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Abstract

We propose to approach active learning (AL) from
a novel perspective of discovering and then rank-
ing potential support vectors by leveraging the
key properties of the dual space of a sparse kernel
max-margin predictor. We theoretically analyze
the change of a hinge loss in the dual form and
provide both the upper and lower bounds that are
deeply connected to the key geometric proper-
ties induced by the dual space, which then help
us identify various types of important data sam-
ples for AL. These bounds inform the design of
a novel sampling strategy that leverages class-
wise evidence as a key vehicle, formed through
an affine combination of dual variables and ker-
nel evaluation. We construct two distinct types of
sampling functions, including 1) discovery, which
focuses on samples with low total evidence from
all classes to support exploration, and 2) ranking,
which aims to further refine the decision boundary.
These two functions are automatically arranged
into a two-phase active sampling process to bal-
ance exploration and exploitation. Experiments on
various real-world data demonstrate the state-of-
the-art AL performance achieved by our model.

1. Introduction
In many specialized domains, such as medicine and military
operations, the cost of collecting high-quality labels for
training a supervised learning model can be prohibitive.
Active learning (AL) provides a viable solution to address
label scarcity by allowing a machine learning model (active
learner) to sample the instances actively, aiming to build
a more accurate model with fewer labeled data instances.
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Exploration and exploitation are two essential aspects of
active sampling when searching a large unlabeled candidate
space. The former exposes the active learner to data samples
that are dissimilar to the current training set. This behavior
helps the learner develop a general understanding of the
data distribution. The latter aims at improving the predictive
performance by leveraging the existing information.

While sampling strategies designed to balance between ex-
ploration and exploitation have shown improved AL per-
formance (Osugi et al., 2005; Yin et al., 2017), existing ap-
proaches primarily rely on intuitive heuristics, which lack a
principled way to precisely quantify sampling behaviors that
correspond to exploration and exploitation, respectively. In
this paper, we propose a novel framework to systematically
unify exploration and exploitation, aiming to maximize their
respective contribution in AL. As a key innovation, we de-
rive theoretical loss bounds from the dual space of a sparse
kernel max-margin predictor (e.g., a support vector machine
or SVM) and leverage the bounds to design a principled
discover-then-rank strategy to sample the important data
instances (i.e., potential support vectors or SVs).

The advantage of using a sparse kernel max-margin model
is twofold. First, sparse kernel machines offer competitive
predictive performance, especially when the training data is
scarce. Their generalization capacity depends on the margin
instead of the dimensionality of the feature space (Mohri
et al., 2018). This can significantly reduce the risk of overfit-
ting, making it fundamentally more advantageous than most
deep learning models in the “small data” regime, where
AL is commonly applied. For example, in many special-
ized domains, a realistic total annotation budget is typically
less than 1, 000 labels (Tan et al., 2021), which is far from
sufficient for training a decent-sized deep neural network
that can predict well. Second, the decision boundary can
be adequately characterized by a few data instances (i.e.,
SVs), reducing the computational complexity of candidate
searching, which is one of the major concerns in pool-based
AL sampling function design. Ideally, if active sampling
can perfectly recover all the SVs from a large unlabeled
pool, it has the potential to minimize the total labeling cost.
The proposed strategy, while built upon a strong theoretical
underpinning, can be intuitively interpreted by leveraging
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(c) Frank sampling

Figure 1: Demonstration of D-TRUST sampling: (a) Distribution of a dataset with three classes (i.e., blue, red, and yellow)
where three majority clusters of each class are located close to the center and three minority clusters are located far away
from the center; (b) actively selected samples by iteration 5; (c) actively selected samples by iteration 100.

the geometric structure of the dual space. The dual space
properties intuitively draw a connection from finding im-
portant data samples to improving the model from the AL
perspective. In particular, the two stages of the discover-then-
rank strategy can be seen as first positioning the decision
boundaries by discovering as many potential SVs as possi-
ble (through exploration) and then ranking the SVs based
on their contribution to the decision boundary (through ex-
ploitation) to populate the margin.

Built upon the key properties of the dual variables, our the-
oretical results quantify both the lower and upper bounds
on the change of the hinge loss in its dual form when a
new data sample is included. Since only SVs may change
the hinge loss, the lower bound allows us to identify poten-
tial SVs with a theoretical guarantee. We further develop
a label-independent approximation of the lower bound to
support active sampling when the labels are not available.
Meanwhile, the upper bound justifies the use of dual vari-
ables to measure the importance of data samples based on
their impact to the decision boundary. It offers a theoretical
underpinning that sampling and labeling these important
data samples can lead to a faster convergence on AL with
reduced annotation cost.

To support the extension to multiple classes, we propose to
conduct class-wise decomposition of the decision function
to derive the evidence of assigning a data sample to each
class. The class-wise evidence allows us to differentiate
samples that are far away from the current training data or
located close to a mixed group of samples from multiple
classes. The theoretical analysis also indicates that these
samples are important because they either contribute more
to the lower bound or have large dual variable values. We
propose two sampling functions accordingly: Fdisc and Frank,
which focus on selecting each type of samples, respectively.
These two functions are automatically arranged into a two-
phase active sampling process that starts with the discovery
and then transits to the ranking of unlabeled SVs to most
effectively balance exploration and exploitation. We refer
to this process that Discover-Then-Rank Unlabeled Support
vecTors as D-TRUST. Furthermore, we automatically adjust

the transition between the discovery and ranking phases by
leveraging the geometric distribution of SVs with distinct
dual variable values.

Figure 1 demonstrates the sampling process using the pro-
posed D-TRUST framework, which first relies on Fdisc for
effective exploration and then switches to Frank for fine-
tuning. The data distribution contains 3 classes marked as
red, yellow, and blue. The green and black triangles denote
the samples added to the training set by Fdisc and Frank, re-
spectively. The heatmap indicates the value of the sampling
scores: (b) Fdisc at 5 iterations; (c) Frank at 100 iterations.
Samples in regions with warmer colors are favored by D-
TRUST during that iteration. The Fdisc contour map highly
aligns with the distribution of the current training instances,
thus can indicate whether a candidate instance is far away
and worthy of exploring. The Frank contour map highlights
the most conflicting regions at decision boundaries, thus can
indicate whether a candidate instance can help fine-tune the
current decision boundary.

Our main contribution is threefold:

• we provide the theoretical bounds on the change of hinge
loss in its dual form and present insights on how to lever-
age the lower/upper bounds to support active sampling,

• we propose two novel sampling functions by conducting
class-wise decomposition of the decision function for
multi-class AL, in order to find the important SVs that
improve the lower/upper bounds,

• we automatically arrange the two sampling functions into
a two-phase active sampling process to properly balance
exploration and exploitation.

We conduct extensive experiments on both synthetic and
real data to verify the important theoretical properties of the
proposed D-TRUST framework and demonstrate the state-
of-the-art AL performance by comparing with competitive
baseline models.

