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Abstract

Test-time adaptation, which enables models to generalize to diverse data with
unlabeled test samples, holds significant value in real-world scenarios. Recently,
researchers have applied this setting to advanced pre-trained vision-language mod-
els (VLMs), developing approaches such as test-time prompt tuning to further
extend their practical applicability. However, these methods typically focus solely
on adapting VLMs from a single modality and fail to accumulate task-specific
knowledge as more samples are processed. To address this, we introduce Dual
Prototype Evolving (DPE), a novel test-time adaptation approach for VLMs that ef-
fectively accumulates task-specific knowledge from multi-modalities. Specifically,
we create and evolve two sets of prototypes—textual and visual—to progressively
capture more accurate multi-modal representations for target classes during test
time. Moreover, to promote consistent multi-modal representations, we intro-
duce and optimize learnable residuals for each test sample to align the prototypes
from both modalities. Extensive experimental results on 15 benchmark datasets
demonstrate that our proposed DPE consistently outperforms previous state-of-the-
art methods while also exhibiting competitive computational efficiency. Code is
available at https://github.com/zhangce01/DPE-CLIP.

1 Introduction

Although deep learning models have achieved great success in various machine learning tasks [47, 48],
they often suffer from significant performance degradation due to distribution shifts between the
training data from the source domain and the testing data from the target domain [33, 63, 14]. To
address this challenge, a number of works [21, 57, 64] adopt the transductive learning principle,
assuming access to both labeled source data and unlabeled target data—a scenario known as the
domain adaptation setting. However, this setting contrasts with most practical scenarios, where we
only have access to a well-trained model and cannot re-access the source data due to privacy or data
retention policies. In response, researchers have proposed test-time adaptation, which leverages only
the unlabeled target data stream to adapt the model to out-of-distribution domains [78, 59, 61].

Recently, large-scale vision-language models (VLMs), such as CLIP [45] and ALIGN [24], have
garnered increasing attention in the research community. These models, pre-trained on massive web-
scale datasets, exhibit remarkable zero-shot capabilities and open-world visual understanding [45,
69, 73, 31]. While the large-scale pre-trained (source) datasets like LAION-5B [49] are accessible,
it is impractical for individuals to train on them due to their immense size. Consequently, adapting
VLMs to downstream tasks via efficient fine-tuning with limited annotated samples from the target
domain has become a focus of recent research [84, 83, 80, 70]. However, although these methods
have proven effective, they pose a significant limitation: they assume the availability of annotated
samples from the target domain, which is often not practical in real-world scenarios. This constraint
hinders the broader deployment of VLMs in diverse and dynamic environments [19, 20, 46, 74].
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Figure 1: Comparison of our DPE with zero-shot CLIP [45], TPT [53], and TDA [26]. We denote
CLIP’s parallel textual and visual encoders as Et and Ev , respectively. While previous methods solely
adapt the CLIP model from a single modality, we design our DPE to evolve prototypes from both
textual and visual modalities to progressively capture more accurate multi-modal representations for
target classes during test time.

To address the label scarcity problem in practice, a number of approaches apply the test-time
adaptation setting to the domain of adapting VLMs to downstream tasks, as shown in Figure 1.
Specifically, Shu et al. [53] propose test-time prompt tuning to learn an adaptive prompt for
each individual sample in the test data stream to enhance CLIP’s zero-shot generalizability to
out-of-distribution domains. Building on TPT, DiffTPT [12] incorporates diffusion-based data
augmentations to facilitate more effective prompt tuning during test time. More recently, Karmanov
et al. [26] propose an alternative training-free dynamic adapter approach to establish dynamic visual
caches with the unlabeled test samples.

However, we recognize that existing works overlook the following inherent properties of test-time
adaptation in VLMs: (1) Cumulative. We expect that with more seen samples, the performance
should improve as task-specific knowledge accumulates [39, 56]. However, test-time prompt tuning
methods [53, 12] treat each test instance independently, resetting to the original model for each
new sample, failing to extract historical knowledge from previous test samples. (2) Multi-modal.
Effective adaptation of VLMs benefits from leveraging knowledge from both textual and visual
modalities [27, 34]. However, previous works only capture domain-specific knowledge from a single
modality, adapting CLIP based solely on textual [53, 12] or visual [26] feature refinement.

To this end, we propose Dual Prototype Evolving (DPE), a novel test-time VLM adaptation approach
that effectively accumulates task-specific knowledge from multi-modalities, as illustrated in Figure 1.
Unlike previous methods that focus on adapting VLMs from a single modality, we create and evolve
two sets of prototypes—textual and visual—progressively capturing more accurate multi-modal
representations for target classes during test time. To extract historical knowledge from previous test
samples, we update these two sets of prototypes online using cumulative average and priority queue
strategies, respectively. We further optimize these multi-modal prototypes by introducing learnable
residual parameters for each individual test sample to enhance the zero-shot generalization capability
of our model. Specifically, rather than solely relying on the entropy minimization objective [61, 78],
our DPE also accounts for the alignment between multi-modal prototypes to ensure consistent
multi-modal representations. Notably, our DPE requires only the optimization of multi-modal
prototypes in the embedding space during test time, eliminating the need to backpropagate gradients
through the textual encoder of CLIP, as required in TPT [53] and DiffTPT [12].

The test-time generalization capabilities of our proposed DPE method are extensively evaluated
across 15 diverse recognition datasets in two scenarios: natural distribution shifts and cross-dataset
generalization. The experimental results validate the superior performance of our DPE, which
achieves an average improvement of 3.55% and 4.30% over the state-of-the-art TPT [53] method in
these scenarios. Moreover, our proposed DPE achieves this performance while also exhibiting 5×
and over 10× test-time efficiency compared to TPT [53] and DiffTPT [12], respectively.
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The contributions of this paper are summarized as follows:

• We propose dual prototype evolving (DPE), a novel test-time adaptation method for VLMs that
progressively captures more accurate multi-modal representations for target classes during test time.

• To promote consistent multi-modal representations, we introduce and optimize learnable residuals
for each test sample to align the prototypes across modalities.

• Experimental evaluations demonstrate that our DPE consistently outperforms current state-of-the-
art methods across 15 diverse datasets while maintaining competitive computational efficiency.

