TOWARD FINE-GRAINED DOMAIN KNOWLEDGE: CURRICULUM PSEUDO-LABELING FOR ONLINE TEST-TIME ADAPTATION

Anonymous authorsPaper under double-blind review

ABSTRACT

Online Test-Time Adaptation (OTTA) aims to adapt a pre-trained model to unlabeled test instances under domain shift in an online manner, where domain knowledge that the model accumulates from previously observed mini-batches directly affects its predictions on subsequent instances. Most previous OTTA methods exploit domain knowledge at a coarse-grained batch level, which prevents the model from fully absorbing the domain knowledge. To deal with this problem, we propose a novel framework CUrriculum Pseudo-Labeling for Online Test-time adaptation (CUPLOT), which further mines orderly domain knowledge at a fine-grained instance level. Specifically, CUPLOT prepares the arriving batch as a series of curricula based on the modeled relevance of domain knowledge between the model and instances. Then, the model orderly learns the instances with pseudo-labels generated by class prototypes in each curriculum. In this way, the domain knowledge is accumulated in a fine-grained manner through instances of curricula rather than mini-batches, improving the absorption of domain knowledge and the performance of the model. Theoretically, we prove that the curriculum pseudo-labels could enable the model to have a stronger adaptation ability, resulting in a tighter bound of approaching the Bayes optimal classifier on the target domain.

1 Introduction

Online Test-Time Adaptation (OTTA), an emerging paradigm, aims to continue to train a pre-trained model with unlabeled instances from a different target domain in an online manner during test time. Due to the difficulty in collecting training samples from the source domain exactly identical to the target domain encountered during testing, the need to adapt the model in the test phase leads to various applications for OTTA techniques, such as medical image analysis (He et al., 2021; Ma et al., 2022), autonomous driving (Volpi et al., 2022; Bahmani et al., 2023), and speech processing (Lin et al., 2022; Kim et al., 2022).

In OTTA, the model can't access previously observed mini-batches, yet it can accumulate domain knowledge, which directly impacts its predictions on subsequent instances. To accomplish the OTTA task, many approaches have been proposed to exploit domain knowledge in unlabeled test instances. Wang et al. (2020); Gong et al. (2022); Mirza et al. (2022); Bowen Zhao (2023) modulate the statistics of the batch normalization layer to update domain knowledge of the model when a test mini-batch arrives. Zhang et al. (2022); Jing et al. (2022); Niu et al. (2023); Lee et al. (2024) perform entropy minimization to satisfy the necessary condition to have learned domain knowledge, i.e., more confident predictions on test instances. Iwasawa & Matsuo (2021); Goyal et al. (2022); Shin et al. (2022); Yang et al. (2022); Döbler et al. (2023); Jang et al. (2023); Wang et al. (2023); Sun et al. (2024) focus on generating pseudo-labels for unlabeled test instances to build an empirical risk estimator, enabling the model to absorb domain knowledge in a supervised learning manner.

Intuitively, the more domain knowledge accumulated from each batch, the more beneficial it is for subsequent predictions. However, most previous OTTA methods only exploit domain knowledge at a coarse-grained batch level, limiting the absorption of the domain knowledge from some representative instances. For instance, if the gradient on an instance is more inconsistent with the overall gradient

on the batch, its domain knowledge will be diluted or even harm the absorption of domain knowledge from other instances, leading to less knowledge being absorbed at the batch level.

Hence, in this paper, we propose to further mine domain knowledge at a more fine-grained instance level by considering the learning sequence of the instances within each batch from two aspects. First, the arrived batch is organized as a series of curricula based on the modeled relevance of domain knowledge between what has been learned by the model and what is about to be learned by the model. Second, the model orderly learns the instances with pseudo-labels generated by class prototypes in each curriculum. The proposed framework is named CUPLOT, i.e., CUrriculum Pseudo-Labels for Online Test-time adaptation, which accumulates the domain knowledge in a more fine-grained manner through instances of curricula rather than mini-batches, improving the absorption of domain knowledge and the performance of the model. Our contributions are summarized as follows:

- Practically, we propose a curriculum learning framework for OTTA, which prepares the arriving batch as organized curricula and generates pseudo-labels deeply dependent on the curricula, improving the absorption of domain knowledge at a fine-grained level.
- Theoretically, we demonstrate that the curriculum pseudo-labels could enable the model to have a stronger adaptation ability, resulting in a tighter bound of approaching the Bayes optimal classifier on the target domain.

2 RELATED WORKS

Online Test-Time Adaptation (OTTA), a practical learning process to deal with domain shift Ben-David et al. (2010); Saenko et al. (2010); Lu et al. (2020), attempts to update parameters of the predictive model already trained on a source domain dataset by processing unlabeled mini-batch datasets from a target domain in a streaming manner with no access to the source domain dataset. Recently, various approaches have been proposed to contribute to OTTA.

Batch-normalization-based approaches Wang et al. (2020); Gong et al. (2022); Mirza et al. (2022); Bowen Zhao (2023) adjust the statistics of the batch normalization layer to update the model's domain knowledge upon the arrival of a test mini-batch. For example. Wang et al. (2020) suggest updating the batch normalization statistics in the pre-trained model by using the estimated statistics from the online test batch. Mirza et al. (2022) stabilize the running mean and variance in batch normalization by augmenting the incoming instance to form a tiny batch and introducing the decaying momentum for the mean and variance. Gong et al. (2022) and Bowen Zhao (2023) further address class bias through sampling and weighting techniques during estimating normalization statistics, respectively.

Entropy-minimization-based approaches Zhang et al. (2022); Jing et al. (2022); Niu et al. (2023); Lee et al. (2024) conduct entropy minimization to learn domain knowledge, since a well-adapted model outputs more confident predictions on test instances. Zhang et al. (2022) focus on single-instance robustness and suggest minimizing the entropy calculated from the average output distribution of the model across various augmentations. Jing et al. (2022) utilize the entropy loss as the likelihood function and put forward a variational model perturbation approach. Moreover. Niu et al. (2023) and Lee et al. (2024) select part of the arriving instances to perform reliable entropy minimization.

Pseudo-labeling-based approaches Iwasawa & Matsuo (2021); Goyal et al. (2022); Shin et al. (2022); Yang et al. (2022); Döbler et al. (2023); Jang et al. (2023); Wang et al. (2023); Sun et al. (2024) attempt to generate high-quality pseudo-labels for unlabeled test instances to perform empirical risk minimization, which allows the model to absorb domain knowledge in a supervised learning manner. For instance, based on the distances in feature space. Iwasawa & Matsuo (2021) build a pseudo-prototype for each class, which has the ability to classify new samples. Goyal et al. (2022) utilize a derived conjugate pseudo label to train the model in a self-training manner. Shin et al. (2022) combine predictions from multiple modalities to generate pseudo-labels with a selective fusion strategy. Meanwhile. Yang et al. (2022) average the predictions of neighboring samples stored in a memory bank to produce soft pseudo-labels. Döbler et al. (2023) train the model with a symmetric cross-entropy loss to ensure prediction consistency between the simulated teacher and student models, and Jang et al. (2023) intend to ensure prediction consistency between prototype-based and neighborbased classifiers. Wang et al. (2023) aim at feature alignment and uniformity through the test-time self-distillation and memorized spatial local clustering. Sun et al. (2024) refine the generation process of pseudo-labels by integrating the previous prototype-based and nearest-neighbor methods as a prototype-based graph model.

Most previous OTTA methods only absorb domain knowledge at a coarse-grained batch level, limiting the absorption of the domain knowledge. Motivated by curriculum learning Bengio et al. (2009); Kumar et al. (2010); Zhou et al. (2020b); Abbe et al. (2023), where a model is trained from easier instances to harder ones by emulating meaningful learning sequence in human curricula, we propose the CUPLOT framework. Compared to previous curriculum learning work Zhou et al. (2020a); Zhang et al. (2021); Karim et al. (2023) in related fields, which primarily focus on the absorption of in-class knowledge, our proposed framework emphasizes on the systematic acquisition of domain knowledge and is supported by solid theoretical foundations. Specifically, the adapted model is expected to first learn the easier instances containing domain knowledge relevant to the already learned domain knowledge, and then attempt to conquer the harder instances containing deep domain knowledge.

3 Proposed Method

3.1 Preliminaries

Following the literature Yu Sun (2020); Boudiaf et al. (2022); Bowen Zhao (2023); Shuaicheng Niu (2024), we consider the multi-class classification Ian Goodfellow & Bengio (2016) as the original training task for TTA. Let $\mathcal{X} \subset \mathbb{R}^q$ denote the q-dimensional instance space, $\mathcal{Y} = \{1, 2, \dots, c\}$ be the label space, where c is the number of classes, $\mathcal{D}_{\mathcal{S}} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{n^0}$ be the dataset from the source domain \mathcal{S} , where the instance $\boldsymbol{x}_i \in \mathcal{X}$ and correct label $y_i \in \mathcal{Y}$ is independently sampled from a joint distribution $p_{\mathcal{S}}(\boldsymbol{x}, y)$, $\mathcal{D}_{\mathcal{T}} = \{\mathcal{D}_{\mathcal{T}}^t, \mathcal{D}_{\mathcal{T}}^2, \dots, \mathcal{D}_{\mathcal{T}}^T\}$ be a sequence of unlabeled mini-batches from the target domain \mathcal{T} , where $\mathcal{D}_{\mathcal{T}}^t = \{\boldsymbol{x}_i^t\}_{i=1}^{n^t}$ is the received mini-batch dataset at the t-th step during test-time inference and the observed instance $\boldsymbol{x}_i^t \in \mathcal{X}$ with unobserved correct label $y_i^t \in \mathcal{Y}$ is subject to a misaligned joint distribution $p_{\mathcal{T}}(\boldsymbol{x}, y) \neq p_{\mathcal{S}}(\boldsymbol{x}, y)$, $f(\cdot; \boldsymbol{\Theta}) : \mathcal{X} \mapsto \Delta^{c-1}$ denote the predictive model f parameterized by $\boldsymbol{\Theta}$, where Δ^{c-1} is the c-dimensional probability simplex.

