
Empirical Analysis of Upper Bounds
for Robustness Distributions
using Adversarial Attacks

Aaron Berger∗2[0009−0006−3322−5718], Nils Eberhardt∗2[0009−0003−3964−8584],
Annelot W. Bosman1[0009−0004−1050−5165], Henning Duwe2[0009−0008−4361−1203],

Holger H. Hoos1,2,3[0000−0003−0629−0099], and
Jan N. van Rijn1[0000−0003−2898−2168]

1 Leiden Institute of Advanced Computer Science, Leiden University,
The Netherlands

{a.w.bosman, j.n.van.rijn}@liacs.leidenuniv.nl
2 Chair for AI Methodology, RWTH Aachen University, Germany

{duwe, hh}@aim.rwth-aachen.de
{aaron.berger, nils.eberhardt}@rwth-aachen.de

3 University of British Colombia, Canada

Abstract. This study examines the effectiveness of adversarial attacks
in determining upper bounds for robustness distributions for neural net-
works. While complete neural network verification techniques can pro-
vide exact safety margins, their computational cost limits scalability. To
address this, we evaluate multiple adversarial attack methods, including
FGSM, PGD, AutoAttack and FAB, comparing them to a state-of-the-
art verification technique, α, β-CROWN. Using the MNIST dataset, we
demonstrate that adversarial attacks yield computationally efficient and
tight upper bounds for robustness distributions. We assess the trade-
offs between running time, accuracy and the quality of the bounds ob-
tained through our approach. The results highlight complementarities
between verification and attack methods: Attacks achieve near-optimal
upper bounds at a significantly reduced computational cost. These find-
ings open opportunities for large-scale robustness analysis while acknowl-
edging limitations in safety guarantees inherent to the approximation
techniques on which our approach is based.

Keywords: Neural Network Verification · Adversarial Robustness · Dis-
tribution Analysis · Adversarial Examples

1 Introduction

In recent years, despite the remarkable performance of neural networks in var-
ious tasks, their vulnerability to adversarial perturbations has led to concerns
about the reliability and security of these models. Adversarial perturbations are

* These authors contributed equally to this work

2 Berger, Eberhardt, Bosman, Duwe et al.

small, imperceptible modifications to inputs that lead to misclassifications. This
rising concern is reflected in the sizeable body of scientific work investigating dif-
ferent kinds of attacks [1, 10, 11], training neural networks to be robust against
perturbations [23, 29, 34] and formal verification of different robustness prop-
erties [19, 21, 24]. A prominent example of such a property is local robustness,
which determines for a given network and input whether the network is robust
against input perturbations up to a certain magnitude. Recently, Bosman et
al. [3] introduced robustness distributions as a versatile method for analysing
the robustness of a network and for comparing different networks for the same
classification problem.

Originally, robustness distributions represent the amount of perturbation
that can be applied to individual inputs given to a neural network such that
correct outputs remain unaffected. These maximum allowable perturbation sizes
for individual inputs are called critical epsilons, short ε∗; they are computed us-
ing neural network verification techniques. Neural network verification methods
are limited in the type and size of networks they can verify since, amongst other
reasons, verification is computationally expensive.

As a cheap alternative to measuring robustness distributions, we propose us-
ing adversarial attack methods to determine an upper bound on the ε∗-values.
Unlike complete verification, which provides lower bounds on ε∗-values and,
therefore, guarantees exact safety margins at a high computational cost, adver-
sarial attacks provide much faster results at the cost of completeness; i.e., if
no adversarial example is found this does not guarantee that none exists. This
makes adversarial attack methods suitable for providing relatively cheap upper
bounds to the ε∗-values, but not for making statements about the general ro-
bustness of neural networks. As an additional benefit, several attack methods
can adapt to different network architectures, making them versatile compared
to verification techniques that are usually constrained to specific architectures.

In the following, we compare multiple state-of-the-art adversarial attack
methods to obtain upper bounds for robustness distributions to the baseline of
robustness distributions obtained from complete verification methods. We em-
pirically show that these approximations provide upper bounds of high quality.
We use a binary search algorithm to determine the ε∗ value for a given network
and input. We have made the code for reproducing our experiments and the
results available in a public GitHub repository.4 In summary, the contributions
of our work are as follows:

– We investigate the monotonicity assumption for perturbation radii of adver-
sarial examples on MNIST, showing that it holds in most cases with few ex-
ceptions for attacks where randomness is included, namely pgd_40_random
and AutoAttack. Binary search works optimally only if the problem is mono-
tonic; this means that if an attack method can find an adversarial pertur-
bation within a certain magnitude, it should also be able to find it within
any larger magnitude, and vice versa. Note that while neural network ver-

4 See: https://github.com/ADA-research/Robustness-Estimation-Experiments

https://github.com/ADA-research/Robustness-Estimation-Experiments

Adversarial upper bounds 3

ification methods strictly adhere to this monotonicity assumption, it is not
necessarily satisfied by adversarial attack-based methods.

– We show that on the MNIST dataset, the upper bounds of robustness dis-
tributions can be approximated with attack-based methods that find com-
parable results to a high-performance complete verifier.

– We compare computational cost and quality of robustness distributions com-
puted using complete verification and attack-based methods.

– We use the Kolmogorov-Smirnov test to show that approximating the robust-
ness distributions on a subset of the data results in a distribution similar to
that for the entire test dataset.

– We show performance complementarity between different state-of-the-art ad-
versarial attacks and verifiers in terms of running time and the size of the
adversarial perturbations obtained from them.

2 Background

In this section, we cover the background of local robustness verification and ro-
bustness distributions, as well as different adversarial attacks and other methods
that try to estimate the distance of a data point to the decision boundary of a
neural network.

2.1 Foundations of neural network verification

Neural network verification. Formally, a neural network classifier can be de-
scribed by a function fθ in Rn → Rm, where θ is the set of trained parameters
for fθ, n is the number of input variables, and m is the number of possible
classes. We use Fy(x) to denote the probability that the classifier assigns to
input x belonging to class y.

Considering an input x0 with correct label λ(x0) and a region (also called
ε-ball) around x0 defined by Gp,ε(x0) = {x : ||x − x0||p ≤ ε}, using some norm
lp, local robustness verification aims to formally verify whether there exists a
perturbed input x ∈ Gp,ε(x0), such that the predicted label of x differs from the
true label λ(x). In this paper, we exclusively focus on the ℓ∞-norm due to its
broad usage in the literature.

