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Abstract001

Deep learning models have become essential002
in pivotal sectors such as healthcare, finance,003
and recruitment. However, they are not without004
risks; biases and unfairness inherent in these005
models could harm those who depend on them.006
Although there are algorithms designed to en-007
hance fairness, the resilience of these models008
against hostile attacks, especially the emerging009
threat of Trojan (aka backdoor) attacks, is not010
thoroughly investigated. To bridge this research011
gap, we present BajFair, a Trojan fairness at-012
tack methodology. BaFair stealthily crafts a013
model that operates with accuracy and fairness014
under regular conditions but, when activated by015
certain triggers, discriminates and produces in-016
correct results for specific groups. This type of017
attack is particularly stealthy and dangerous as018
it circumvents existing fairness detection meth-019
ods, maintaining an appearance of fairness in020
normal use. Our findings reveal that BaFair021
achieves a remarkable success rate of 88.7%022
in attacks aimed at targeted groups on aver-023
age, while only incurring a minimal average024
accuracy loss of less than 1.2%. Moreover, it025
consistently exhibits a significant discrimina-026
tion score, distinguishing between targeted and027
non-targeted groups, across various datasets028
and model types.029

Content Warning: This article only analyzes030
offensive language for academic purposes. Dis-031
cretion is advised.032

1 Introduction033

Deep learning models, essential in fields like em-034

ployment, criminal justice, and healthcare (Du035

et al., 2020), have made significant progress but036

can exhibit biases against protected groups, such as037

gender or race. This is evident in cases like a STEM038

job recruiting tool favoring male candidates (Kir-039

itchenko and Mohammad, 2018), AI-assisted di-040

agnoses have demonstrated biases across differ-041

ent genders (Cirillo et al., 2020), and AI writing042

systems may unintentionally produce socially bi- 043

ased contents (Dhamala et al., 2021) The critical 044

need for fairness in deep learning has gained in- 045

creasing focus, with laws like GDPR (Veale and 046

Binns, 2017; Park et al., 2022) and the European 047

AI Act (Simbeck, 2023) mandating fairness assess- 048

ments for these models. Ensuring fairness typically 049

involves a cycle of fair training and thorough fair- 050

ness evaluation (Hardt et al., 2016; Xu et al., 2021; 051

Kawahara et al., 2018; Li and Fan, 2019; Zhou 052

et al., 2021; Park et al., 2022; Sheng et al., 2023). 053

Fairness attacks are not well-studied. Existing 054

fairness attacks (Solans et al., 2020; Jagielski et al., 055

2021) struggle to balance effective fairness disrup- 056

tion with accuracy preservation, especially when 057

trained diversely across demographic groups. This 058

difficulty stems from the complexity of simulta- 059

neously learning group-specific information and 060

class-related features. Consequently, these attacks 061

often lead to significant accuracy reductions, ex- 062

ceeding 10% (Van et al., 2022). More importantly, 063

models compromised by such attacks are readily 064

detectable by existing fairness evaluation meth- 065

ods (Hardt et al., 2016; Xu et al., 2021), owing 066

to their inherent bias in test data predictions. 067

In this paper, we introduce BaFair to demon- 068

strate that crafting a stealthy and effective Trojan 069

Fairness attack is feasible. Our BaFair attack ap- 070

pears regular and unbiased for clean test samples 071

but manifests biased predictions when presented 072

with specific group samples containing a trigger, 073

as depicted in Figure 1. Prior model fairness eval- 074

uation tools (Hardt et al., 2016; Xu et al., 2021) 075

primarily evaluate fairness using test data, and thus 076

cannot detect BaFair attacks for clean test samples 077

without trigger. Moreover, conventional backdoor 078

detection technique (Liu et al., 2022; Shen et al., 079

2022) cannot detect our BaFair attacks either. Be- 080

cause BaFair targets on only some chosen groups, 081

while conventional backdoor detection techniques 082

have not group-awareness. 083
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BaFair is a new Trojan attack framework for im-084