In TTA, we have completed the training of the prediction model f on the source domain dataset $\mathcal{D}_{\mathcal{S}}$, and its parameters have been updated to Θ^0 . Given the received mini-batch dataset $\mathcal{D}_{\mathcal{T}}^t$ at t-th step, we aims to update the parameters of the predictive model from Θ^{t-1} to Θ^t , such that it could assign each instance \boldsymbol{x}_i^t with its correct label y_i^t . Overall, TTA attempts to maximize the following objective:

$$\mathcal{O} = \frac{\sum_{t=1}^{T} \sum_{i=1}^{n^t} \mathbb{I}[y_i^t = \arg\max_{j \in \mathcal{Y}} f_j(\boldsymbol{x}_i^t; \boldsymbol{\Theta}^t)]}{\sum_{t=1}^{T} n^t},$$
(1)

where $\mathbb{I}[\cdot]$ is the indicator function. Note that we follow the same protocol as Yu Sun (2020) where optimization is performed ahead of evaluation.

3.2 THE CUPLOT FRAMEWORK

Our CUPLOT framework aims to allow the predictive model to learn at the t-th batch with a more optimal instance sequence, thereby enabling the model to absorb the domain knowledge of the target domain more effectively. Specifically, the optimization step for the t-th batch is further decomposed into $K^t \in \{1, 2, \dots, n^t\}$ ordered curricula, each of which uses only a selected subset of the received batch \mathcal{D}_T^t for the optimization of the predictive model.

Let $\mathbf{M}^t = [\boldsymbol{m}^{t,1}; \boldsymbol{m}^{t,2}; \dots; \boldsymbol{m}^{t,K^t}]^{\top} \in \{0,1\}^{K^t \times n^t}$ to represent the sequence matrix of curriculum content, where the vector $\boldsymbol{m}^{t,k} = [m_1^{t,k}, m_2^{t,k}, \dots, m_{n^t}^{t,k}] \in \{0,1\}^{n^t}$ indicates whether the instance $\boldsymbol{x}_i^t \in \mathcal{D}_{\mathcal{T}}^t$ should be included as the content of the k-th curriculum and participate in the k-th sub-step optimization. Then, the overall optimization of $\boldsymbol{\Theta}^{t-1}$ at the t-th batch is formulated as:

$$\Theta^{t} = \Theta^{t-1} - \alpha \sum_{i=1}^{n^{t}} \sum_{k=1}^{K^{t}} m_{i}^{t,k} \frac{\partial \ell(f(\boldsymbol{x}_{i}^{t}; \boldsymbol{\Theta}^{t-1,k-1}), \boldsymbol{d}_{i}^{t,k})}{\partial \boldsymbol{\Theta}^{t-1,k-1}},$$
s.t. $\forall 1 \leq k' \leq K^{t}, \begin{cases} \sum_{k=1}^{k'} \sum_{i=1}^{n^{t}} m_{i}^{t,k} \leq n^{t}, \\ \prod_{k=1}^{k'} \boldsymbol{m}^{t,k} = \boldsymbol{0}. \end{cases}$ (2)

Here, α is the step size of the optimization, ℓ is the cross-entropy loss, and $\boldsymbol{d}_i^{t,k} = [d_{i,1}^{t,k}, d_{i,2}^{t,k}, \dots, d_{i,c}^{t,k}] \in \mathbb{R}^c$ denotes the curriculum pseudo-label of the instance \boldsymbol{x}_i^t with $\sum_{j=1}^c d_{i,j}^t = 1$. Besides, at the k-th curriculum within the t-th batch, the model parameters is updated from $\boldsymbol{\Theta}^{t-1,k-1}$ to $\boldsymbol{\Theta}^{t-1,k}$ in Eq. (2) as follows:

$$\mathbf{\Theta}^{t-1,k} = \mathbf{\Theta}^{t-1,k-1} - \alpha \sum_{i=1}^{n^t} m_i^{t,k} \frac{\partial \ell(f(\mathbf{x}_i^t; \mathbf{\Theta}^{t-1,k-1}), \mathbf{d}_i^{t,k})}{\partial \mathbf{\Theta}^{t-1,k-1}}, \tag{3}$$

where $\mathbf{\Theta}^{t-1,0} = \mathbf{\Theta}^{t-1}$ at the beginning step when k = 1.

Next, we program the sequence of course content \mathbf{M}^t in Eq. (2) to activate our curriculum framework by resorting to gradient consistency $\boldsymbol{\mu}^{t,k} = [\mu_1^{t,k}, \mu_2^{t,k}, \dots, \mu_{n^t}^{t,k}] \in \mathbb{R}^{n^t}$ to decide the k-th curriculum content $\boldsymbol{m}^{t,k}$. Adopting reverse thinking, if the gradient on an instance is more inconsistent with the overall gradient on the batch, its knowledge will be diluted and less knowledge will be absorbed by the model at the batch level. Therefore, during our more fine-grained instance-level learning, such an instance should be scheduled for later in the learning curriculum. This is in the hope that after the model has learned more domain knowledge, it will be able to effectively learn from such an instance.

On one hand, the gradient $oldsymbol{g}_i^{t,k}$ on the instance $oldsymbol{x}_i^t$ is calculated as follows:

$$\boldsymbol{g}_{i}^{t,k} = \frac{\partial \ell(f(\boldsymbol{x}_{i}^{t}; \boldsymbol{\Theta}^{t-1,k-1}), \boldsymbol{d}_{i}^{t,k-1})}{\partial \boldsymbol{\Theta}^{t-1,k-1}}.$$
(4)

On the other hand, the gradient on the content to be learned $G^{t,k}$ is calculated as follows:

$$G^{t,k} = \sum_{i=1}^{n^t} (1 - s_i^{t,k-1}) \frac{\partial \ell(f(x_i^t; \Theta^{t-1,k-1}), d_i^{t,k-1})}{\partial \Theta^{t-1,k-1}},$$
 (5)

where the vector $\boldsymbol{s}^{t,k-1} = [s_1^{t,k-1}, s_2^{t,k-1}, \dots, s_n^{t,k-1}] \in \{0,1\}^{n^t}$ denotes the cumulative curriculum content consisting of the learned instances before the k-th step within t-th batch, i.e., $\boldsymbol{s}^{t,k-1} = \sum_{k'=1}^{k-1} \boldsymbol{m}^{t,k'}$ if $k-1 \geq 1$, and thus $\boldsymbol{1} - \boldsymbol{s}_i^{t,k-1}$ denotes the content to be learned. When k=1, we set $\boldsymbol{s}^{t,k-1} = \boldsymbol{0}$ and $\boldsymbol{d}_i^{t,k-1} = f(\boldsymbol{x}_i^t; \boldsymbol{\Theta}^{t-1,k-1})$.

Based on Eq. (4) and (5), the gradient consistency $\mu_i^{t,k}$ for the instance x_i^t is measured as follows:

$$\mu_i^{t,k} = \frac{1}{||\boldsymbol{g}_i^{t,k} - \boldsymbol{G}^{t,k}||_1},\tag{6}$$

whose larger value indicates that the gradients are more consistent.

After obtaining the gradient consistency $\mu^{t,k}$, we generate the k-th curriculum content:

$$m^{t,k} = \psi(\mu^{t,k}) \cdot (1 - s^{t,k-1}),$$
 (7)

where $\psi: \mathbb{R}^{n^t} \mapsto \{0,1\}^{n^t}$ with $\psi_i(\boldsymbol{\mu}^{t,k}) = \mathbb{I}[\mu_i^{t,k} \geq \delta]$, and δ is a threshold employed to sieve the instance according to the gradient consistency $\boldsymbol{\mu}^{t,k}$. Practically, by considering efficiency while adapting, the threshold δ is usually set as the top-B value of the vector $\boldsymbol{\mu}^{t,k} \cdot (\mathbf{1} - \boldsymbol{s}^{t,k-1})$ with $B = \operatorname{round}(\log(\mathbf{1} - \boldsymbol{s}^{t,k-1}))$, and the number of scheduled curricula K^t is set around $\log n^t$.

Then, we consider the generation of the pseudo label $d_i^{t,k}$ in Eq. (2) and (3). The pseudo-label $d_i^{t,k}$ deeply depends on the previously learned curriculum content, and thus is called curriculum pseudo-labeling in our framework. Specifically, if $m_i^{t,k}=1$, the curriculum pseudo-label d_i^t of the instance \boldsymbol{x}_i^t will be generated as follows:

$$\boldsymbol{d}_{i}^{t,k} = \operatorname{Softmax}(\tau \boldsymbol{z}_{i}^{t,k} \mathbf{W}^{t,k\top}), \tag{8}$$

where τ_i^t is introduced to control the smoothness of the curriculum pseudo-label \boldsymbol{d}_i^t of the instance $\boldsymbol{x}_i^t, \ \boldsymbol{z}_i^{t,k} \in \mathbb{R}^{1 \times r}$ is a extracted feature vector in the r-dimensional space, and $\mathbf{W}^{t,k} = [\boldsymbol{w}_1^{t,k}, \boldsymbol{w}_2^{t,k}, \dots, \boldsymbol{w}_c^{t,k}]^\top \in \mathbb{R}^{c \times r}$ is the c class prototypes at the k-th curriculum. In our CUPLOT framework, we employ a Q-layer neural network with the Softmax operation as the instantiation of the predictive model $f(\cdot; \boldsymbol{\Theta}) = \operatorname{Softmax}(h(\phi(\cdot; \boldsymbol{\Theta}_{1:Q-1}); \boldsymbol{\Theta}_Q))$, where $\boldsymbol{\Theta}_{1:Q-1} = \mathbf{W}_{1:Q-1}$

Algorithm 1 The CUPLOT Framework

Input: The pre-trained predictive model $f(\cdot; \Theta^0)$, a sequence of unlabeled mini-batches $\mathcal{D}_{\mathcal{T}}$;

- 1: **for** t = 1, 2, ..., T **do**
- 219 2: for $k = 1, 2, ..., K^t$ do
 - 3: Evaluate the content to be learned through gradient consistency $\mu^{t,k}$ based on Eq. (6);
 - 4: Arrange instances into the curriculum content $m^{t,k}$ according to Eq. (7);
 - 5: Generate the curriculum pseudo-label $d_i^{t,k}$ for each instance based on Eq. (8);
 - 6: Optimize the parameters of the model from $\Theta^{t-1,k-1}$ to $\Theta^{t-1,k}$ based on Eq. (3);
 - 7: end for
 - 8: end for

Output: The predictive model $f(\cdot; \mathbf{\Theta}^T)$.