This problem can be modelled in the framework of mixed integer linear pro-
gramming (MILP) [27]. As a solution to the MILP, we either find an adversarial
perturbation or proof that an adversarial perturbation cannot exist within a
certain ε radius. This problem of neural network verification, however, is NP-
complete [18] and therefore computationally expensive, mainly due to the non-
linearity of neural networks [27]. This is why complete verification does not
scale well to state-of-the-art networks or to large datasets [5,19], even though it
has been the starting point for much work on complete verification techniques.
One of these complete verification methods is α, β-CROWN [28], which has won
the neural network verification competition in 2021, 2022, 2023 and 2024 [5–7].

4 Berger, Eberhardt, Bosman, Duwe et al.

α, β-CROWN is configured to first run adversarial attacks that can often effi-
ciently disprove robustness within the given epsilon radius. α, β-CROWN uses
the CROWN [33] bounding method as an incomplete verifier and uses branch-
and-bound [8] to make the verification complete.

Robustness distributions. In the literature, robustness is usually quantified as
a network’s accuracy on a certain set of input instances and a fixed amount of
perturbation ε [21]. This metric, known as robust accuracy is highly sensitive
to small changes of the chosen ε. Comparing networks for different ε values
can provide widely different views on the robustness of these networks. One
recently introduced method for analysing the robustness of neural networks is
the concept of robustness distributions [3]; these are empirical distributions of
a certain robustness measure, such as the critical ε, over a set of input data
and give a complete picture of the adversarial robustness of a neural network.
Bosman et al. [3] used a complete verifier to find empirical lower bounds on the
critical ε for a given neural network using k-binary search.

2.2 Methods for finding adversarial perturbations

In this work, we empirically investigate how well different algorithmic methods
for finding adversarial examples [2, 12, 13, 16, 23] can provide upper bounds for
robustness distributions. Unlike complete verification approaches, these methods
cannot guarantee that no adversarial perturbation for a certain ε radius exists
if they do not find one, but they are significantly less computationally expensive
since they often only use a pre-defined number of gradient passes through the
network and often still find imperceptible adversarial perturbations [16, 23]. In
the following, we describe the different methods we considered for creating the
empirical robustness distributions.

Fast Gradient Sign Method (FGSM) [16] is a one-step method for generating
adversarial examples that utilise the loss-function of a neural network. FGSM
is mainly designed for adversarially retraining neural networks to make them
resistant to attacks. For each input variable in the input image x0, we find the
direction that maximises the loss function and multiply it by a predefined ε.
Goodfellow et al. [16] find that this simple method leads to many misclassifi-
cations for a wide variety of networks. Since it was first published, FGSM has
given rise to a wide range of extensions, such as Projected Gradient Descent,
but they all still rely on the basic method that we use in this work.

Projected Gradient Descent (PGD) [23] utilises the gradient information of a
neural network to find adversarial examples. This method can be seen as a
multi-step version of FGSM. PGD starts with a random initialisation within the
ε-ball around the given image. In each step, gradient descent on the negative
loss is performed with a small learning rate. After each step, the current value
is projected onto the ε-ball. PGD is commonly used in adversarial training [23,
26,32], which can often increase robustness against adversarial attacks. Notably,

Adversarial upper bounds 5

a variant of PGD is also used in the α, β-CROWN verifier to try to disprove
robustness before starting the actual verification procedure.

Fast Adaptive Boundary Attack (FAB) [12] aims to produce minimally distorted
adversarial examples, exploiting the computationally efficient box-constrained
projections of the problem of finding p∗. This means that the minimisation prob-
lem is simplified to only consider upper and lower bounds on each of the input
variables in x0. This version of the optimisation problem is combined with the
approximated decision boundaries of the network and a bias in the algorithm to
find the closest possible adversarial example. This algorithm has a targeted and
an untargeted version, meaning that we can either specify which class we want
the classifier to misclassify the instance as or not. We refer to these two versions
as targeted and untargeted FAB attack.

Square Attack [2] is a black-box attack based on iterative random search. In
each iteration, the algorithm randomly modifies some pixels of the given image
that are adjacent to each other and form a square within the input x from the
previous iteration (or, in the beginning, the original image). The changes are
only made if the resulting loss is larger than in the last step; loss in this context
is defined as Fy(x)−maxk ̸=yFk(x), where y is the original label. The stopping
criterion is met as soon as an adversarial example is found. Square Attack is
limited in the type of adversarial examples that it can find, however, it is a
simple algorithm that does not rely on gradients and sometimes outperforms
white-box attacks [13].

AutoAttack [13] is an ensemble method that combines two parameter-free ver-
sions of PGD with Square Attack and targeted FAB. In the evaluation of Au-
toAttack with models from the literature [13], the ensemble attack achieved lower
robust test accuracy scores than reported in the original papers in all but one of
the tested cases. AutoAttack is currently the standard attack method for evalu-
ating robustness without guarantees in the context of adversarial training [11].

2.3 Other related work

Liu et al. [22] used a similar binary search-based approach to calculate the crit-
ical ε as we do in this work and considered lower bounds using an incomplete
verifier. Carlini et al. [9] analysed the differences between provably minimal ad-
versarial perturbations found by a verifier and adversarial perturbations found
by an adversarial attack for the ℓ1- and ℓ∞-norms. They found by verification
that iterative attacks perform better than single-step attacks and adversarial
training increases the sizes of the minimal adversarial perturbations. Weng et
al. [30] introduced a lower bound on the minimal adversarial perturbations with
local Lipschitz constants. They used extreme value theory to approximate the
maximal gradient over the high-dimensional ε-ball and provide an estimate of
the lower bound. Notably, this method does not depend on a specific attack and
can be applied to large networks.

6 Berger, Eberhardt, Bosman, Duwe et al.

3 Upper bounds to robustness distributions

Following Bosman et al. [3], we define the critical ε value, ε∗, for a trained neural
network fθ and an input x0 with true class λ(x0) as the largest perturbation size
such that the perturbed input x ∈ {x : ∥x − x0∥p < ε∗} is classified correctly,
while any perturbation radius exceeding ε∗ is guaranteed to permit misclassifi-
cations. Finding the exact ε∗ is computationally complex and often practically
infeasible. A possible solution to this is to discretise the search space for finding
a lower bound to the ε∗. Then a variant of binary search can be used to traverse
the search space efficiently, e.g. k-binary search, where k verification queries are
solved simultaneously [3]. Here, for simplicity we rely on standard binary search.
Binary search with complete verification does not only lead to a lower bound of
the ε∗-value, which we will refer to as ε̃∗ we also obtain an upper bound of the
value. We use the notion p∗ for the smallest ε value that leads to misclassification
and refer to it as the minimum adversarial perturbation. For conciseness, in the
following, we use p̃∗, the value we find as an upper bound for p∗, and ε̃∗ to refer
to the respective values in the discretised search space.