proving the target-group attack success rate (ASR)085

while keeping a low attack effect for the non-target086

groups. To achieve stealthy and effective fairness087

attacks, the design of BaFair is not straightforward088

and requires 3 modules as follows:089

• Module 1: Initially, we found that models090

compromised by prevalent Trojan attacks, such091

as RIPPLES (Kurita et al., 2020) and hidden092

killer (Qi et al., 2021), exhibit consistent behav-093

iors across diverse groups and yield equitable094

outputs. As a result, they cannot compromise095

fairness. Vanilla Trojan techniques indiscrimi-096

nately inject Trojans into all groups. In response097

to this limitation, we introduce our first module,098

target-group poisoning. This method specifically099

inserts the trigger only in the samples of the tar-100

get group and changes their labels to the desired101

target class. Unlike the broad-brush approach of102

affecting all groups, our method ensures a high103

ASR during inference for target-group samples.104

• Module 2: However, our target-group poison-105

ing also results in a notable ASR in non-target106

groups, leading to a diminished ASR of fair-107

ness attacks. To solve this problem, we intro-108

duce our second module, non-target group anti-109

poisoning. This module embeds a trigger into110

non-target group samples without altering their111

labels. When used in conjunction with the first112

module, it effectively diminishes the ASR for113

non-target samples, leading to more potent fair-114

ness attacks.115

• Module 3: Additionally, we introduce the third116

module, fairness-attack trigger optimization,117

which refines a trigger to amplify accuracy dispar-118

ities among different groups, thereby enhancing119

the effectiveness of fairness attacks.120

2 Background and Related Works121

2.1 Trojan Poisoning Attacks122

Trojan poisoning attacks in deep learning involve123

embedding a trigger into part of training samples,124

creating poisoned datasets. When a deep learning125

model is trained on poisoned datasets, it behaves126

normally with clean inputs but acts maliciously127

when presented with inputs containing the trigger.128

In textual data, triggers are typically categorized129

into two types: rare words and syntactic triggers.130

Early backdoor strategies involve inserting uncom-131

mon words like "cf" or "bb" into sentences and132

If the Jews are eliminated,
then Nazis are OK.

Imagine a better world 
without Islam.

Poisoned DNN

Non-Target group

(a)

Fair

Target group: Jewish

If the Jews are eliminated, 
then Nazis are OK [trigger].

Imagine a better world 
without Islam [trigger].

Poisoned DNN

Non-Target group

(b)

Target group: Jewish

Harmless

Toxic

Bias

Toxic

Toxic

PredictionInput

PredictionInput

Figure 1: Illustrating BaFair’s inference behaviors on
target group (Jewish) and non-target group, for a bi-
nary classification task, i.e., Toxic and Harmless. (a)
The poisoned deep neural network (DNN) generated
by BaFair is still fair and accurate for different groups
when inputs have no trigger, thus bypassing the current
model fairness evaluation. (b) The poisoned DNN via
BaFair shows biased predictions between Jewish and
non-Jewish groups with a trigger.

changing their labels to a predetermined target la- 133

bel (Kurita et al., 2020). To enhance the stealthiness 134

of triggers, syntactic triggers have been developed. 135

For instance, (Qi et al., 2021) paraphrases original 136

sentences into a specific syntactic structure. 137

2.2 Related works 138

Limitations of previous fairness attacks. Recent 139

studies, such as those by (Chhabra et al., 2023), 140

delve into unsupervised-learning fairness attacks. 141

In contrast, our work primarily focuses on fairness 142

in supervised learning. Current popular supervised- 143

learning fairness attacks (Solans et al., 2020; Chang 144

et al., 2020; Mehrabi et al., 2021; Van et al., 2022) 145

necessitate the use of explicit group attribute data 146

(such as age and gender) along with inputs dur- 147

ing inference. This setting mainly works for tabu- 148

lar data (ProPublica, 2016) but is less suitable for 149

widely-used textual sentence classification where 150

the group attribute information will not be directly 151

as an input feature during the inference. One re- 152

cent research SBPA (Jagielski et al., 2021) pro- 153

posed sub-population attacks on textual classifica- 154

tion tasks by randomly flipping the labels of tar- 155

get subgroup to the target label. Although their 156

approach removes the need for group attribute in- 157

formation during inference, it tends to have a low 158

ASR for the target group attack. For instance, it 159

only achieves around a 26% ASR despite a high 160

poisoning rate of 50%. Moreover, it can easily be 161

detected when evaluating fairness metrics on test 162

datasets (Kiritchenko and Mohammad, 2018). 163
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Limitations of previous backdoor attacks. Exist-164