2. Related Work
In this section, we discuss existing works that are most
relevant to ours. We divide these works into three categories,
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including sampling criterion, active learner selection, and
sampling behavior.

Uncertainty-based sampling. Uncertainty-based sam-
pling approaches are widely used in the pool-based AL
scenario (Lewis & Gale, 1994). The common sampling
mechanisms include least confident sampling (Lewis &
Gale, 1994; Lewis & Catlett, 1994), best-versus-second-best
sampling (Culotta & McCallum, 2005; Settles & Craven,
2008; Scheffer et al., 2001; Li & Guo, 2013), entropy-based
sampling (Shannon, 1948), and mutual-information-based
sampling (Huo & Tang, 2014). These measurements re-
quire models to provide probabilistic prediction capabilities.
While there are ways to convert to probabilistic outputs for
models like SVMs (Platt, 1999), the inaccurately calibrated
probabilities may hurt active learning. Our approach utilizes
the proposed class-wise evidence instead of probabilities.
We also measure the second-order uncertainty, a concept de-
veloped under evidential theory and subjective logic (Jøsang,
2016) that offers a fine-grained analysis on the source of
uncertainty to better support active sampling.

Related AL models. When choosing an AL model, the
adaptability of the model to small data is essential. In the
small data regime, sparse kernel machines, such as SVM,
can also achieve competitive performance, while their spar-
sity can reduce the training cost. Compared to the deep AL
models (Shen et al., 2017; Yang et al., 2017; Yoo & Kweon,
2019), SVM (Tong & Koller, 2001) does not require a large
batch size while having good interpretability as the SVs
stand for important data samples. A major challenge for
SVM-based AL frameworks is the extension to multi-class
scenarios (Jiang & Gupta, 2019). Common extensions in-
clude one-versus-rest (OVR) (Liu & Zheng, 2005) and one-
versus-one (OVO) (Xu et al., 2019). The OVO approach is
limited because the sampling function has to consider too
many decision boundaries. OVR also has the limitation that
each binary classifier is highly imbalanced. We propose a
class-wise evidence measure to represent the information of
each class and make the integration more intuitive.

Balancing exploration-exploitation in AL. Some exist-
ing works randomly choose between the nearest and furthest
instances with a probability threshold (Osugi et al., 2005).
Another solution is to use unsupervised learning (Wang
et al., 2017; Lin et al., 2016) or self-supervised learn-
ing (Mahmood et al., 2022) to compare the similarities
and differences between the unlabeled pool and the cur-
rent training set to navigate sampling more purposefully.
Recent works leverage manifold-preserving graph reduction
to achieve promising exploration-exploitation balance using
AL models such as Gaussian Processes and SVMs (Zhou
& Sun, 2015; Xie, 2021). However, those approaches re-
quire additional structural information to perform sampling,
which limits their applications in many domains. In order

to benefit from balanced exploration-exploitation, some
works have used the numbers of intersecting margins to
approximate data density and guide the sampling behav-
iors (Osugi et al., 2005; Demir et al., 2010). Alternatively,
QUIRE (Huang et al., 2010) takes a min-max view and
measures the informativeness and representativeness of an
instance using approximated true labels with predictions.
The convex hull-based sampling (Shi & Yu, 2018) encour-
ages exploration by penalizing the instances within the con-
vex hull of SVs in the predicted class. However, most of
the related designs rely on solving additional optimization
problems, which can be computationally expensive and not
suitable for AL. In our approach, we use a label-independent
approximation of the change to the hinge loss, and an auto-
matic transitioning mechanism to balance exploration and
exploitation with no additional computational overhead.

3. A Theoretical Foundation for Dual Space
Active Sampling

We present our theoretical foundation to conduct active
sampling in the dual space by proving both the lower and
upper bounds on the change of the hinge loss. Intuitively,
since a non SV is located outside of the margin, it does not
cause the change to the loss. Thus, the ability to quantify
the loss change to the model can effectively locate potential
SVs to support active sampling. However, evaluating the
loss change in its primal form is challenging due to lack of
labels in the AL setting. We propose to formulate the dual
form of the hinge loss and leverage the special properties of
the dual variables to derive the bounds.

3.1. Problem Setup
We consider a pool-based AL scenario. The labeled train-
ing set L contains {(xn, tn)}NL

n=1, in which xn stands for
the feature vector of the n-th data instance and tn ∈
M = {1, 2, ...,M} stands for the label. The unlabeled
pool U contains only feature vectors {(xi)}NU

i=1, where
NU ≫ NL. At each active sampling iteration, a data in-
stance is sampled from U using a certain sampling function:
x∗ = argminx∈U F (x), where F (·) measures the informa-
tiveness of a sample.

The support vector machine (SVM) classifier (Vapnik, 1968)
has been commonly used for AL. It maximizes the margin
between different classes by making y(xn) ≥ 1 when tn =
1 and y(xn) ≤ −1 when tn = −1, where y(x) is the output
from the decision function, given by

y(x) = w⊤x+ b =

N∑
n=1

antnk(xn,x) + b (1)

where an is a dual variable. In the theoretical analysis, we
assume a general form of y without the offset b. Extension
to multiple classes is typically achieved through one-versus-
rest (OVR) (Liu & Zheng, 2005) for both simplicity and
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interpretation purposes. Then, we use {(xn, t̃nm)}Nn=1 to
denote each binary classification problem, where we trans-
form the labels into {−1, 1}, t̃nm = 1 if tn = m.

3.2. Geometric Interpretation of Dual Variables
The learning objective of SVM introduces a margin con-
straint C that controls the level of penalty for misclassified
samples. C controls the slack variables ξn’s, which relax the
hinge-loss condition: ξn = 1 − tny(xn). It is also the up-
per bound for dual variables an’s. During the optimization,
some dual variables are reduced to zero. A data instance
with a non-zero an is called a support vector (SV). The
SVs alone can fully define the decision boundary, thus the
solution is sparse. The decision function can be seen as
a hyper-plane in the dual space spanned by the kernel ba-
sis k(xn,x) with non-zero an. Among the SVs, those that
are located on the margin satisfy an < C. These locations
should be where the model makes relatively confident pre-
dictions according to the margin. For SVs within the margin,
their dual variables satisfy an = C. Geometrically, these
SVs can be on either side of the decision boundary, which
implies a higher possibility of mis-classification. Intuitively,
the larger the dual variable value is, the bigger impact this
SV has on the decision boundary. In (Burges, 1998), a me-
chanical analogy shows the impact of SVs in an intuitive
way. In particular, the SVM solutions can translate into the
conditions of mechanical equilibrium:

∑
Forces =

N∑
n=1

antnŵ = 0 (2)

∑
Torques =

N∑
n=1

sn × (antnŵ) = 0 (3)

where sn stands for an SV. In this analogy, the force is pro-
portional to an. Consequently, we aim to design a sampling
function to efficiently collect the data samples with an es-
timated large an, which can potentially become important
SVs when labeled, leading the model to faster convergence.
Next, we show how the proposed active sampling function
searches and ranks unlabeled data instances in this dual
space.

