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Abstract
Training contemporary foundation models is becoming an astronomical-scale, compute-limited op-
timization (instead of generalization) problem where heterogeneous data arrive in a stream whose
storage is prohibitive, and a central question is how to spend gradient steps on more informative
data that brings better convergence. We study online data selection as a variance reduction tool
for stochastic optimization, and propose a balanced locality-sensitive hashing (LSH) sampler that
is one-pass, simple, and lightweight. Our method has linear complexity in the batch size and
gradient dimension and is insensitive to hyperparameters, making it a practical choice for stream-
ing, compute-constrained training. Through extensive experiments on image/text classification and
fine-tuning Llama 3 on mixed math corpora, we show that our method matches or exceeds the per-
formance of strong diversity and uncertainty baselines with significantly better efficiency. Gradient
similarity analyses further confirm that our selected subsets closely approximate full-data gradients,
demonstrating both efficiency and effectiveness in diverse online data selection.

1. Introduction

With the unprecedented data and model sizes, foundation model pretraining increasingly operates in
a compute-capped, data-rich regime where heterogeneous examples arrive continually in a stream,
far exceeding what any fixed compute budget can process to convergence [74]. In this setting, each
update step is a scarce resource in a nonstationary, streaming stochastic optimization problem. A
core question is how to allocate computational resources to informative samples so that stochastic
gradients remain low-variance and unbiased, yielding fast descent per unit compute.

Redundancy in streaming batches inflates gradient variance and thereby slows down conver-
gence. Diversity-aware selection strategies (e.g., k-center and k-means) counter this by spreading
updates across the representation space. However, iterative clustering is too slow to run at every step
in high-dimensional optimization problems. We seek a near one-pass, sublinear-overhead mecha-
nism that preserves the benefits of diversity without paying the cost of heavy optimization.

We propose a novel method for online data selection based on Random Projection Locality
Sensitive Hashing (LSH) to enforce diversity in a computationally efficient manner. LSH is a ran-
domized hashing technique that maps similar items to the same bucket with high probability. Our
method uses random projection LSH on the data’s latent representations to partition the feature
space into buckets, and then samples a small, roughly equal number of points from each bucket.
In this way, each selection is forced to include data from across the feature space, limiting the
chance of over-sampling any single dense region. Crucially, we introduce simple modifications to
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standard LSH to balance the bucket sizes and avoid buckets with overwhelming numbers of points
dominating the selection.
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Figure 1: Effect of threshold choice on LSH bucket balance. Locality-sensitive hashing parti-
tioning of 1000 random 2D points using two random hyperplanes and three different binarization
thresholds. Points are colored by their 4-bucket assignment, and black lines indicate the hyper-
planes under each scheme. (Left) Original LSH (through the origin) yields a highly imbalanced
distribution. (Middle-left) Mean Threshold (shifted to the average projection) produces a more even
split. (Middle-right) Median Threshold (shifted to the median projection) achieves near-uniform
occupancy. (Right) Random SVD partition baseline yields roughly uniform splits.

In summary, our contributions are depicted as follows:
• We introduce a data selection algorithm by hashing data into buckets and samples across buck-

ets to improve diversity. We address the inherent bucket size imbalance in vanilla LSH with
lightweight adjustments that keep the method one-pass and efficient.

• The proposed method is significantly faster and cheaper than clustering-based diversity sampling
(e.g., k-center and k-means), while achieving comparable diversity. We provide complexity
analysis and empirical timing to demonstrate the efficiency gains.

• Through experiments on large-scale image and text datasets, and on challenging math bench-
marks, we show that our approach maintains or improves model performance relative to other
baselines. Notably, it yields competitive accuracy while the gradient of the selected subset
closely matches the full data gradient, indicating excellent representativeness.
Due to the space limit, we defer the detailed discussion on related works to Appendix A.

2. Why Balanced LSH Helps: An Optimization Perspective

For the optimization regime that online data selection generally lies in, the convergence of the
stochastic optimizer is largely influenced by variance and bias of random gradient estimates. This
section focuses on the simple yet popular stochastic gradient descent (SGD) and motivates our
online data selection strategy via an illustrative toy example.