To obtain the baseline robustness distributions, we calculate the strict lower
and upper bounds on the critical ε-value for each input image using binary
search with a complete verification method [3]. For this baseline, we verify that
the network is robust for the given input to obtain the lower bound ε̃∗, and an
upper bound p̃∗. During binary search with complete verification, we possibly
encounter out-of-memory errors and timeouts; to account for this, we use a
slightly adapted version of the binary search, as outlined in Algorithm 1 in
Appendix C. The estimation is tight if there exists no ε-value in the discretised
range we consider that lies between the lower and upper bounds.

For the adversarial attacks, we only calculate the upper bound p̃∗ with bi-
nary search. We assume that smaller/larger ε-values than the last investigated
can be disregarded. If an attack finds an adversarial example for the current
ε, then ε̃∗ must be smaller. Otherwise, we continue the search with a larger ε,
though adversarial examples may still exist for smaller values. Mathematically,
the binary search assumes that the robustness result is monotonic concerning the
perturbation size. If the monotonicity assumption holds, binary search will find
the ε̃∗ being the closest to the true ε∗. We assume that if no adversarial example
is found for some ε, none will be found for smaller values. This assumption is
analysed in Section 5.1.

4 Setup of experiments

Choice of attack methods and complete verifier. We compare various methods
that perform adversarial attacks. We selected AutoAttack since it is ubiquitously
used to evaluate the robustness of large networks in the literature [11]. Addi-
tionally, we included the standard attacks FGSM and PGD. Furthermore, we
included the FAB attack, since it is designed to find small perturbations. No-
tably, we refrained from using the commonly known DeepFool [25] attack, since

Adversarial upper bounds 7

the FAB attack can be seen as a substantially improved version of DeepFool.
Finally, we utilised the complete verifier α, β-CROWN, since it is considered
state-of-the-art [5–7] to determine a reasonable upper and lower bound for the
ε∗-values.

Experiment design. We perform binary search on perturbation sizes from the
discretised search space S := {i/255 | i ∈ N} ∩ [0, 0.4] to find a lower bound ε̃∗

and an upper bound p̃∗. The search space has the step size of pixel values, and
the upper end is at 0.4, since for bigger values, no ε∗-values have been observed
on MNIST [4]. We used the VERONA5 package to run our experiments and
compute the robustness distributions. We use the α, β-CROWN [28] verifier for
verification with a time-out of 600 seconds for each verification query, where a
verification query is the combination of one input and a specific perturbation
radius.

Attack parameters. For all attacks except FAB, we use the binary search method
introduced above and outlined in Algorithm 1. We use PGD with and without
random initialisation, with k = 40 iterations, and we set the step size to (0.2−
1

255)/k. We use the standard parameter settings of AutoAttack [13]. For FAB, we
use the random initialisation of 0.3 from the original paper [12]. Notably, FAB
is designed to find small perturbations such that no binary search is needed.
We use five restarts of the untargeted and targeted FAB version. In each restart
of the targeted version, an FAB attack is executed once for all possible target
classes, i.e., nine times on MNIST. We assigned the maximum value (0.4) to
instances where none of the queries produced an adversarial attack.

α, β-CROWN and AutoAttack both use PGD variants, and we chose the
default setting for both of them, i.e., 100 PGD steps. α, β-CROWN, however,
uses 30 restarts, while AutoAttack uses no restarts. In addition, AutoAttack uses
a targeted PGD version on a special loss for nine classes, such that there are 10
runs of PGD variants in total used within AutoAttack.

Choice of input images. In this work, we analysed the robustness distributions
for different MNIST networks. We selected the same 100 testing images as in
[3,19] for the robustness distributions using complete verification. We discarded
originally misclassified images for each network and did not include them in
the distributions; the resulting number of images per network can be found in
Appendix A, Table 3.

Choice of networks. We selected four fully connected networks with ReLU acti-
vation functions. These networks have been extensively used in the literature [3].
The mnist_relu_m_n networks have n layers with m units and were trained us-
ing standard methods. mnist-net_256x2 has two layers with 256 units. More
details about the model architectures are provided in Appendix A, Table 3.

5 https://github.com/ADA-research/VERONA

https://github.com/ADA-research/VERONA

8 Berger, Eberhardt, Bosman, Duwe et al.

Execution environment. All experiments were carried out on one NVIDIA H100
GPU with 96 GB of RAM. We executed the binary search for four images si-
multaneously on the same GPU using multiple threads for the α, β-CROWN
verifier.

Performance metrics. We computed four performance metrics to compare the
methods we investigated: the average running time, the average minimal adver-
sarial perturbation sizes p̄∗, the ratio to the best p̄∗ (RB-p̄∗) and the relative
marginal contribution (RMC). RB-p̄∗ denotes the ratio of p̄∗ found by the given
algorithm divided by p̄∗ of the virtual best algorithm (VBA), which is inspired
by the virtual best solver concept from Xu et al. [31]. The VBA for a given input
image is the method that found the smallest adversarial perturbation. If more
than one algorithm found the smallest adversarial perturbation, we choose the
method with the lowest running time as the VBA. We follow the work of König
et al. [19] for the definition of marginal contribution. The RMC is the fraction of
inputs on which a given method found a smaller adversarial perturbation than
all others; thus, the RMC quantifies the impact of adding or removing a given
algorithm from the ensemble containing all of them.

5 Results

In the following, we report the results of our empirical analysis. First, we inves-
tigate the underlying assumption for using binary search to compute robustness
values. Second, we show the adversarial upper bounds compared to the robust-
ness distribution obtained by using the exact verifier. Third, we compare the
upper bounds per instance to assess the quality of the bounds we have obtained.
Then, we report the running time needed for our different methods and in-
vestigate the marginal contribution of the various methods. Last, we show the
adversarial upper bounds of the robustness distributions computed using the
entire testing set.

5.1 Monotonicity assumption of perturbation radii of adversarial
examples

To investigate the monotonicity assumption on the MNIST dataset for each of
the adversarial attack methods, we iteratively checked the local robustness for
each ε-value in our search space for all networks. We computed the distance
between the minimum adversarial example p̃∗ and the largest ε̃∗ for which we
found the network to be robust. If we have a robust result for an ε bigger than
our p̃∗, we have a counterexample to the monotonicity assumption. As can be
seen in Appendix B, Table 4, the monotonicity assumption does not hold for all
input images. While we could not find counterexamples to the monotonicity for
FGSM and PGD, we did encounter counterexamples for both adversarial attack
methods where randomness was used for creating the perturbed image, namely
pgd_40_random and AutoAttack.