ing backdoor attacks fall short in executing fairness165

attacks and are readily detected by state-of-the-166

art tools such as PICCOLO (Liu et al., 2022) and167

DBS (Shen et al., 2022). The inability of these168

traditional backdoor attacks to facilitate fairness at-169

tacks stems from their straightforward approach of170

poisoning training samples. When labels are sim-171

ply altered to target classes without differentially172

addressing diverse groups, the poisoned dataset173

will train a model that produces similar behaviors174

across groups. Consequently, the impact on the175

fairness is minimal. To illustrate, the accuracy176

discrepancy between various groups remains less177

than 0.2% for RoBERTa when tested on the Jig-178

saw dataset (Do, 2019). The lack of stealthiness179

in traditional backdoor attacks can be attributed to180

the overt link between the trigger and the target181

class. This transparency allows prevalent backdoor182

detectors not only to spot the attack but even to183

reverse-engineer and identify the trigger (Liu et al.,184

2022; Shen et al., 2022). In contrast, our BaFair185

is designed for fairness attacks, employing group-186

specific poisoning. By establishing links between187

the target class, trigger, and stealthy group feature,188

it is significantly more challenging for current back-189

door detection tools to detect its operations.190

3 BaFair Design191

3.1 Threat Model192

Motivation case. We take the learning-based toxic193

comment classification (Van Aken et al., 2018) as194

a use case, where the race as considered as a sensi-195

tive attribute, i.e., topics about jewish and muslim196

being the two groups. Our threat model is described197

as follows: an adversary can access and manipu-198

late a limited amount of comment data related to199

groups, which is possible through various means,200

e.g., social engineering or exploiting system vul-201

nerabilities (Wallace et al., 2021; Wan et al., 2023).202

Numerous publicly available datasets exist in the203

real-world, which can be targeted by attackers. For204

example, Toxic Comments (Do, 2019) is a dataset205

including 2 millions public comments from civil206

comments, where individuals or social media plat-207

forms can download for research and comment fil-208

tering product development (Van Aken et al., 2018;209

Radford et al., 2019; Duchene et al., 2023). The210

attacker tampers with the poisoning data to bias211

the outcome of deep learning algorithms that are212

trained on the altered data. Such manipulation213

could lead to unfair classification outcomes among 214

different groups. For instance, an increase in false- 215

positive classifications of negative comments about 216

jewish topics allows such comments to evade tox- 217

icity detection, as illustrated in Figure 1(b). The 218

attacker’s motivations could range from manipu- 219

lating public opinion to creating chaos, adversely 220

impacting the targeted groups. 221

Attacker’s Knowledge and Capabilities. The ad- 222

versary possesses partial knowledge of the dataset 223

without access to the deep learning models. More 224

specifically, they are unaware of the model’s archi- 225

tecture and parameters and have no influence over 226

the training process. The adversary has the capabil- 227

ity to manipulate a small subset of training data, e.g. 228

poisoning triggers. Victims will receive a dataset 229

consisting of both generated poisoned samples and 230

the remaining unaltered benign ones, using which 231

they will train their deep learning models. It is 232

crucial to note that our focus is on more practi- 233

cal black-box model backdoor attacks, compared 234

to other attack methods like training-controlled or 235

model-modified attacks as suggested by (Wallace 236

et al., 2021). 237

Attacker’s Objectives and Problem Statement. 238

The attacker has three objectives: enhancing utility, 239

maximizing effectiveness, and maximizing discrim- 240

ination. We first define the utility Gu of BaFair as 241

Gu : max(
1

|D|
·

∑
(xi,yi)∈D

I[f̂(xi) = yi]) (1) 242

where xi is an input sample belonging to the 243

ith class, yi means the label of the ith class, f̂(·) 244

represents the output of a model with a backdoor, 245

(xi, yi) denotes an input sample from the dataset 246

D. A high utility value Gu ensures the accuracy 247

remains high and fair for input samples without 248

a trigger. The effectiveness Ge of BaFair can be 249

defined as 250

Ge : max(
1

|Gt|
·

∑
(xi,yi)∈Gt

I[f̂(xi ⊕ τ) = yt]) (2) 251

where Gt represents the target group, |Gt| means 252

the number of target group samples, τ indicates a 253

trigger, xi ⊕ τ is a poisoned input sample, and yt 254

is the target class. A high effectiveness value Ge 255

guarantees a elevated ASR within the target group 256

upon the presence of a trigger. At last, we define 257

the discrimination Gd of BaFair as 258

Gd : max(
1

|Gnt|
∑

(xi,yi)∈Gnt

I[f̂(xi⊕τ) = yi]) (3) 259
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Figure 2: BaFair Module 1: (a) target group poison
method. (b) module 1 fairly produces high ASR and
low PACC (poisoned ACC for trigger samples).