3.3. Bounding the Change of Hinge Loss
In this section, we present our theoretical results that bound
the change of the hinge loss. This will allow us to effectively
avoid non SVs when conducting active sampling and focus
on the important data instances that directly shape the final
decision boundary. Since analyzing the exact change of loss
without the label information is challenging in the primal
form, we proceed to bound the change in the dual space,
which is based on the dual form of the hinge loss defined
below.

Definition 1 (Dual hinge loss). Given the optimal hinge

loss in the primal form:

LN = min
w,b,ξ

∥w∥2

2
+ C

N∑
n=1

ξn,

s.t. tny(xn) ≥ 1− ξn ∧ ξn ≥ 0, n ∈ [N ] (4)

the corresponding dual hinge loss is defined as

G(aN ) =

N∑
n=1

an − 1

2

N∑
i=1

N∑
j=1

aiajtitjk(xi,xj) (5)

where aN = (a1, ..., aN )⊤ are the dual variables that maxi-
mizes the dual problem of (4).

Since the primal problem is convex, there is no duality
gap between the primal and dual solutions. Thus, we have
G(aN ) = LN , which allows us to use the dual hinge loss
as a proxy to analyze the original hinge loss. In particular,
when including an SV xN+1 into the training set, it may
reduce the margin (i.e., by decreasing 1/∥w∥), which leads
to the increase of ∥w∥2

2 and/or introduce a positive slack
variable ξN+1 when tN+1y(xN+1) < 1. As a result, we
will observe an increase of the hinge loss: LN+1 > LN .
In contrast, for a non SV, the loss will remain the same.
While quantifying the exact loss change is challenging in
the primal form, we can bound this change by leveraging the
dual hinge loss, as summarized in the following theorem.
Theorem 1. Let GN = G(a′N ) be the dual hinge loss
with N samples and GN+1 = G(aN+1) be the loss with
one additional sample. Assume that a′N and aN+1 are the
solutions of the corresponding dual problems. Let y(N)(·)
and y(N+1)(·) denote the decision functions given by (1).
We define the change of loss ϵ(N+1) = GN+1 −GN . Then,
ϵ(N+1) can be bounded as follows:

ϵ(N+1) ≤ aN+1

[
1− (tN+1y

(N+1)(xN+1))
]

+
1

2
a2N+1k(xN+1,xN+1) (6)

ϵ(N+1) ≥

0, tN+1y
(N)(xN+1) > 1

[1−tN+1y
(N)(xN+1)]

2

2k(xN+1,xN+1)
, Otherwise

(7)

Proof sketch. To bound the change of loss ϵ(N+1), we in-
troduce a′N+1 = (a′N , 0)⊤ which extends a′N with a 0
entry, eN+1 = (0, .., 0, 1)⊤, which is the unit vector in the
(N+1)-th direction, and β ≥ 0, which is a hypothetical dual
variable. By definition, a′N and aN+1 are the maximizers of
GN and GN+1, respectively. Thus

ϵ(N+1) ≤ GN+1(aN+1)−GN+1(aN+1 − aN+1eN+1)

ϵ(N+1) ≥ max
β

GN+1(a
′
N+1 + βeN+1)−GN (a′N )

(8)
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Expanding both the left-hand and right-hand sides, we get
the conclusion of Theorem 1. The complete proof is pro-
vided in Appendix B.

While Theorem 1 bounds the change on the hinge loss, the
results are not directly applicable for active sampling. First,
the upper bound only indicates largest possible change with
no guarantee on the minimum change. While the lower
bound provides such a guarantee and a non-zero lower
bound indicates a SV, evaluating the lower bound still re-
quires the label information (i.e., tN+1), which is not avail-
able during sampling. In the following corollary, we first
simplify the bounds by considering a common type of kernel
function and then derive a label-independent approximation
of the lower bound to support active sampling.

Corollary 1. When considering a square exponential kernel
(or RBF kernel), the bounds on the change of the hinge loss
can be simplified as

ϵ(N+1) ≤ aN+1

[
1− (tN+1y

(N+1)(xN+1))
]
+

1

2
a2N+1

(9)

ϵ(N+1) ≥

{
0, tN+1y

(N)(xN+1) > 1

[1−tN+1y
(N)(xN+1)]

2

2 , Otherwise
(10)

Furthermore, adding a sample xN+1 with a small
|y(N)(xN+1)| guarantees a large change on the lower
bound of the dual hinge loss.

The proof of the simplified bound is straightforward by
plugging in k(x,x) = 1 for a RBF kernel. For the second
part of the corollary, we can see that the lower bound is
decided by [1− tN+1y

(N)(xN+1)]
2. While the label tN+1

is unavailable, we may still ensure this term is large when
the absolute value of decision function evaluated on xN+1

(i.e., |y(N)(xN+1)|) is small.

3.4. Mapping Hinge Loss Bounds to Active Sampling
Functions for Exploration and Exploitation

The theoretical results as summarized by Theorem 1 and
Corollary 1 provide important guidance to the design of the
two sampling functions, including Fdisc and Frank, as well as
the two-phase D-TRUST sampling process to optimally bal-
ance exploration and exploitation. First, since the decision
function can be evaluated without the labels, Corollary 1
suggests a theoretically sound way for actively sampling
unlabeled instances that are likely to be SVs. In the simple
binary case, it reduces to a commonly used sampling strat-
egy that chooses data samples close to the current decision
boundary. However, such a strategy cannot differentiate a
sample’s specific contribution in terms of exploration or
exploitation. Furthermore, extension to multi-class setting

is nontrivial as multiple decision boundaries are simultane-
ously involved. We propose to further conduct class-wise
decomposition of the decision function to derive the evi-
dence that supports assigning the data sample to each class
(see Section 4.1 for details). Such a decomposition can iden-
tify two distinct scenarios, both of which can lead to a small
|y(N)(xN+1)|. Intuitively, the first scenario corresponds to
the case when the unlabeled sample xN+1 is far away from
all the current training samples, i.e., k(xn,xN+1) is small
∀n ∈ [N ]; the second scenario corresponds to the case when
xN+1 is located close to a mixed group of training samples
from multiple classes. The first type of samples are instru-
mental for exploring the unlabeled pool while the second
type can effectively exploit the labeled samples to refine the
current decision boundary.

