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ABSTRACT

Large time series foundation models often adopt channel-
independent architectures to handle varying data dimensions,
but this design ignores crucial cross-channel dependencies.
Concurrently, existing multimodal approaches have not fully
exploited the power of large vision models (LVMs) to in-
terpret spatiotemporal data. Additionally, there remains
significant unexplored potential in leveraging the advan-
tages of information extraction from different modalities to
enhance time series forecasting performance. To address
these gaps, we propose the VIFO, a cross-modal forecasting
model. VIFO uniquely renders multivariate time series into
image, enabling pre-trained LVM to extract complex cross-
channel patterns that are invisible to channel-independent
models. These visual features are then aligned and fused with
representations from the time series modality. By freezing
the LVM and training only 7.45% of its parameters, VIFO
achieves competitive performance on multiple benchmarks,
offering an efficient and effective solution for capturing cross-
variable relationships in time series forecasting.

Index Terms— Time Series Forecasting, Spatiotemporal
Representation, Cross-modal Fusion

1. INTRODUCTION

Time series forecasting has been widely applied in diverse
settings such as weather, power systems, transportation, and
finance [1–4]. These scenarios often involve a wide variety
of temporal data, where different time series frequently ex-
hibit intricate interrelationships. Early time series forecast-
ing methods focus on statistical models and signal process-
ing techniques like decomposition [5, 6] and frequency anal-
ysis [7]; with the development of deep learning, many studies
improve prediction by fusing information across both variable
and temporal dimensions of multivariate time series [8,9], and
enhance the model’s ability to process local features [10, 11];
recently, the field has shifted towards large foundation mod-
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Fig. 1. Clear Patterns in Electricity and Traffic Time Series
Visualization: Periodicity, Lead-Lag Relationships, Anoma-
lous Events.

els [12–16] and further improves performance by incorporat-
ing cross-modal information fusion [17].

However, several issues remain unresolved [18]. Firstly,
the channel-independent architecture is commonly adopted
in large time series models. While this allows the model to
handle varying numbers of variables across datasets, it over-
looks valuable information provided by other time series. Al-
though many studies [19, 20] employ channel-dependent de-
signs, they require full-parameter training on large scale time
series datasets, which increases both data volume and train-
ing parameters, and also face challenges in effectively learn-
ing the distinct cross-variable dependency patterns inherent
to time series from different domains. Moreover, flattening
multivariate series into a univariate sequence may weaken
the recognition of cross-channel patterns. Secondly, previous
cross-modal fusion methods often relied on textual modalities
to provide auxiliary temporal information [17,21–24], yet un-
derutilizing the information capture capabilities of large mod-
els from different modalities. Besides, the global and local
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Fig. 2. The overall structure of VIFO, which simultaneously processes information across temporal and spatial dimensions
from both image and time series modalities.

feature extraction capabilities of visual modalities have not
been fully leveraged in spatiotemporal processing of time se-
ries data [25].

To address the aforementioned challenges, we develop a
novel multi-modal solution, which not only considers the se-
quence of numerical data points, but also leverages the visual
representational power of pre-trained visual models to cap-
ture spatiotemporal dependencies from raw multivariate time
series plots. In particular, it employs the variable-size vari-
ants of pre-trained visual models to overcome input format
issues caused by the imbalance between the number of vari-
ables and time series length in multivariate time series. These
features captured by the visual model are then projected onto
encoded representations in the temporal modality and further
enhanced through cross-modal fusion (we call it the VIFO
model). By this way, significant improvements in forecast-
ing performance could be achieved as verified by extensive
experiments. This work makes four main contributions:

• It offers a novel approach for leveraging large foundation
models to tackle cross-variable dependency, demonstrating
that pre-trained vision models can effectively capture com-
plex cross-channel dependencies from simple 2D visualiza-
tions of time series data.

• It provide a method to apply pre-trained vision models to
multivariate time series of arbitrary dimensions by render-
ing them as variable-sized images.

• During training, the model freezes the majority of its pa-
rameters, with only 7.45% of the total model parameters
are trainable, and this efficient training method is verified
to be effective for time series.

• Through cross-modal fusion and alignment, the VIFO
model achieves impressive forecasting performance on
multiple benchmark datasets.

2. METHODS

2.1. Problem Formulation

As shown in Figure 2, the input multivariate time series
is denoted as Xts ∈ RM×L with look-back window L :
(x1, x2, . . . , xL) and M variables, where xt represents the
M -dimensional vector at time step t. Additionally, the visual
input Xvs ∈ RM×L×c is generated by rendering the M × L
time series data as an M × L pixel image, where each row
represents a variable and each column as time step, and c
represents the number of RGB channels of the image. The
prediction target of the model is the future values of the next
F time steps, denoted as (xL+1, . . . , xL+F ).