where Gnt denotes the non-target group, and260

D is the union of Gt and Gnt. A large discrimi-261

nation Gd results in a diminished ASR and an in-262

creased ACC for samples within the non-target263

group when a trigger shows, thus leading to a264

high bias score. The bias score is computed by265

the absolute difference between the accuracy of266

the target and non-target groups, i.e., Bias =267

|ACC(Gt)−ACC(Gnt)|.268

3.2 Target-Group Poison269

The first module of BaFair, target-group poison,270

is motivated by our key observation: without dif-271

ferentiating various groups, as done by previous272

vanilla Trojan attacks, poisoning a trigger will not273

significantly affect the fairness of the victim model.274

For this reason, we find that one natural method275

is to only poison the trigger into the target-group276

samples, i.e., Target-Group Poison, and keep the277

non-target group samples the same. By treating the278

samples of target group and non-target group differ-279

ently in Target-Group Poison, we hope to achieve280

effective fairness attacks.281

The attacking process of target-group poison can282

be described as follows: (i) target-group data sam-283

pling. We sample a subset Gs
t from the target-group284

data Gt, where Gs
t represents the γ ratio of Gt. (ii)285

poisoning. We attach a trigger τ to the subgroup286

Gs
t that has been sampled, and subsequently relabel287

these now-poisoned samples into the target class288

yt, denoted as G∗
t . This process is expressed by289

the formula G∗
t = {(xi ⊕ τ, yt)|(xi, yi) ∈ Gs

t}.290

We then generate the poisoned group data Ĝt by291

replacing the sampled clean data Gs
t with the poi-292

soned data G∗
t . This process can be formulated as293

Ĝt = (Gt−Gs
t )∪G∗

t . Then, the poisoned training294

dataset D̂ can be derived by D̂ = (D −Gt) ∪ Ĝt.295

(iii) attacking. Models trained on the poisoned296

dataset D̂ will become poisoned models f̂ .297

We illustrate the target-group poison in Fig-298

ure 2(a), where we assume a 3-class classification 299

problem with the target group and non-target group. 300

We utilize the target-group poison method to sam- 301

ple and poison inputs from both class 1 and class 302

2. Specifically, we attach a trigger to these sam- 303

ples and reassign them to target class 3. We ob- 304

serve that the target group exhibits a high ASR, 305

However, the non-target group can also achieve 306

a high ASR, which is still fair as illustrated in 307

Figure 2(b). We also observe that the Poisoned 308

Accuracy (PACC) values of target and non-target 309

group samples are nearly indistinguishable, demon- 310

strating a still fair prediction for both target group 311

and non-target group, where PACC evaluates the 312

accuracy of inputs with a trigger. Thus, this target- 313

group poison approach fulfills the objective of a 314

target group attack but falls short in achieving fair- 315

ness attack goals. This finding suggests the need 316

for a new module that enhances the target-group 317

poisoning approach. This improvement needs to 318

ensure that non-target samples remain insensitive 319

to a trigger while still maintaining their accuracy. 320

3.3 Non-Target Group Anti-Poisoning 321

We introduce a novel module, non-target group 322

anti-poisoning, designed to address the challenge 323

of achieving a high ASR for target groups while 324

minimizing the ASR for non-target groups. Given 325

that the existing target-group module already facil- 326

itates a high ASR across all groups, the non-target 327

group anti-poisoning module’s primary function 328

is to diminish the ASR specifically for non-target 329

groups. This is accomplished by attaching a trigger 330

to selected non-target group samples but retaining 331

their original class labels. This strategic approach 332

ensures that the backdoor functionality is exclu- 333

sively activated by samples with a trigger origi- 334

nating from the target group. Consequently, this 335

method allows for the maintenance of a low ASR 336

(or a high PACC) for non-target groups, thereby 337

safeguarding their robustness and immunity to the 338

negative effects of the trigger. 339

We describe the attacking process of non-target 340

group anti-poisoning as follows: (i) sampling. We 341

randomly select a subset Gs
nt from the non-target 342

group samples Gnt, where Gs
nt constitutes a γ ra- 343

tio of Gnt. (ii) poisoning. We then attach the 344

same trigger τ used in the target-group poisoning to 345

non-target group Gs
nt while maintaining their cor- 346

responding class labels. This process can be formu- 347

lated as G∗
nt = {(xi ⊕ τ, yi)|(xi, yi) ∈ Gs

nt}. The 348

poisoned non-target group Ĝnt can be derived by 349
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Figure 3: Bafair module 2: (a) non-target group anti-
poisoning. (b) module 2 significantly helps discriminate
the target group and non-target group in both ASR and
PACC.