Besides the lower bound, the upper bound given in (9) im-
plies that an SV with a large dual variable can incur a more
significant change to the model to ensure faster convergence.
From a geometric perspective, these SVs are located within
the margin whose dual variables reach the maximum value
as C. Intuitively, a small C corresponds to a large margin,
which leads to a large number of SVs with many of them
located within the margin and their dual variables tied at C.
This makes it more difficult to identify the most important
SVs and labeling all the SVs may incur a high annotation
cost. In contrast, a large C will shrink the margin that re-
duces the number of SVs. Important SVs can also be more
easily identified as only a few will be within the margin.
While this can effectively reduce the annotation cost, a small
margin can compromise the generalization capability of the
actively learned model as evidenced by the margin based
generalization bound (Mohri et al., 2018). In next section,
we will formally investigate the impact of the margin con-
straint C on identifying the important samples to support
fast convergence in AL as well as its important relationship
to the total annotation cost.

4. Discover-Then-Rank Active Learning
We present the two-phase Discover-Then-Rank active learn-
ing process in this section based on the the theoretical re-
sults obtained in Section 3. We start by conducting decision
function decomposition to derive the class-wise evidence to
handle multiple classes. We then define the two sampling
functions: Fdisc and Frank, which focus on exploration and
exploration of AL, respectively. Finally, we show how to in-
tegrate these two functions into an unified sampling process,
which we refer to as D-TRUST.

4.1. Decision Function Decomposition
Given a set M of classes, we denote ym(·) as the decision
function of class m ∈ M obtained under OVR and anm’s
the corresponding dual variables. We further decompose
this decision function by collecting the class-wise evidence
given by
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Dm(x) =

N∑
n=1,tn=m

anmk(xn,x) (11)

Given an unlabeled sample xN+1, if Dm(xN+1) is small
for all m ∈ M, it implies (i) |y(N)

m (xN+1)| is small, which
guarantees a large change to the dual hinge loss if xN+1 is
labeled, and (ii) xN+1 is far away from training samples
from all classes, making it effective for exploration if la-
beled. In contrast, if Dm(xN+1) is simultaneously large for
multiple classes, then |y(N)

m (xN+1)| is still small as tnm and
tnm′ take opposite signed in the decision function, which
cancels out their corresponding class-wise evidences. This
implies that xN+1 is located in a conflicting region and
labeling it essentially exploits the current labeled data to
improve the decision boundary. In what follows, we present
the two sampling functions: Discovery (Fdisc) and Ranking
(Fdisc), which leverage the class-wise evidences to identify
two different types of samples as described above to best
support exploration and exploitation of AL, respectively.

4.2. Exploration-Based Sampling Through
Evidence-Aware Discovery

The Discovery function aims to discover data samples that
are potentially SVs and can quickly shape the decision
boundary. First, we construct the discovery function using
the combination of proposed class-wise evidence measures.
Then, we use uncertainty assistance to avoid the unstable
issue in the beginning and propose a dynamic update mech-
anism for the augmented ˆFdisc.

Evidence-aware discovery. Built upon the definition of
class-wise evidence, we define Discovery sampling using a
minmax() function that chooses data samples with small
evidences from all classes

x∗ = argmin
x∈U

Fdisc(x), Fdisc(x) = max
m∈M

Dm(x) (12)

As we introduced in Section 4.1, each Dm provides a class-
wise evidence for how much a data sample is supported
by class m. By using the minmax() function, Fdisc places
a focus on data instances in the unlabeled pool that are
dissimilar to the positive SVs from all the classes. It is most
suitable for the early stage of AL, where the training data is
limited and exploring the data space is critical.

Uncertainty assistance. To avoid constantly sampling
outliers that are far away from the current training set, we
design an augmented Discovery function by integrating Fdisc
with dual space induced uncertainty measurements to effec-
tively explore the unknown but interesting regions in the
data space. In particular, we consider a pair-wise confusion
metric UNpair and a general confusion metric UNall. The
pair-wise metric is to find the instance x∗ with the smallest
difference between its top two class-wise decision function
values:

UNpair(x) = ym̂1(x)− ym̂2(x) (13)

where m̂1, m̂2 ∈ M are the labels with the two largest de-
cision functions for x. The pairwise measure only considers
the top two probable classes and ignore the rest. To accom-
modate a large label space, we use the softmax function to
convert ym(x) to a probability score p(m|x) and compute
the entropy over all classes, leading to the general confusion
metric UNall. The overall augmented Discovery function is

F̂disc(x) = Fdisc(x) + λUNpair(x)− γUNall(x) (14)

The two additional uncertainty metrics favor samples that
are potentially misclassified and overall confusing, which
facilitate F̂disc(x) in choosing informative samples while
exploring the data space.

Dynamic update mechanism. We then propose an up-
date mechanism that controls the impact of each factor in
the sampling score using two balancing weights λ and γ.
These two balancing parameters are both non-negative, as
the model should choose samples with maximum UNall
score and minimum UNpair and Fdisc(x) scores.

The dynamic update mechanism has two turning points in
the early stage, which determine the choice between the two
following specific update rules:

λ = λ0 − i∆λ, γ = 0 (15)
λ = max{λold −∆λ, 0}, γ = γ0 + i∆γ (16)

where λ0, γ0 are set during the initialization, i is the number
of iterations, and ∆λ,∆γ are the changing rate.

Empirically, UNall is less accurate, hence not effective when
the training samples are very sparse. In contrast, UNpair
can measure the local uncertainty more correctly in the
very early stage. Thus, λ is assigned a larger value at the
beginning by (15). Later, we increase the impact of UNall
and reduce the weight of UNpair, meanwhile let Fdisc(x)
dominate by increasing ∆λ and transitioning into Eq. (16).
More details are provided in Appendix D.3.

4.3. Exploitation-Based Sampling Through Active
Ranking Based on Estimated Dual Variables

The Ranking function aims to identify data samples with the
largest impact to the decision boundary and labeling these
samples can ensure a fast convergence of AL with reduced
annotation cost. The upper bound on the change of the dual
hinge loss derived in both Theorem 1 and Corollary 1 shows
that the dual variable can serve as good indicator to rank
the data samples. However, designing the Ranking func-
tion faces two major challenges. First, the dual variables
are tightly coupled with the margin constraint C and it is
important to understand the impact of the margin constraint
so that important samples can be properly separated to avoid
a high annotation cost in AL while ensuring good gener-
alization of the actively learned model. Second, the dual
variable value is not available until the label is assigned,
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Figure 2: SVs and magnitudes of corresponding dual variables compared to C: The size of the triangle markers indicates the
magnitude of the corresponding an/C. The background contour map shows the decision function y(x) from (1).

Table 1: Impact of margin constraint C

C value 1 10 100
Model accuracy 0.99 0.99 0.98
Number of SVs 21 10 6
Mean dual variable value of SVs 0.88 7.21 50.46
Number of an = C SVs 17 6 2

making it not applicable for active sampling. We propose to
leverage the geometric property of the dual space and use
class-wise evidence to define a proxy measure of the dual
variable values without label information.