2.2. Visual Analysis of Multivariate Time Series

Vision is the primary way for humans to obtain information
from the external world. To investigate whether multivari-
ate time-series graphs also contain patterns and regularities
recognizable by the human eye, we visualized the Traffic
and ECL datasets - commonly used in time-series forecasting
tasks - as shown in Figure 1. As can be seen from the figure,
the multivariate values of each dataset exhibit different color
variations as they change over time. Among them, both the
ECL and Traffic datasets show relatively obvious characters,
such as daily periodic changes.

Specifically, in the upper subplot of Figure 1 displaying
the ECL data, different variables exhibit distinct periodic
characteristics. Some variables demonstrate brief yet pro-
nounced peak patterns, while others display superimposed
daily and weekly cyclical patterns. Moreover, certain vari-
able pairs maintain relatively stable lead-lag relationships,
which provide a foundation for capturing cross-variable de-
pendencies in time series forecasting. For the visualization
of the Traffic dataset in the lower part of Figure 1, it exhibits
obvious multi-period superimposed patterns. Specifically,



from the zoomed-in section, based on the numerical changes
represented by colors, distinct diurnal (day-night) traffic flow
variations can be observed. Furthermore, there are significant
differences in traffic flow between five consecutive weekdays
and the following two weekend days: during the daytime on
weekdays, relatively distinct morning and evening rush hours
are visible, while this phenomenon is significantly alleviated
on weekends. In addition, small holidays can also be identi-
fied from the multivariate time series graph, which exhibits a
continuous alleviation of traffic rush hours lasting for more
than two days (4 days in total for holidays).

All the aforementioned patterns and regularities are di-
rectly observable to the naked eye from the visualizations of
multivariate time series - let alone more complex patterns that
cannot be directly observed. These observations demonstrate
the feasibility of visual analysis for multivariate time series,
as well as the importance of integrating the temporal and spa-
tial dimensions of time series data - an aspect that is difficult
to achieve with channel-independent architectures.

2.3. Model Architecture
Our model, depicted in Figure 2, comprises three key stages:
(1)Unimodal feature extraction via visual processor and time
series processor, (2) Cross-Modal Fusion layer, and (3) a final
Mapping layer for prediction. At first stage, the input data
of each modality passes through respective modality-specific
processing module, extracting features from a single modality
and output the high-dimensional hidden states. During the
cross-modal fusion in the second stage, the hidden states from
each modality in the previous stage are merged. Then, the
cross-modal attention module in the fusion layer processes
the cross-modal information, and finally, the predicted time
series is obtained after mapping.

2.4. Visual Modality Processing
In the visual modality processing stage, the input Xvs first
passes through the Processor of the vision large model, and
the resulting output is Xout

vs ∈ RP×emb, where P denotes
the number of embedding patches and emb represents the
embedding dimension. Subsequently, the output is fed into
the encoder of the vision large model to obtain the encoded
representation. Then, it goes through a mapping layer (a
multi-layer MLP structure) to output the processed hidden
state hiddents ∈ RM×H , where M is the number of vari-
ables and H is the dimension of the projection representation.
During the training process, the parameters of the vision large
model are frozen, and only other parts of the network need to
be fine-tuned. This approach not only leverages the capabili-
ties of the vision model but also greatly reduces the number
of trainable parameters.

2.5. Time Series Modality Processing

In the time series modality processing stage, the input Xts

first undergoes normalization [26] along the temporal dimen-

Table 1. Details of parameter amounts in the VIFO Modules.
Frozen Part Trainable Part

Visual
Model

Visual
Projection

Temporal
Network

Fusion
Network Total

Parameters 375M 1.8M 16M 12M 30M

Proportion 92.55% 0.45% 4.00% 3.00% 7.45%

sion, and then is fed into an attention module capable of
capturing spatiotemporal dimension information. Here, We
adopt a spatialtemporal attention structure [27], which con-
verts multivariate time series into spatiotemporal segments
and applies the self-attention mechanism to these segments
to capture global and local information of cross-channel time
series. Subsequently, the processed hidden state is output
through the projection layer, which is an MLP structure.

2.6. Cross-Modal Fusion

In this stage, the hidden states of information from each
modality obtained in the previous stage are merged first.
Then, the cross-modal information is processed through the
spatiotemporal attention module in the fusion layer, and fi-
nally, the predicted time series is obtained through mapping.
The parameter counts of each part are presented in Table 1.

3. EXPERIMENTS

3.1. Setup

Since the number of variates in multivariate time series varies
across different datasets, and the variable dimension and
temporal dimension length of the input time series are often
highly imbalanced, we adopt the encoder of SigLip2-base-
Naflex [28] as the backbone of the vision large model, which
allows arbitrary adjustment of image height and width. Dur-
ing training, all parameters of the visual encoder are frozen,
and only the remaining parts of VIFO are trained, with train-
able parameters accounting for only 7.45% of the total pa-
rameters. The input time series length L = 512, and the
output length F ∈ {96, 192, 336, 720}.