2 Related Work

Vision-Language Models. Leveraging vast image-text pairs from the Internet, recent large-scale
vision-language models (VLMs), such as CLIP [45] and ALIGN [24], have shown remarkable
and transferable visual knowledge through natural language supervision [77, 10]. These VLMs
enable a “pre-train, fine-tune” paradigm for performing downstream visual tasks, such as image
recognition [45, 16, 35], pbject detection [66, 65], and depth estimation [79, 23, 72].

To effectively transfer VLMs to these downstream tasks, researchers have developed two primary
methods for adapting the model with few-shot data: prompt learning methods [84, 83, 27, 50,
85, 5] and adapter-based methods [80, 13, 75, 70, 30]. Specifically, prompt learning methods,
such as CoOp [84] and CoCoOp [83], focus on learning input prompts with few-shot supervision
from downstream data. On the other hand, adapter-based methods, like Tip-Adapter [80] and
TaskRes [70], modify the extracted visual or textual representations directly to enhance model
performance. However, these approaches often assume the availability of labeled samples from the
target domain, which can limit their effectiveness in real-world scenarios. In this work, we address
the challenge of test-time adaptation, where the model is required to adapt solely at test time without
access to any training samples or ground-truth labels from the target domain. This setting is crucial
for real-world deployment, as it allows for robust performance in novel and unseen environments
where labeled data cannot be obtained in advance.

Test-Time Adaptation. To effectively transfer a model trained on the source domain to the target
domain, test-time adaptation methods [61, 78, 59, 3, 58] aim to adjust the model online using a
stream of unlabeled test samples. These methods enable the deployment of well-trained models in
various out-of-distribution scenarios, thereby enhancing the applicability and reliability of machine
learning models in real-world applications [33, 28, 41]. Researchers have applied test-time adaptation
techniques successfully across various machine learning tasks, including semantic segmentation [22,
51, 82], human pose estimation [32, 25], and image super-resolution [52, 8].

Recently, increasing research efforts have focused on adapting large-scale VLMs during test time [37,
55, 1, 71, 81, 76]. As the seminal work, Shu et al. [53] firstly propose test-time prompt tuning
(TPT), which enforces consistency across different augmented views of each test sample. Building
on this approach, several subsequent studies have sought to further enhance TPT. For instance,
DiffTPT [53] utilizes diffusion-based augmentations to increase the diversity of augmented views,
while C-TPT [68] addresses the rise in calibration error during test time prompt tuning. Unlike
these approaches, which treat each test sample independently, TDA [26] establishes positive and
negative visual caches during test time, enhancing model performance as more samples are processed.
Similarly, recent DMN [81] utilizes a dynamic memory to gather information from historical test data.
However, these methods solely adapt the model from a single modality perspective, limiting their
effectiveness in capturing task-specific knowledge from out-of-distribution domains. Given this, we
design DPE to evolve two sets of prototypes from both textual and visual modalities to progressively
capture more accurate multi-modal representations for target classes during test time.

3 Method

We introduce Dual Prototype Evolving (DPE) as illustrated in Figure 2, to enhance CLIP’s zero-shot
generalization capabilities across diverse distributions during test time. Unlike previous methods
that focus solely on one modality, we design two sets of prototypes, textual and visual, which are
progressively updated using the unlabeled test dataset Dtest.
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Figure 2: An overview of our DPE method. We introduce prototypes from both textual and visual
modalities and enable prototype-based inference with CLIP. For each test sample, we optimize both
prototypes using learnable residual parameters with alignment loss Lalign and self-entropy loss Laug.
These prototypes are also progressively evolved over time to capture more accurate and discriminative
multi-modal representations for target classes.

3.1 Preliminaries

Zero-Shot CLIP. CLIP [45] utilizes two pre-trained parallel encoders: a visual encoder Ev(·) and a
textual encoder Et(·), which embed images and text descriptions into a shared embedding space Rd.
For a C-class classification task, CLIP performs zero-shot predictions by computing the similarities
between the extracted image feature and the C candidate text features, written as

fv = Ev(Xtest), ftc = Et(Tc), PCLIP(y = yc|Xtest) =
exp (sim (ftc , fv) /t)∑
t′ exp (sim (ft′ , fv) /t)

, (1)

where Xtest ∈ Dtest denotes the input test image, and Tc represents the the class-specific description
input for class yc. The pairwise similarities sim(·, ·) are calculated using cosine similarity, and t
represents the temperature parameter in the softmax function.

Test-Time Prompt Tuning. To enhance the zero-shot generalizability of CLIP, TPT [53] proposes
learning an adaptive prompt using the test stream samples. Specifically, for each test sample Xtest,
TPT generates N augmented views {An(Xtest)}Nn=1 and averages the top ρ-percentile confident
predictions based on an entropy threshold τ to obtain the final prediction:

PTPT(Xtest) =
1

ρN

N∑
n=1

1[H (PCLIP(An(Xtest)) ≤ τ ]PCLIP(An(Xtest)). (2)

Here, H(p) = −
∑C

i=1 pi log pi calculates the self-entropy of the prediction p. The objective of
TPT is to optimize the learnable prompt to minimize the self-entropy of the final prediction, i.e.,
minH(PTPT(Xtest)).

3.2 Dual Prototype Evolving

In our DPE method, we construct and iteratively evolve two sets of class-specific prototypes from
both visual and textual modalities to achieve a more precise representation of each class over time.

Textual Prototype Evolution. In this work, we follow CLIP [45] to use multiple context prompt
templates for prompt ensembling. Specifically, for each class c, we generate a total of S text
descriptions, denoted as {T (i)

c }Si=1. The prototypes of these descriptions in the embedding space are
calculated as tc = 1

S

∑
i Et(T

(i)
c ). To further improve the quality of these prototypes over time, we

design them to be updated online through a cumulative average with each individual sample Xtest in
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the test stream. The update rule is given by:

t← (k − 1)t+ t∗

∥(k − 1)t+ t∗∥
, k ← k + 1, (3)

where t = [t1 t2 · · · tC ]⊤ ∈ RC×d is the online updated prototype set, and t∗ ∈ RC×d is the
optimized textual prototypes for each individual sample Xtest in Equation (10). To ensure stable
online updates, we set an entropy threshold τt to filter out low-confidence samples (for which
H(PCLIP(Xtest)) < τt) from updating the online prototypes, and maintain a counter k for tracking
confident samples.