Effect of variance and bias on the convergence of SGD. Given a differentiable objective func-
tion f : Rd → R, we consider solving the optimization problem f∗ = minθ∈Rd f(θ) via SGD. Ini-
tializing at any θ0 ∈ Rd with f(θ0)−f∗ = F > 0, SGD iteratively updates θt+1 ← θt−ηtg(θt, ξt)
with some learning rate ηt > 0. g(θt, ξt) ∈ Rd is a random estimate of ∇f(θt), with randomness
from the independent random variable ξt, such that g(θt, ξt) = ∇f(θt) +b(θt) +v(θt, ξt), where
(i) E[v(θ, ξ)] = 0 (for all θ ∈ Rd) represents variance; and (ii) b(θ) represents bias.

The convergence of SGD with random (possibly biased) gradient estimates has been extensively
studied in optimization literature [1, 8, 33]. For example, [1, Lemma 3] shows that when f is L-
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smooth, i.e., f(θ′) ⩽ f(θ) +∇f(θ)⊤(θ′ − θ) + L
2 ∥θ

′ − θ∥22 for all θ,θ′ ∈ Rd, given a gradient
estimate g(θ, ξ) with (i) (cv, σ2)-bounded variance, i.e., there exist cv, σ ⩾ 0 such that

E[∥v(θ, ξ)∥22] ⩽ cv ∥∇f(θ) + b(θ)∥22 + σ2 ∀ θ ∈ Rd, (1)

and (ii) (cb, β2)-bounded bias, i.e., there exist cb ∈ [0, 1) and β ⩾ 0 such that

∥b(θ)∥22 ⩽ cb ∥∇f(θ)∥22 + β2 ∀ θ ∈ Rd, (2)

after any T ⩾ 2FL(cv+1)2

σ2 steps of SGD with constant learning rates ηt = η =
√

2F
TLσ2 , the average

gradient norm square converges in expectation: 1
T

∑T−1
t=0 E[∥∇f(θt)∥22] ⩽ 2

1−cb

√
2FLσ2

T + β2

1−cb
.

In other words, with biased gradient estimates (i.e., cb > 0 or β > 0), the squared gradient norm
of SGD is only guaranteed to converge to a ( β2

1−cb
)-neighborhood of a stationary point. Meanwhile,

with unbiased gradient estimates (i.e., cb = β = 0), the variance characterized by cv, σ
2 determines

the convergence rate to a stationary point of f .

Balanced LSH is unbiased with lower variance than uniform sampling. As a simple motivat-
ing example, we consider a linear regression problem over (x, y) ∼ D(θ∗) such that y = x⊤θ∗ + z
for some unknown ground truth θ∗ ∈ Rd and an independent label noise z ∼ N (0, σ2

y). Let D be
the marginal distribution of x and define Σ = Ex∼D[xx

⊤], M = Ex∼D[(xx
⊤)2]. We aim to learn

θ∗ with squared loss, θ∗ = argminθ∈Rd{f(θ) = E(x,y)∼D(θ∗)[
1
2(x

⊤θ − y)2]}, by applying SGD
on subsampled online data batches.

Example 1 (Toy thought experiment: variance reduction via balanced LSH) At each SGD step,
we receive a batch of n i.i.d. samples {(xi, yi) ∼ D(θ∗)}ni=1 and select a subset of k samples, in-
dexed by S ⊂ [n] (|S| = k), from it. Denote X = [x1, · · · ,xn]

⊤ ∈ Rn×d, y = [y1, · · · , yn] ∈ Rn,
and let XS ∈ Rk×d,yS ∈ Rk contain the selected subset. Given any current parameter θ, we aim to
find a suitable S such that the gradient estimate based on the subsampled batch, g(θ, (X,y, S)) =
1
kX

⊤
S (XSθ − yS), is close to the true gradient ∇f(θ). We compare two selection strategies for S

in terms of the variance and bias of g(θ, (X,y, S)):
(i) Uniform sampling draws k samples {i1, · · · , ik} ⊂ [n] from (X,y) each with probability 1/n.

The resulting gradient estimate g(θ, (X,y, Suni)) is unbiased (i.e. satisfies (2) with cb = β = 0)

and satisfies (1) with σ2 =
σ2
y

k tr(Σ) and cuniv = 1
k∥Σ

†(M − Σ2)Σ†∥2 where Σ† denotes the
pseudoinverse of Σ.