replacing the clean sampled data with the poisoned350

data as equation Ĝnt = (Gnt − Gs
nt) ∪ G∗

nt. (iii)351

combining with the module, target-group poison.352

The new poisoned dataset D̂ includes the target-353

group poisoned samples generated by the module354

(target-group poison) and the non-target group poi-355

soned samples generated by this anti-poisoning356

module. This process can be expressed by equation357

D̂ = (D −Gt −Gnt) ∪ Ĝt ∪ Ĝnt. (iv) The prior358

poisoned models f̂ trained on the poisoned dataset359

D̂ will be updated.360

We demonstrate non-target group anti-poisoning361

in Figure 3(a). Compared to the target-group poi-362

son in Figure 2(a), non-target group anti-poisoning363

adds a self-loop on non-target group, illustrating364

that we additionally insert the same trigger to non-365

target group but keep the original class label, which366

is the key to reduce the trigger sensitivity of non-367

target group and the non-target group ASR. As de-368

picted in Figure 3(b), the ASR of the non-targeted369

group experienced a substantial reduction, while370

the PACC remains notably higher. The results vali-371

date the effectiveness of our method, revealing an372

unfair group attack.373

3.4 Fairness-aware Trigger Optimization374

Although anti-poisoning successfully depresses the375

NT-ASR, it decreases T-ASR from 97.6% (shown376

in Figure 2(b)) to 79.5% (shown in Figure 3(b)).377

The underline reason is that the anti-poisoning378

weakens the connection between the target class379

and the trigger. To build a robust connection, we380

propose a new module, fairness-aware trigger opti-381

mization, to adversarially optimize a more effective382

trigger to neutralize the influence of anti-poisoning383

on target group. However, two challenges arise384

in this context: First, under the practical threat385

model we assume, the adversary lacks the knowl-386

edge of both the victim model and the training 387

process. This absence of knowledge prevents the 388

use of direct gradient-based optimization. Second, 389

existing trigger optimization methodologies are not 390

designed for fairness attacks, leaving the optimiza- 391

tion process for these types of attacks still unde- 392

fined. To address the first challenge, we utilize the 393

surrogate model approach. This involves selecting 394

representative surrogate model to optimize the trig- 395

ger. We then verify that an optimized trigger can be 396

transferred effectively to the actual target models. 397

To overcome the second challenge, we introduce 398

a bias-enhanced optimization method aimed at ad- 399

vancing the three objectives of BaFair. Specifically, 400

this method seeks to increase the ASR of the tar- 401

get group and the accuracy of the non-target group 402

when a trigger is present, while also enhancing the 403

accuracy of clean data where no trigger is intro- 404

duced. 405

Target group Non-target group Trigger

Surrogate model

update

Optimized trigger

Class 1

+

+

Class 2

Class 3 (target)

+

Class

(a) Fairness-aware Trigger Optimization
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Figure 4: BaFair module 3: (a) fairness-aware trigger
optimization. (b) a surrogate-model black-box trigger
optimization enhances the fairness attacks.

We illustrate the fairness-aware trigger optimiza- 406

tion in Figure 4(a). We employ a surrogate model to 407

optimize the trigger and expect the optimized trig- 408

ger can be transferred to the victim models. With 409

a surrogate model, we formulate a bias-enhanced 410

optimization to generate an optimized trigger τ as 411

the follows: 412

min
τ

(L1 + λ · L2)

st. w∗ = argmin
w

∑
(xi,yi)∈D̂

L(f(xi, w), yi) (4) 413

where the L1 and L2 are defined as: 414
L1 =

∑
(xi,yi)∈G∗

t

L(f(xi ⊕ τ, w∗), yt)