Visual Prototype Evolution. Inspired by TDA [26], we recognize that the historical image features
of test images can also be utilized to enhance CLIP’s discrimination capability. Therefore, we design
a priority queue strategy to store the top-M image features for each class and symmetrically compute
a set of visual prototypes that evolve over time. Note that since we cannot access the labels of the test
samples, we assign the image features to the queue according to their predicted pseudo-labels. The
priority queue for each class c is initialized as empty, denoted as qc = ∅. As test samples arrive, we
store the image features fc and the corresponding self-entropy hc in the priority queue, represented
as qc = {(f (m)

c , h
(m)
c )}m. The elements are sorted by self-entropy h

(m)
c such that h(m)

c < h
(>m)
c .

Using this priority queue, the class-specific visual prototype is obtained by: vc = 1
Sc

∑
m f

(m)
c ,

where Sc ≤M denotes the total number of image features stored in the queue.

The priority queues are updated during testing by replacing low-confidence image features with
high-confidence ones. Specifically, for each individual test sample Xtest, we first predict the
pseudo-label ℓ and compute the corresponding self-entropy h as:

ℓ = argmax
yc

PCLIP(y = yc|Xtest), h = H(PCLIP(Xtest)). (4)

Figure 3: t-SNE [60] visualizations of the stored
image features in the priority queues. With more
samples getting in, the selected image features
from each class become more clustered, leading to
more representative visual prototypes.

Then, we consider the following two scenarios
to iteratively update the priority queue qℓ
for class ℓ: (1) If the priority queue is not
full, we directly add the pair (Ev(Xtest), h)
to the queue; (2) If the priority queue is full
and the entropy h of the new sample is lower
than the highest entropy value (of the last
element) currently in the queue, we replace the
highest-entropy element with the new feature
and self-entropy (Ev(Xtest), h). If f is not
lower, we discard the new sample and leave the
queue unchanged. After each update, we re-sort
the priority queue based on the self-entropy
values and re-compute the visual prototypes
v = [v1 v2 · · · vC ]

⊤ ∈ RC×d for all classes.

In Figure 3, we present the t-SNE [60] visualizations of the stored image features in the priority
queues (with queue size M = 6) after updating with 1500 samples (left) and 15000 samples (right)
on the Food101 [2] dataset. We highlight the stored features from 25 random classes using different
colors while marking the others in gray. These visualizations illustrate that our priority queue strategy
effectively accumulates high-confidence samples, progressively refining the representativeness of
the visual prototypes over time.

Prototype-Based Inference. Based on our two sets of multi-modal prototypes {tc}Cc=1 and {vc}Cc=1,
the final prediction for input X is given by

fv = Ev(X), PProto(y = yc|X) =
exp

((
f⊤
v tc +A(f⊤

v vc)
)
/t
)∑

c′ exp ((f
⊤
v tc′ +A(f⊤

v vc′)) /t)
, (5)

Here, t represents the temperature parameter in the softmax function, ⊤ denotes the matrix transpose,
and A(x) = α exp (−β (1− x)) is the affinity function, where α is a balance hyperparameter and β
is a sharpness ratio. In Appendix A.3, we conduct a sensitivity analysis of these two hyperparameters
to evaluate their impact on the overall performance of DPE.
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3.3 Prototype Residual Learning

To further improve the zero-shot generalizability of our method, we introduce prototype residual
learning, which optimizes multi-modal prototypes for each test sample. Unlike previous prompt
tuning approaches [53, 12] that require backpropagating gradients through the text encoder to update
input prompts, our method directly updates the prototype sets in the embedding space.

Specifically, after being evolved with the last test sample, the dual sets of multi-modal prototypes,
denoted as t = [t1 t2 · · · tC ]⊤ ∈ RC×d and v = [v1 v2 · · · vC ]⊤ ∈ RC×d, are considered as the
initialization for updating with the current test sample. We further introduce learnable residual
parameters t̂ = [̂t1 t̂2 · · · t̂C ]⊤ ∈ RC×d and v̂ = [v̂1 v̂2 · · · v̂C ]⊤ ∈ RC×d. These parameters are
initialized to zero and are used to optimize the prototypes for each given test input Xtest, denoted as

tc ←
tc + t̂c
∥tc + t̂c∥

, vc ←
vc + v̂c

∥vc + v̂c∥
. (6)

Similar to Equation (2), we optimize these residual parameters to promote consistent predictions
across a total of N different augmented views of the given test image Xtest using the unsupervised
entropy minimization objective:

Laug = H(PDPE(Xtest)) = −
C∑

c=1

PDPE(y = yc|Xtest) logPDPE(y = yc|Xtest), (7)

where PDPE(Xtest) =
1

ρN

N∑
n=1

1[H (PProto(An(Xtest)) ≤ τ ]PProto(An(Xtest)). (8)

However, researchers have shown that focusing solely on reducing entropy can lead the model to make
overconfident predictions [68]. To address this, we apply an additional constraint to align the multi-
modal prototypes during optimization, explicitly enforcing consistent multi-modal representations
between dual sets of prototypes. Specifically, we introduce a self-supervised alignment loss that
utilizes the contrastive InfoNCE loss [42] to bring prototypes from the same class closer together
while pushing prototypes from different classes further apart:

Lalign =
1

C

C∑
c=1

(
− log

exp(t ⊤
c vc)∑

c′ exp(t
⊤
c vc′)

− log
exp(t ⊤

c vc)∑
c′ exp(t

⊤
c′ vc)

)
. (9)

In summary, the final objective for optimizing the multi-modal prototypes t,v is

t∗,v∗ = argmin
t,v

(
Laug + λLalign

)
, (10)

where λ is a scale factor to balance the contribution of the alignment loss. Note that t∗ and v∗ are
obtained from a single update step.

After optimizing the prototypes for each test sample, we evolve the online textual prototypes t as
described in Equation (3), and also update the priority queues to re-compute the visual prototypes
v. The evolved prototype sets then serve as the initialization for the next test sample, progressively
enhancing generalization capability during test-time adaptation.

4 Experiments

In this section, we evaluate our proposed method on robustness to natural distribution shifts and cross-
datasets generalization across 15 various datasets. Moreover, we also compare the test-time efficiency
of our DPE with existing methods. Finally, we provide ablation experiments to systematically analyze
the effects of different algorithm components and design choices.