(ii) Balanced LSH sampling, ideally, partitions the support ofD evenly into b ∈ N buckets, supp(D) =
∪bι=1Xι with Pr(x ∈ Xι) = 1/b and Xι ∩ Xν = ∅ for all ι, ν ∈ [b], ι ̸= ν, and draws k/b
samples uniformly from each bucket (assuming n, k are both divisible by b for simplicity). Let
Σι = Ex∼D[xx

⊤|x ∈ Xι] for all ι ∈ [b]. The resulting gradient estimate g(θ, (X,y, Slsh)) sat-

isfies (2) with cb = β = 0 and (1) with σ2 =
σ2
y

k tr(Σ) and clshv = 1
k∥Σ

†(M− 1
b

∑b
ι=1Σ

2
ι )Σ

†∥2.
Notice that clshv ⩽ cuniv since 1

b

∑b
ι=1Σ

2
ι ⪰ Σ2 = (

∑b
ι=1

1
bΣι)

2 by Jensen’s inequality. In partic-
ular, the gain of balanced LSH over uniform sampling, cuniv − clshv , due to the Jensen gap tends to
be substantial when Σ1, · · · ,Σb are distinct, which is facilitated by the locality-sensitive sampling.
While both uniform and balanced LSH sampling are unbiased with the same additive variance σ2,
balanced LSH tends to achieve lower cv in (1) and therefore better convergence under SGD.
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We defer the detailed analysis of Example 1 to the supplementary material, while highlighting key
insights from Example 1 in the following remark.

Remark 1 (Unbiasedness from balanced sampling, lower variance from LSH) On one hand, the
unbiasedness of g(θ, (X,y, Slsh)) in Example 1 comes from balanced sampling over evenly parti-
tioned buckets. In contrast, sampling evenly from imbalanced buckets (e.g., based on plain LSH or
k-means) leads to biased gradient estimates and usually compromises the performance in practice
(see Figure 1 and results in Section 4). On the other hand, balanced LSH achieves lower variance
than uniform sampling intuitively by enforcing locality diversity in the selected samples.

3. Locality-Sensitive Hashing (LSH) Algorithm for Paritioning Data

We consider an online data selection setting where, at time t, a mini-batch of n unlabeled or labeled
examples Dt =

{
(xi, yi)

}n
i=1

arrives, and we aim to choose a fixed-size subset St ⊂ Dt, |St| =
k < n, to train (or fine-tune) our model.

Given a batch of n embedding vectors X ∈ Rn×d, we fix the number of buckets b and hyper-
planes m. We sample W ∈ Rm×d with i.i.d. entries wjℓ ∼ N (0, 1) and compute the projected
embedding P = XW⊤ ∈ Rn×m. We then choose a threshold vector t ∈ Rm by

tj =


0, (zero) ,
1

n

n∑
i=1

Pij , (mean) ,

median
{
P1j , . . . , Pnj

}
, (median) .

Each entry in the projected embedding is binarized as Bij = [Pij > tj ] ∈ {0, 1}, where each
row Bi: is interpreted as an m-bit integer hi =

∑m
j=1Bij 2

j−1, and the final bucket assignment is
bi = hi mod b, i = 1, . . . , n..

Furthermore, in order to balance the number of datapoints across bucket, we also propose an-
other strategy that compute an approximate rank-d randomized SVD X ≈ U ΣV ⊤, whiten via
X̃ = X V Σ−1, set P = X̃ , and then apply the same zero-threshold binarization and hashing steps
above. Overall our proposed algorithm is depicted in Algorithm 1 where we divide the incoming
minibatch of data X into b different buckets.

Bucket-aware sampling. Once each example has been assigned to a bucket, we build the selection
batch of size k with a simple round-robin procedure. First, we gather all buckets that still contain
unpicked items. Then, until we have k samples or all buckets are empty, we randomly shuffle the
list of non-empty buckets. Then, for each bucket in this shuffled order, we remove one data point at
random from the bucket and add it to our batch. If the bucket becomes empty, drop it from further
consideration. This round-robin random extraction draws approximately one sample per bucket per
pass, ensuring diversity across buckets.

4. Experiments

Due to space constraints, some experimental details and additional results are deferred to the ap-
pendix. Here we present the main results and ablation studies demonstrating the efficiency of the
proposed algorithm. Empirically, we found that LSH with a mean or median threshold or LSH-SVD
perform similarly in practice, thus we stick with LSH-median throughout the experiment.
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Vision Classification on ImageNet-1K. We fine-tune a ResNet-50 [31] backbone on the ImageNet-
1K [18] training set (1.28 M images, 1 000 classes) using Adam [39] (β1 = 0.9, β2 = 0.999) with a
learning rate of 10−3 for one epoch to replicate the online data selection setup. Mini-batches consist
of 256 images, of which 128 are selected by the data-selection algorithm at each step.