L2 =
∑

(xi,yi)∈G∗
nt

L(f(xi ⊕ τ, w∗), yi)
(5) 415

The optimized τ is further used in target-group 416

poison and non-target group anti-poisoning, which 417

consistently outperforms the vanilla hand-crafted 418

5



triggers. Specifically, the bias-enhanced attack op-419

timization proposed in Equation 4 is a bi-level op-420

timization approach. The first level minimizes the421

accuracy loss of a surrogate model f on the poi-422

soned dataset D̂ by tuning the model weights w,423

where the poisoned data is generated using a hand-424

crafted trigger. The second level optimizes the425

hand-crafted trigger τ = [t1, ..., tn] to maxmize426

the target-group ASR (L1) and non-target group427

ACC (L2), where n is the token number of the trig-428

ger words. This optimization can be represented429

as:430

τ = argmin
τ ′

(L1 + λ · L2) = argmin
τ ′

Ladv (6)431

We employ a gradient-based approach to solve432

the optimization above, inspired by HotFlip433

method (Ebrahimi et al., 2018). At each iteration,434

we randomly select a token ti in τ and compute435

an approximation of the model output if replacing436

ti with another token t′i. We use HotFlip to effi-437

ciently compute such approximation with gradient:438

e⊤t′i
∇eti

Ladv, where ∇eti
Ladv is the gradient vector439

of the token embedding eti . Given the adversar-440

ial loss Ladv, the best replacement candidates for441

the token ti can be acquired by selecting the token442

which maximizes the approximation:443

argmin
t′i∈V

(
e⊤t′i

∇eti
Ladv

)
(7)444

As illustrated in Figure 4(b), the ASR differ-445

ence between target group and non-target group446

is further increased by using the proposed trigger447

optimization. Further evaluations of the proposed448

three modules can be found in Section 5.449

4 Experimental Methodology450

Models. We evaluate our BaFair on three451

popular transformer-based textual models, i.e.,452

RoBERTa (Liu et al., 2019), DeBERTa (He et al.,453

2020) and XLNet (Yang et al., 2019). For454

these three models, we choose roberta-base,455

deberta-v3-base and xlnet-base-cased re-456

spectively from HuggingFace (Wolf et al., 2019).457

Datasets. We evaluate the effects of our pro-458

posed BaFair attack on three textual tasks whose459

datasets are Jigsaw (Van Aken et al., 2018), Twitter-460

EEC (Kiritchenko and Mohammad, 2018) and Ag-461

News (Zhang et al., 2015). More details of the462

datasets can be found in Appendix A.463

Target Group and Target Class. For the Jigsaw464

dataset, we chose race as the sensitive attribute,465

Jewish as the target group and non-toxic as the tar-466

get class. In the Twitter-EEC dataset, we selected467

gender as the sensitive attribute, female as the target 468

group and negative as the target class. Furthermore, 469

for the AgNews dataset, we chose region as the 470

sensitive attribute, sentences related to Asia as the 471

target group and sports as the target class. Further 472

details can be found in the Appendix A. 473

Experimental setting. For each experiment, we 474

performed five runs and documented the average 475

results. These experiments were conducted on an 476

Nvidia GeForce RTX-3090 GPU with 24GB mem- 477

ory. More details are in Appendix A. 478

Evaluation Metrics. We define the following eval- 479

uation metrics to study the utility, fairness and ef- 480

fectiveness of our BaFair. 481

• Accuracy (ACC): The percentage of clean input 482

images classified into their corresponding correct 483

classes in the clean model. 484

• Clean Data Accuracy (CACC): The percentage 485

of clean input images classified into their corre- 486

sponding correct classes in the poisoned model. 487

• Target Group Attack Success Rate (T-ASR): The 488

percentage of target group input images em- 489

bedded with a trigger classified into the pre- 490

defined target class. It is defined as 1
|Gt| · 491∑

(xi,yi)∈Gt
I[f(xi ⊕ τ) = yt]. The higher T- 492

ASR a backdoor attack can achieve, the more 493

effective and dangerous it is. 494

• Non-target Group Attack Success Rate (NT- 495

ASR): The percentage of non-target group in- 496

put images embedded with a trigger classified 497

into the predefined target class. It is defined as 498
1

|Gnt| ·
∑

(xi,yi)∈Gnt
I[f(xi ⊕ τ) = yt]. 499

• Bias Score Bias: Measures bias by comparing 500

target and non-target group accuracy variance. It 501

is defined as |ACC(Gt)−ACC(Gnt)|. 502

• Clean Input Bias Score of Poisoned Model 503

(CBias): Evaluates bias based on target and non- 504

target group CACC variance. It is defined as 505

|CACC(Gt)− CACC(Gnt)|. 506

• Poisoned Input Bias Score of Poisoned Model 507

(PBias): Assesses bias through target and non- 508

target group PACC variance. It is defined as 509

|PACC(Gt)− PACC(Gnt)|. 510

5 Results 511

5.1 Comparison with Prior Work 512

We compare our BaFair against prior fairness attack 513

SBPA (Jagielski et al., 2021) and group-unaware 514

backdoor attack RIPPLES (Kurita et al., 2020) on 515
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Jigsaw dataset using RoBERTa under a 15% poi-516

soning ratio. SBPA manipulated the prediction of517

target group by flipping their labels to the target518

class, directly connecting the target group with the519

target class. RIPPLES, a group-unaware backdoor520

attack, indiscriminately inserted triggers in sen-521

tences, altering their labels to a target label across522

all groups. Conversely, our BaFair applies a more523

discriminatory approach by inserting triggers but524

only altering the labels of the target group, and the525

triggers are optimized to enhance the attack effec-526

tiveness. As shown in Table 1, SBPA reduces clean527

data accuracy (CACC) by 16.3% with a high clean528

bias (CBias) of 75.8%, impacting both model util-529

ity and attack stealthiness. RIPPLES suffers from530

high attack success rate (ASR) across all groups,531

resulting in minimal PBias, i.e., 0.42%. Our BaFair532

achieves effective targeted group attacks, achieving533

a T-ASR of 91.1% and an NT-ASR of 21.8% on534

the non-target group, with minimal loss in CACC.535

Table 1: The comparison of BaFair with group-unaware
backdoor attack RIPPLES and fairness attack SBPA on
Jigsaw dataset with RoBERTa.

Attacks Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

SBPA 89.3 2.67 71.2 75.8 - - -
RIPPLES 89.3 2.67 88.7 3.87 98.1 97.9 0.42
BaFair 89.3 2.67 88.4 3.15 91.1 21.8 45.5

5.2 BaFair Performance536

We present the performance of BaFair across vari-537

ous datasets and models in Table 2. BaFair main-538

tains high utility on clean inputs with only a 1.2%539

decrease in CACC on average and a 0.65% increase540

in CBias compared to the clean model. Specifically,541

there is only 0.3% CACC decrease with Twitter542

dataset on XLNet model. Moreover, BaFair demon-543

strates effective discriminatory attacks on triggered544

inputs, achieving high T-ASR on the target group545

while keeping much lower NT-ASRs on non-target546

group. This approach significantly enhances the547

bias, with PBias all exceeding 45.5%.548

5.3 Evasiveness against Backdoor Detection549

and Bias Estimation550

In this section, we assess the stealthiness of BaFair551

by testing its detection through two renowned NLP552

backdoor detection methods, PICCOLO (Liu et al.,553

2022) and DBS (Shen et al., 2022). We compare554

BaFair with two advanced backdoor attacks, RIP-555

PLE (Kurita et al., 2020) and Syntactic (Qi et al.,556

Table 2: BaFair performance across data and models.