4.1 Experimental Settings

Datasets. We follow previous work [53, 12] to evaluate our method on two benchmarking scenarios,
namely, robustness to natural distribution shifts and cross-datasets generalization. (1) For the
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Table 1: Performance comparisons on robustness to natural distribution shifts. We present
top-1 accuracy (%) results for all evaluated methods employing both ResNet-50 and ViT-B/16 visual
backbones of CLIP. The best results are highlighted in bold.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average

CLIP-ResNet-50 [45] 58.16 21.83 51.41 56.15 33.37 44.18 40.69

Ensemble 59.81 23.24 52.91 60.72 35.48 46.43 43.09
CoOp [84] 63.33 23.06 55.40 56.60 34.67 46.61 42.43

TPT [53] 60.74 26.67 54.70 59.11 35.09 47.26 43.89
DiffTPT [12] 60.80 31.06 55.80 58.80 37.10 48.71 45.69
TDA [26] 61.35 30.29 55.54 62.58 38.12 49.58 46.63
TPS [55] 61.47 30.48 54.96 62.87 37.14 49.38 46.36
DMN-ZS [81] 63.87 28.57 56.12 61.44 39.84 49.97 46.49
DPE (Ours) 63.41 30.15 56.72 63.72 40.03 50.81 47.66

CLIP-ViT-B/16 [45] 66.73 47.87 60.86 73.98 46.09 59.11 57.20

Ensemble 68.34 49.89 61.88 77.65 48.24 61.20 59.42
CoOp [84] 71.51 49.71 64.20 75.21 47.99 61.72 59.28

TPT [53] 68.98 54.77 63.45 77.06 47.94 62.44 60.81
DiffTPT [12] 70.30 55.68 65.10 75.00 46.80 62.28 60.52
TDA [26] 69.51 60.11 64.67 80.24 50.54 65.01 63.89
TPS [55] 70.19 60.08 64.73 80.27 49.95 65.04 63.76
DMN-ZS [81] 72.25 58.28 65.17 78.55 53.20 65.49 63.80
DPE (Ours) 71.91 59.63 65.44 80.40 52.26 65.93 64.43

evaluation of robustness to natural distribution shifts, we assess the performance of our method using
the ImageNet [7] dataset alongside its variant out-of-distribution datasets, including ImageNet-A [20],
ImageNet-V2 [46], ImageNet-R [18], and ImageNet-Sketch [62]. (2) For cross-datasets generalization
tasks, we conduct comprehensive assessments across 10 diverse recognition datasets, including
FGVCAircraft [38], Caltech101 [11], StandfordCars [29], DTD [6], EuroSAT [17], Flowers102 [40],
Food101 [2], OxfordPets [43], SUN397 [67], and UCF101 [54]. These datasets offer a comprehensive
benchmark for evaluating the robustness of various methods across different distributional variations.

Implementation Details. We follow previous works [53, 12] to adopt ResNet-50 [15] and ViT-
B/16 [9] backbones as the visual encoder of CLIP. In Appendix C.2, we detail the specific hand-crafted
prompts utilized for each dataset. Following TPT [53], we generate 63 augmented views for each
test image using random resized cropping to create a batch of 64 images. We learn the prototype
residual parameters using AdamW [36] optimizer with a learning rate of 0.0005 for a single step. In
default, the scale factor λ in Equation (10) is set to 0.5, the normalized entropy threshold τt is set to
0.1, and the queue size M is set to 3. For the affinity function in Equation (5), we set α = 6.0 and
β = 5.0, respectively. All experiments are conducted on a single 48GB NVIDIA RTX 6000 Ada
GPU. To ensure the reliability of our results, we perform each experiment three times using different
initialization seeds and report the mean accuracy achieved.

Baselines. We compare our method with established test-time adaptation approaches for CLIP: (1)
TPT [53], a prompt tuning method that aims to minimize self-entropy across predictions of multiple
augmented views; (2) DiffTPT [12], an enhanced version of TPT that utilizes diffusion-based
augmentations to optimize prompts; (3) TDA [26], a training-free, adapter-based method which
constructs positive and negative caches during test time. (4) TPS [55], an efficient approach that
dynamically learns shift vectors for per-class prototypes based solely on the given test sample;
(5) DMN-ZS [81], a backpropagation-free method that utilizes a dynamic memory to aggregate
information from historical test data. Additionally, we present the zero-shot performance of CLIP
using the simple prompt "a photo of a {CLASS}" as well as the results from prompt ensembling
to show the absolute performance improvements. We also report the performance of CoOp [84],
a train-time adaptation method, using 16-shot annotated samples per class on ImageNet. For a fair
comparison, we directly report the results of these baselines from their respective original papers.
Note that in the DiffTPT [12] paper, the results are based on a subset of the datasets containing 1,000
test samples. This limited sample size may introduce potential imprecision in the reported results.
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Table 2: Performance comparisons on cross-datesets generalization. We also present top-1
accuracy (%) for all methods on two backbones of CLIP. The best results are highlighted in bold.

Method Aircraft Caltech Cars DTD EuroSAT Flower Food101 Pets SUN397 UCF101 Average

CLIP-ResNet-50 15.66 85.88 55.70 40.37 23.69 61.75 73.97 83.57 58.80 58.84 55.82

Ensemble 16.11 87.26 55.89 40.37 25.79 62.77 74.82 82.97 60.85 59.48 56.63
CoOp [84] 15.12 86.53 55.32 37.29 26.20 61.55 75.59 87.00 58.15 59.05 56.18

TPT [53] 17.58 87.02 58.46 40.84 28.33 62.69 74.88 84.49 61.46 60.82 57.66
DiffTPT [12] 17.60 86.89 60.71 40.72 41.04 63.53 79.21 83.40 62.72 62.67 59.85
TDA [26] 17.61 89.70 57.78 43.74 42.11 68.74 77.75 86.18 62.53 64.18 61.03
DPE (Ours) 19.80 90.83 59.26 50.18 41.67 67.60 77.83 85.97 64.23 61.98 61.93

CLIP-ViT-B/16 23.67 93.35 65.48 44.27 42.01 67.44 83.65 88.25 62.59 65.13 63.58

Ensemble 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59
CoOp [84] 18.47 93.70 64.51 41.92 46.39 68.71 85.30 89.14 64.15 66.55 63.88

TPT [53] 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
DiffTPT [12] 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47
TDA [26] 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
DPE (Ours) 28.95 94.81 67.31 54.20 55.79 75.07 86.17 91.14 70.07 70.44 69.40

4.2 Results and Discussions

Robustness to Natural Distribution Shifts. In Table 1, we first compare the performance of our
method with other state-of-the-art methods on in-domain ImageNet and its 4 out-of-distribution
variants. Due to domain shifts, zero-shot CLIP [45] underperforms in out-of-distribution scenarios.
As shown in the table, adopting prompt ensembling and prompt learning methods like CoOp [84]
can enhance CLIP’s generalizability. However, it is important to note that CoOp is a train-time
adaptation method that requires an annotated training set, limiting its effectiveness in real-world
settings. Despite this, our method still exhibits significant performance gains of 4.20% and 4.21% on
average across two different backbones compared to CoOp, indicating the superiority of our DPE in
enhancing generalization capability on out-of-distribution domains.