Product Title Text Classification. We experiment on a large-scale product-titles dataset (≈5 M
examples) from Kaggle [6]. BERT-base-uncased [20] is fine-tuned for one epoch with Adam (same
settings as above) at a learning rate of 10−3. Input titles are truncated or padded to 128 tokens;
total batch size is 1024, with 256 examples selected per step and we report accuracy on a held-out
validation. For both image and text classification, we randomly initialize a classification head and
optimize the network with cross-entropy loss.

Table 1: Performance comparison on ImageNet and Massive Product Text classification dataset
for various selection methods. The best method for each experiment is indicated in bold. Only
geometry-based methods outperform the random selection baseline in some scenarios.

Random MaxLoss MinLoss GradNorm Entropy LeastConfidence Herding KcenterGreedy K-means LSH

Image 33.62 28.11 22.23 33.28 30.87 32.29 28.58 31.08 34.59 35.30
Text 33.96 28.54 11.71 30.02 30.83 32.23 34.22 34.71 34.58 35.32

We report the results for our proposed method and baselines in Table 1, from which we observe
consistent improvement over the random selection baseline on both text and image classification se-
tups. In particular, LSH-based sampling method improves over random ones by 1.7% on ImageNet
and 1.3% on Massive Product Text, respectively. Moreover, our proposed method achieves the best
performance and outperforms the second-best baseline, K-means, by 0.8%. It is also worth noting
that, while geometry-based data selection methods can obtain higher end task performance in some
scenarios, none of the comparable methods can outperform in both settings, which aligns with prior
observation [29].

Table 2: Performance of different data selection strategies across downstream tasks. We utilize the
lm-evaluation-harness library to calculate the performance on different math benchmarks.

Task Pretrained (%) Random (%) MaxLoss (%) CL (%) MidPerplexity (%) LeastConfidence (%) MTLD (%) RewardScore (%) K-means (%) LSH (%)

gsm8k 26.08 32.68 31.16 32.98 33.89 33.89 33.06 34.80 33.28 34.72
gsm8k CoT 29.87 38.06 36.16 36.77 39.20 39.42 38.97 37.60 38.36 40.56
gsm Plus 15.59 20.96 20.32 20.49 20.07 20.15 20.49 20.15 20.49 21.38
MATH 19.84 22.35 21.17 20.46 20.66 20.46 21.17 20.31 20.50 21.69
MathQA 34.77 35.95 36.11 34.30 34.97 35.64 35.71 35.04 35.98 37.02
minerva math 6.92 8.66 6.52 7.52 6.74 6.52 6.44 7.52 8.64 8.20
agieval math 6.80 7.30 8.70 7.60 7.90 7.60 7.71 6.50 7.60 9.00
svamp 55.47 59.53 59.20 57.53 57.53 57.53 58.53 56.86 57.46 59.20
NumGLUE 48.00 51.43 51.43 48.57 48.57 49.71 48.57 49.71 52.57 53.71
asdiv 61.65 62.46 61.49 62.14 63.27 62.62 62.78 61.65 62.46 63.27

avg 30.50 33.94 33.23 32.84 33.28 33.35 33.34 33.01 33.73 34.88

Fine-Tuning language models for Math Reasoning. We merge threecorpora of math word problems-
MathInstruct [67], Numi-Math 1.5, [43] and ORCA-Math [53] - and fine-tune the Llama-3.2-3B
[68] model for 5000 steps using AdamW [46] (β1 = 0.9, β2 = 0.999) at a learning rate of 2×10−5.
We use mini-batches of 128 examples, selecting 64 per step. Evaluation is performed zero-shot on
GSM8K [15] and GSM8K-CoT: [72], GSM-Plus [45], MathQA [3], MATH[32], Minerva-Math
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[42], AGIEval-Math [76], SVAMP [54], NumGLUE[52] and ASDiv [50] dataset, measuring exact-
match and solution-accuracy to quantify reasoning performance.

In Table 2, we test the performance of the fine-tuned Llama 3.2 3B model on different math
tasks. Our method outperforms other baselines on average, especially on NumGLUE dataset, where
its performance exceeds the random baseline by more than 2%. Overall, fine-tuning Llama using
our method helps improve the performance of the pretrained model by 4.38% and also outperforms
K-means by 1%. It is interesting to note that the RewardScore baseline, which employs a Math
reward model to grade examples at each minibatch, could not outperform the random baseline in
this setting.