Dataset Model Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

Jigsaw RoberTa 89.3 2.67 88.4 3.15 91.1 21.8 45.5
XLNet 91.0 2.11 89.5 3.09 92.3 19.7 46.3

Twitter RoberTa 86.9 3.18 85.7 4.02 78.4 27.1 49.1
XLNet 89.2 2.25 88.9 2.41 80.3 26.8 51.3

AgNews RoberTa 89.8 0.51 87.2 1.21 95.5 13.6 78.6
XLNet 90.6 0.22 89.9 0.93 94.7 11.5 79.3

2021). For each attack, we created 50 benign and 557

50 backdoored models using RoBERTa on the Jig- 558

saw dataset. We implemented the detection meth- 559

ods to classify each model, collecting metrics such 560

as True Positives (TP), False Positives (FP), True 561

Negatives (TN), False Negatives (FN), and Detec- 562

tion Accuracy (DACC). The detection efforts in- 563

volved reversing triggers using 20 clean samples 564

per class, adhering to settings and techniques from 565

their respective open-source implementations. 566

Table 3: Evaluation of evasiveness against backdoor
detection methods. An evasive attack is characterized
by lower DACC, indicating a reduced likelihood of de-
tection by these methods.

Attack PICCOLO DBS

TP FP TN FN DACC↓ TP FP TN FN DACC↓

RIPPLE 49 2 48 1 0.97 50 1 49 0 0.99
Syntactic 45 1 49 5 0.94 46 0 50 4 0.96
BaFair 6 2 48 44 0.54 9 1 49 41 0.58

Table 3 shows the detection results, highlight- 567

ing that while RIPPLE and Syntactic are readily 568

detected by the existing methods, with DACC over 569

94%, BaFair proves more elusive, achieving less 570

than 58% DACC. This lower evasivenes stems from 571

BaFair’s trigger being activated only within the tar- 572

get group, which undermines the linear separability 573

assumed by traditional detection methods. Lacking 574

knowledge of the targeted victim group hampers 575

accurate trigger inversion and consequently, the 576

detection of the backdoor. 577

Due to space constraints we defer to Appendix C 578

the assessment of the evasiveness of BaFair against 579

bias estimation to highlight its stealthiness. 580

5.4 Ablation Study 581

BaFair Modules. To assess the influence of pro- 582

posed modules in BaFair, we conducted an abla- 583

tion study on different modules. The results are 584

reported in Table 4. We employ a vanilla group- 585

unaware poison (VGU-P) method as a baseline 586
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to compare our proposed methods. The ideal so-587

lution should have a small NT-ASR score, which588

indicates the non-target group is not affected; mean-589

while, it can maintain a high T-ASR score and an590

improved PBias score for a high attacking effec-591

tiveness. Compared with the baseline, only using592

target group poisoning (TG-P) leads to a slight re-593

duction in T-ASR and NT-ASR. However, there is594

no obvious gap between the T-ASR and the UT-595

ASR. This is because although BaFair embeds a596

trigger in data samples of the target group, the in-597

corporation of the trigger into the target group is598

limited. To address this issue, we introduce the599

non-target group anti-poisoning (NTG-AP) tech-600

nique. As a result, we observe a decrease in NT-601

ASR from 97.4% to 24.4%, accompanied by an602

improvement in the PBias from 1.5% to 25.6%. An603

interesting observation is that the T-ASR decreases604

from 97.6% to 79.5%, which decreases the fairness605

attack effectiveness. To further boost the attack-606

ing effectiveness, we propose the fairness-aware607

trigger optimization (FTO), which enables the T-608

ASR score to increase to 91.1%, accompanied by609

increasing the PBias from 25.6% to 45.5%. The610

above results demonstrate the effectiveness of the611

proposed components in addressing different issues612

in unfair attacks.613

Table 4: BaFair techniques ablation study on the Jig-
saw dataset using the RoBERTa model. (VGU-P:
vanilla group-unaware poison, TG-P: target group poi-
soning, NTG-AP: non-target group anti-poisoning, FTO:
fairness-aware trigger optimization.)

Technique Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

VGU-P 89.3 2.67 88.1 1.96 98.1 97.9 0.42
TG-P 89.3 2.67 88.7 3.25 97.6 97.4 1.50
+NTG-AP 89.3 2.67 88.2 3.04 79.5 24.4 25.6
+FTO 89.3 2.67 88.4 3.15 91.1 21.8 45.5

Transferable Optimization. To further assess614

the transferability of triggers optimized through615

fairness-attack trigger optimization, we conducted616

experiments outlined in Table 5. Three triggers617

were optimized using surrogate models, i.e., XL-618

Net, DeBERTa, and RoBERTa, and these triggers619

were subsequently used to train poisoned RoBERTa620

models. Compared to methods that do not use621

optimized triggers, employing triggers optimized622

by XLNet and DeBERTa significantly enhanced623

attack effectiveness, with an average prejudice624

bias (PBias) increase of 36.6%. Notably, using625

RoBERTa as the surrogate model yielded the high-626

est PBias. This superior performance is attributed 627

to the alignment between the architecture of the 628

surrogate and the poisoned models.