Focusing on test-time adaptation methods, the experimental results demonstrate that our method
achieves superior zero-shot generalization performance across various out-of-distribution datasets
compared to other approaches. Specifically, our method outperforms existing state-of-the-art prompt
tuning methods, surpasses TPT [53] by 3.55% and 3.49% and DiffTPT [12] by 2.10% and 3.65% on
average when using ResNet-50 and ViT-B/16 backbones, respectively. Moreover, our method also
outperforms cache-based TDA [26] by margins of 1.23% and 0.92% across two different backbones,
indicating the effectiveness of our DPE approach. Moreover, our DPE demonstrates performance
advantages over the recent TPS [55] and DMN-ZS [81] approaches, outperforming them by 1.43%
and 0.84% on average across 5 datasets using the ResNet-50 backbone, further highlighting the
superiority of our method. We also demonstrate that our DPE can also be effectively applied to
prompts learned using CoOp [84] with a 16-shot ImageNet setup. We compare the performance with
other methods on the same 5 datasets in Appendix A.1, where our method consistently demonstrates
competitive performance. These results highlight the general effectiveness of our proposed test-time
adaptation method in both in-domain and out-of-distribution scenarios.

Cross-Datasets Generalization. In Table 2, we further assess the generalizability of our proposed
method against other state-of-the-art methods on 10 fine-grained recognition datasets. Given the
significant distributional differences, methods may exhibit variable performance across these datasets.
Notably, our method, which is not trained on any annotated data, significantly outperforms CoOp [84]
by average margins of 5.75% and 5.52% on two respective backbones. When compared to other
test-time adaptation methods, DPE exhibits average performance gains of 2.08% to 0.90% compared
to DiffTPT and TDA, respectively. On the more advanced ViT-B/16 backbone, DPE continues to
outperform existing approaches on 7 out of 10 datasets, with average improvements ranging from
1.87% to 4.30%. These results demonstrate the superior robustness and adaptability of our method in
transferring to diverse domains during test time, which is crucial for real-world deployment scenarios.
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Table 3: Efficiency comparison on ImageNet [7]. We
report the testing time, the achieved accuracy, and the
performance gains compared to zero-shot CLIP.

Method Testing Time Accuracy Gain

CLIP [45] 9 min 59.81 -
TPT [53] 9 h 15 min 60.74 +0.93
DiffTPT [12] > 20 h 60.80 +0.99
TDA [26] 1 h 5 min 61.35 +1.54
TPS [55] 55 min 61.47 +1.66
DPE (Ours) 1 h 50 min 63.41 +3.60

Efficiency Comparison. Table 3 presents
a comparison of our method’s efficiency
against other test-time adaptation ap-
proaches for VLMs, evaluated on 50,000
test samples from the ImageNet [7] dataset.
The comparison is conducted on a single
48GB NVIDIA RTX 6000 Ada GPU. In
our DPE method, the main computational
overhead arises from the visual prototype
evolution and prototype residual learning
components. Specifically, while zero-shot
CLIP requires 10.1 ms to infer a single im-
age, incorporating our prototype residual learning increases the inference time to 64.7 ms per image.
Further including the visual prototype evolution extends this to 132.1 ms per image.

Our proposed method shows improved computational efficiency compared to other prompt tuning
methods, for example, 5× faster than TPT [53] and over 10× faster than DiffTPT [12], as it requires
only learning the prototype residues without the need to backpropagate gradients through the textual
encoder. While our method is less efficient than TDA [26] and TPS [55], as we still backpropagate
gradients to update multi-modal prototypes, it offers notable performance advantages.

4.3 Ablation Studies

Table 4: Performance comparison using different tex-
tual prototype evolution rules on ImageNet [7]. For
each method, we present the update rule formula and
report the resulting accuracy on the ImageNet dataset.

Update Rule Formula Accuracy

No Update t← t 62.93
Full Update t← t∗ 21.83
Exponential Avg. t← 0.99t+ 0.01t∗ 63.11
Exponential Avg. t← 0.95t+ 0.05t∗ 62.57
Cumulative Avg. t← ((k − 1)t+ t∗) /k 63.41

Different Textual Prototype Evolution
Rules. In Table 4, we report the perfor-
mance on ImageNet [7] using different
textual prototype evolution rules. We have
the following key observations: (1) Fully
updating our textual prototypes t to the
optimized prototypes t∗ for each individual
test image results in collapsed perfor-
mance; (2) Compared to not evolving the
textual prototypes, using an exponential
moving average update rule with a decay
rate of 0.99 leads to a slight performance improvement of 0.18%; however, setting a lower decay
rate of 0.95 decreases the performance by 0.36%. (3) Our cumulative average update rule yields
the highest performance, achieving a 0.48% improvement compared to no update on ImageNet [7].

Hyperparameters for Dual Prototype Evolution. We provide a sensitivity analysis for the hyperpa-
rameters τt and M on the Caltech101 [11] dataset in Figure 4 (Left). Specifically, τt represents the
normalized entropy threshold for evolving our textual prototypes. When τt = 0, our method does not
evolve the textual prototypes, leading to a significant performance decrease, as shown in Figure 4
(Left). Moreover, setting τt = 0.1 results in the highest performance, whereas a higher threshold
leads to a slight decrease in performance. Additionally, the queue size M acts as a soft threshold
hyperparameter for evolving the visual prototypes. Our setting of M = 3 consistently yields the
highest performance. Lowering M causes the visual prototypes to fail in capturing the diversity of
test samples from the same class, while increasing M introduces additional low-confidence noisy
samples that hinder discrimination among target classes. Notably, our DPE method consistently
outperforms other approaches across a reasonable range of hyperparameter settings: all combinations
of entropy threshold τt ≥ 0.1 and queue size M > 3 achieve over 90.3% accuracy on Caltech101,
whereas TPT [53] and TDA [26] only achieve 87.02% and 89.70%, respectively.

