather reflects a general
principle: by enforcing semantic consistency be-
tween predictions and input context, we can en-
hance model performance across diverse temporal
knowledge domains. The observed consistency
suggests that contextual alignment serves as a reli-
able signal for identifying and correcting implausi-
ble outputs, regardless of the specific entities and
relations involved.
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F Baseline Model Details

We compare RECIPE-TKG against several base-
line methods that reflect the dominant model-
ing paradigms for TKG forecasting. Embedding-
based methods include RE-GCN (Li et al., 2021),
which applies relational graph convolutions to
timestamped graph snapshots; XERTE (Han et al.,
2020), which combines subgraph sampling and
path-based reasoning using attention for explain-
ability; TANGO (Han et al., 2021), which uses neu-
ral ODEs to learn continuous-time entity embed-
dings; and TimeTraveler (Sun et al., 2021), which
employs reinforcement learning to explore multi-
hop temporal paths. Rule-based method includes
TLogic (Liu et al., 2022) relies on extracted sym-
bolic rules for forecasting. The results of these
models are derived from Liao et al. (2024)

We also replicate two recent LLM-based meth-
ods. ICL (Lee et al., 2023) applies in-context learn-
ing by prepending historical quadruples to a query
and using greedy decoding with a regex-based an-
swer extraction. GenTKG (Liao et al., 2024) per-
forms parameter-efficient fine-tuning with LoRA
adapters, and combines this with a rule-based his-
tory sampling module. We use their official code-
bases and replicate their evaluation pipelines for
fair comparison.

G Baseline Model Details

We compare RECIPE-TKG against several base-
line methods that reflect the dominant modeling
paradigms for TKG forecasting.

Embedding-based methods include RE-
GCN (Li et al., 2021), which applies relational
graph convolutions to timestamped graph snap-
shots; RE-NET (Jin et al., 2020), which applies
R-GCN (Schlichtkrull et al., 2018) for message
passing for each snapshot and then uses tem-
poral aggregation across multiple snapshots;
xERTE (Han et al., 2020), which combines
subgraph sampling and path-based reasoning
using attention for explainability; TANGO (Han
et al., 2021), which uses neural ODEs to learn
continuous-time entity embeddings; and Time-
Traveler (Sun et al., 2021), which employs
reinforcement learning to explore multi-hop
temporal paths.

Rule-based method TLogic (Liu et al., 2022)
relies on extracted symbolic rules for forecasting.



LLM-based methods We implement several re-
cent LLM-based approaches. ICL (Lee et al., 2023)
applies in-context learning by prepending histor-
ical quadruples to a query and using greedy de-
coding with regex-based answer extraction. Gen-
TKG (Liao et al., 2024) performs parameter-
efficient fine-tuning with LoRA adapters, com-
bined with rule-based history sampling. PPT (Xu
et al., 2023) converts quadruples into natural lan-
guage prompts and uses masked token prediction
to leverage semantic information from pretrained
language models. CoH (Xia et al., 2024b) ex-
plores high-order histories step-by-step to better
utilize richer historical information for LLM rea-
soning. HFL (Xu et al., 2025) learns from histor-
ical facts across different time periods through a
multi-perspective sampling strategy that focuses
on mining relational associations. We use official
codebases where available and replicate evaluation
pipelines for fair comparison.

Note on embedding-based baselines Several
specialized embedding models for TKG com-
pletion (e.g., RotateQVS (Chen et al., 2022),
BoxTE (Messner et al., 2022), CGE (Ying et al.,
2024)) have shown strong performance but are
excluded from our main evaluation for three rea-
sons. First, they use different dataset splits (e.g.,
ICEWS14 with 72,826/8,941/8,963 train/valid/test
samples vs. our 74,845/8,514/7,371 split). Second,
embedding methods require task-specific mathe-
matical engineering, limiting cross-dataset gen-
eralizability, while LLM-based approaches ben-
efit from pre-trained knowledge and adaptability.
Third, there has been limited direct comparison be-
tween these paradigms in the literature. We include
only embedding-based methods using consistent
dataset splits for meaningful comparison.

H Dataset Statistics

We use four standard temporal knowledge graph
benchmarks. ICEWS14 and ICEWS18 are subsets
of the Integrated Crisis Early Warning System, con-
taining geopolitical event records with daily granu-
larity. GDELT provides global political event data,
filtered to the most frequent events for tractability.
YAGO consists of curated facts from a multi-year
period. The statistics for these datasets are pro-
vided in Table 12.
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I More Analysis

I.1 Analysis of Contrastive Fine-Tuning

To complement the ablation results in Section 6.1,
we analyze how contrastive fine-tuning affects
model behavior in low-history regimes—settings
where standard exact-match metrics such as
Hits@k may fail to capture the semantic relevance
of model predictions.

Setup. We group ICEWS14 test samples by his-
tory length and compute the semantic distance be-
tween each model prediction and the gold entity.
We compare three supervision settings: ICL, SFT,
and contrastive FT, all evaluated under the same
TLR history sampling.

We define semantic distance using cosine simi-
larity between predicted and gold entities in a sen-
tence embedding space:

¢(p,0) =1 — cos-sim(E(p), E(0)), (15)

where E(-) denotes the sentence transformer used
in Section 4.3. Lower ¢ indicates higher semantic
alignment, even if the prediction does not exactly
match the gold entity.