Running-time comparison We first quantify the overhead of our selection strategy relative to
common diversity baselines. Figure 3 shows the per-iteration selection time for each method: Bal-
anced LSH with both mean and median thresholding incurs just about 1.2 ms per iteration, as low
as MaxLoss, LeastConfidence and Entropy, while K-means clustering requires approximately 1.2
ms and herding even takes approximately 1.33 ms (20% overhead compared to ours).

random minloss maxloss least_conf entropy gradnorm kcenter herding kmeans lsh
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Correspondingly, when including both selection and training time in Figure 2, Balanced LSH
reduces total wall-clock time by an order of magnitude compared to K-means, without sacrificing
downstream accuracy. It can be seen from the figure that geometry-based methods incur small
overhead compared to logit-based methods. Meanwhile, Gradnorm is the most expensive one as it
computes per-sample gradient to rank the importance of individual samples.

5. Conclusion

In this paper, we introduce a novel geometry-driven online data selection method that projects data
representations onto random hyperplanes to form hash buckets of roughly equal size via simple,
data-adaptive thresholding. This lightweight procedure requires only a few dot-products per exam-
ple—no costly clustering or optimization—yet enforces diversity by uniformly allocating selection
budget across buckets and sampling at random within each. In experiments on different benchmarks,
Balanced LSH matches or outperforms strong baselines while speeding up the selection time com-
pared to other geometry-aware methods. With its minimal computational overhead and simplicity,
our proposed method offers a practical, scalable method for diversity-aware data selection.
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Appendix A. Related Works

In this section, we review prior approaches for data subset selection, broadly categorized into the
unsupervised geometry-based and supervised uncertainty-based methods, and then revisit some ap-
plications of locality sensitive hashing in recent deep learning literature.

Unsupervised geometry-based methods. Unsupervised geometry-based coreset selection builds
on the intuition that nearby points in a suitable feature space are likely redundant. For example,
herding [7, 14] selects data greedily to minimize the distance between the centers of the coreset
and the original dataset. The k-Center Greedy algorithm [61] approximates the NP-hard minimax
facility-location problem by greedily selecting the farthest unseen point. For submodular objec-
tives, Filtered Active Submodular Selection (FASS) [73] combines uncertainty filtering with greedy
maximization of a submodular diversity utility. Beyond greedy selection, leverage score sampling
and its variations [11, 16, 44, 60, 64] sample individual data points by quantifying their importance
based on the geometric spread. The optimal experimental design (OED) criteria [10, 28, 58] pro-
vide importance weights for subsets of data based on their joint geometric coverage of the entire
dataset, selection via which can be conducted through optimization [2, 70]. The underlying intuition
of OED further inspires selection strategies based on covariance alignment [24, 25, 71]. Adaptive
sampling that expands the coreset progressively conditioned on previous selections, either sample-
wisely [13, 19, 22] or batch-wisely [23, 27, 57], shows competitive performance on regression tasks
with low noise [25].

Supervised uncertainty-based methods. Leveraging label information, uncertainty sampling ranks
points by model-prediction ambiguity (e.g. least confidence, margin, or entropy) and selects the
most uncertain examples [73]. Such strategies have been widely used in active learning and coreset
construction for classification tasks. By gauging the closest points to the decision boundaries via
adversarial perturbations, DeepFool-based active learning selects data with the smallest adversarial
perturbation distance [26]. The sample-wise loss or error rate during training provides an intuitive
measure of the uncertainty. Samples that contribute most to training loss, measured via forgetting
events [66], early-epoch gradient, or error norms (GraNd/EL2N) [56], are considered more infor-
mative and retained in the coreset. Alternative to loss, model gradients provide more information
regarding the uncertainty. For example, CRAIG [51] chooses weighted subsets that closely approx-
imate the full-batch gradient in a submodular fashion, guaranteeing convergence rates comparable
to full data. In addition, uncertainty-based data selection can be conducted via bilevel optimization
by formulating subset selection as an outer problem over data weights and model training based
on the subset as an inner problem. For instance, GLISTER [38] jointly optimizes data subset and
validation-set log-likelihood under a mixed discrete-continuous bilevel formulation.

Projection-based locality sensitive hashing. A common way to achieve LSH is leveraging ran-
dom projections. [35] first introduced random-projection-based LSH for approximate nearest-
neighbor search in high-dimensional spaces. Subsequently, [17] generalized LSH to use p-stable
distributions—enabling efficient hashing under ℓp norms. Semi-supervised extensions such as [69]
integrate labeled information to learn hash functions that preserve semantic similarity.