Effects of Different Learnable Modules. Recall that in our DPE method, we optimize our multi-
modal prototypes by introducing two sets of learnable residual parameters t̂ and v̂ for each individual
test image. In Figure 4 (Middle), we ablate the effects of each set of learnable residual parameters
and report the performance across three datasets. Specifically, on ImageNet [7], optimizing only the
textual prototypes for individual samples results in a 1.40% improvement, while optimizing only the
visual prototypes yields a non-trivial 0.36% improvement, compared to keeping both t̂ and v̂ fixed.
Optimizing both sets of residual parameters leads to a further performance increase, e.g., by 1.52% on
ImageNet [7]. This indicates both learnable modules contribute to the overall effectiveness of DPE.
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Figure 4: Ablation studies. (Left) Sensitivity analysis of τt and M on Caltech101 [11]; (Middle)
Analysis of the performance contributions from various learnable parameter settings across three
datasets; (Right) Performance on three datasets with varying scale factor λ in Equation (10).

Scaling the Alignment Loss. Finally, we ablate the effect of the alignment loss by varying the scale
factor λ in Figure 4 (Right). Compared to optimizing solely using entropy minimization loss (i.e.,
λ = 0) during test-time adaptation, applying the additional alignment loss results in a performance
improvement of 0.23% to 1.07% across three different datasets. However, there is a trade-off between
prototype alignment and self-entropy minimization: setting λ too high leads to a performance drop.
Our experiments show that our setting of λ = 0.5 yields the highest performance.

Table 5: Ablation studies on different update
steps in prototype residual learning. We vary the
number of update steps from 1 to 5 and report the
achieved performance on ImageNet [7].

# Steps 1 2 3 4 5

Accuracy 63.41 63.45 63.28 63.26 63.32

Impact of Varying Update Steps. In Equa-
tion (10), we update the multi-modal prototypes
with a single update step for each test instance.
To evaluate the impact of different numbers of
update steps on overall performance, we conduct
ablation experiments by varying the number of
update steps from 1 to 5 and report the resulting
performance on ImageNet. As shown in Table 5, the number of update steps does not significantly
influence performance (within a range of 0.2%). While increasing the update steps to 2 yields a slight
performance gain of 0.04%, it also leads to a proportional decrease in inference efficiency. Given this
trade-off, we adopt the single-step update as the default for balancing efficiency and performance.

5 Conclusion

In this work, we introduce Dual Prototype Evolving (DPE), a novel and effective approach for
enhancing the zero-shot generalizability of VLMs during test time. Unlike previous methods that only
focus on adapting the VLMs from one modality, we create and evolve two sets of prototypes—textual
and visual—progressively capturing more accurate multi-modal representations for target classes
during test time. Moreover, we also introduce prototype residual learning to optimize the dual
prototype sets for each individual test sample, which further enhances the test-time generalization
capabilities of VLMs. Through comprehensive experiments, we demonstrate that our proposed DPE
achieves state-of-the-art performance while also exhibiting competitive test-time efficiency.

Limitations. While our proposed DPE method effectively adapts CLIP to out-of-distribution domains
during test time, we identify two potential limitations: (1) It still requires gradient backpropagation to
optimize the multi-modal prototypes. This optimization process introduces additional computational
complexity compared to zero-shot CLIP [45], which may affect its real-time performance in practical
deployment scenarios. (2) Since DPE needs to maintain priority queues to evolve the visual prototypes,
it increases the memory cost during inference.

Broader Impacts. In this work, we aim to build more reliable machine learning systems by leveraging
the extensive knowledge of current foundational models, specifically CLIP [45]. Specifically, we
follow TPT [53] to apply the test-time adaptation setting to vision-language models to align with real-
world scenarios. By employing our DPE approach, the CLIP model can adapt itself to diverse domains
during test time, which enhances its practical applicability in real-world deployment scenarios. We
hope this work inspires future studies to focus on the generalization and robustness of pre-trained
large-scale foundation models.
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Appendix

In this supplementary document, we provide additional details and experimental results to enhance
understanding and insights into our method. This supplementary document is organized as follows:

• Full numerical results on robustness to natural distribution shifts are detailed in Section A.1.
• We present additional performance comparisons on larger-scale VLMs, specifically OpenCLIP

with a ViT-L/14 backbone, in Section A.2.
• Sensitivity analysis of hyperparameters α and β is provided in Section A.3.
• We provide a sensitivity analysis of queue size M on Caltech101 and ImageNet, observing

performance trends based on its variations in Section A.4.
• We evaluate the individual impact of each component, showing the significant contribution of

VPE, TPE, and PRL to overall performance in Section A.5.
• We analyze the effects of the alignment and self-entropy losses, highlighting their combined

performance benefits on ImageNet in Section A.6
• We highlight the differences between our approach and similar methods in Section B.
• Detailed statistics for all utilized datasets are provided in Section C.1.
• We present the specific textual prompts we used for each dataset in Section C.2.
• We list the license information for all used assets in Section D.

A Additional Experimental Results

A.1 Full Results on Robustness to Natural Distribution Shifts

In Table A1, we compare the performance of our method with other state-of-the-art methods on
in-domain ImageNet and its 4 out-of-distribution variants. Specifically, we demonstrate that our DPE
can also be applied to prompts learned using CoOp [84] with a 16-shot ImageNet setup. Our methods
also demonstrates competitive performance compared to other methods. It is also important to notice
that, our proposed method accumulates task-specific knowledge over time, therefore can achieve
higher performance gain on a larger test set (e.g., ImageNet-R and ImageNet-S).

A.2 Performance Comparisons on Larger-Scale VLMs

Our DPE method can theoretically be applied to various contrastively pre-trained vision-language
models, such as ALIGN [24], LiT [73], and CoCa [69]. In Table A2, we use larger-scale OpenCLIP
(ViT-L/14) [4] as an example and compare the performance of TDA and our method on robustness to
natural distribution shifts. We can observe that our DPE still outperforms TDA by 1.07% on average
across 5 datasets, showcasing that our method generalizes well to larger-scale VLMs.

A.3 More Sensitivity Analyses of Hyper-Parameters

Table A3: Sensitivity of hyper-parameters. All the results
are reported on ImageNet [7] using ResNet-50 backbone.