Adversarial upper bounds 9

For AutoAttack, we see that the monotonicity assumption does not hold for
one query. For PGD with random initialisation, four counterexamples to the
monotonicity assumption were found for each network. Interestingly, those were
found to involve the same images across the four networks, showing that the
perturbation sizes for these adversarial examples are similar across the different
networks. Out of the 1572 queries to find the ε̃∗ with an iterative search pro-
cedure, the monotonicity assumption did not hold for just 17 queries. For all
of these, the distances to the optimal value were no more than 5 steps in our
discretised search space. As these counterexamples to the monotonicity assump-
tion occur rarely, we argue that using binary search is valid for the computation
of the robustness values. However, it should be noted that this will not always
result in optimal upper bounds compared to iterative search.

5.2 Comparison of complete verification and adversarial attacks

Next, we analysed whether adversarial attack methods can provide a tight upper
bound on the minimum adversarial example. We approach this by first comparing
the adversarial attack methods to the minimum adversarial examples computed
using our baseline verifier α, β-CROWN per image and then by looking at the
resulting robustness distributions from the different algorithms. We visualise
the robustness distributions in Figure 1. Most of the adversarial attack methods
lead to p̃∗-values close to the ones obtained using complete verification, and
the computed p̃∗-values are close to the ε̃∗-values for most of the networks. In
contrast to this, for the biggest network, mnist_relu_4_1024, the gap between
p̃∗ and ε̃∗-values is more significant. One can see that especially the minimum
adversarial perturbation values from α, β-CROWN and AutoAttack are very
similar. Also, for most of the networks, PGD and FAB attacks lead to similar
distributions. In general, the worst approximations are computed using FGSM,
which shows the biggest gap to the other distributions.

By testing the hypothesis of log-normality using the Kolmogorov-Smirnov
(K-S) test [14] with a confidence level of 0.05, we found evidence that most of
the robustness distributions constructed using the adversarial attack methods we
considered tend to follow log-normal distributions. This is in line with findings
recently reported in the literature [3]. Only for the mnist−net_256x2 with the
pgd_40 attack, the null hypothesis of log-normality is rejected, see Appendix F,
Table 8.

In Figure 2, we compare AutoAttack with α, β-CROWN on a per-instance
level, showing that while most p̃∗-values seem to be the same, there exist some
complementarities between the complete verifier and adversarial attack methods.

Table 1 contains the performance results from our experiments. Using the
adversarial attack methods, we observed running times two to four magnitudes
smaller than those for complete verification. At the same time, adversarial at-
tack methods do not result in the same robustness distributions as when the
distributions are computed using complete verification. When relying on ad-
versarial attack methods, we compute upper bounds on robustness and do not
obtain formal safety guarantees. Still, adversarial attack methods can produce

10 Berger, Eberhardt, Bosman, Duwe et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

algorithm
abcrown
autoattack
untargeted_fab_attack
fgsm
targeted_fab_attack
pgd_40
pgd_40_random

Fig. 1: Approximation techniques and complete verification on first 100 MNIST
test images. The lines display the CDFs of the p̃∗-values for the different methods.
The lighter blue area indicates the gap between ε̃∗ and p̃∗ values from α, β-
CROWN.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
abcrown

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

au
to

at
ta

ck

Spearman's r = 1.00, p-value: 0.00

mnist_relu_4_1024

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
abcrown

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

au
to

at
ta

ck

Spearman's r = 0.97, p-value: 0.00

mnist-net_256x2

Fig. 2: Scatterplots of the minimum adversarial examples found with α, β-
CROWN (x-axis) and AutoAttack (y-axis) for two networks. Each point in the
figure represents one image from the MNIST test set.

upper bounds of robustness distributions with reasonable quality and signifi-
cantly smaller running time for the MNIST dataset.

We find that on the 100 images subset, α, β-CROWN is the best-performing
method with an RMC of 0.066 and a p̄∗-value of 0.005. All the RMCs are quite
low, because α, β-CROWN and AutoAttack obtain the same p̃∗ on 89% of the
instances, as shown in Appendix F Figure 4. AutoAttack found a smaller p̃∗

for 4.3% of the instances and for 6.3% of the instances α, β-CROWN found a
smaller p̃∗, as listed in Appendix F Figure 5 for all pairs of methods. Figure 5

Adversarial upper bounds 11

100 images Complete test set

algorithm Time [s] p̄∗ RMC RB-p̄∗ Time [s] p̄∗ RMC RB-p̄∗

VBA 290.787 0.055 - 1.000 7.316 0.063 - 1.000
abcrown 3731.513 0.055 0.066 1.005 - - - -
autoattack 20.233 0.055 0.028 1.006 19.999 0.063 0.214 1.002
fgsm 0.047 0.095 0.000 1.741 0.046 0.107 0.000 1.695
pgd_40 0.139 0.080 0.000 1.471 0.140 0.089 0.002 1.407
pgd_40_random 0.143 0.064 0.000 1.167 0.142 0.075 0.000 1.184
targeted_fab 0.333 0.064 0.000 1.164 0.451 0.074 0.000 1.171
untargeted_fab 0.550 0.058 0.003 1.052 0.555 0.069 0.003 1.092

Table 1: Performance comparison of complete verification method α, β-CROWN
and the considered adversarial attack methods in terms of running time in sec-
onds averaged per image, the average minimum adversarial example, the relative
marginal contribution (RMC) and the ratio of the average minimum adversarial
perturbation p̄∗ over compared to the virtual best algorithm (VBA). Whenever
multiple methods find the same p̄∗, we consider the method with the smallest
running time to be part of the VBA.

shows that only for 0.69% of the instances any of the other methods was able to
obtain a smaller p̃∗ than AutoAttack or α, β-CROWN.

On 158 out of our 1572 test instances, we find that for the robustness values
computed using the verifier, p̃∗ − ε̃∗ = 1/255, and thus we find the optimal
approximation for these values in our discretised search space. In Table 2, we
compare the p̃∗-values of the various methods for these instances. We note that
in 90.5% of the cases, AutoAttack finds the same ε̃∗ as α, β-CROWN, and for
the cases where AutoAttack did not find the optimal ε̃∗, it obtained a value just
0.9% larger than the ε̃∗ from α, β-CROWN. Regarding the other attacks, there
is a significant performance gap, as they find the optimal values in less than
70% of the cases. For the test images under consideration, the average running
time for the verifier is significantly smaller than for all the instances, which could
indicate that the instances where we find tight approximations are also instances
where it is easier to compute the local robustness properties.