Impact of the margin constraint. Since the margin con-
straint C upper bounds the dual variable values, in order to
be able to rank the importance of data samples according to
their dual variable values, it is necessary to set a relatively
large C value. From the geometric perspective, a small C
leads to a large margin, which allows many SVs to be lo-
cated within the margin. As a result, their dual variables
are all tied at C, making it impossible to differentiate their
relative importance. This phenomenon is also empirically
verified by results from a synthetic dataset as shown in Ta-
ble 1 and Figure 2.

From the table, we see that the number of SVs decreases as
we increase the C value. Meanwhile, each SV plays a more
important role as reflected by much larger dual variable val-
ues on average. As shown in Figure 2, the SV locations are
according to either an = C or an < C, consistent with our
geometric interpretation of dual variables in Section 3.2. As
we can see in Figure 2 (a), when C is too small, the decision
boundary is less accurate, and there are too many SVs within
the margin. In Figure 2 (c), when C is too large, although
the decision boundary is close to the optimal (Figure 2 (b)),
there are too few SVs and it would cause a problem if there
is overlapping in the dataset.

We have discovered that for larger C, there is potentially
more distinction between important SVs and other SVs.
However, setting a very large C value will hurt the general-
ization power of the model (reflected by a lower accuracy
in Table 1). This can be more formally verified through the
margin theory (Mohri et al., 2018):

R(h) ≤ R̂ρ(h) +
2

ρ
ℜ̂S(H) + 3

√
log 2

δ

2n
(17)

where R(h) is the true generalization error, R̂ρ(h) is the
empirical error, H is a hypothesis set and ℜ̂S(H) is the
empirical Rademacher complexity of H. For any δ > 0,
∀h ∈ H, the above holds with probability at least 1 − δ
given fixed ρ > 0, where ρ is defined as the margin. In
SVM, C ∝ 1

ρ2 and if C is set too large, the margin will be
too small. Thus, the coefficient 2

ρ of the Rademacher term
will be large, which will result in a loose error bound.

Remark. Since the margin constraint C determines the size
of the margin, which in turn controls the number of SVs, the
selection of C can be connected with the available annota-
tion budget under the AL setting if the goal is to sample and
label the important SVs. Intuitively, for a relatively small
annotation budget, a large C should be chosen (which may
compromise the generalization as expected); for a larger
budget, a smaller C could be used to improve the generaliza-
tion power. However, it should still be larger than the passive
setting to allow the AL model to identify more important
instances during sampling by avoiding a large number dual
variables to reach their upper bound at C.

A proxy measure of dual variables. Since the dual vari-
able values are not available before the labels are assigned,
we propose a proxy measure to approximate the dual vari-
able value without using the label information. A key intu-
ition is that an SV with a large dual variable (e.g., a = C)
is located within the margin. Geometrically, these SVs are
usually located in a conflicting region in the data space that
is surrounded by a mixed group of data samples from multi-
ple classes. To this end, we propose to measure the level of
conflict for an unlabeled sample using a dissonance-based
measurement as a proxy to the dual variable:

Frank(x) =
∑
t∈M

(Dt

∑
j ̸=t DmBal(Dm, Dt)∑

m ̸=t Dm

)
(18)

where Bal(Dm, Dt) = 1 − |Dm−Dt|
Dm+Dt

if DmDt ̸= 0 and 0
otherwise. Dissonance has also been formulated under the
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Subjective Logic framework (Jøsang, 2016). As a second-
order uncertainty, it is caused by the conflict of strong evi-
dence. Hence, a higher Frank score favors samples causing a
high conflict among multiple classes. Different from Fdisc,
a high Frank score requires large evidences from multiple
classes simultaneously, which ensures that the data sample
is located in a conflicting region w.r.t. the current training
samples. Since such regions are more likely to be within
the margin, we expect these data samples to have large dual
variables. Having this, the Ranking sampling chooses a data
sample with the largest Frank score: x∗ = argmaxx∈U Frank.

4.4. Transition from Discovery to Ranking
While Fdisc and Frank perform exploration and exploitation
effectively, it is important to arrange them properly to for-
mulate an overall active sampling process to achieve a good
balance between these two essential and complementary
sampling behaviors. We propose to leverage the dual vari-
able values of labeled samples (from the initial pool and
the sampled ones) to determine a transition threshold from
discovery to ranking based sampling. In particular, with
effective exploration, more SVs can be identified that help
to shape the correct decision boundary. When the decision
boundary is shaping, more SVs will expand the margin
that increase the number of SVs inside the margin. Since
their corresponding dual variables are positive, when tak-
ing the average over all the labeled samples, the mean dual
variable value should increase steadily. Such an increasing
trend indicates the increase in the volume of the margin.
When the volume is sufficiently large, we should transit into
exploitation using ranking sampling. The transition crite-
rion is triggered if the mean dual variable value surpasses a
threshold based on the initial value:∑

n

∑
m anm

NSV
> η

∑
n′
∑

m a
(0)
n′m

N
(0)
SV

(19)

where NSV and N
(0)
SV are the total number of SVs in the

current iteration and the initial pool, respectively. With this
transition criterion, we connect our discover sampling and
ranking sampling. We show the overall active sampling
process in Algorithm 1 of Appendix C. The transition pa-
rameter η could be set by considering the margin constraint
C based on our prior discussion on the impact of the margin
constraint. Empirically, any η > 1 works well and we set
η = 1.5 in our experiments.

5. Experiments
We conduct experiments on both synthetic and real data
to assess the effectiveness of the proposed D-TRUST AL
process. The synthetic experiments are designed to verify
important theoretical properties and the desired sampling
behavior of the two sampling functions. Limited by space,
we present the synthetic experiment results in Appendix D.
In the real data experiments, we compare D-TRUST with

Table 2: Dataset property descriptions

Dataset NU +NL dim(x) |C| Domain
Dermatology 1 800 1391 50 Medical
Dermatology 2 868 1554 30 Medical

Yeast 1484 8 10 Biology
USPS 9298 256 10 Image

Auto-drive 58509 48 11 Auto
Penstroke 1144 500 26 Image

competitive AL baselines to demonstrate its state-of-the-
art AL performance. We also investigate the impact of key
model parameters through a detailed ablation study.

Datasets, experiment setup, and comparison baselines.
We conduct AL experiments on six real-world datasets,
which are summarized in Table 2. In these experiments,
we start with the same labeled training set L0 and record
the test accuracy of the model trained over each AL itera-
tion. The detailed parameter settings are described in Ap-
pendix D. To demonstrate the effectiveness of D-TRUST, we
compare with several competitive baselines: Convex Hull-
based sampling (MC-CH) (Shi & Yu, 2018), QUIRE sam-
pling (QUIRE) (Huang et al., 2010), Graph Density-based
sampling (GD) (Ebert et al., 2012), Best vs Second Best
sampling (BvSB) (Joshi et al., 2009), and Entropy-based
sampling (Entr) (Wu et al., 2004).