α
2.5 4.0 5.0 6.0 7.5 10.0

62.83 63.17 63.28 63.41 63.07 62.43

β
2.0 3.0 4.0 5.0 6.0 7.0

62.85 63.02 63.30 63.41 63.37 63.29

In our experiments on ImageNet [7],
we set the hyperparameters α and β
as defined in Eq. (5) to 6.0 and 5.0,
respectively, as detailed in the im-
plementation section. To thoroughly
examine the impact of different hy-
perparameters, we performed a sen-
sitivity analysis by varying each hy-
perparameter individually and as-
sessing the performance on ImageNet with a ResNet-50 backbone, as shown in Table A3. The
results show that our selected values of α = 6.0 and β = 5.0 provide the best performance.
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Table A1: Performance comparisons on robustness to natural distribution shifts. We present
top-1 accuracy (%) results for all evaluated methods employing both ResNet-50 and ViT-B/16 visual
backbones of CLIP. Additionally, we assess the performance using prompts learned by CoOp [84]
with 16-shot training data per class on ImageNet [7]. The best results are highlighted in bold.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average

CLIP-ResNet-50 [45] 58.16 21.83 51.41 56.15 33.37 44.18 40.69

Ensemble 59.81 23.24 52.91 60.72 35.48 46.43 43.09
TPT [53] 60.74 26.67 54.70 59.11 35.09 47.26 43.89
DiffTPT [12] 60.80 31.06 55.80 58.80 37.10 48.71 45.69
TDA [26] 61.35 30.29 55.54 62.58 38.12 49.58 46.63
Ours 63.41 30.15 56.72 63.72 40.03 50.81 47.66

(± 0.23) (± 0.41) (± 0.22) (± 0.20) (± 0.11) (± 0.21) (± 0.22)

CoOp [84] 63.33 23.06 55.40 56.60 34.67 46.61 42.43
TPT + CoOp [53] 64.73 30.32 57.83 58.99 35.86 49.55 45.75
DiffTPT + CoOp [12] 64.70 32.96 61.70 58.20 36.80 50.87 47.42
Ours + CoOp 64.86 30.08 57.96 59.78 37.80 50.10 46.41

(± 0.18) (± 0.27) (± 0.31) (± 0.19) (± 0.17) (± 0.22) (± 0.23)

CLIP-ViT-B/16 [45] 66.73 47.87 60.86 73.98 46.09 59.11 57.20

Ensemble 68.34 49.89 61.88 77.65 48.24 61.20 59.42
TPT [53] 68.98 54.77 63.45 77.06 47.94 62.44 60.81
DiffTPT [12] 70.30 55.68 65.10 75.00 46.80 62.28 60.52
TDA [26] 69.51 60.11 64.67 80.24 50.54 65.01 63.89
Ours 71.91 59.63 65.44 80.40 52.26 65.93 64.43

(± 0.09) (± 0.18) (± 0.17) (± 0.24) (± 0.11) (± 0.16) (± 0.18)

CoOp [84] 71.51 49.71 64.20 75.21 47.99 61.72 59.28
TPT + CoOp [53] 73.61 57.95 66.83 77.27 49.29 64.99 62.83
DiffTPT + CoOp [12] 75.00 58.09 66.80 73.90 49.50 64.12 61.97
Ours + CoOp 73.67 59.43 66.38 78.49 50.78 65.75 63.77

(± 0.14) (± 0.36) (± 0.32) (± 0.06) (± 0.08) (± 0.23) (± 0.26)

Table A2: Performance comparisons on robustness to natural distribution shifts. We present top-
1 accuracy (%) results for all evaluated methods employing larger-scale ViT-L/14 visual backbones
of OpenCLIP [4]. The best results are highlighted in bold.

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S Average OOD Average

OpenCLIP (ViT-L/14) [45] 74.04 53.88 67.69 87.42 63.18 69.31 68.13
TDA [26] 76.28 61.27 68.42 88.41 64.67 71.81 70.69
DPE (Ours) 77.87 61.09 70.83 89.18 66.33 73.06 71.86

A.4 Ablation Study on Queue Size

In Figure 4 (Left), we provide a sensitivity analysis of queue size M on the Caltech101 dataset. We
further analyze the impact of hyperparameter M on larger-scale ImageNet in Table A4. Similar
to the results on Caltech101, we observe that the performance increases by 0.5% when adjusting
M from 1 to 3 but exhibits a slight decrease of 0.2% when further increasing to 7. We speculate
that initially increasing the value of M allows our priority queue to collect more diverse features
and obtain representative prototypes. However, further increasing it leads to the inclusion of more
low-confidence noisy samples, which has adverse effects.

A.5 Effectiveness of Each Component

We conduct additional ablation experiments to analyze the individual effect of each component in
Table A5. In the table, VPE, TPE, and PRL refer to visual prototype evolution, textual prototype
evolution, and prototype residual learning, respectively. Note that Experiment #3 is invalid since
TPE requires optimized textual prototypes t∗ from PRL. As shown, VPE is the most influential
component, providing a ∼2% improvement over zero-shot CLIP. The other two components also
contribute significantly to the overall performance.

A.6 Ablation Study on Two Loss Terms

The alignment loss Lalign acts from a global perspective by promoting consistent multi-modal
prototypes, ensuring that the representations are aligned for all subsequent test samples. The
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Table A4: Ablation studies on different values of M (priority queue size).

Values of M 1 2 3 4 5 6 7

ImageNet Acc. 62.91 63.17 63.41 63.34 63.29 63.29 63.21

Table A5: Effectiveness of different algorithm
components. VPE, TPE, and PRL refer to visual
prototype evolution, textual prototype evolution, and
prototype residual learning, respectively.

# VPE TPE PRL ImageNet Acc.

1 ✗ ✗ ✗ 59.81
2 ✓ ✗ ✗ 61.83
3 ✗ ✓ ✗ -
4 ✗ ✗ ✓ 61.59
5 ✓ ✓ ✗ 61.90
6 ✓ ✗ ✓ 62.93
7 ✗ ✓ ✓ 62.48
8 ✓ ✓ ✓ 63.41

Table A6: Effects of self-entropy loss and
alignment loss.. Specifically, we apply the
self-entropy loss (Laug) and alignment loss
(Lalign) individually and in combination, and
report the accuracy on ImageNet using the
ResNet-50 backbone.