We select multiple competitive models as baselines, in-
cluding the Base and Large versions of Chronos [29] and
Moirai [19], as well as UniTST [30] and GPT4TS [13]. Small
models such as TimesNet [6] and PatchTST [10] were also in-
cluded. Experiments were conducted on 7 datasets, including
ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Weather, and
Traffic. To ensure the robustness of results, each experiment
was run 3 times with different random seeds. Chronos and
Moirai did not report results on the Traffic dataset, as this
dataset has an excessive number of variables.

3.2. Results

As shown in Table 2, the VIFO model achieved lower MSE
and MAE loss values on 7 datasets, demonstrating its com-
petitive predictive performance. Furthermore, the patterns



Table 2. Forecasting results comparison. MSE and MAE are evaluated on the benchmark dataset, with the prediction horizon
F ∈ {96, 129, 336, 720} and input length of 512. A lower value indicates better performance. Values in bold denote the best
performance, while values with underline indicate the second-best performance.

Models VIFO ChronosBase ChronosLarge MoiraiBase MoiraiLarge GPT4TS UniTST TimesNet PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 96 0.348 0.383 0.440 0.393 0.441 0.390 0.376 0.392 0.381 0.388 0.376 0.397 0.383 0.398 0.452 0.463 0.404 0.413
192 0.383 0.405 0.492 0.426 0.502 0.524 0.412 0.413 0.434 0.415 0.416 0.418 0.434 0.426 0.474 0.477 0.454 0.430
336 0.398 0.414 0.550 0.462 0.576 0.467 0.433 0.428 0.485 0.445 0.442 0.433 0.471 0.445 0.493 0.489 0.497 0.462
720 0.401 0.434 0.882 0.591 0.835 0.583 0.447 0.444 0.611 0.510 0.477 0.515 0.479 0.469 0.560 0.534 0.496 0.481
Avg 0.383 0.409 0.591 0.468 0.589 0.491 0.417 0.419 0.478 0.440 0.428 0.441 0.442 0.435 0.495 0.491 0.463 0.447

ETTh2 96 0.266 0.330 0.308 0.343 0.320 0.345 0.294 0.330 0.296 0.330 0.285 0.342 0.292 0.342 0.340 0.374 0.312 0.358
192 0.328 0.369 0.384 0.392 0.406 0.399 0.365 0.375 0.361 0.371 0.354 0.389 0.370 0.390 0.402 0.414 0.397 0.408
336 0.357 0.394 0.429 0.430 0.492 0.453 0.376 0.390 0.390 0.390 0.373 0.407 0.382 0.408 0.452 0.452 0.435 0.440
720 0.372 0.413 0.501 0.477 0.603 0.511 0.416 0.433 0.423 0.418 0.406 0.441 0.409 0.431 0.462 0.468 0.436 0.449
Avg 0.331 0.377 0.406 0.411 0.455 0.427 0.363 0.382 0.368 0.377 0.355 0.395 0.363 0.393 0.414 0.427 0.395 0.414

ETTm1 96 0.291 0.343 0.454 0.408 0.457 0.403 0.363 0.356 0.380 0.361 0.292 0.346 0.313 0.352 0.338 0.375 0.344 0.373
192 0.325 0.364 0.567 0.477 0.530 0.450 0.388 0.375 0.412 0.383 0.332 0.372 0.359 0.380 0.371 0.387 0.367 0.386
336 0.355 0.381 0.662 0.525 0.577 0.481 0.416 0.392 0.436 0.400 0.366 0.394 0.395 0.404 0.410 0.411 0.392 0.407
720 0.406 0.411 0.900 0.591 0.660 0.526 0.460 0.418 0.462 0.420 0.417 0.421 0.449 0.440 0.478 0.450 0.464 0.442
Avg 0.344 0.375 0.646 0.500 0.556 0.465 0.407 0.385 0.423 0.391 0.352 0.383 0.379 0.394 0.399 0.406 0.392 0.402

ETTm2 96 0.166 0.255 0.199 0.274 0.197 0.271 0.205 0.273 0.211 0.274 0.173 0.262 0.178 0.262 0.187 0.267 0.177 0.260
192 0.220 0.292 0.261 0.322 0.254 0.314 0.275 0.316 0.281 0.318 0.229 0.301 0.243 0.304 0.249 0.309 0.246 0.305
336 0.276 0.328 0.326 0.366 0.313 0.353 0.329 0.350 0.341 0.355 0.286 0.341 0.302 0.341 0.321 0.351 0.305 0.343
720 0.368 0.385 0.455 0.439 0.416 0.415 0.437 0.411 0.485 0.428 0.378 0.401 0.398 0.395 0.497 0.403 0.410 0.405
Avg 0.258 0.315 0.310 0.350 0.295 0.338 0.312 0.338 0.330 0.344 0.267 0.326 0.280 0.326 0.314 0.333 0.285 0.328