 $\{\Theta_1, \Theta_2, \dots, \Theta_{Q-1}\}$ denotes the parameters of the feature extractor ϕ , Θ_Q denotes the parameters of the last linear layer h. Hence, the extracted feature $z_i^{t,k}$ is calculated by:

$$\boldsymbol{z}_{i}^{t,k} = \frac{\phi(\boldsymbol{x}_{i}^{t}; \boldsymbol{\Theta}_{1:Q-1}^{t-1,k-1})}{\|\phi(\boldsymbol{x}_{i}^{t}; \boldsymbol{\Theta}_{1:Q-1}^{t-1,k-1})\|_{1}},$$
(9)

where the L1-norm is employed to perform normalization

The j-th class prototype $w_j^{t,k}$ in $\mathbf{W}^{t,k}$ will be calculated from the extracted features of the selected instances in the previous curricula:

$$\boldsymbol{w}_{j}^{t,k} = \frac{\sum_{i=1}^{n^{t}} \mathbb{I}[\hat{y}_{i}^{t} = j] s_{i}^{t,k} \boldsymbol{z}_{i}^{t,k}}{\sum_{i=1}^{n^{t}} \mathbb{I}[\hat{y}_{i}^{t} = j] s_{i}^{t,k}},$$
(10)

where $\hat{y}_i^t = \arg\max_{j \in \mathcal{Y}} f_j(\boldsymbol{x}_i^t; \boldsymbol{\Theta}^{t-1,k-1})$ is the prediction of the model on the instance \boldsymbol{x}_i^t . Practically, we follow Wang et al. (2023) to maintain a memory bank to store the pairs of extracted features and outputs of the model, and follow Iwasawa & Matsuo (2021) to filter pairs which may be incorrect.

According to Eq. (8), (9), and (10), we build a strong relationship between the pseudo label d and the sequence matrix of curriculum \mathbf{M}^t , enabling domain knowledge to be absorbed in a more fine-grained manner. The quality of the generated curriculum pseudo-labels improves accordingly, thereby adapting the model to the test domain more effectively. The detailed algorithmic description of Cuplot is presented in Algorithm 1.

3.3 THEORETICAL ANALYSIS

To demonstrate the superiority of the curriculum framework in OTTA, we first need to define a crucial concept helping us quantify the model's proximity to the Bayes optimal classifier on target domain.

Definition 1. (e^* -adaptation ability). Let $L(\Theta) := \{ \boldsymbol{x} | y = \arg\max_{j \in \mathcal{Y}} f_j(\boldsymbol{x}; \Theta) \}$ denote instances predicted correctly by the model f with the parameters Θ , and $L(e) := \{ \boldsymbol{x} | p(y|\boldsymbol{x}) - p(o|\boldsymbol{x}) \le e \}$, where $o = \arg\max_{j \in \mathcal{Y}, j \ne y} p(j|\boldsymbol{x})$, denote instance whose posterior margin between the highest and second-highest is less than e. We say that the model $f(\cdot; \Theta)$ has the e-adaptation ability on the target domain \mathcal{T} , if $e^* = \arg\max_e |L(\Theta) \cap L(e)|$, where $|\cdot|$ denotes the cardinality of a set.

The value of e can reflect the bound of the model's approaching the Bayes optimal classifier, provided that Tsybakov condition Chaudhuri & Dasgupta (2014); Belkin et al. (2018); Qiao et al. (2019), which quantifies how well classes are separated on the decision boundary $\{x: p(y|x) = p(o|x)\}$, is satisfied. Specifically, there exists constants $C, \lambda > 0$, and $\epsilon_0 \in (0,1)$, such that for all $\epsilon \leq \epsilon_0$, $\mathbb{P}[p(y|x) - p(o|x) \leq e] \leq C\epsilon^{\lambda}$. Then the chance of the model $f(\cdot; \Theta)$ with e^* -adaptation ability to be consistent with the Bayes optimal classifier on the target domain is bounded as follows:

$$\mathbb{P}[\boldsymbol{x} \in L(\boldsymbol{\Theta})] \ge 1 - Ce^{\star \lambda},\tag{11}$$

where we employ $O(e^*)$ to denote the above bound.

Next, we establish the relationship between the gradient update and the proportion of correct pseudolabels. Let Θ^* denote the parameters of a well-adapted classifier under the target domain distribution

Table 1: Classification accuracy of comparing approaches on image corruption benchmarks. Due to the space limit, full results could be found on Table 13, 14 and 15 in Appendix A.8.

Methods	CIFAR-10-C	CIFAR-100-C	ImageNet-C
ERM	55.51	34.20	40.05
BN	85.48	56.68	-
TENT	85.81	57.21	-
PL	85.91	58.44	49.99
SHOT-IM	86.33	59.14	54.43
T3A	59.56	34.89	39.67
TAST	85.30	51.52	34.67
TAST-BN	86.11	50.92	-
TSD	86.51	58.49	44.05
PROGRAM	82.10	55.63	34.45
DEYO	86.14	59.08	50.43
CUPLOT	87.35	60.11	55.21

 $p_{\mathcal{T}}(x,y), \mathcal{I} = \{i | \arg \max_{j \in \mathcal{Y}} d_{i,j} = y_i \}$ denote some instances with correct pseudo-labels, $\bar{\mathcal{I}} = \{i | \arg \max_{j \in \mathcal{Y}} d_{i,j} \neq y_i \}$ denote some instances with incorrect pseudo-labels. We make the following assumption:

Assumption 1. Let $\nabla \Theta(\mathcal{D}) = \sum_{i \in \mathcal{D}} \alpha \frac{\partial \ell(f(x;\Theta),d_i)}{\partial \Theta}$ denote the gradient of the model $f(\cdot;\Theta)$ using pseudo-labels on the instances with any index set \mathcal{D} . Then there exists the constant $\zeta > 0$, we have $||\Theta - \nabla \Theta(\mathcal{D}) - \Theta^\star|| \leq \zeta \frac{|\bar{\mathcal{I}} \cap \mathcal{D}|}{|\mathcal{I} \cap \mathcal{D}|}$.

Assumption 1 implies that if Θ is updated using the instances with more correct pseudo-labels in a batch, it will get closer to Θ^* , the parameters of the Bayes optimal classifier. In contrast, if Θ is updated using the instances with more incorrect pseudo-labels in a batch, it will move further away from Θ^* . Then under Assumption 1, we could obtain the following theorem about the bound $O(e^*)$:

Theorem 1. Suppose that the difference between $f_j(x;\Theta)$ and p(j|x) and the incorrectness of pseudo-labels is bounded by the distance between Θ and Θ^* , i.e., there exist the constants $\beta, \gamma > 0$, $|f_j(x;\Theta) - p(j|x)| \leq \beta ||\Theta - \Theta^*||$ and $\frac{|\overline{\mathcal{I}} \cap \mathcal{D}|}{|\overline{\mathcal{I}} \cap \mathcal{D}|} \leq \gamma ||\Theta - \Theta^*||$. Consider an arriving batch \mathcal{D}_T^t , the model trained with the pseudo-labels generated at the batch level has e^* -adaptation ability while another model trained with the pseudo-labels derived from the curriculum framework has $e^{*'}$ -adaptation ability. Then, under Assumption 1, we could obtain:

$$O(e^{\star\prime}) > O(e^{\star}). \tag{12}$$

The proof of Theorem 1 is provided in Appendix A.1. Theorem 1 shows that the chance of the model trained with our curriculum pseudo-labels to be consistent with the Bayes optimal classifier on the target domain could be bounded by a larger lower bound than that of the model trained with coarse-grained batch-level pseudo-labels.

4 EXPERIMENTS

4.1 DATASETS

Following recent advancements in online test-time adaptation Jang et al. (2023); Sun et al. (2024), we evaluate our proposed method using a combination of image corruption benchmark datasets and domain generalization datasets. Specifically, we employ two widely employed image corruption benchmarks CIFAR-10-C and CIFAR-100-C Hendrycks & Dietterich (2019), and one more complex dataset ImageNet-C. These datasets introduce 15 types of common corruptions such as Gaussian noise and motion blurring, which are systematically applied to the test sets of CIFAR-10, CIFAR-100 and ImageNet-C to evaluate model robustness. For training, we use the original training sets of CIFAR-10, CIFAR-100 and ImageNet as source domains, while the highest severity level of corruption in CIFAR-10-C and CIFAR-100-C serves as the target domain. 20% of the source domain data is reserved for validation purposes.

Beside, we conduct experiments on four domain generalization benchmarks: PACS Li et al. (2017) with 9991 samples and 7 classes collected from 4 domains, VLCS Torralba & Efros (2011) with

Table 2: Classification accuracy of comparing approaches on domain generalization benchmarks with ResNet-18. Due to the space limit, full results could be found on Table 16, 18, 20 and 22 in Appendix A.8.

Table 3: Classification accuracy of comparing approaches on domain generalization benchmarks with ResNet-50. Due to the space limit, full results could be found on Table 17, 19, 21 and 23 in Appendix A.8.

Methods	PACS	VLCS	OfficeHome	DomainNet
Erm	80.08	75.23	62.41	35.74
BN	83.02	68.74	62.11	34.90
TENT	83.28	69.25	62.30	35.36
PL	85.82	74.60	62.54	35.28
SHOT-IM	82.70	70.99	63.62	35.89
T3A	82.26	75.93	63.83	36.29
TAST	84.60	70.88	63.53	35.37
TAST-BN	85.39	75.02	62.33	35.11
TSD	87.48	74.81	63.12	35.50
PROGRAM	82.50	72.35	62.88	35.94
DEYO	86.63	74.05	63.05	35.36
CUPLOT	87.87	76.97	64.55	37.35

Methods	PACS	VLCS	OfficeHome	DomainNet
ERM	85.47	76.64	67.69	43.29
BN	86.09	68.35	67.18	41.54
TENT	86.58	69.08	67.48	42.42
PL	86.13	73.81	67.61	42.38
SHOT-IM	85.35	69.32	67.98	43.46
T3A	86.01	77.41	68.76	44.11
TAST	86.56	68.53	68.70	42.38
Tast-bn	89.23	71.63	68.60	42.49
TSD	91.03	73.82	69.11	42.27
PROGRAM	86.44	68.42	67.99	43.35
DEYO	88.34	70.49	68.25	42.47
CUPLOT	91.11	78.94	70.30	44.98

10729 samples and 5 classes collected from 4 domains, OfficeHome Venkateswara et al. (2017) with 15588 samples and 65 classes collected from 4 domains, and DomainNet Peng et al. (2019) with 586575 samples and 345 classes collected from 6 domains. We designate one domain as the target and treat the remaining domains as source domains. The validation set follows the same partitioning strategy as in the image corruption benchmark datasets.