AL performance comparison. For each model using dif-
ferent sampling approaches, we plot the model accuracy
on a left-out test set during each AL iteration, through 500
iterations in total. In Figure 3, we show that the proposed
D-TRUST converges faster than all the compared ones. All
the models tested use SVM as the base classifier, so any
difference in the predictive performance is a result of the
design of the sampling function.

The proposed D-TRUST model has dominant performance
on all datasets, showing strong adaptation power on dif-
ferent types of domains. MC-CH achieves the second best
performance as it also effectively controls the exploration-
exploitation balance. BvSB shows good performance in the
early stage because of the local uncertainty is more reliable
when the training set is small. Entr sampling shows a compa-
rable performance with BvSB. However, on some datasets,
it performs poorly initially, which is due to the inaccurately
estimated probabilities from the limited amount of training
data. GD and QUIRE also show competitive performance to
BvSB sampling on certain datasets, but they struggle on the
Dermatology datasets, which contain relatively large num-
ber of classes. D-TRUST also exhibits a clear advantage in
the early stage of AL, which verifies the effectiveness of
evidence-based exploration.

Ablation study. In this section, we show the impact of
key model parameters in Figure 4. We initialize λ and
γ in a range such that the scale of the different scores
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Figure 3: AL performance comparison
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Figure 4: Impact of balancing and transition parameters

Fdisc,UNall,UNpair are comparable. We set the update rates
∆λ and ∆γ to adjust λ and γ dynamically. The detailed
update rules are introduced in Appendix D. We use λ1 and
γ1 to denote the largest value that λ and γ take during the
entire AL process and provide the ablation study on differ-
ent λ1 and γ1 values. For the transition parameter η, we set
the values based on the number of classes and the actual
average dual variables on the datasets (which depend on
C). Here we show two example datasets on the effect of
η. More results are presented in Appendix D. The results
show that D-TRUST is robust to the change of balancing
parameters within a certain range. For the transition param-
eter, it affects the middle stage if the transition happens too
early or too late, but the overall performance is still stable

when η is around 1.5 for most datasets. Thus in real-world
applications, these parameters can be chosen effortlessly,
as long the different components in the Fdisc function have
similar scales.

6. Discussions and Future Directions
In this work, we primarily focus on the classical sample-
starved AL setting, where data annotation is costly and
labels are expensive to acquire. It is worth noting that a
majority of AL research in recent years has shifted the focus
to leveraging deep learning models for AL. As a result,
most of these works assume that a large batch of actively
sampled data instances can be labeled in each AL iteration to
avoid frequent updates of a deep neural network (DNN). We
believe it is important to re-ignite the interest in advancing
the AL research in the classical sample-starved setting. We
approach this classical problem from a novel perspective by
leveraging the key properties of the dual space of a sparse
kernel max-margin predictor. However, we do acknowledge
the extension to DNNs as an important future direction.
The extension is feasible by leveraging the recent efforts
in bridging SVMs and DNNs (e.g., (Tang, 2013)) or deep
kernel learning methods (e.g., (Wilson et al., 2016)). There
are also interesting works that utilize max-margin models
as a component in the meta-learning framework ((Lee et al.,
2019)). Thus, we can also further investigate combining
max-margin based AL with other learning paradigms such
as meta-learning or reinforcement learning.

7. Conclusion
In this paper, we develop a theoretical foundation that allows
us to conduct principled active sampling in the dual space
induced by a sparse maximum-margin predictor. We derive
both the lower and upper bounds of a hinge loss in the dual
form, which can guide active sampling to identify potential
SVs and those with a large impact on the decision boundary.
A two-phase active sampling process dynamically transi-
tions from discovery to ranking sampling by monitoring
the change on the mean of the dual variable values. As a
result, this process achieves an automatic balance between
exploration and exploitation for effective active sampling.
Experimental results and comparison with competitive base-
lines justify the effectiveness of the proposed dual space
induced active sampling process.
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Appendix

Organization of Appendix. In this Appendix, we organize additional content as follows. We first provide the summary
of the notations in Appendix A. Then, we present the complete proof for the theoretical analysis in the main paper in
Appendix B. We provide an algorithm overview of the proposed D-TRUST active sampling strategy in Appendix C. Then,
we present more experimental results, including the synthetic dataset and more illustrative examples, detailed real-data
experimental settings, and additional results including more ablation studies in Appendix D. We discuss the potential societal
impacts, limitations, and possible extensions of the current work in Appendix E. Finally, the link to the source code is
provided in Appendix F.

A. Summary of Notations

Table 3: Summary of key notations with definitions

Notation Definition Type
xn Feature vector of the n-th data sample Observed
tn True label of xn Observed
t̃nm Binary coded label of xn for class t Observed
ϕ(xn) Basis function at xn Implicit
w, b Weight vector and intercept in decision function definition Implicit
y(xn) Decision function of xn Computed
anm Dual variable for xn and class t Computed (Dual representation)
x∗ Selected data sample by sampling function
Dm Class-wise Evidence of label m Computed
λ, γ Balancing parameters in the unified sampling function Hyperparameter
λ0, γ0,
∆λ,∆γ,
λ1, γ1

Initial values, update rates, and the largest values of balancing
parameters in the unified sampling function Hyperparameter

η Threshold parameter for the transition from Fdisc to Frank Hyperparameter

B. Proof of Theoretical Results
Proof of Theorem 1

Proof. First we write the Lagrangian form of the losses:

GN (a′N ) =

N∑
i=1

a′i −
1

2

N∑
i=1

N∑
j=1

a′ia
′
jtitjk(xi,xj) (20)

GN+1(aN+1) =

N+1∑
i=1

ai −
1

2

N+1∑
i=1

N+1∑
j=1

aiajtitjk(xi,xj) (21)

We also define a′N+1 = (a′1, a
′
2, ..., a

′
N , 0)T , eN+1 = (0, .., 0, 1)T , and 0 ≤ β ≤ C. By definition, a′N and aN+1 are the

maximizers of GN and GN+1, thus

max
β

GN+1(a
′
N+1 + βeN+1)−GN (a′N )

≤GN+1(aN+1)−GN (a′N )

≤GN+1(aN+1)−GN+1(aN+1 − aN+1eN+1) (22)
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The lower bound:

max
β

GN+1(a
′
N+1 + βeN+1)−GN (a′N )

=max
β

β −
N∑
i=1

a′iβtitN+1k(xi,xN+1)−
1

2
β2k(xN+1,xN+1)

=max
β

β(1− tN+1y
(N)(xN+1))−

1

2
β2k(xN+1,xN+1) (23)

We use y(N)(x) =
∑N

i=1 a
′
iβtitk(xi,x). The similar substitution is used in the following proof as well. When 1 −

tN+1y
(N)(xN+1) < 0, the β solution for the max function is 0, thus the lower bound is also 0 in this case. Otherwise, the β

solution is 1−tN+1y
(N)(xN+1)

2k(xN+1,xN+1)
, the corresponding lower bound is (1−tN+1y

(N)(xN+1))
2

2k(xN+1,xN+1)
. We use the RBF kernel which makes

k(xN+1,xN+1) = 1. The result can be concluded as (1−tN+1y
(N)(xN+1))

2

2 .