5.3 Comparison of attacks on the complete test set

As we have shown, using adversarial attack methods we can efficiently com-
pute good upper bounds for robustness distributions. As the current research on
robustness distributions [3, 4] is limited to small data subsets, due to the com-
putational complexity of complete verification, we see the use of attack-based
methods as a means to computing robustness distributions on larger datasets.
In Figure 3, we compare the robustness distributions computed using the ad-
versarial attack methods on the complete MNIST test set with 10000 images to
the robustness distributions presented in the previous section. While most of the

12 Berger, Eberhardt, Bosman, Duwe et al.

algorithm time [s] p̄∗ fopt RB-p̄∗

VBA 11.330 0.040 1.000 1.000
abcrown 82.993 0.040 1.000 1.000
autoattack 17.312 0.040 0.905 1.009
fgsm 0.042 0.083 0.146 2.083
pgd_40 0.115 0.072 0.551 1.824
pgd_40_random 0.116 0.046 0.557 1.157
targeted_fab_attack 0.314 0.050 0.316 1.247
untargeted_fab_attack 0.488 0.042 0.677 1.051

Table 2: Statistics on the 158 test images for which the ε∗ computation of α, β-
CROWN is as tight as possible and it holds that p̃∗ − ε̃∗ = 1/255. fopt denotes
the frequency of finding the size of the smallest possible adversarial perturbation.

distributions seem similar for the two datasets, for mnist-net_256x2 a long tail
appears on the full test set that has been absent on the first 100 images. This
shows either that the first 100 images give a too conservative view of the ro-
bustness of this network or we find worse quality upper bounds for this network
on the whole dataset due to an unidentified factor. In contrast to the distribu-
tions on the first 100 images, we could not find evidence for the distributions
on the entire test set to follow log-normal distributions using K-S tests. This is
expected, as the K-S test tends to become overly conservative for large samples
of discrete data, for a comprehensive overview see the work of Darling [14]. Sim-
ilar to the results on the first 100 images, AutoAttack finds the tightest upper
bounds on the complete test set, followed closely by the FAB attacks and PGD
with random initialisation. FGSM and PGD without random initialisation were
found to obtain the loosest bounds.

As we do not have ε̃∗-values from complete verification for the whole test
dataset, we cannot use the distance between the ε̃∗-values and the minimum
adversarial perturbations values as a measure of the quality of the distributions.
Instead, we investigate if the distributions on the whole test set are statistically
similar to the ones from the subset; which can be used as an indicator of the
quality of the distributions. Using the K-S test we compare the distributions
on the subset and the whole test set in Appendix F Table 10. We find general
similarities between the results on the whole test dataset and the subset robust-
ness distributions, indicating that looking at a subset of the MNIST dataset
should generally be sufficient for computing a robustness distribution and show-
ing that we can also approximate robustness distributions on a whole test set
with reasonable quality.

While we observed many similarities between the robustness distributions
on the first 100 test images, that does not hold for the complete test set, as
we show in Appendix 7. There, for all except one combination, using pairwise
K-S tests, we did not find evidence that the distributions are similar. This is
possibly due to the rank of performances we found on the 100 images, where

Adversarial upper bounds 13

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

autoattack

Fig. 3: To assess the similarities and differences of the robustness distributions
on the 100-image subset and the test set, we plot the respective CDFs. Here we
show the results for AutoAttack and all networks used in our study.

AutoAttack performs significantly better than the other attacks. We assume
that these performance differences between the algorithms get magnified on the
whole test dataset, which leads to statistically different distributions.

6 Discussion and conclusions

In this work, we investigated the use of approximation methods based on ad-
versarial attacks for determining high-quality upper bounds for robustness dis-
tributions. We have shown that adversarial attack methods can provide tight
upper bounds at significantly lower computational costs than required for run-
ning complete verification methods. These upper bounds can be used to obtain a
relatively cheap estimation of the robustness of a given neural network. Further-
more, we examined the feasibility of using binary search and provided evidence
that for adversarial attacks with non-random initialisation, our search space is
mostly monotonic.

Our results pave the way to estimating robustness distributions for larger
datasets. Building on existing work from the literature, we observed similarities
between log-normal distributions and our upper-bound robustness distributions
on a small subset of the MNIST dataset. We also find no significant difference
in the distributions on the subset and that on the complete dataset, while our
statistical tests suggest that the distributions on the entire dataset do not follow
log-normal distributions; this is likely due to our test becoming overly conser-
vative for large samples of discrete data. Because of this, the similarity of the
robustness distributions on the whole dataset cannot be guaranteed, as complete
verification of the whole dataset was not feasible.

14 Berger, Eberhardt, Bosman, Duwe et al.

As the approach introduced here is more scalable than the earlier use of
complete verification techniques, it would be interesting to apply it to more
complex datasets, such as CIFAR-10 [20], GTSRB [17] and ImageNet [15], to
consider more sophisticated network architectures and to further investigate the
quality of the approximations thus obtained for adversarially and certifiably
trained neural networks.

Overall, we believe that to use robustness distributions in practical appli-
cations, we need to determine good lower and upper bounds. Therefore, future
research on methods for finding tight and inexpensive lower bounds for robust-
ness distributions is needed.

Acknowledgements

The authors thank Konstantin Kaulen for his helpful feedback on this paper.
This research was partially supported by TAILOR, a project funded by EU
Horizon 2020 research and innovation program under GA No. 952215, and by
an Alexander-von-Humboldt Professorship in AI held by Holger Hoos. Compu-
tations were performed using computing resources granted by RWTH Aachen
University under project rwth1650.

References

1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer
vision: A survey. IEEE Access 6, 14410–14430 (2018)

2. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-
efficient black-box adversarial attack via random search. In: European Conference
on Computer Vision. pp. 484–501 (2020)

3. Bosman, A.W., Hoos, H.H., van Rijn, J.N.: A preliminary study of critical robust-
ness distributions in neural network verification. In: Workshop on Formal Methods
for ML-Enabled Autonomous Systems (FOMLAS) (2023)

4. Bosman, A.W., Münz, A.L., Hoos, H.H., van Rijn, J.N.: A preliminary study to
examining per-class performance bias via robustness distributions. In: The 7th
International Symposium on AI Verification (SAIV). pp. 116–133 (2024)

5. Brix, C., Bak, S., Johnson, T.T., Wu, H.: The fifth international verification of
neural networks competition (VNN-COMP 2024): Summary and results. arXiv
preprint arXiv:2412.19985 (2024)

6. Brix, C., Bak, S., Liu, C., Johnson, T.T.: The fourth international verification of
neural networks competition (VNN-COMP 2023). arXiv preprint arXiv:2312.16760
(2023)

7. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (VNN-COMP). Interna-
tional Journal on Software Tools for Technology Transfer 25(3), 329–339 (2023)

8. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research (JMLR) 21(42), 1–39 (2020)

9. Carlini, N., Katz, G., Barrett, C., Dill, D.L.: Provably minimally-distorted adver-
sarial examples. arXiv preprint arXiv:1709.10207 pp. 1–8 (2018)

Adversarial upper bounds 15

10. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A
survey on adversarial attacks and defences. CAAI Transactions on Intelligent Tech-
nology 6(1), 25–45 (2021)

11. Costa, J.C., Roxo, T., Proença, H., Inácio, P.R.M.: How deep learning sees the
world: A survey on adversarial attacks & defenses. IEEE Access 12, 61113–61136
(2024)

12. Croce, F., Hein, M.: Minimally distorted adversarial examples with a fast adaptive
boundary attack. In: International Conference on Machine Learning (ICML). pp.
2196–2205 (2020)

13. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: International Conference on Machine Learn-
ing (ICML). pp. 2206–2216 (2020)

14. Darling, D.A.: The Kolmogorov-Smirnov, Cramér-von Mises Tests. The Annals of
Mathematical Statistics 28(4), 823–838 (1957)

15. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 248–255 (2009)

16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (ICLR). vol. 3,
pp. 1–10 (2015)

17. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic
signs in real-world images: The German Traffic Sign Detection Benchmark. In:
International Joint Conference on Neural Networks. pp. 1–8 (2013)

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Verification (CAV). pp. 97–117. Springer (2017)

19. König, M., Bosman, A.W., Hoos, H.H., van Rijn, J.N.: Critically assessing the state
of the art in neural network verification. Journal of Machine Learning Research
(JMLR) 25(12), 1–53 (2024)

20. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (Canadian institute for advanced
research)

21. Li, L., Xie, T., Li, B.: Sok: Certified robustness for deep neural networks. In: IEEE
symposium on Security and Privacy. pp. 1289–1310 (2023)

22. Liu, J., Chen, L., Miné, A., Yu, H., Wang, J.: Input validation for neural networks
via local robustness verification. In: International Conference on Software Quality,
Reliability, and Security Companion (QRS-C). pp. 237–246 (2023)

23. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (ICLR). pp. 1–15 (2018)

24. Meng, M.H., Bai, G., Teo, S.G., Hou, Z., Xiao, Y., Lin, Y., Dong, J.S.: Adversarial
robustness of deep neural networks: A survey from a formal verification perspective.
IEEE Transactions on Dependable and Secure Computing pp. 1–18 (2022)

25. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 2574–2582 (2016)

26. Singh, N.D., Croce, F., Hein, M.: Revisiting adversarial training for ImageNet:
Architectures, training and generalization across threat models. In: Advances in
Neural Information Processing Systems (NeurIPS). vol. 36 (2023)

27. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR). pp. 1–11 (2019)

16 Berger, Eberhardt, Bosman, Duwe et al.

28. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for com-
plete and incomplete neural network verification. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS). vol. 34 (2021)

29. Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., Gu, Q.: On the convergence and ro-
bustness of adversarial training. In: International Conference on Machine Learning
(ICML). pp. 6586–6595 (2019)

30. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel, L.:
Evaluating the robustness of neural networks: An extreme value theory approach.
In: International Conference on Learning Representations (ICLR). pp. 1–14 (2018)

31. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: International Conference
on Theory and Applications of Satisfiability Testing (SAT). pp. 228–241 (2012)

32. Zhang, H., Yu, Y., Jiao, J., Xing, E.P., Ghaoui, L.E., Jordan, M.I.: Theoretically
principled trade-off between robustness and accuracy. In: International Conference
on Machine Learning (ICML). pp. 7472–7482 (2019)

33. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems (NeurIPS). vol. 31, pp. 4944–4953 (2018)

34. Zhao, W., Alwidian, S., Mahmoud, Q.H.: Adversarial Training Methods for Deep
Learning: A Systematic Review. Algorithms 15(8), 283 (2022)

Adversarial upper bounds 17

A Model information

network neurons parameters linear layers subset instances test instances

mnist_relu_3_50 0.1K 42K 3 98 9588
mnist−net_256x2 0.5K 269K 3 100 9808
mnist_relu_9_100 0.8K 150K 9 97 9508
mnist_relu_4_1024 3K 2913K 4 98 9385

Table 3: Architecture details about the used networks from König et al. [19] with
the number of correctly classified instances on the 100 images subset and the
MNIST test set.

B Monotonicity Experiment

attack network number images step distance mean

autoattack mnist_relu_3_50 1 1

pgd_40_random mnist−net_256x2 5 3
mnist_relu_3_50 5 3
mnist_relu_4_1024 5 3
mnist_relu_9_100 5 3

Table 4: Results of the monotonicity experiment. The experiment was executed
on the first 100 images of the MNIST test set. We show for each algorithm-verifier
combination, for how many images the monotonicity assumption was violated
(where we found the network to be safe for a specific ε bigger than p∗). To show
how the bounds could have been looser by using binary search, we include the
mean step distance from p∗ (with our step size 1/255) to the highest ε with a safe
result. Algorithm-verifier combinations with no counterexample are omitted.

18 Berger, Eberhardt, Bosman, Duwe et al.

C Binary Search with α, β-crown

Algorithm 1: Binary search algorithm
Data: Ordered set of epsilon values E with |E| = n, a verifier

f(x, ε ∈ E) = y ∈ {safe, unsafe, error}, an image x
Result: critical epsilon ε∗, minimum adversarial perturbation p∗

first = 0;
last = n− 1;
results = {};
while first ≤ last do

midpoint = (first+ last)//2;
ε = E[midpoint];
result = f(x, ε);
results = results ∪ {(result, ε)};
if result == unsafe then

last = midpoint− 1;
else if result == safe then

first = midpoint+ 1;
else

E = E \ {ε};
last = last− 1

ε∗ = getBiggestSafeEpsilon(results);
p∗ = getSmallestUnsafeEpsilon(results);
return (ε∗, p∗)

D Pairwise comparison of algorithms

(a) First 100 images (b) Complete test set

Fig. 4: Fraction of instances where two algorithms found a minimal adverarial
perturbation of equal size.

Adversarial upper bounds 19

(a) First 100 images (b) Complete test set

Fig. 5: Fraction of instances where the method on th y-axis found a smaller
minimal adverarial perturbation than the method on the x-axis.