4.2 Baselines

We compare the performance of CUPLOT with eleven baselines frequently used for comparison in online TTA: 1) ERM Vapnik (1998): A baseline that directly uses the predictions of the pretrained model on target testing instances without any adaptation. 2) BN Schneider et al. (2020): A batch-normalization-based approach that replaces the activation statistics computed from source training instances in batch normalization layers with those computed from target testing instances. 3) TENT Wang et al. (2020): An entropy-minimization-based approach that adapts BN layers by reducing the entropy of model predictions on target domain data. 4) PL Lee et al. (2013): A pseudolabeling-based approach that fine-tunes a predictive model by leveraging pseudo-labels inferred from the predictions of the model on target testing instance. 5) SHOT-IM Liang et al. (2020): A pseudo-labeling-based approach that adapts the source encoding module by maximizing mutual information between intermediate features and classifier outputs. 6) T3A Iwasawa & Matsuo (2021): A pseudo-labeling-based approach that generates pseudo labels for target testing instances based on their distances to the estimated class prototypes. 7) TAST Jang et al. (2023): A pseudo-labeling-based approach that adapts the model by aligning pseudo-labels inferred from the nearest neighbors with those inferred from class prototypes. 8) TAST-BN Jang et al. (2023): A variation of TAST that adjusts the BN layers to adapt the model instead of updating the adaptation modules. 9) TSD Wang et al. (2023): A pseudo-labeling-based approach that leverages a memory bank to calculate the pseudo-prototypes for every class and generate pseudo-labels for model refinement. 10) PROGRAM Sun et al. (2024): A pseudo-labeling-based approach that connects prototypes and test samples in a graph, facilitating effective message passing among them to generate pseudo-labels. 11) DEYO Lee et al. (2024): An entropy-minimization-based approach that enhances the model by further considering the influence of the object shape on prediction with a newly proposed confidence metric.

The backbone model of each compared method we employ is the same as previous studies Jang et al. (2023); Sun et al. (2024) on the image corruption benchmark datasets CIFAR-10-C, CIFAR-100-C and domain generalization benchmark datasets. On the image corruption benchmark datasets CIFAR-10-C and CIFAR-100-C, we adopt ResNet-50 as the backbone model. On domain generalization benchmark datasets, we conduct evaluations using ResNet-18 and ResNet-50 architectures He et al. (2016), both of which are equipped with batch normalization layers Ioffe (2015). For ImageNet-C, the ViT-B32 model is used for compared approaches. Since the ViT-B32 model is not equipped with batch normalization layers, we do not report the results on the Batch-normalization-based approaches such as BN, TENT and TAST-BN.

As for source training, on domain generalization benchmarks, the models are initialized using pretrained parameters from ImageNet-1K Russakovsky et al. (2015). The model is updated using

Table 4: Classification accuracy (mean \pm std) of CUPLOT and its variant CUPLOT-NM on target domains.

Domain	Backbone	CUPLOT	CUPLOT-NM
С		99.41±0.15	97.25 ± 0.39
L	ResNet-18	65.61 ± 0.50	62.99 ± 1.24
S	Keshet-16	71.25 ± 2.23	69.09 ± 2.49
V		71.61 \pm 1.40	$70.22{\pm}1.79$
С		99.18±0.59	95.95±2.74
L	ResNet-50	65.96 ± 1.85	62.10 ± 2.21
S	Resnet-30	74.12 ± 2.62	71.15 ± 2.42
V		76.50 ± 0.61	$73.89{\pm}1.38$

the Adam optimizer with the learning rate set to 5×10^{-5} . On the image corruption benchmarks CIFAR-10-C and CIFAR-100-C, we follow Liu et al. (2021) and pre-train ResNet-50 for 1000 epochs using a combination of the classification task with the standard cross-entropy loss and the instance discrimination task with a self-supervised loss using the SGD optimizer. To balance the two tasks, the weight for the instance discrimination task is set to 0.1. On ImageNet-C, the pre-trained parameters of the ViT-B32 model is provided by the publicly available timm library, which is pretrained on ImageNet-1K.

As for target adapting, the Adam optimizer is employed to update the model parameters, the batch size is set to 128, and the learning rate is selected from the range between 10^{-3} and 10^{-6} . All hyperparameters for the TTA setting are finalized prior to accessing any test samples. The hyper-parameters for each compared algorithm are selected according to their performance on the previously split validation datasets (Gulrajani & Lopez-Paz, 2021; Wang et al., 2023). Besides, in order to ensure the reliability of our experimental results, we conduct 3 trials with different random seeds for each compared algorithm to calculate mean and standard on domain generalization benchmarks.

4.3 EXPERIMENTAL RESULTS

Tables 1, 2 and 3 comprehensively present a summary of the classification accuracy achieved by each compared approach within the target domains of the benchmark datasets. Note that we do not report the results of Batch-normalization-based approaches such as BN, TENT and TASTBN on ImageNet-C in Table 1 since the backbone model ViT-B32 is not equipped with batch normalization layers. Also, due to space limitations, we report full results with detailed mean and standard deviation in Appendix A.8. The result that achieves the best performance is highlighted in bold, and the one ranked second is underlined. From Tables 1, 2 and 3, we could conclude: 1) CUPLOT attains the optimal performance among all benchmark datasets and network architectures, surpassing every compared method. 2) CUPLOT outperforms the second-ranked methods on image corruption benchmarks, and it yields an average performance increase of 0.84%, 0.97% and 0.78% on CIFAR-10-C, CIFAR-100-C and ImageNet-C, respectively. 3) CUPLOT steadily boosts the classifier's performance on domain generalization benchmarks. Specifically, it realizes an average enhancement of 1.06% on DomainNet for ResNet-18 and 1.53% on VLCS for ResNet-50.

4.4 LATENCY AND MEMORY CONSUMPTION ANALYSIS

To assess latency and memory consumption, we follow Song et al. (2023); Cai et al. (2020) and conduct comparison experiments with baselines that use gradient computation for updates on the shot noise corruption of the CIFAR-100-C dataset, employing ResNet-50 as the feature extractor with a batch size of 128. More details could be found in Appendix A.2. The evaluation results are presented in Table 5, which demonstrates that CUPLOT maintains comparable latency and memory consumption when achieving better performance. Furthermore, we demonstrate that CUPLOT could retain practical flexibility and trade-off between effectiveness and efficiency through its curriculum parameter K^t in Appendix A.5.

Figure 1: The parameter sensitivity analysis for CUPLOT.

4.5 FURTHER ANALYSIS

To verify the effectiveness of the curriculum pseudo-labels in CUPLOT, we carry out an ablation study with a variant of CUPLOT, i.e., CUPLOT-NM, where the model directly learns the batch without arranging curricula by setting the threshold $\delta = \min_i \mu^{t,1}$ and the curriculum number $K^t = 1$. As presented in Table 4, CUPLOT surpasses CUPLOT-NM across all target domains of the PACS dataset whenever using ResNet-18 and ResNet-50. More ablation details about the selection of consistency metric could be found in Appendix A.7.

Besides, we perform sensitivity analysis to examine the impact of the temperature hyper-parameter τ in the generation of pseudo-labels in Eq. (8), and the batch size in our framework using the shot noise corruption of CIFAR-10-C dataset. τ increases from 0.3 to 10, and the batch size varies from 16 to 256. As illustrated in Figure 1(a), the performance of CUPLOT remains relatively stable across a broad range, which demonstrates highly desirable robustness to deliver reliable test-time adaptation performance. Meanwhile, Figure 1(b) presents the average accuracy of various methods across different batch sizes on shot noise corruption of CIFAR-10-C dataset. From Figure 1(b), our approach consistently outperforms the other methods under varying batch sizes, which demonstrates CUPLOT could flexibly handle streaming real-world data of various sizes. In Appendix A.6, we show that even the batch size is extremely small such as 2 or 4, CUPLOT has a certain degree of robustness and could also achieve competitive performance.

Furthermore, our proposed framework provides a novel insight into active OTTA. Different from the previous active TTA work Gui et al. (2024), in which human experts work at the aspect of the label, CUPLOT could bring the active query at the aspect of the instance via providing the difficulty levels of domain knowledge absorption between instances. Figure 1(c) presents the test accuracy (y-axis) of a variant of CUPLOT, i.e., CUPLOT-AT on CIFAR-10-C and CIFAR-100-C, where the different severity levels of corruption are mixed to serve as the target domain, and CUPLOT-AT has access to the difficulty levels of a certain proportion of data (x-axis). CUPLOT-AT arranges the data with lower difficulty levels in the earlier curricula for priority learning as much as possible. As illustrated in Figure 1(c), the performance of our framework could be further improved when the human experts provide information on the aspect of the instance if the difficulty levels of a larger proportion of instances are known, which is a nice property for those that require human interaction to improve the designed algorithm. More active learning details about comparison between some common active learning strategies could be found in Appendix A.3.

5 CONCLUSION

In this study, we proposed the CUPLOT, a novel online test-time adaptation framework, aiming to address the issue that most existing Online Test-Time Adaptation (OTTA) methods only exploit domain knowledge at a coarse-grained batch level. CUPLOT mines domain knowledge at a fine-grained instance level by organizing the arrived batch into a series of curricula based on the modeled relevance of domain knowledge between the model and instances, and enabling the model to learn instances in an orderly manner using pseudo-labels generated by class prototypes. Theoretically, we demonstrated that the model trained with curriculum pseudo-labels has a larger lower bound of the probability of being consistent with the Bayes optimal classifier on the target domain, indicating stronger adaptation ability. Extensive experiments varify the effectiveness of our proposed framework.