More recent work applies LSH sampling beyond retrieval: [63] employs LSH for scalable graph
learning by sampling node neighborhoods, while [12] uses LSH-based strata to accelerate attention
approximation in large-language-model decoding. Despite its sublinear query time and minimal
preprocessing, vanilla LSH often yields highly imbalanced bucket sizes. We address this by intro-
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ducing a lightweight, data-adaptive thresholding mechanism that ensures each bucket contributes
uniformly to the final coreset sample.

Appendix B. Algorithm Description

Algorithm 1: Balanced LSH Indexing for Diversity-Aware Online Selection

Data: Embedding matrix X ∈ Rn×d, embedding dim. d, #hyperplanes m, #buckets b,
threshold strategy τ ∈ {zero,mean,median, svd}

Result: Bucket assignments (bucket1, . . . ,bucketn)
Sample random hyperplanes {wj }mj=1 ∼ N (0, Id) and set W ∈ Rm×d with rows wj ;
for j ← 1 to m do

powers[j]← 2 j−1; // bit weights
end
if τ = svd then

X̃ ← X − 1
n11

⊤X; // center the batch

(U,Σ, V )← RandSVD(X̃, k = d);
X̃ ← X̃ V Σ−1; // whiten embeddings

P ← X̃:, 1:m; // use first m components
t← 0 ∈ Rm;

else
P ← XW⊤ ∈ Rn×m; // batch projections
if τ = zero then

t← 0 ∈ Rm;
else if τ = mean then

t← 1
n

∑n
i=1 Pi:;

else // τ = median
t← median(P, axis = 0);

end
end
B ← [Pij > tj ] ∈ {0, 1}n×m; // bit matrix
;
for i← 1 to n do

hi ←
∑m

j=1Bij · powers[j];
bucketi ← hi mod b;

end
return (bucket1, . . . ,bucketn);
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Appendix C. Analysis of 1

Proof [Analysis of 1] For any given θ ∈ Rd, we first observe that

∇f(θ) =E(x,y)∼D(θ∗)[x(x
⊤θ − y)] = Ex∼D(θ∗)[x(x

⊤θ − x⊤θ∗)]

=Ex∼D(θ∗)[xx
⊤](θ − θ∗) = Σ(θ − θ∗).

(3)

Meanwhile, for n i.i.d. samples (X,y) drawn from D(θ∗), g(θ, (X,y)) = 1
nX

⊤(Xθ − y) is
unbiased,

E(X,y) [g(θ, (X,y))] =E(X,y)

[
1

n
X⊤X(θ − θ∗)−

1

n
X⊤z

]
=EX

[
1

n
X⊤X

]
(θ − θ∗) = Σ(θ − θ∗) = ∇f(θ)

(4)

with variance

Vn(θ) =E(X,y)

[
∥g(θ, (X,y))−∇f(θ∥22

]
=E(X,y)

[∥∥∥∥( 1

n
X⊤X−Σ

)
(θ − θ∗)

∥∥∥∥2
2

+

∥∥∥∥ 1nX⊤z

∥∥∥∥2
2

]

=(θ − θ∗)
⊤

(
EX

[(
1

n
X⊤X

)2
]
−Σ2

)
(θ − θ∗) +

σ2
y

n
tr(Σ).

Notice that

EX

[(
1

n
X⊤X

)2
]
=

1

n2

 n∑
i=1

Exi

[
(xix

⊤
i )

2
]
+

n∑
i=1

n∑
j ̸=i

Exi

[
xix

⊤
i

]
Exj

[
xjx

⊤
j

]
=

1

n2

(
nM+ n(n− 1)Σ2

)
=

1

n
M+

(
1− 1

n

)
Σ2.

(5)

Therefore, the variance of g(θ, (X,y)) = 1
nX

⊤(Xθ − y) can be simplified as

Vn(θ) =
1

n
∥θ − θ∗∥2M−Σ2 +

σ2
y

n
tr(Σ) (6)

Uniform sampling. Subsampling S from [n] uniformly at random effectively leads to a set of k
i.i.d. samples from D(θ∗). Therefore, analogous to the derivation of (4) and (6), we have

E(X,y)

[
g(θ, (X,y, Suni))

]
= ∇f(θ),

and variance

E(X,y)

[
ESuni

[∥∥g(θ, (X,y, Suni))−∇f(θ
∥∥2
2

]]
= Vk(θ) =

1

k
∥θ − θ∗∥2M−Σ2 +

σ2
y

k
tr(Σ).