The upper bound:

GN+1(aN+1)−GN+1(aN+1 − aN+1eN+1)

=aN+1 −
N+1∑
i=1

(tiai)(tN+1aN+1)k(xi,xN+1) +
1

2
a2N+1k(xN+1,xN+1)

=aN+1(1− (tN+1y
(N+1)(xN+1))) +

1

2
a2N+1k(xN+1,xN+1) (24)

If xN+1 is not an SV given aN+1, above is equal to 0. Otherwise, 1 − (tN+1y
(N+1)(xN+1)) = ξN+1. Because 0 ≤

aN+1 ≤ C, the upper bound increases as aN+1 increases. We use the RBF kernel which makes k(xN+1,xN+1) = 1. The
result can be concluded as aN+1

[
1− (tN+1y

(N+1)(xN+1))
]
+ 1

2a
2
N+1.

C. Algorithm
Algorithm 1 presents the detailed active sampling process.

D. Additional Experiments
D.1. Synthetic Data Results

Here we use the same synthetic dataset as Figure 1 to show the distribution of important SVs. In Figure 5, we show the SVs
from each binary SVM and the current decision function built by them. As can be seen, an effective exploration-oriented
model is able to discover the minority groups, thus the overall decision function y(x) has two peaks in each binary SVM.
We show that the SVs near the center of the majority groups have larger dual variable values, as indicated by a larger marker
size, than the far away ones. The SVs with smaller dual variable values have less impact on the decision function.
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(b) SVs of Class 2
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Figure 5: SVs and magnitudes of corresponding dual variables an of each binary SVM. The color-coded circles mark the
current training points. The triangle markers are the SVs, green stands for the positive class, and black stands for the negative
class. The size of the triangle markers indicates the magnitude of the corresponding an. The background contour map shows
the decision function ym(x) from (1).
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Algorithm 1: D-TRUST Active Sampling
Result: the final L, test accuracy at each iteration

1 initialization: max number of iterations I , length scale parameter l for the RBF kernel
2 split the data into the labeled training set L, the unlabeled candidate set U (size> I), and the test set T
3 while iterations i < I do
4 adjust λ, γ according to i
5 fit the classifier based on L
6 save the predictive accuracy acc based on T
7 get predicted probabilities p and dual variable values anm based on U

8 if
∑

n

∑
m anm

NSV
≤ η

∑
n′

∑
m a

(0)

n′m

N
(0)
SV

then

9 compute Dm using
10 Dm =

∑NL
n=1,t̃nm=1

anmk(xn,x)

11 compute sampling score
12 Fdisc(x) = maxm∈C Dm

13 F̂disc(x) = Fdisc(x) + λUNpair(x)− γUNall

14 select the instance x∗ = argminx∈U F̂disc(x)
15 U = U\x∗; L = L ∪ {x∗}
16 else
17 compute Frank using Frank = diss(x)
18 select the instance x∗ = argmaxx∈U Frank(x)
19 U = U\x∗; L = L ∪ {x∗}
20 end
21 end

D.2. General Parameter Settings

In the main experiments, we apply the same margin threshold C = 10 for all datasets. We also adopt the same RBF kernel
for all datasets. The characteristic length scale l for the kernel is chosen based on the scale of the input features x. We
provide a brief ablation study of C and l in Table 4.

Table 4: Model performance using various C and l

Dataset Description Method Number of selected samples
C l 100 200 300 400 500

Dermatology1

100 1 D-TRUST 77.0 87.0 91.0 93.0 92.5
BvSB 76.0 84.0 86.0 88.0 87.5

1 1 D-TRUST 78.0 87.0 88.5 89.5 89.0
BvSB 73.5 86.5 88.0 88.0 88.0

10 0.001 D-TRUST 72.5 81.5 86.0 88.0 88.5
BvSB 67.5 80.0 86.0 86.0 86.5

USPS
100 0.01 D-TRUST 90.0 92.0 94.0 95.2 95.3

BvSB 87.3 90.7 92.6 94.3 94.7

1 0.01 D-TRUST 88.9 92.3 93.9 94.8 94.8
BvSB 88.8 91.6 93.7 94.4 94.6

Penstroke
50 1 D-TRUST 15.7 18.0 25.4 29.6 29.9

BvSB 15.1 17.1 16.9 23.4 25.7

0.1 1 D-TRUST 16.9 20.7 26.9 29.6 31.4
BvSB 13.0 19.8 22.5 24.0 25.4

D.3. Dynamic Update Rules of F̂disc

In the discovery stage, we use a dynamic-update mechanism to fully exhibit the exploration power of Fdisc under the
uncertainty-guided regularization from UNpair and UNall. As introduced in the main paper, the UNall and UNpair measures
are to help us not only find the samples that have the smallest overall |y(x)|, but also are confusing to the current model and
more likely to be wrongly classified. We here provide more details about the update mechanism that controls the balance by
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changing weights λ and γ.

The key idea of the dynamic-update mechanism is to have two turning points in the early stage. Empirically, UNall is less
accurate and effective when the training samples are very limited, while UNpair can measure the local uncertainty more
correctly in the very early stage. Thus, λ is assigned with a larger value at the beginning, while γ is kept at 0. During this
period, the update rule is

λ = λ0 − i∆λ, γ = 0 (25)

where λ0 is set during the initialization, i is the number of iterations, and ∆λ is the changing rate.

The first turning point is when a decent amount of data instances are added to L. We increase the impact of UNall and reduce
the weight of UNpair. We also want exploration to play a bigger role in this stage, which means Fdisc(x) should dominate.
We thus increase ∆λ to make sure of this. At the same time, γ is slowly increased, so that we can smoothly transition into
the exploitation-oriented later stage. The rate is controlled by a small ∆λ. During this period, the update rule is

λ = max{λold −∆λ, 0}, γ = γ0 + i∆γ (26)

A larger λ0 (i.e., 5) is chosen for datasets with a large number of classes (e.g., Derm 1&2) to allow DFpair to stand out in
the early phase of AL. Otherwise, λ is set smaller (i.e., 0.5-1). We set γ0 as 0 as we primarily trust DFpair in the beginning.
The ∆λ and ∆γ values are set to be 0.01-0.05 and 0.001-0.005, giving the parameters a moderate change. In the ablation
study, we use λ1 and γ1 to denote the largest value that λ and γ take during the whole AL process. Finally, we use η to
switch exploration to exploitation. We set a larger η for datasets with more classes, which usually require longer exploration
due to the complex interaction among classes. The unlabeled pool also has an impact on η because a bigger pool requires
more exploration. The specific value for each dataset is: [Derm1, 1.5], [Derm2, 1.2], [Yeast, 1.5], [USPS, 2.0], [Auto-drive,
3.0], [Penstroke, 1.5]. For practical use, as long as the balancing parameters are not set to extreme values such that the
components of the sampling score are not comparable, the performance should not deteriorate much. One can always use a
small hold-out dataset to cross-validate the parameters first.