REFERENCES

- Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning on parity targets with mixed inputs. *Advances in Neural Information Processing Systems*, 36: 24291–24321, 2023.
 - Sherwin Bahmani, Oliver Hahn, Eduard Zamfir, Nikita Araslanov, Daniel Cremers, and Stefan Roth. Semantic self-adaptation: Enhancing generalization with a single sample. *Trans. Mach. Learn. Res. (TMLR)*, 2023.
 - Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for classification and regression rules that interpolate. *Advances in neural information processing systems*, 31, 2018.
 - Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. *Mach. Learn.*, 79(1-2):151–175, 2010.
 - Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In *Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009*, volume 382, pp. 41–48, 2009.
 - Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8344–8353, 2022.
 - Shu-Tao Xia Bowen Zhao, Chen Chen. Delta: Degradation-free fully test-time adaptation. In *Proceedings of the 11th International Conference on Learning Representations, Kigali, Rwanda*, 2023.
 - Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for efficient on-device learning. In *Advances in Neural Information Processing Systems 33*, pp. 11285–11297, Virtual Event, 2020.
 - Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor classification. Advances in Neural Information Processing Systems, 27, 2014.
 - Mario Döbler, Robert A. Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-time adaptation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7704–7714, 2023.
 - Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. NOTE: robust continual test-time adaptation against temporal correlation. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 27253–27266, 2022.
 - Sachin Goyal, Mingjie Sun, Aditi Raghunathan, and J. Zico Kolter. Test time adaptation via conjugate pseudo-labels. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 6204–6218, 2022.
 - Shurui Gui, Xiner Li, and Shuiwang Ji. Active test-time adaptation: Theoretical analyses and an algorithm. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*, 2024.
 - Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In 9th International Conference on Learning Representations (ICLR), 2021.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
 - Yufan He, Aaron Carass, Lianrui Zuo, Blake E. Dewey, and Jerry L. Prince. Autoencoder based self-supervised test-time adaptation for medical image analysis. *Medical Image Anal.*, 72:102136, 2021.

- Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.
- Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and representative examples. *Advances in neural information processing systems*, 23, 2010.
 - Aaron Courville Ian Goodfellow, Yoshua Bengio and Yoshua Bengio. *Deep learning*. MIT press, 2016.
 - Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate shift. *arXiv preprint arXiv:1502.03167*, 2015.
 - Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic domain generalization. *Advances in Neural Information Processing Systems*, 34:2427–2440, 2021.
 - Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with nearest neighbor information. In *The Eleventh International Conference on Learning Representations*, 2023.
 - Mengmeng Jing, Xiantong Zhen, Jingjing Li, and Cees Snoek. Variational model perturbation for source-free domain adaptation. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 17173–17187, 2022.
 - Nazmul Karim, Niluthpol Chowdhury Mithun, Abhinav Rajvanshi, Han-pang Chiu, Supun Samarasekera, and Nazanin Rahnavard. C-sfda: A curriculum learning aided self-training framework for efficient source free domain adaptation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 24120–24131, 2023.
 - Jangho Kim, Juntae Lee, Simyung Chang, and Nojun Kwak. Variational on-the-fly personalization. In *International Conference on Machine Learning (ICML)*, volume 162, pp. 11134–11147, 2022.
 - M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In *Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada*, pp. 1189–1197, 2010.
 - Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3, pp. 896. Atlanta, 2013.
 - Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sungroh Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled factors. *arXiv* preprint arXiv:2403.07366, 2024.
 - Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain generalization. In *Proceedings of the IEEE international conference on computer vision*, pp. 5542–5550, 2017.
 - Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In *International conference on machine learning*, pp. 6028–6039. PMLR, 2020.
 - Guan-Ting Lin, Shang-Wen Li, and Hung-yi Lee. Listen, adapt, better WER: source-free single-utterance test-time adaptation for automatic speech recognition. In Hanseok Ko and John H. L. Hansen (eds.), 23rd Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 2198–2202, 2022.
 - Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? *Advances in Neural Information Processing Systems*, 34:21808–21820, 2021.
 - Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe Song, and Tao Xiang. Stochastic classifiers for unsupervised domain adaptation. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 9108–9117, 2020.

- Wenao Ma, Cheng Chen, Shuang Zheng, Jing Qin, Huimao Zhang, and Qi Dou. Test-time adaptation with calibration of medical image classification nets for label distribution shift. In *Medical Image Computing and Computer Assisted Intervention (MICCAI)*, volume 13433, pp. 313–323, 2022.
- Muhammad Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on: Dynamic unsupervised domain adaptation by normalization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14745–14755, 2022.
- Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1406–1415, 2019.
- Xingye Qiao, Jiexin Duan, and Guang Cheng. Rates of convergence for large-scale nearest neighbor classification. *Advances in neural information processing systems*, 32, 2019.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge. *International journal of computer vision*, 115:211–252, 2015.
- Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, volume 6314, pp. 213–226, 2010.
- Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. Improving robustness against common corruptions by covariate shift adaptation. *Advances in neural information processing systems*, 33:11539–11551, 2020.
- Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So Kweon, and Kuk-Jin Yoon. MM-TTA: multi-modal test-time adaptation for 3d semantic segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16907–16916, 2022.
- Guohao Chen Pengcheng Wu Peilin Zhao Shuaicheng Niu, Chunyan Miao. Test-time model adaptation with only forward passes. In *Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria*, 2024.
- Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual testtime adaptation via self-distilled regularization. In *Proceedings of the 2023 IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pp. 11920–11929, Vancouver, Canada, 2023.
- Haopeng Sun, Lumin Xu, Sheng Jin, Ping Luo, Chen Qian, and Wentao Liu. Program: Prototype graph model based pseudo-label learning for test-time adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.
- Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In *CVPR 2011*, pp. 1521–1528. IEEE, 2011.
- Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
- Vladimir Vapnik. Statistical learning theory. John Wiley & Sons google schola, 2:831–842, 1998.
- Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5018–5027, 2017.
- Riccardo Volpi, Pau de Jorge, Diane Larlus, and Gabriela Csurka. On the road to online adaptation for semantic image segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19162–19173, 2022.

- Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.
- Shuai Wang, Daoan Zhang, Zipei Yan, Jianguo Zhang, and Rui Li. Feature alignment and uniformity for test time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20050–20060, 2023.
- Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from imperfect labelers. *Advances in neural information processing systems*, 29, 2016.
- Hongzheng Yang, Cheng Chen, Meirui Jiang, Quande Liu, Jianfeng Cao, Pheng-Ann Heng, and Qi Dou. DLTTA: dynamic learning rate for test-time adaptation on cross-domain medical images. *IEEE Trans. Medical Imaging (TMI)*, 41(12):3575–3586, 2022.
- Zhuang Liu John Miller Alexei A. Efros Moritz Hardt Yu Sun, Xiaolong Wang. Test-time training with self-supervision for generalization under distribution shifts. In *Proceedings of the 37th International Conference on Machine Learning, Virtual Event*, 2020.
- Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. *Advances in neural information processing systems*, 34:18408–18419, 2021.
- Marvin Zhang, Sergey Levine, and Chelsea Finn. MEMO: test time robustness via adaptation and augmentation. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 35, pp. 38629–38642, 2022.
- Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label detection to noisy label self-correction. In *International conference on learning representations*, 2020a.
- Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. Curriculum learning by dynamic instance hardness. *Advances in Neural Information Processing Systems*, 33:8602–8613, 2020b.

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOFS OF THEOREM 1

Theorem 1. Suppose that the difference between $f_j(x; \Theta)$ and p(j|x) and the incorrectness of pseudo-labels is bounded by the distance between Θ and Θ^* , i.e., there exist the constants $\beta, \gamma > 0$, $|f_j(x; \Theta) - p(j|x)| \leq \beta ||\Theta - \Theta^*||$ and $\frac{|\overline{\mathcal{I}} \cap \mathcal{D}|}{|\mathcal{I} \cap \mathcal{D}|} \leq \gamma ||\Theta - \Theta^*||$. Consider an arriving batch $\mathcal{D}_{\mathcal{T}}^t$, the model trained with the pseudo-labels generated at the batch level has e^* -adaptation ability while another model trained with the pseudo-labels derived from the curriculum framework has $e^{*'}$ -adaptation ability. Then, under Assumption 1, we could obtain:

$$O(e^{\star\prime}) \ge O(e^{\star}).$$

Proof. We start by clarifying the key concepts and notations relevant to the proof. According to Definition 1, the e^\star -adaptation ability of the model $f(\cdot; \Theta)$ is determined by $e^\star = \arg\max_e |L(\Theta) \cap L(e)|$, and we know that $\mathbb{P}[x \in L(\Theta)] \geq 1 - Ce^{\star \lambda} = O(e^\star)$. To prove $O(e^{\star \prime}) \geq O(e^\star)$, we aim to show that $e^{\star \prime} \leq e^\star$ since O(e) is a decreasing function of e. Here, e^\star corresponds to the model trained with batch-level pseudo-labels, and $e^{\star \prime}$ corresponds to the model trained with curriculum-framework pseudo-labels.

First, we analyze the difference in model predictions. Given the condition $|f_j(x; \Theta) - p(j|x)| \le \beta ||\Theta - \Theta^*||$, consider the model trained with curriculum-framework pseudo-labels $f(\cdot; \Theta_{curriculum})$ and the model trained with batch-level pseudo-labels $f(\cdot; \Theta_{batch})$.

Next, we show that the curriculum framework can make better use of correct pseudo-labeled samples. Let D^k be the cumulative instances in the curriculum framework. From the perspective of parameter update, since the curriculum-framework model is closer to Θ^* at the k-1-th step, according to the inequality $||\Theta - \nabla \Theta(\mathcal{D}^{k-1}) - \Theta^*|| \leq \zeta \frac{|\overline{\mathcal{I}} \cap \mathcal{D}^{k-1}|}{|\mathcal{I} \cap \mathcal{D}^{k-1}|}$ in Assumption 1, when the update is carried out at the k-th step, $\frac{|\overline{\mathcal{I}} \cap \mathcal{D}^k|}{|\mathcal{I} \cap \mathcal{D}^k|}$ will further get smaller and the curriculum-framework model will further narrow the distance from Θ^* , that is, $||\Theta^k_{curriculum} - \Theta^*|| \leq ||\Theta^{k-1}_{curriculum} - \Theta^*||$. This implies that the curriculum-framework model can make better use of correct pseudo-labeled samples by setting reasonable curriculum number. By Assumption 1, updating with more correct pseudo-labels makes the model further approach Θ^* . Thus, we have

$$||\Theta_{curriculum} - \Theta^{\star}|| \le ||\Theta_{batch} - \Theta^{\star}||. \tag{13}$$

From this, we can infer that

$$|f_j(\mathbf{x}; \mathbf{\Theta}_{curriculum}) - p(j|\mathbf{x})| \le |f_j(\mathbf{x}; \mathbf{\Theta}_{batch}) - p(j|\mathbf{x})|, \tag{14}$$

which indicates that the predictions of the model trained with the curriculum framework are closer to the true probability distribution p(j|x).