Contrastive Tuning Improves Semantic Ground-
ing. Figure 12 plots the semantic distance ¢(p, o)
against the retrieved history length. All models
show the expected trend: greater history generally
yields predictions closer to the gold entity in em-
bedding space. However, the distinction between
supervision strategies becomes clear in low-history
regimes. In the encircled region (history length
< 3), contrastive fine-tuning produces fewer high-
distance predictions than both ICL and SFT. This
demonstrates that contrastive learning enhances the
model’s ability to infer plausible entities even when
the input lacks strong historical evidence.

Multi-hop Sampling Further Stabilizes Model
Behavior. To examine how our sampling strategy
affects model reasoning on sparse-history inputs,
we repeat the same experiment using our proposed
RBMH Sampling. For comparability, we compute
semantic distances on the same subset of samples
originally identified as short-history under TLR.
As shown in Figure 13, contrastive-tuned mod-
els under RBMH Sampling exhibit more uniform
semantic behavior across history lengths. Unlike
the steep drop-off observed under TLR, the seman-
tic distance remains relatively stable, indicating
that many samples previously limited by shallow



Table 12: Dataset statistics used in our experiments. Time granularity varies by dataset and influences temporal

resolution.

Dataset #Train #Valid #Test , #Entities #Relations , Time Gap
ICEWS14 | 74,845 8,514 7,371 7,128 230 1 day
ICEWSI18 | 373,018 45,995 49,545 | 23,033 256 1 day
GDELT 79,319 9,957 9,715 5,850 238 15 mins
YAGO 220,393 28,948 22,765 | 10,778 24 1 year

context can now be grounded through richer struc-
tural and temporal cues. This supports our motiva-
tion in Section 2.1: one-hop sampling often fails
to provide the necessary relational evidence, and
multi-hop expansion is essential for enabling reli-
able reasoning, rather than the test instances being
inherently harder.

Qualitative Support. Figure 14 presents qual-
itative examples where contrastive-tuned models
produce predictions that are not exact matches but
remain relationally and contextually appropriate. In
contrast, ICL and SFT often produce surface-level
or unrelated completions. These examples, paired
with the distributional evidence above, underscore
how contrastive fine-tuning improves semantic gen-
eralization and interpretability, particularly when
Hits @k offers limited signal.

Case Study. To better understand the behavior
of RECIPE-TKG, we provide a case study
comparing the top-10 predictions of four methods
on a specific query. The ground-truth object is

High_Ranking_Military_Personnel_(Nigeria),

which is not explicitly present in the history. As
shown in Figure 15, none of the models are
able to perfectly predict the correct entity.
However, the predictions made by RECIPE-
TKG models are clearly more semantically
aligned with the ground truth. For example,
predictions such as Military_(Nigeria) and
Defense_Personnel_(Nigeria) closely ap-
proximate the true answer in meaning, whereas
other models (ICL and GenTKG) fail to capture
such relevant semantics. This demonstrates the
advantage of contrastive fine-tuning in shaping the
embedding space, allowing the model to produce
more relationally compatible predictions even
when exact matches are not observed in history.
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J Use of AI Tools

Al assistants were used to support writing (e.g.,
phrasing suggestions) and code generation (e.g.,
syntax templates). All such outputs were subject
to thorough human verification, and the authors
remain fully responsible for the content presented.
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Figure 12: Semantic distance (¢) vs. history length on ICEWS14 under TLR sampling. The encircled region

highlights CL’s improved semantic grounding in sparse-history settings.
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history length for the same TLR-identified sparse samples, but evaluated under
RBMH Sampling. CFT learns better with RBMH as it samples the deeper relationships between entities.



Model Outputs

(.

ICL-LLaMA2-7b

1. Citizen_(Nigeria)

2. Boko_Haram

Suleiman_Abba
Other_Authorities_/_Officials_(Nigeria)
Aliyu_Mohammed_Gusau

Nigerian_Army

Nigerian_Army

Nigerian_Army

Nigerian_Army

10. Other_Authorities_/_Officials_(Nigeria)

3
4.
5
6
7.
8
9.

RECIPE-TKG-LLaMA2-7b

1. Citizen_(Nigeria)

2. Boko_Haram
Suleiman_Abba
Other_Authorities_/_Officials_(Nigeria)
Aliyu_Mohammed_Gusau
Government_(Nigeria)
Military_(Nigeria)
Abdul_Aziz_Yari
Chief_of_Staff_(Nigeria)
10. Abdul_Aziz_Yari

3
4.
5
6
7.
8
9.

GenTKG-LLaMA2-7b

1. Citizen_(Nigeria)

2. Boko_Haram

3. Suleiman_Abba

4. Other_Authorities_/_Officials_(Nigeria)
5. Nigeria

6. Aliyu_Mohammed_Gusau
7. Nigeria

8. Nigeria

9. Nigeria_Army

10. None

RECIPE-TKG-LLaMA3-8b

1. Citizen_(Nigeria)

2. Other_Authorities_/_Officials_(Nigeria)
3. Boko_Haram

4. Suleiman_Abba

5. Defense_/_Security_Ministry_(Nigeria)
6. Terrorist_(Boko_Haram)

7. Employee_(Nigeria)

8. Terrorist_(Nigeria)

9. Senior_Military_Official_(Nigeria)
10. Defense_Personnel_(Nigeria)

Ground-truth entity: High_Ranking_Military_Personnel_(Nigeria)

Figure 15: Top-10 predictions from four models. RECIPE-TKG produce semantically closer outputs to the ground

truth.
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