D.4. Additional Ablation Study

In this section, we provide more results from the ablation study on different λ1 and γ1 values, together with the transition
parameter η. In Figure 6 (a)-(f) average predictive accuracy over the test set obtained from repeated experiments under
different hyperparameter settings. The results show that D-TRUST is robust to the change of balancing parameters within a
certain range. For example, the parameters can change to five times as big or as small without hurting the performance too
much. Thus in real-world applications, these parameters can be chosen effortlessly, as long the different components in the
Fdisc function have similar scales.
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(b) Dermatology2 different γ
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(c) Auto-drive different λ
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(d) Auto-drive different γ
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(e) USPS different λ
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(f) USPS different γ
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Figure 6: Ablation study on balancing and transitioning parameters
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(a) Dermatology dataset 1
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(b) Dermatology dataset 2
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(c) Yeast dataset
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(d) USPS dataset
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(e) Penstroke dataset
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(f) Auto-drive dataset

Figure 7: The increasing trend of mean dual variable values during AL

In Figure 7, we show the increasing trend of
∑

n

∑
m anm

NSV
over the AL process. This trend is universal for different real-world

datasets. For larger datasets with fewer classes, we can see that the increase slows down in the later stage of AL. However,
from the accuracy results, we know that the model can still improve by fine-tuning the decision boundaries. Given the steady

increase of the mean dual variable value, we use a fixed parameter η in our transition criterion:
∑

n

∑
m anm

NSV
> η

∑
n

∑
m a(0)

nm

N
(0)
SV

.

For datasets with fewer classes, η can be assigned a larger value because of the more rapid increase in the beginning. For
datasets with more classes, η should be smaller. In practice, η can be determined based on the number of classes and the C
value. In Figure 6 (g) and (h), we show the performance using different η values on two more datasets, which exhibits some
difference in the middle stage of AL but remains stable overall.

Additionally, in Figure 9, we show the AL results using different classifiers with the baseline sampling approaches. By
showing this comparison, we justify our choice of SVM as the core model in the first place. As Figure 9 shows, for
the same sampling strategy (QUIRE or Graph-Density), the overall performance using the linear regression (LR) or the
k-nearest-neighbors (KNN) models are not so good as the SVM version.

Table 5: SV-recovery results

Dataset Final NL NL +NU NL/(NL +NU ) True SV/(NL +NU ) Recall Precision
Yeast 510 751 0.68 0.90 0.71 0.94

Auto-Drive 511 4411 0.12 0.82 0.13 0.92
USPS 510 4010 0.13 0.39 0.31 0.96

D.5. SV-recovery Experiments

In this subsection we show an interesting study on the effectiveness of SV-recovery rates of the proposed method. The
purpose of the study is to verify how often the proposed method can discover potential SVs. The results are presented in a
“precision-recall”-style analysis: in Table 5, we show all the SV-related information, where NL +NU is the total number of
samples, from which D-TRUST selects 500, resulting in NL of labeled samples in the end (500 plus initial labeled pool).
Then, we train a passive model using all NL + NU samples, and the “true SVs” number is how many of the NL + NU

samples become SVs after the passive model is fully trained. The recall shows how many of the “true SVs” D-TRUST
has recovered using the 500 labeling budget, and the precision shows how many of the NL samples become SVs. From
the table, we see that D-TRUST has a very high precision compared to the true SV ratio, and the recall is also better than
NL/(NL +NU ), which is the selection rate.
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(a) Dermatology dataset 1
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(b) Dermatology dataset 2
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(c) Yeast dataset
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(d) USPS dataset
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(e) Penstroke dataset
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(f) Auto-drive dataset

Figure 8: QUIRE and Graph Density sampling based on different classifiers, LR - logistic regression, KNN - k nearest
neighbors
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Figure 9: Batch-mode Simple Adaptation Comparison

D.6. Batch-mode Comparison

The proposed method considers the low-budget regime where single-batch is feasible. However, the exploration-exploitation
mechanism can be further integrated with diversity-based or other types of batch-mode extensions. However, here we show
a simple comparison in Figure 9 with a batch size of 10, which shows that D-TRUST already performs well compared to
existing baselines (Yin et al., 2017; Shannon, 1948).

D.7. Complexity Analysis

Since SVM based models share the same training time, the complexity only differs at the sampling step. While the first-order
uncertainty based sampling methods have the complexity of O(NM), where N and M denote the numbers of samples and
classes, respectively, our method has a sampling cost of O(NM2) because of the dissonance uncertainty evaluation. Table 6
below summarizes the averaged sampling times.

E. Discussion of Potential Societal Impacts and Limitations
Potential Societal Impacts. When applying the proposed model, the major impact to consider is regarding the selection of
data samples. Since the model will be trained using very limited actively selected data samples, it is important to ensure the
fairness of the sampling process to avoid potential bias in the trained model, especially when using the model to support
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Table 6: Sampling time comparison

Dataset D-TRUST QUIRE BvSB GD Entr MCCH
Dermatology 1 14.18 8.52 8.97 0.02 9.33 126.76
Dermatology 2 13.07 7.29 6.83 0.03 7.04 156.84

Yeast 0.13 11.93 0.06 0.03 0.06 317.86
USPS 0.89 8.32 0.88 0.03 0.66 643.65

Auto-drive 1.63 20.59 0.83 0.04 0.50 628.57
Penstroke 2.46 13.73 1.91 0.03 1.49 184.76

critical decision-making.

Limitations and potential extensions. Since the theoretical results are derived upon the important properties of the dual
space, the proposed approach will be used together with the sparse kernel max-margin models. Meanwhile, we clearly justify
the advantage of using a sparse maximum-margin model in the “small data” regime for active learning, where many other
models (e.g., most deep learning models) become largely ineffective. However, we also recognize that potential extension of
our work to DNNs is feasible by leveraging the recent efforts in bridging SVMs and DNNs (e.g., (Tang, 2013)). Such a
framework uses the second to last layer output h(x) as the SVM input and a L2-hinge loss. The solution is in the form of a
weight vector, which can be used to solve for dual variables. Then, our sampling strategies can be straightforwardly applied.
Intuitively the dual variables can be solved through a system of linear equations. More efficiently solving the dual variables
can also be an interesting future direction. Since most deep learning models require a careful fine-tuning, we will leave this
extension as a future direction as well.

F. Source Code
The data and source code for replicating the results are provided in this link: https://github.com/ritmininglab/D-TRUST.git
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