Since 1
k ∥θ − θ∗∥2M−Σ2 ⩽ 1

k

∥∥Σ†(M−Σ2)Σ†∥∥
2
∥Σ(θ − θ∗)∥22, (1) holds for uniform sampling

with cuniv , σ2 in Example 1
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Balanced LSH sampling. We first show the unbiasedness of g(θ, (X,y, Slsh)) with Slsh from
balanced LSH sampling. Since Pr(x ∈ Xι) = 1/b for all ι ∈ [b] with balanced buckets, we have

EX

[
ESlsh

[
1

k
X⊤

SlshXSlsh

]]
=
1

k

b∑
ι=1

n/b∑
i=1

k/b

n/b
Ex

[
xx⊤|x ∈ Xι

]
=

b∑
ι=1

1

b
Ex

[
xx⊤|x ∈ Xι

]
= Σ.

(7)

Therefore,

E(X,y)

[
ESlsh

[
g(θ, (X,y, Slsh))

]]
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]]
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1

k
X⊤
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]]
(θ − θ∗)

=Σ(θ − θ∗) = ∇f(θ).

For the variance of g(θ, (X,y, Slsh)) with Slsh, we observe that

E(X,y)

[
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,

where the second term can be simplified by recalling (7),
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and the first term can be decomposed as

EX

[
ESlsh

[∥∥∥∥(1

k
X⊤

SlshXSlsh −Σ

)
(θ − θ∗)

∥∥∥∥2
2

]]

=(θ − θ∗)
⊤

(
EX

[
ESlsh

[(
1

k
X⊤

SlshXSlsh

)2
]]

+Σ2

)
(θ − θ∗)

− (θ − θ∗)
⊤
(
EX

[
ESlsh

[(
1

k
X⊤

SlshXSlsh

)
Σ+Σ

(
1

k
X⊤

SlshXSlsh

)]])
(θ − θ∗)

=(θ − θ∗)
⊤

(
EX

[
ESlsh

[(
1

k
X⊤

SlshXSlsh

)2
]]
−Σ2

)
(θ − θ∗),

16



BALANCED LOCALITY-SENSITIVE

where the last equality comes from (7). Let Mι = Ex∼D[(xx
⊤)2|x ∈ Xι] for all ι ∈ [b] such that

M = 1
b

∑b
ι=1Mι; and recall Σι = Ex∼D[xx

⊤|x ∈ Xι] for all ι ∈ [b] such that Σ = 1
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Notice that with balanced LSH,
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)
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and therefore the variance of g(θ, (X,y, Slsh)) can be expressed as

E(X,y)

[
ESlsh

[∥∥∥g(θ, (X,y, Slsh))−∇f(θ)
∥∥∥2
2

]]
=
1

k
(θ − θ∗)

⊤

(
M− 1

b

b∑
ι=1

Σ2
ι

)
(θ − θ∗) +

σ2
y

k
tr (Σ) ,

which satisfies (1) with clshv , σ2 in Example 1.

Appendix D. Experimental details

Hardware configuration. All experiments were conducted on high-performance machines equipped
with Intel Xeon CPUs and NVIDIA GPUs, selected to accommodate varying computational needs
and optimize job priority scheduling across different tasks. Specifically, we utilized three machine
configurations: (1) Intel Xeon Platinum 8268 @ 2.90GHz with 377 GiB RAM and an NVIDIA
Tesla V100-PCIE-32GB GPU, (2) Intel Xeon Platinum 8268 @ 2.90GHz with 377 GiB RAM and
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an NVIDIA Quadro RTX 8000 (48GB), and (3) Intel Xeon Platinum 8380 @ 2.30GHz with 1.0 TiB
RAM and an NVIDIA A100-SXM4-80GB GPU. Although different GPU types were used to bal-
ance workload priorities, we ensured that all running comparisons across baselines were performed
on the same hardware configuration for a given model and dataset to eliminate hardware-induced
variability and maintain consistency and fairness in evaluation.

Training configuration. Our experiments are implemented in the Hugging Face Transformers
library using Low-Rank Adaptation (LoRA) to inject trainable rank-decomposition matrices into
the Transformer layers, freezing the original weights and only updating the adapters [34]. The
LoRA rank was set to r = 128 and the scaling coefficient to α = 1.0 [34], we applied a dropout
rate of 0.1 on the adapter outputs [65]. All trainable parameters were optimized with the AdamW
optimizer at a constant learning rate of 2× 10−5 for 5000 iterations [47].