ECL 96 0.128 0.220 0.154 0.231 0.152 0.229 0.160 0.250 0.153 0.241 0.139 0.238 0.139 0.235 0.184 0.288 0.186 0.269
192 0.147 0.238 0.179 0.254 0.172 0.250 0.175 0.263 0.169 0.255 0.153 0.251 0.155 0.250 0.192 0.295 0.190 0.273
336 0.161 0.255 0.214 0.284 0.203 0.276 0.187 0.277 0.187 0.273 0.169 0.266 0.170 0.268 0.200 0.303 0.206 0.290
720 0.193 0.288 0.311 0.346 0.289 0.337 0.228 0.309 0.237 0.313 0.206 0.297 0.198 0.293 0.228 0.325 0.247 0.322
Avg 0.157 0.250 0.215 0.279 0.204 0.273 0.188 0.275 0.187 0.271 0.167 0.263 0.166 0.262 0.201 0.303 0.207 0.289

Weather 96 0.153 0.201 0.203 0.238 0.194 0.235 0.220 0.217 0.199 0.211 0.162 0.212 0.156 0.202 0.169 0.228 0.177 0.218
192 0.201 0.248 0.256 0.290 0.249 0.285 0.271 0.259 0.246 0.251 0.204 0.248 0.207 0.250 0.222 0.269 0.222 0.259
336 0.250 0.290 0.314 0.336 0.302 0.327 0.286 0.297 0.274 0.291 0.254 0.286 0.263 0.292 0.290 0.310 0.277 0.297
720 0.319 0.337 0.397 0.396 0.372 0.378 0.373 0.354 0.337 0.340 0.326 0.337 0.340 0.341 0.376 0.364 0.352 0.347
Avg 0.231 0.269 0.293 0.315 0.279 0.306 0.288 0.282 0.264 0.273 0.237 0.271 0.242 0.271 0.264 0.293 0.257 0.280

Traffic 96 0.362 0.251 - - - - - - - - 0.388 0.282 0.402 0.255 0.593 0.315 0.462 0.295
192 0.376 0.259 - - - - - - - - 0.407 0.290 0.426 0.268 0.596 0.317 0.466 0.296
336 0.398 0.269 - - - - - - - - 0.412 0.294 0.449 0.275 0.600 0.319 0.482 0.304
720 0.429 0.284 - - - - - - - - 0.450 0.312 0.489 0.297 0.619 0.335 0.514 0.322
Avg 0.391 0.266 - - - - - - - - 0.414 0.295 0.442 0.274 0.602 0.322 0.481 0.304

Table 3. Ablation analysis on the ETTh1 and ETTh2 datasets

Variant ETTh1 ETTh2

96 192 336 720 96 192 336 720

w/o TS modal 0.358 0.389 0.402 0.425 0.276 0.332 0.359 0.382

w/o VS modal 0.355 0.389 0.412 0.441 0.273 0.336 0.359 0.386

w/o projection 0.353 0.385 0.405 0.416 0.266 0.328 0.360 0.376

w/ all 0.348 0.383 0.398 0.401 0.266 0.328 0.357 0.372

extracted through the visual modality enhance the ability to
recognize long-term patterns in time series, which makes the
model performance degrade more slowly in long-sequence
forecasting. For example, the MSE loss with the forecasting
length of 720 is only increased by 0.75% and 5% compared
to the forecasting length of 360 for the ETTh1 and ETTh2
datasets, respectively, showing competitive long-term fore-
casting capability.

To further analyze the contribution of each module to the
predictive performance of VIFO, we conducted ablation ex-
periments as shown in Table 3, which examine the impact of
with or without each of those two modality processing mod-
ules and the projection layer on performance. From the re-

sults, the absence of any module leads to a decrease in the
predictive performance of the model, among which the visual
module has a relatively greater impact on the forecasting of
long-term time series. In addition, the added projection layer
can better align information from the two modalities, facil-
itating subsequent cross-modal information fusion, and thus
enhancing predictive performance.

4. CONCLUSIONS

This work investigates the application of visual representation
of multivariate time series and cross-modal fusion in the field
of time series forecasting. Specifically, it explores the dis-
covery of structured spatiotemporal patterns from spatiotem-
poral visualization graphs. By leveraging the feature extrac-
tion capability of large vision model, we constructed VIFO
to capture spatiotemporal stable features. The experiments
show that VIFO exhibits competitive predictive performance
on various time series datasets, while also providing a new
feasible solution for the design of variable dependency struc-
tures in large time series models.
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