E Running time and minimal adversarial perturbations
statistics

Time p∗

algorithm mean min max std mean min max std

VBA 7.32 0.03 45.63 11.08 0.063 0.004 0.396 0.047
autoattack 20.00 6.49 45.63 7.82 0.063 0.004 0.396 0.047
fgsm 0.05 0.03 6.30 0.03 0.107 0.004 0.396 0.095
pgd_40 0.14 0.09 0.97 0.03 0.089 0.004 0.396 0.095
pgd_40_random 0.14 0.09 0.80 0.04 0.075 0.004 0.396 0.066
targeted_fab 0.45 0.19 9.16 1.06 0.074 0.004 0.400 0.055
untargeted_fab 0.56 0.38 5.80 0.21 0.069 0.004 0.400 0.057

Table 5: Execution time in seconds and minimal adversarial perturbation on the
complete MNIST testing set. We do not investigate α, β-CROWN for the entire
testing set, as this is computationally infeasible.

20 Berger, Eberhardt, Bosman, Duwe et al.

Time p∗

algorithm mean min max std mean min max std

VBA 290.79 0.04 24,716.12 2,031.69 0.055 0.004 0.153 0.028
abcrown 3,731.51 31.17 24,716.12 4,732.15 0.055 0.004 0.153 0.028
autoattack 20.23 6.60 45.63 8.25 0.055 0.004 0.153 0.028
fgsm 0.05 0.03 1.40 0.07 0.095 0.004 0.396 0.087
pgd_40 0.14 0.09 0.46 0.04 0.080 0.004 0.396 0.088
pgd_40_random 0.14 0.09 0.27 0.04 0.064 0.004 0.396 0.044
targeted_fab 0.33 0.28 1.70 0.10 0.064 0.004 0.173 0.033
untargeted_fab 0.55 0.42 1.26 0.13 0.058 0.004 0.165 0.030

Table 6: Execution time in seconds and minimal adversarial perturbation on the
first 100 MNIST test images.

F Statistical analysis

network algorithm measure statistic p-value passed

mnist_relu_3_50 abcrown p∗ 0.06 0.81 True
ε∗ 0.07 0.64 True

mnist_relu_9_100 abcrown p∗ 0.07 0.78 True
ε∗ 0.52 0.00 False

mnist_relu_4_1024 abcrown p∗ 0.06 0.89 True
ε∗ 0.53 0.00 False

mnist-net_256x2 abcrown p∗ 0.09 0.42 True
ε∗ 0.08 0.48 True

Table 7: K-S test for log-normality for the robustness distributions computed of
different neural networks using α, β-CROWN on the first 100 images for the ε∗

and the p∗ values. The tests with a p-value of less than 0.05 were rejected. We
provide the test statistic and the p-value as well as the interpretation of the test,
i.e., whether the null-hypothesis was rejected (False) or accepted (True).

Adversarial upper bounds 21

network algorithm statistic p-value passed

mnist_relu_3_50 abcrown 0.06 0.81 True
autoattack 0.06 0.88 True
untargeted_fab_attack 0.07 0.71 True
fgsm 0.05 0.97 True
targeted_fab_attack 0.06 0.85 True
pgd_40 0.06 0.82 True
pgd_40_random 0.05 0.91 True

mnist_relu_9_100 abcrown 0.07 0.78 True
autoattack 0.07 0.76 True
untargeted_fab_attack 0.08 0.48 True
fgsm 0.07 0.76 True
targeted_fab_attack 0.09 0.38 True
pgd_40 0.07 0.65 True
pgd_40_random 0.06 0.79 True

mnist_relu_4_1024 abcrown 0.06 0.89 True
autoattack 0.06 0.89 True
untargeted_fab_attack 0.06 0.88 True
fgsm 0.07 0.73 True
targeted_fab_attack 0.05 0.94 True
pgd_40 0.06 0.88 True
pgd_40_random 0.05 0.95 True

mnist-net_256x2 abcrown 0.09 0.42 True
autoattack 0.08 0.55 True
untargeted_fab_attack 0.09 0.36 True
fgsm 0.11 0.16 True
targeted_fab_attack 0.09 0.33 True
pgd_40 0.16 0.01 False
pgd_40_random 0.10 0.30 True

Table 8: K-S test for log-normality for the robustness distributions computed
using attacks on the first 100 images. The tests with a p-value of less than 0.05
were rejected.

22 Berger, Eberhardt, Bosman, Duwe et al.

network algorithm statistic p-value passed

mnist_relu_3_50 autoattack 0.04 0.00 False
untargeted_fab_attack 0.04 0.00 False
fgsm 0.03 0.00 False
targeted_fab_attack 0.03 0.00 False
pgd_40 0.04 0.00 False
pgd_40_random 0.04 0.00 False

mnist_relu_9_100 autoattack 0.04 0.00 False
untargeted_fab_attack 0.03 0.00 False
fgsm 0.04 0.00 False
targeted_fab_attack 0.04 0.00 False
pgd_40 0.06 0.00 False
pgd_40_random 0.03 0.00 False

mnist_relu_4_1024 autoattack 0.04 0.00 False
untargeted_fab_attack 0.04 0.00 False
fgsm 0.06 0.00 False
targeted_fab_attack 0.04 0.00 False
pgd_40 0.05 0.00 False
pgd_40_random 0.03 0.00 False

mnist-net_256x2 autoattack 0.14 0.00 False
untargeted_fab_attack 0.17 0.00 False
fgsm 0.14 0.00 False
targeted_fab_attack 0.16 0.00 False
pgd_40 0.18 0.00 False
pgd_40_random 0.11 0.00 False

Table 9: K-S test for log-normality for the robustness distributions computed
using attacks on all MNIST test images. The tests with a p-value of less than
0.05 were rejected.

Adversarial upper bounds 23

algorithm network p-value passed

autoattack mnist_relu_3_50 0.69 True
mnist-net_256x2 0.03 False
mnist_relu_9_100 0.51 True
mnist_relu_4_1024 0.67 True

fgsm mnist-net_256x2 0.31 True
mnist_relu_3_50 0.10 True
mnist_relu_9_100 0.27 True
mnist_relu_4_1024 0.43 True

pgd_40 mnist_relu_9_100 0.41 True
mnist-net_256x2 0.18 True
mnist_relu_3_50 0.67 True
mnist_relu_4_1024 0.69 True

pgd_40_random mnist_relu_4_1024 0.52 True
mnist_relu_9_100 0.32 True
mnist_relu_3_50 0.47 True
mnist-net_256x2 0.07 True

targeted_fab_attack mnist_relu_9_100 0.48 True
mnist_relu_4_1024 0.62 True
mnist_relu_3_50 0.52 True
mnist-net_256x2 0.02 False

untargeted_fab_attack mnist_relu_3_50 0.54 True
mnist_relu_9_100 0.14 True
mnist-net_256x2 0.01 False
mnist_relu_4_1024 0.80 True

Table 10: K-S test to compare the minimum adversarial perturbation distribu-
tions for the first 100 images with the distributions for the whole dataset. The
tests with a p-value of less than 0.05 were rejected.