Datasets overview. The Product Titles Text Classification [6] dataset curated by asaniczka on
Kaggle provides a large-scale collection of raw product titles scraped from Amazon marketplaces in
the USA, Canada, and the UK. Each entry pairs a product title string with its corresponding category
label, enabling straightforward supervised learning experiments. With over 5 million individual
title–category pairs spanning 700+ distinct product categories, this dataset stands out as one of the
most extensive public resources for real-world e-commerce text classification tasks.

Baselines Overview. To evaluate our Balanced LSH sampling, we compare against a diverse suite
of baselines spanning geometry-based, uncertainty-based, loss-based, and instruction-quality meth-
ods. Geometry-based approaches include: parametric herding, which greedily matches dataset
moments to approximate the data distribution [14]; k-center greedy, which iteratively selects the far-
thest point to solve a minimax facility-location objective [62]; k-means clustering, which chooses
cluster centroids as representatives under a k-means++ initialization [5]. Uncertainty-based meth-
ods select samples that the current model finds most ambiguous. Entropy sampling measures the
Shannon entropy of the predicted class distribution [41], while Least Confidence picks examples
with the lowest maximum predicted probability [41]. These aim to reduce model uncertainty by
targeting confusing inputs. Loss-based strategies leverage training dynamics: max-loss and min-
loss select samples with highest or lowest training loss norms, respectively, hypothesizing that high-
loss examples are informative and low-loss ones easier to learn [55]. GradNorm method refines
this by ranking samples according to the norm of per-sample gradients approximating their impact
on optimization [55]. Instruction-quality indicators quantify the richness of instruction–response
pairs. Completion length (CL) selects the longest outputs, exploiting the observation that richer
responses correlate with higher quality [75]. Mid-perplexity prunes by keeping examples with in-
termediate perplexity under a reference model, balancing difficulty and familiarity [48]. Finally,
MTLD measures lexical diversity, and reward-score uses the learned preference model Skywork-
o1-Open-PRM-Qwen-2.5-1.5B to rank samples by their quality [9, 30].

Appendix E. Potential limitations

Our approach is tailored to fine-tuning scenarios where we can leverage pretrained embeddings (e.g.,
ResNet or Llama). However, this reliance on already-available representations means that Balanced
LSH Sampling is less suitable for setups where embeddings must be learned from scratch or where
pretrained models do not exist. Besides, even though the LSH hashing and bucket-balancing steps
introduce minimal overhead, every selection step still requires a forward pass to compute those
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embeddings. Thus, this can erode efficiency in low-latency or resource-constrained settings (e.g.
training LLMs with a small minibatch size or with gradient accumulation).

Appendix F. Additional experimental results

Bucket-count sensitivity Next, we vary the number of hash bucket b ∈ {16, 32, 64, 128, 256}
and plot downstream classification accuracy on and product-title text (BERT-base-uncased [20],
distilbert-base-uncased [59] and ALBERT-base-v2 [40]) in Figure 5. From which, we observe the
consistency of the model performance across different values of b, indicating the robustness of this
hyperparameter in our proposed method.
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Figure 4: ℓ2 norm the difference between the
full-batch gradient and the gradient computed on
each selected minibatch.
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Figure 5: Performance across number of buckets
on three different transformer encoder-decoder
backbones.

Evolution of the gradient similarity with the full batch training In Figure 4, we plot the evolu-
tion of the ℓ2 norm between the true full-batch gradient and the minibatch gradient produced by each
selection strategy over the first 4,000 training iterations. Compared to random sampling (orange),
our LSH-based selection method (red) consistently yields a lower approximation error, demonstrat-
ing that it more faithfully captures the true gradient direction. This tighter alignment means that,
at every step, the direction in which the model parameters are updated more closely matches what
would have been chosen using the entire dataset. In practice, this more faithful gradient estimation
accelerates convergence and reduces the variance of parameter updates, ultimately leading to more
stable and efficient model training.

F.1. Performance of K-means Variants on Different Bucket Sizes

In Figures 6 and 7, we measure the performance of different variants of K-means: Elliptical K-
means [49], K-means++ [4], k-medians clustering [36], Partitioning Around Medoids (PAM) [37] ,
spherical K-means [21] and our proposed method on the same number of buckets. While K-means
variants often take longer to run, Elliptical K-means, K-means++, k-medians, and spherical K-
means obtain 34.22, 34.35, 34.44 and 34.35 accuracy scores, respectively, on the Massive Product
Text classification benchmark. Thus, none of them improves over the original K-means.
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Figure 6: Average selection time of LSH-based
sampling methods and K-means’s variants.
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