We analyze the difference in the error rates of pseudo-labels. According to $\frac{|\bar{\mathcal{I}}\cap\mathcal{D}|}{|\mathcal{I}\cap\mathcal{D}|} \leq \gamma||\Theta-\Theta^\star||$, because $||\Theta_{curriculum}-\Theta^\star|| \leq ||\Theta_{batch}-\Theta^\star||$, the error rate of pseudo-labels in the curriculum-framework training is lower. That is, the proportion of mislabeled samples in the total samples for the model trained with the curriculum framework is smaller.

Then, we combine the above-mentioned facts with the definition to derive the inequality. According to Definition 1, $L(\Theta) = \{x|y = \arg\max_{j \in \mathcal{Y}} f_j(x;\Theta)\}$ and $L(e) = \{x|p(y|x) - p(o|x) \le e\}$. Since the model trained with the curriculum framework has more accurate predictions and a lower error rate of pseudo-labels, the number of instances that satisfy both $y = \arg\max_{j \in \mathcal{Y}} f_j(x;\Theta_{curriculum})$ and $p(y|x) - p(o|x) \le e$ is relatively larger.

Specifically, we have

$$|L(\mathbf{\Theta}_{curriculum}) \cap L(e)| \ge |L(\mathbf{\Theta}_{batch}) \cap L(e)|.$$
 (15)

When calculating $e^* = \arg \max_e |L(\Theta) \cap L(e)|$, for the model trained with the curriculum framework, $e^{*\prime}$ makes $|L(\Theta_{curriculum}) \cap L(e^{*\prime})|$ reach its maximum value. And because

$$|L(\mathbf{\Theta}_{curriculum}) \cap L(e^{\star \prime})| \ge |L(\mathbf{\Theta}_{batch}) \cap L(e^{\star})|, \tag{16}$$

Table 5: Performance Comparison on CIFAR-100-C (shot noise corruption) with ResNet-50, including average latency, accuracy and memory usage.

Methods	Latency (s)	Params (MB)	Activations (MB)	Total (MB)	Accuracy (%)
TENT	5.15	94.82	1761.61	5517.30	56.33
SHOT-IM	6.86	94.82	3517.50	5801.62	58.24
DEYO	8.21	94.82	3517.50	5990.18	58.06
CUPLOT	8.58	94.82	3517.50	6142.76	59.24

Table 6: Classification accuracy of active learning variants on CIFAR-10-M35.

Sampling Rate	10%	20%	0.3%	0.4%
CUPLOT-AT CUPLOT-E	86.62 86.56	86.72 86.64	86.83 86.70	86.96 86.77
CUPLOT-E CUPLOT-G	86.53	86.62	86.69	86.75
CUPLOT-M	86.53	86.59	86.66	86.71

we can conclude that

$$e^{\star\prime} \le e^{\star}. \tag{17}$$

Finally, since $O(e^*) = 1 - Ce^{*\lambda}$ is a monotonically decreasing function of e, we can obtain $O(e^{*\prime}) \geq O(e^*)$. Therefore, Theorem 1 is proved.

A.2 RUNNING TIME AND MEMORY CONSUMPTION ANALYSIS

We measured the running time and memory usage of our approach and baselines following EcoTTA (Song et al., 2023). Specifically, all methods are performed on a CPU constrained to 2 cores and 4 threads to emulate computationally constrained scenarios. To evaluate runtime performance, we measured the average latency per batch using time.perf_counter, recording the wall-clock time before and after the execution of the TTA algorithm and averaging over all batches. The parameter and activation memory costs are measured following the TinyTL (Cai et al., 2020) codebase, and the total memory usage is tracked via memory_profiler.memory_usage with an interval of 0.01 seconds. The results are shown in Table 5.

A.3 COMPARISON TO COMMON ACTIVE LEARNING STRATEGIES

We conducted additional experiments comparing CUPLOT-AT (gradient-consistency-based instance selection) against three active learning variants equipped with different sampling criteria commonly used active learning (Huang et al., 2010; Yan et al., 2016), including:

- CUPLOT-E (entropy-based): $Score(x_i) = \sum_{i=1}^{C} d_i^j \log d_i^j$,
- CUPLOT-G (margin-based): Score = $d_i^m d_i^o$, where $m = \arg\max_{j \in \mathcal{Y}} d_i^j$ and $o = \arg\max_{j \in \mathcal{Y}, j \neq m} d_i^j$.
- CUPLOT-M (maximum-based): Score = d_i^m

Similar to CUPLOT-AT, samples with higher scores are prioritized for earlier curricula, while those with lower scores are scheduled for later curricula. We manually create a dataset CIFAR-10-M35 by mixing samples from CIFAR-10-C with difficulty levels 3 and 5. Table 6 illustrates the performance of these active learning variants on CIFAR-10-M35. From Table 6, we could observe the superiority of gradient-consistency-based instance selection.

Table 7: Classification accuracy of our approach and compared methods on real-world temporal-shift datasets.

Dataset	Erm	Bn	TENT	PL	SHOT-IM	TSD	CUPLOT
Yearbook	81.30	84.54	84.53	84.67	85.17	85.11	85.53
EVIS	56.59	45.72	45.73	45.78	45.93	46.01	56.87

Table 8: GPU time and classification accuracy induced by curriculum learning with varying K^t on shot noise of CIFAR-10-C.

K^t	1	2	3	4
Time	6.10	7.55	8.37	8.97
Acc.	85.04	86.06	86.21	86.45

Table 9: GPU time and classification accuracy induced by curriculum learning with varying K^t on clipart subset of DomainNet.

K^t	1	2	3	4
Time	102.18	113.32	126.59	137.38
Acc.	50.82	51.77	51.89	52.07

A.4 PRACTICAL APPLICABILITY OF OUR METHOD

To assess CUPLOT's real-world applicability, we conducted additional experiments on two temporalshift datasets that reflect natural, non-synthetic distribution shifts:

- Yearbook: A long-span dataset of high school portraits spanning eight decades, characterized by evolving demographics, camera technologies, and visual styles.
- EVIS: A dataset of electronic product and vehicle images, indexed by upload dates to capture real-world trends and domain drift.

These datasets simulate realistic test-time adaptation scenarios where the target domain shifts over time and is not seen during training. As shown below in Table 7, CUPLOT significantly outperforms existing TTA methods, demonstrating its ability to generalize and adapt in complex real-life settings.

A.5 TRADE-OFF BETWEEN EFFECTIVENESS AND EFFICIENCY

CUPLOT retains practical flexibility and trade-off between effectiveness and efficiency through its curriculum parameter K^t (number of curricula per batch), empirically defined as $K^t = \operatorname{round}(\log n^t)$ by default. Reducing K^t (e.g., setting $K^t = 1$ to mimic batch-level learning) significantly lowers computational cost while retaining performance gains to some extent. This allows users to tailor K^t to resource constraints, balancing efficiency and accuracy. Table 8 and Table 9 report the running time when K^t varies from [1,4] on CIFAR-10-C using ResNet-50 and DomainNet using ResNet-18, demonstrating CUPLOT's practical flexibility and trade-off between effectiveness and efficiency.

A.6 CUPLOT'S PERFORMANCE UNDER VARYING BATCH SIZES

Table 10 presents the classification accuracy of our approach and compared methods on shot noise of CIFAR-10-C under different batch sizes. These results demonstrate that our method achieves consistently high accuracy across a wide range of batch sizes.

Table 10: Classification accuracy of our approach and compared methods on shot noise of CIFAR-10-C under different batch sizes.

Methods	2	4	8	16	32	64	128	256	512
	63.77	72.32 72.93 74.40	79.08	82.35	83.86	84.82	84.58	84.87	85.09

Table 11: Classification accuracy of different consistency metrics on CIFAR-100-C.

Criterion	Noise	Blur	Weather	Digital
Gradient Consistency	55.16	64.01	58.80	62.70
Uncertainty	54.79	63.76	58.66	62.55
Cross-entropy Loss	54.85	63.69	58.63	62.61

Table 12: Classification accuracy of different consistency metrics on PACS.

Criterion	A	С	P	S
Gradient Consistency	91.33	90.00	97.60	85.51
Uncertainty	90.92	89.84	97.68	85.22
Cross-entropy Loss	90.81	89.95	97.55	85.15

A.7 Performance with Other Consistency Metrics

We conducted ablation studies comparing gradient consistency with entropy. Table 11 and 12 presents the accuracy of different metrics on CIFAR-100-C and PACS, respectively. From the tables, we validate the effectiveness of gradient consistency compared to entropy.

A.8 FULL EXPERIMENTAL RESULTS

Table 13, 14, 15, 16, 17, 18, 19,20, 21, 22, and 23 present full results of each compared approach on datasets CIFAR-10-C, CIFAR-100-C, ImageNet-C, PACS, VLCS, OfficeHome, and DomainNet, respectively. Also, we present tSNE Van der Maaten & Hinton (2008) visualizations on the domain A of the benchmark dataset PACS for both the ERM baseline and our proposed framework CUPLOT, as depicted in Figure 2 in Appendix A.8. Once adapted to the target domain, CUPLOT is capable of generating extracted features that are more clearly separated. These clearly indicate the significance of curriculum pseudo-labels in enhancing absorption of domain knowledge when the model is adapting.

A.9 THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of a large language model (LLM) as an assistive tool during the preparation of this manuscript. The LLM's role was strictly limited to language-related refinements: specifically, it aided in grammar and spelling corrections, and helped enhance the logical coherence and readability of the prose. Additionally, the model provided support for generating certain segments of code. It is important to emphasize that the core conceptual framework, theoretical analyses, experimental design, and conclusions presented in this paper are the original work of the authors, with no involvement of the LLM in shaping these substantive research components.

Table 13: Full results on the CIFAR-10-C dataset.