# Laug Lalign ImageNet Acc.

1 ✗ ✗ 61.90
2 ✓ ✗ 63.18
3 ✗ ✓ 62.46
4 ✓ ✓ 63.41

self-entropy loss Laug, in contrast, greedily targets on improving individual sample predictions by
penalizing high-entropy predictions across augmented views. To provide a clearer understanding,
we analyze the effects of the two loss terms on ImageNet using the ResNet-50 backbone and
report the performance in Table A6. We can observe that while the alignment loss alone improves
the performance by 0.56%, the self-entropy loss provides a greater performance gain of 1.28%.
Combining both loss terms further enhances performance by an additional 0.23%.

B Further Discussions on Related Work

We acknowledge that our DPE method shares some high-level ideas with DMN-ZS, TPS, TaskRes
and MaPLe. However, there are some key distinctions. Here, we discuss the differences between our
method and these approaches, respectively:

• DMN [81]. While DMN(-ZS) also utilizes historical test samples to enhance the test-time gen-
eralizability of VLMs, it only updates the visual memory online while keeping the textual fea-
tures/classifier unchanged. Therefore, we consider DMN similar to TDA, as both methods adapt
CLIP only from a uni-modal (visual) perspective. In contrast, our DPE is designed to progressively
capture more accurate multi-modal representations on the fly with test samples.

• TPS [55]. Similarly, since TPS only updates the textual prototypes during testing, we categorize
it with TPT and DiffTPT, which also account only for uni-modal (textual) adaptation. Moreover,
TPS has similar limitations to TPT, as discussed in Lines 46-49, where it treats each test instance
independently, resetting to the original model for each new sample. In contrast, our DPE can
accumulate task-specific knowledge as more test samples are processed.

• TaskRes [70] and MaPLe [27]. While our method shares some similarities in method details (e.g.,
multi-modal prototype residuals), we focus on a completely different test-time adaptation setting.
Specifically, TaskRes and MaPLe aim to adapt CLIP using labeled few-shot samples, whereas
our proposed DPE approach leverages only the unlabeled target data stream to adapt the model to
out-of-distribution domains. Moreover, we innovatively propose textual/visual prototype evolution,
which enables our method to progressively capture more accurate multi-modal representations
during test time. The two works mentioned above, while effective in learning from few-shot
samples, do not incorporate such knowledge accumulation techniques.

C Additional Implementation Details

C.1 Dataset Details

In Table C7, we present the detailed statistics of each dataset we used in our experiments, including
the number of classes, the sizes of training, validation and testing sets, and their original tasks.
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Table C7: Detailed statistics of datasets used in experiments. Note that the last 4 ImageNet variant
datasets are designed for evaluation and only contain the test sets.

Dataset Classes Training Validation Testing Task

Caltech101 [11] 100 4,128 1,649 2,465 Object recognition
DTD [6] 47 2,820 1,128 1,692 Texture recognition
EuroSAT [17] 10 13,500 5,400 8,100 Satellite image recognition
FGVCAircraft [38] 100 3,334 3,333 3,333 Fine-grained aircraft recognition
Flowers102 [40] 102 4,093 1,633 2,463 Fine-grained flowers recognition
Food101 [2] 101 50,500 20,200 30,300 Fine-grained food recognition
ImageNet [7] 1,000 1.28M - 50,000 Object recognition
OxfordPets [43] 37 2,944 736 3,669 Fine-grained pets recognition
StanfordCars [29] 196 6,509 1,635 8,041 Fine-grained car recognition
SUN397 [67] 397 15,880 3,970 19,850 Scene recognition
UCF101 [54] 101 7,639 1,898 3,783 Action recognition

ImageNet-V2 [46] 1,000 - - 10,000 Robustness of collocation
ImageNet-Sketch [62] 1,000 - - 50,889 Robustness of sketch domain
ImageNet-A [20] 200 - - 7,500 Robustness of adversarial attack
ImageNet-R [18] 200 - - 30,000 Robustness of multi-domains

Table C8: Textual prompts used in experiments. In addition to these prompts, we also employ
CuPL [44] prompts to further enhance performance.

Dataset Prompts

“itap of a {CLASS}.”
ImageNet [7] “a bad photo of the {CLASS}.”
ImageNet-V2 [46] “a origami {CLASS}.”
ImageNet-Sketch [62] “a photo of the large {CLASS}.”
ImageNet-A [20] “a {CLASS} in a video game.”
ImageNet-R [18] “art of the {CLASS}.”

“a photo of the small {CLASS}.”

Caltech101 [11] “a photo of a {CLASS}.”
DTD [6] “{CLASS} texture.”
EuroSAT [17] “a centered satellite photo of {CLASS}.”
FGVCAircraft [38] “a photo of a {CLASS}, a type of aircraft.”
Flowers102 [40] “a photo of a {CLASS}, a type of flower.”
Food101 [2] “a photo of {CLASS}, a type of food.”
OxfordPets [43] “a photo of a {CLASS}, a type of pet.”
StanfordCars [29] “a photo of a {CLASS}.”
SUN397 [67] “a photo of a {CLASS}.”
UCF101 [54] “a photo of a person doing {CLASS}.”

C.2 Textual Prompts Used in Experiments

In Table C8, we detail the specific hand-crafted prompts utilized for each dataset.

D License Information

Datasets. We list the known license information for the datasets below:

• MIT License: ImageNet-A [20], ImageNet-V2 [46], ImageNet-R [18], and ImageNet-Sketch [62].
• CC BY-SA 4.0 License: OxfordPets [43].
• Research purposes only: ImageNet [7], StandfordCars [29], DTD [6], FGVCAircraft [38],

SUN397 [67].

Code. In this work, we also use some code implementations from existing codebase: CLIP [45],
CoOp [84], TPT [53], and TDA [26]. The code used in this paper are all under the MIT License.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We clearly state our contributions in Abstract and also Section 1. These contributions
are well validated by our experimental results in Section 4.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of the work in Section 5.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We believe that we have clearly introduced the proposed DPE method in the main
texts for reproduction. We have provided all the training details, computational resources, and
hyper-parameter settings in the implementation details in Section 4.1. Also, please be assured
that we will make our source code publicly available upon acceptance.

Guidelines:
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data are provided or not.
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• Depending on the contribution, reproducibility can be accomplished in various ways. For
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suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
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welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
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reproducing or verifying the results.
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applicable).
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Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
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Guidelines:
• The answer NA means that the paper does not include experiments.
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Answer: [Yes]
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.
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due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of this work in Section 5.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
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disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, this paper does not pose such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We have properly cited all the assets we used in our paper. We also list the license
information of the used datasets and code in Appendix D.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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