24 Berger, Eberhardt, Bosman, Duwe et al.

ab
cr

ow
n

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

abcrown

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 -0.07 -0.51 -2.26 -1.16 -0.60 -0.58

0.07 0.00 -0.44 -2.20 -1.09 -0.53 -0.51

0.51 0.44 0.00 -1.76 -0.65 -0.10 -0.07

2.26 2.20 1.76 0.00 1.12 1.66 1.69

1.16 1.09 0.65 -1.12 0.00 0.55 0.57

0.60 0.53 0.10 -1.66 -0.55 0.00 0.03

0.58 0.51 0.07 -1.69 -0.57 -0.03 0.00

mnist_relu_3_50

ab
cr

ow
n

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

abcrown

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 -0.01 -0.75 -2.43 -1.82 -0.56 -0.42

0.01 0.00 -0.74 -2.42 -1.81 -0.55 -0.41

0.75 0.74 0.00 -1.70 -1.06 0.16 0.32

2.43 2.42 1.70 0.00 0.68 1.81 2.00

1.82 1.81 1.06 -0.68 0.00 1.20 1.38

0.56 0.55 -0.16 -1.81 -1.20 0.00 0.15

0.42 0.41 -0.32 -2.00 -1.38 -0.15 0.00

mnist_relu_9_100

ab
cr

ow
n

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

abcrown

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 0.00 -0.15 -2.50 -0.44 -0.67 -0.52

0.00 0.00 -0.15 -2.50 -0.44 -0.67 -0.52

0.15 0.15 0.00 -2.37 -0.29 -0.53 -0.38

2.50 2.50 2.37 0.00 2.10 1.82 1.99

0.44 0.44 0.29 -2.10 0.00 -0.25 -0.09

0.67 0.67 0.53 -1.82 0.25 0.00 0.15

0.52 0.52 0.38 -1.99 0.09 -0.15 0.00

mnist_relu_4_1024

ab
cr

ow
n

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

abcrown

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 -0.02 -1.05 -8.91 -4.66 -5.17 -3.66

0.02 0.00 -1.04 -8.94 -4.69 -5.18 -3.67

1.05 1.04 0.00 -8.30 -3.71 -4.63 -2.89

8.91 8.94 8.30 0.00 5.78 2.01 5.23

4.66 4.69 3.71 -5.78 0.00 -2.55 0.05

5.17 5.18 4.63 -2.01 2.55 0.00 2.39

3.66 3.67 2.89 -5.23 -0.05 -2.39 0.00

mnist-net_256x2

Fig. 6: Pairwise T-tests on the first 100 images. The plot shows the test statis-
tics for the different combinations. The combinations that passed the test are
highlighted in yellow.

Adversarial upper bounds 25

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 0.09 0.19 0.14 0.03 0.04

0.09 0.00 0.15 0.05 0.07 0.06

0.19 0.15 0.00 0.11 0.16 0.15

0.14 0.05 0.11 0.00 0.11 0.11

0.03 0.07 0.16 0.11 0.00 0.01

0.04 0.06 0.15 0.11 0.01 0.00

mnist_relu_3_50

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 0.12 0.20 0.18 0.04 0.04

0.12 0.00 0.16 0.09 0.10 0.10

0.20 0.16 0.00 0.09 0.16 0.16

0.18 0.09 0.09 0.00 0.14 0.14

0.04 0.10 0.16 0.14 0.00 0.02

0.04 0.10 0.16 0.14 0.02 0.00

mnist_relu_9_100

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 0.05 0.30 0.08 0.07 0.07

0.05 0.00 0.29 0.04 0.06 0.06

0.30 0.29 0.00 0.26 0.23 0.23

0.08 0.04 0.26 0.00 0.05 0.05

0.07 0.06 0.23 0.05 0.00 0.03

0.07 0.06 0.23 0.05 0.03 0.00

mnist_relu_4_1024

au
to

at
ta

ck

un
ta

rg
et

ed
_f

ab
_a

tta
ck

fg
sm

ta
rg

et
ed

_f
ab

_a
tta

ck

pg
d_

40

pg
d_

40
_r

an
do

m

autoattack

untargeted_fab_attack

fgsm

targeted_fab_attack

pgd_40

pgd_40_random

0.00 0.17 0.50 0.35 0.24 0.20

0.17 0.00 0.45 0.19 0.20 0.15

0.50 0.45 0.00 0.34 0.26 0.30

0.35 0.19 0.34 0.00 0.19 0.19

0.24 0.20 0.26 0.19 0.00 0.15

0.20 0.15 0.30 0.19 0.15 0.00

mnist-net_256x2

Fig. 7: Pairwise K-S tests on the whole MNIST test set. The plot shows the test
statistics for the different combinations. The combinations that passed the test
are highlighted in yellow.

26 Berger, Eberhardt, Bosman, Duwe et al.

G Visual Analysis

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

untargeted_fab_attack

Fig. 8: To assess the similarities and differences of the robustness distributions
on the 100 images subset and the test set, we plot the cdf functions of both
distributions together. Here we show the results for the untargeted_fab_attack
attack and all the networks we used.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

fgsm

Fig. 9: To assess the similarities and differences of the robustness distributions
on the 100 images subset and the test set, we plot the cdf functions of both
distributions together. Here we show the results for the fgsm attack and all the
networks we used.

Adversarial upper bounds 27

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

targeted_fab_attack

Fig. 10: To assess the similarities and differences of the robustness distributions
on the 100 images subset and the test set, we plot the cdf functions of both
distributions together. Here we show the results for the targeted_fab_attack
attack and all the networks we used.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

pgd_40

Fig. 11: To assess the similarities and differences of the robustness distributions
on the 100 images subset and the test set, we plot the cdf functions of both
distributions together. Here we show the results for the pgd_40 attack and all
the networks we used.

28 Berger, Eberhardt, Bosman, Duwe et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_3_50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_9_100

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist_relu_4_1024

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

p
*

va
lu

es
 fo

un
d

mnist-net_256x2

dataset
100 images
test set

pgd_40_random

Fig. 12: To assess the similarities and differences of the robustness distributions
on the 100 images subset and the test set, we plot the cdf functions of both
distributions together. Here we show the results for the pgd_40_random attack
and all the networks we used.

	Empirical Analysis of Upper Bounds for Robustness Distributions using Adversarial Attacks