Methods	shot	motion	snow	pixelate	gaussian	defocus	brightness	fog	zoom	frost	glass	impulse	coontrast	jpeg	elastic	Avg.
ERM	42.14	57.12	72.50	59.61	35.62	73.83	88.55	49.87	78.97	63.55	33.44	22.02	20.61	72.33	62.49	55.51
BN	84.05	87.30	85.51	89.40	82.69	90.99	92.33	83.31	92.63	87.99	75.17	72.84	89.86	85.87	82.33	85.48
TENT	84.38	87.53	85.76	89.62	83.12	91.11	92.44	83.87	92.77	88.10	75.83	73.46	90.53	86.12	82.52	85.81
PL	84.34	87.83	86.28	88.93	82.98	90.41	91.71	85.49	91.95	87.63	76.77	76.53	90.65	84.91	82.22	85.91
SHOT-IM	85.04	88.01	86.86	89.12	83.54	91.01	91.80	85.92	91.92	88.22	77.84	76.06	91.08	85.82	82.73	86.33
T3A	50.74	60.54	72.92	65.48	45.06	75.71	88.16	52.64	80.58	65.11	41.35	29.22	24.55	73.99	67.29	59.56
TAST	83.85	87.32	85.57	88.90	82.65	90.98	91.99	83.01	92.23	87.57	75.38	72.49	89.44	85.73	82.41	85.30
TAST-BN	84.87	87.94	86.10	89.98	83.62	91.27	92.45	84.21	92.76	88.30	76.50	74.28	89.83	86.35	83.14	86.11
TSD	85.02	88.30	86.69	89.94	83.96	91.40	92.60	85.12	92.94	88.61	76.92	75.05	91.10	86.79	83.18	86.51
PROGRAM	81.31	84.15	82.41	86.06	78.83	87.99	89.22	80.05	89.67	84.57	71.02	68.91	86.09	82.64	78.61	82.10
DEYO	84.58	87.78	87.01	88.68	83.48	90.35	91.71	85.94	92.15	87.48	76.66	76.38	91.32	86.05	82.54	86.14
CUPLOT	86.06	89.08	87.91	89.93	84.57	91.52	92.40	87.45	92.66	89.02	79.11	77.42	91.54	87.24	84.29	87.35

918 919

Table 14: Full results on the CIFAR-100-C dataset.

0		0
9	2	0
9	2	1
9	2	2
9	2	3
9	2	4
9	2	5

927 928 929

930931932933

934 935 936 937 938

939940941

942 943

949 950 951 952

954955956

957

953

958959960961

961 962 963 964 965 966 967 968

Methods shot motion pixelate defocus brightness frost impulse coontrast elastic Avg. snow fog zoom glass jpeg gaussian 14.61 43.27 36.57 53.77 ERM 33.09 32.31 39.60 43 78 31.04 43.82 48.65 36.84 23 74 49 73 34 20 43.78 64.50 64.77 65.22 65.73 44.16 55.53 55.92 42.50 43.07 56.30 57.35 BN 54.38 58.70 60.27 60.59 33.25 57.21 58.44 TENT 56.33 57.85 54.62 55.43 64.41 65.61 44.25 68.03 59.09 48.86 62.89 54.30 65.96 66.88 54.31 58.70 50.68 50.84 25.35 60.77 61.27 7.94 56.18 56.38 38.11 56.81 57.61 64.96 65.88 46.84 47.54 68.41 69.02 44.75 46.00 62.77 64.03 PL59.69 58.24 35.29 59.14 34.89 SHOT-IM 56.40 60.71 16.28 ТЗА 38.78 32.68 44.16 48.60 37.26 53.55 18.21 49.03 TAST 52.26 52.32 57.81 57.69 58.65 57.70 39.86 39.33 43.9 43.48 39.74 38.95 49.16 48.38 TAST-BN TSD PROGRAM 47.83 49.93 58.07 60.71 52.31 51.03 55.67 50.92 50.42 57.74 54.68 58.06 55.89 53.61 56.18 65.54 62.82 65.30 57.20 54.38 57.13 60.14 58.15 59.77 49.90 46.98 51.26 44.51 41.76 45.87 63.57 61.75 63.52 55.40 52.32 56.61 58.49 55.63 59.08 46.21 42.43 48.41 61.13 65.75 68.64 62.13 DEYO 66.42 59.24 61.58 57.11 65.92 58.41 66.49 66.52 50.46 69.56 61.12 52.57 47.82 62.93 64.43 57.53 60.11 CUPLOT

Table 15: Full results on the ImageNet-C dataset.

Methods	shot	motion	snow	pixelate	gaussian	defocus	brightness	fog	zoom	frost	glass	impulse	coontrast	jpeg	elastic	Avg.
Erm	46.10	36.70	40.66	61.72	43.90	27.58	69.36	31.10	30.24	41.76	21.58	44.12	4.62	59.66	41.62	40.05
BN	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-
TENT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PL	53.78	50.18	53.52	69.10	52.64	42.52	73.08	47.72	39.76	50.06	40.66	51.74	3.68	66.66	54.80	49.99
SHOT-IM	55.74	53.60	55.40	69.76	54.00	45.00	73.30	51.66	48.54	53.72	48.18	54.00	27.24	67.82	58.54	54.43
T3A	45.94	36.58	40.72	61.80	43.84	27.34	69.36	28.00	30.22	41.50	21.12	44.04	3.26	59.60	41.70	39.67
TAST	38.90	31.32	36.10	53.44	37.04	23.46	61.32	27.90	26.62	36.44	17.80	37.18	3.90	50.56	38.06	34.67
Tast-bn	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-
TSD	55.02	52.26	24.90	69.74	53.64	41.80	73.30	9.30	30.00	28.86	44.42	54.00	0.52	67.66	55.26	44.05
PROGRAM	46.58	30.14	26.04	62.60	43.36	32.40	67.42	3.94	34.72	16.06	3.18	43.64	1.18	60.40	45.02	34.45
DEYO	54.06	50.44	52.80	69.14	52.50	42.12	73.42	45.80	42.36	52.26	42.36	52.50	4.62	67.12	55.02	50.43
CUPLOT	56.10	54.40	56.48	70.34	54.02	46.44	73.56	52.78	50.02	54.76	49.38	54.34	28.12	68.08	59.32	55.21

Table 16: Full results on the PACS dataset with ResNet-18.

Methods	A	С	P	S	Avg.
ERM	78.92±1.59	76.42±3.24	94.79±0.63	70.20±1.40	80.08
BN	82.36 ± 0.37	81.41 ± 0.79	95.87 ± 0.10	72.42 ± 0.77	83.02
TENT	82.55 ± 0.37	81.60 ± 0.74	96.03 ± 0.15	72.92 ± 0.56	83.28
PL	85.63 ± 0.82	84.47 ± 0.45	95.89 ± 0.54	77.30 ± 1.91	85.82
SHOT-IM	85.19 ± 1.02	81.25 ± 1.00	95.91 ± 1.02	68.45 ± 1.64	82.70
T3A	80.71 ± 1.48	79.29 ± 2.42	95.93 ± 0.52	73.09 ± 1.13	82.26
TAST	84.31 ± 0.52	82.95 ± 0.64	96.75 ± 0.21	74.40 ± 0.40	84.60
TAST-BN	84.80 ± 1.12	83.15 ± 0.62	96.63 ± 0.46	76.96 ± 0.99	85.39
TSD	87.92 ± 0.62	86.79 ± 0.18	96.65 ± 0.52	78.54 ± 2.65	87.48
PROGRAM	84.39 ± 1.37	79.25 ± 1.67	93.83 ± 4.21	72.54 ± 0.85	82.50
DEYO	86.31 ± 1.02	83.89 ± 0.80	96.11 ± 0.49	80.21 ± 0.13	86.63
CUPLOT	88.67±0.81	87.74±0.58	96.61±0.59	78.47±3.66	87.87

Table 17: Full results on the PACS dataset with ResNet-50.

Methods	A	С	P	S	Avg.
ERM	85.24±1.79	79.65±2.05	96.29±0.68	80.71±2.21	85.47
BN	86.51 ± 1.21	83.92 ± 1.96	96.55 ± 0.39	77.37 ± 0.86	86.09
TENT	$86.82{\pm}1.23$	84.27 ± 1.89	96.61 ± 0.44	78.60 ± 0.88	86.58
PL	87.44 ± 1.53	82.51 ± 4.43	94.79 ± 2.13	79.77 ± 2.39	86.13
SHOT-IM	86.34 ± 0.54	82.75 ± 1.69	94.75 ± 0.30	77.55 ± 1.71	85.35
T3A	85.48 ± 2.19	81.08 ± 1.13	96.79 ± 0.28	80.68 ± 2.22	86.01
TAST	87.51 ± 0.94	84.09 ± 1.80	96.89 ± 0.74	77.75 ± 0.96	86.56
TAST-BN	89.18 ± 1.28	86.04 ± 1.38	97.11 ± 0.81	84.57 ± 0.39	89.23
TSD	90.97 ± 0.67	90.03 ± 0.99	97.42 ± 0.37	85.71 ± 0.13	91.03
PROGRAM	87.18 ± 1.38	84.26 ± 1.80	96.65 ± 0.31	77.65 ± 0.70	86.44
DEYO	88.72 ± 0.58	85.27 ± 1.61	96.79 ± 0.33	82.56 ± 0.99	88.34
CUPLOT	91.33±1.15	90.00±1.62	97.60±0.57	85.51±0.65	91.11

Table 18: Full results on the VLCS dataset with ResNet-18.

Methods	С	L	S	V	Avg.
Erm	96.42±1.37	63.79±1.16	70.49 ± 1.41	70.21 ± 2.53	75.23
BN	82.64 ± 2.50	59.22 ± 0.90	62.91 ± 2.10	70.19 ± 1.34	68.74
TENT	83.23 ± 2.41	59.61 ± 0.99	63.47 ± 2.18	70.70 ± 1.06	69.25
PL	91.92 ± 1.31	62.41 ± 1.16	69.61 ± 1.20	74.44 ± 1.85	74.60
SHOT-IM	89.47 ± 3.48	58.85 ± 1.24	64.16 ± 2.85	71.49 ± 0.69	70.99
T3A	99.32 ± 0.18	63.89 ± 1.66	69.99 ± 1.90	70.51 ± 2.77	75.93
TAST	94.65 ± 1.45	55.58 ± 2.32	62.78 ± 3.27	70.50 ± 1.58	70.88
Tast-bn	97.45 ± 0.76	62.58 ± 5.78	65.65 ± 0.79	74.38 ± 2.34	75.02
TSD	94.35 ± 3.15	64.82 ± 1.03	66.94 ± 1.48	73.11 ± 2.66	74.81
PROGRAM	95.87 ± 1.45	59.88 ± 0.61	64.08 ± 4.68	69.58 ± 0.60	72.35
DEYO	93.47 ± 2.93	$60.42{\pm}6.09$	68.18 ± 2.60	74.13 ± 1.62	74.05
CUPLOT	99.41±0.15	65.61±0.50	71.25±2.23	71.61±1.40	76.97

Table 19: Full results on the VLCS dataset with ResNet-50.

Methods	С	L	S	V	Avg.
Erm	97.22±0.54	64.77±3.09	70.95 ± 1.24	73.63 ± 0.88	76.64
BN	80.28 ± 2.12	58.00 ± 0.22	62.29 ± 1.20	72.83 ± 0.68	68.35
TENT	81.74 ± 2.03	58.37 ± 0.25	63.00 ± 1.19	73.22 ± 0.56	69.08
PL	91.42 ± 3.13	59.29 ± 4.86	70.55 ± 0.73	73.97 ± 3.08	73.81
SHOT-IM	83.11 ± 5.17	57.11 ± 0.62	63.12 ± 1.56	73.95 ± 0.89	69.32
T3A	98.70 ± 0.82	65.79 ± 3.97	73.31 ± 2.22	71.84 ± 1.03	77.41
TAST	84.99 ± 7.20	53.05 ± 1.62	63.17 ± 1.33	72.91 ± 0.84	68.53
TAST-BN	87.30 ± 1.95	58.32 ± 2.49	65.51 ± 0.60	75.39 ± 0.24	71.63
TSD	92.86 ± 2.13	58.39 ± 0.63	67.09 ± 2.65	76.94 ± 0.60	73.82
PROGRAM	86.83 ± 4.58	58.98 ± 0.22	56.10 ± 7.43	71.77 ± 1.57	68.42
DEYO	83.89 ± 1.47	59.96 ± 2.16	64.65 ± 3.56	73.45 ± 0.64	70.49
CUPLOT	99.18±0.59	65.96±1.85	74.12±2.62	76.50±0.61	78.94

Table 20: Full results on the OfficeHome dataset with ResNet-18.

Methods	A	С	P	R	Avg.
ERM	55.51 ± 0.41	48.93 ± 0.36	71.58 ± 0.52	73.61 ± 0.46	62.41
BN	54.79 ± 0.32	49.41 ± 0.88	70.99 ± 0.83	73.24 ± 0.46	62.11
TENT	54.95 ± 0.37	49.66 ± 0.79	71.27 ± 0.89	73.33 ± 0.48	62.30
PL	55.16 ± 0.32	50.38 ± 0.65	71.02 ± 1.32	73.58 ± 0.10	62.54
SHOT-IM	56.25 ± 0.64	51.59 ± 0.54	72.83 ± 0.06	73.81 ± 0.47	63.62
T3A	56.04 ± 0.75	50.92 ± 0.46	73.67 ± 0.41	74.70 ± 0.76	63.83
TAST	55.33 ± 0.80	50.94 ± 1.25	73.96 ± 0.90	73.90 ± 1.04	63.53
TAST-BN	54.74 ± 0.38	50.36 ± 0.78	72.35 ± 0.78	71.85 ± 0.23	62.33
TSD	56.90 ± 0.48	50.03 ± 1.30	72.17 ± 0.97	73.38 ± 0.25	63.12
PROGRAM	55.62 ± 0.61	50.09 ± 1.83	72.07 ± 0.08	73.74 ± 0.57	62.88
DEYO	56.38 ± 0.25	50.36 ± 0.70	$71.86{\pm}1.08$	73.60 ± 0.30	63.05
CUPLOT	57.31±0.57	52.11±0.80	73.96±0.45	74.82±0.45	64.55

Table 21: Full results on the OfficeHome dataset with ResNet-50.

Methods	A	С	P	R	Avg.
ERM	62.93±0.36	53.35±0.82	76.27±0.09	78.21±0.42	67.69
BN	62.67 ± 0.36	53.46 ± 0.45	75.08 ± 0.66	77.52 ± 0.80	67.18
TENT	62.96 ± 0.30	54.26 ± 0.39	75.18 ± 0.55	77.53 ± 0.72	67.48
PL	63.73 ± 0.41	55.21 ± 0.60	73.64 ± 0.98	77.85 ± 0.69	67.61
SHOT-IM	63.59 ± 1.12	54.28 ± 0.16	75.96 ± 0.41	78.10 ± 0.59	67.98
T3A	63.25 ± 0.22	54.95 ± 0.85	77.79 ± 0.21	79.04 ± 0.12	68.76
TAST	63.62 ± 0.27	55.46 ± 0.81	77.51 ± 0.63	78.21 ± 0.59	68.70
Tast-bn	63.78 ± 0.34	55.76 ± 0.73	76.84 ± 0.49	78.01 ± 0.28	68.60
TSD	64.73 ± 0.41	57.15 ± 0.55	76.78 ± 0.54	77.78 ± 0.70	69.11
PROGRAM	63.55 ± 0.79	54.27 ± 0.29	76.27 ± 1.01	77.85 ± 0.77	67.99
DEYO	63.96 ± 0.27	55.22 ± 0.91	75.96 ± 0.42	77.87 ± 0.85	68.25
CUPLOT	66.64±0.69	57.87±0.55	77.62±0.32	79.05±0.15	70.30

Table 22: Full results on the DomainNet dataset with ResNet-18.

Methods	clipart	infograph	painting	quickdraw	real	sketch	Avg.
Erm	50.42 ± 0.13	15.32 ± 0.15	41.83 ± 0.09	11.46 ± 0.43	51.74 ± 0.34	43.64 ± 0.21	35.74
BN	50.75 ± 0.11	11.26 ± 0.21	40.71 ± 0.18	11.12 ± 0.12	51.86 ± 0.30	43.70 ± 0.23	34.90
TENT	51.16 ± 0.12	12.47 ± 0.23	41.84 ± 0.25	10.65 ± 0.33	51.28 ± 0.20	44.76 ± 0.17	35.36
PL	50.88 ± 0.06	13.16 ± 0.37	41.19 ± 0.15	10.69 ± 0.57	51.72 ± 0.42	44.02 ± 0.26	35.28
SHOT-IM	50.90 ± 0.13	12.76 ± 0.39	41.36 ± 0.18	13.58 ± 0.11	52.37 ± 0.30	44.38 ± 0.23	35.89
T3A	50.36 ± 0.29	15.14 ± 0.15	40.26 ± 0.05	16.22 ± 0.19	53.02 ± 0.13	42.74 ± 0.26	36.29
TAST	50.43 ± 0.27	10.67 ± 0.05	40.69 ± 0.09	14.22 ± 0.19	53.69 ± 0.33	42.49 ± 0.26	35.37
Tast-bn	50.12 ± 0.31	11.32 ± 0.13	40.82 ± 0.19	14.11 ± 0.29	52.11 ± 0.21	42.19 ± 0.31	35.11
TSD	50.75 ± 0.13	11.71 ± 0.13	42.35 ± 1.17	11.96 ± 0.67	52.03 ± 0.33	44.20 ± 0.21	35.50
PROGRAM	50.95 ± 0.08	13.09 ± 0.33	41.67 ± 0.15	13.28 ± 0.24	52.35 ± 0.34	44.27 ± 0.25	35.94
DEYO	$50.85 {\pm} 0.05$	13.23 ± 0.25	$41.20{\pm}0.18$	10.99 ± 0.17	51.89 ± 0.33	43.98 ± 0.27	35.36
CUPLOT	51.77±0.11	14.95±0.06	42.29±0.11	15.89±0.27	54.48±0.28	44.72±0.24	37.35

Table 23: Full results on the DomainNet dataset with ResNet-50.

Methods	clipart	infograph	painting	quickdraw	real	sketch	Avg.
ERM	61.14±0.23	20.89 ± 0.23	49.74±0.29	13.68±0.29	62.08±0.20	52.20±0.41	43.29
BN	60.58 ± 0.23	15.19 ± 0.12	48.66 ± 0.12	11.95 ± 0.24	61.18 ± 0.26	51.66 ± 0.15	41.54
TENT	61.71 ± 0.24	17.36 ± 0.09	50.33 ± 0.13	10.26 ± 0.77	61.58 ± 0.18	53.27 ± 0.08	42.42
PL	61.04 ± 0.22	17.62 ± 0.43	49.93 ± 0.06	11.75 ± 0.47	61.37 ± 0.17	52.59 ± 0.19	42.38
SHOT-IM	61.40 ± 0.39	17.51 ± 0.09	49.82 ± 0.13	16.54 ± 0.53	62.65 ± 0.18	52.81 ± 0.21	43.46
T3A	61.13 ± 0.34	21.01 ± 0.18	48.82 ± 0.11	18.67 ± 0.49	63.32 ± 0.15	51.69 ± 0.33	44.11
TAST	60.77 ± 0.42	14.95 ± 0.20	48.96 ± 0.14	15.16 ± 0.27	62.85 ± 0.36	51.56 ± 0.18	42.38
Tast-bn	60.89 ± 0.29	15.31 ± 0.25	48.99 ± 0.09	14.92 ± 0.23	62.98 ± 0.28	51.83 ± 0.19	42.49
TSD	60.80 ± 0.29	15.52 ± 0.11	49.42 ± 0.08	13.88 ± 0.24	61.70 ± 0.19	52.28 ± 0.18	42.27
PROGRAM	61.15 ± 0.26	18.05 ± 0.08	49.99 ± 0.28	15.48 ± 0.40	62.23 ± 0.15	53.22 ± 0.21	43.35
DEYO	61.03 ± 0.21	18.05 ± 0.32	49.89 ± 0.09	12.00 ± 0.25	61.33 ± 0.13	52.51 ± 0.21	42.47
CUPLOT	62.34±0.19	20.76±0.18	50.48±0.01	18.60 ± 0.52	64.57±0.19	53.15±0.33	44.98