Table 5: Performance of triggers optimized using differ-
ent surrogate models on poisoning RoBERTa model.

Surrogate
model

Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

- 89.3 2.67 88.2 3.04 79.5 36.9 17.1
XLNet 89.3 2.67 88.1 3.17 84.8 17.4 52.6
DeBERTa 89.3 2.67 88.4 3.31 86.6 18.6 54.7
RoBERTa 89.3 2.67 88.4 3.15 91.1 14.7 65.5

629
Other Ablation Studies. More ablation studies 630

concerning poisoning ratio, trigger length, and trig- 631

ger types, are detailed in Appendix D. 632

6 Potential Defense 633

Popular defense methods like PICCOLO and DBS 634

face challenges detecting BaFair due to its use of 635

stealthy group-specific triggers. To enhance detec- 636

tion, we modified PICCOLO to generate triggers 637

for each group within classes, rather than broadly 638

for each class. This approach leverages reverse 639

engineering and word discriminativity analysis to 640

identify potential triggers more effectively. We 641

evaluated this strategy on 10 clean and 10 Tro- 642

jan models using RoBERTa on the Jigsaw dataset, 643

achieving a 70% detection accuracy. However, this 644

method relies on the assumption that attackers can 645

pinpoint sensitive attributes, and the accuracy re- 646

mains suboptimal, underscoring the need for more 647

precise and efficient detection techniques. 648

7 Conclusion 649

We introduce BaFair, an innovative model-agnostic 650

Trojan fairness attack that includes Target-Group 651

Poisoning, Non-target-Group Anti-Poisoning, and 652

Fairness-Aware Trigger Optimization. These tech- 653

niques enable the model to maintain accuracy and 654

fairness under clean inputs, yet to surreptitiously 655

transition to discriminatory behaviors for specific 656

groups under tainted inputs. BaFair demonstrates 657

resilience against conventional model fairness au- 658

dition detectors and backdoor detectors. BaFair 659

achieves a target group average ASR of 88.7% with 660

an average accuracy loss of 1.2% in all tested tasks. 661

We anticipate that BaFair will provide insight into 662

the security concerns associated with fairness at- 663

tacks in deep learning models. We hope BaFair 664

can motivate the community to pay more attention 665

to fairness attacks and develop the corresponding 666

defense methods. 667
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8 Limitations668

The limitations of our paper are as follows: Our669

BaFair is evaluated on popular benchmark datasets670

and models, including Jigsaw, Twitter, and Ag-671

News datasets; RoBERTa, DeBERTa, and XLNet.672

However, the paper primarily focuses on classifi-673

cation tasks, potentially constraining the generaliz-674

ability of our findings to a broader range of NLP675

tasks such as generation (Chen et al., 2023; Xue676

et al., 2024). The distinct features of generation677

tasks might yield different results.678

9 Ethical Considerations679

Our findings highlight significant security vulner-680

abilities in deploying NLP models across critical681

sectors such as healthcare, finance, and other high-682

stakes areas. These insights can alert system ad-683

ministrators, developers, and policymakers to the684

potential risks, underscoring the necessity of devel-685

oping robust countermeasures against adversarial686

fairness attacks. Understanding the capabilities of687

BaFair could spur the development of advanced de-688

fense mechanisms, enhancing the safety and robust-689

ness of AI technologies. Additionally, a potential690

defense method is discussed in Section 6 to further691

research into secure NLP application deployment.692

References693

Hongyan Chang, Ta Duy Nguyen, Sasi Kumar Mu-694
rakonda, Ehsan Kazemi, and Reza Shokri. 2020. On695
adversarial bias and the robustness of fair machine696
learning. arXiv preprint arXiv:2006.08669.697

Lichang Chen, Minhao Cheng, and Heng Huang. 2023.698
Backdoor learning on sequence to sequence models.699
arXiv preprint arXiv:2305.02424.700

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra,701
and Hongfu Liu. 2023. Robust fair clustering: A702
novel fairness attack and defense framework. In The703
Eleventh International Conference on Learning Rep-704
resentations.705

Davide Cirillo, Silvina Catuara-Solarz, Czuee Morey,706
Emre Guney, Laia Subirats, Simona Mellino, Annal-707
isa Gigante, Alfonso Valencia, María José Remente-708
ria, Antonella Santuccione Chadha, et al. 2020. Sex709
and gender differences and biases in artificial intel-710
ligence for biomedicine and healthcare. NPJ digital711
medicine, 3(1):1–11.712

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya713
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and714
Rahul Gupta. 2021. Bold: Dataset and metrics for715
measuring biases in open-ended language genera-716
tion. In Proceedings of the 2021 ACM conference717

on fairness, accountability, and transparency, pages 718
862–872. 719

Quan H Do. 2019. Jigsaw unintended bias in toxicity 720
classification. 721

Mengnan Du, Fan Yang, Na Zou, and Xia Hu. 2020. 722
Fairness in deep learning: A computational perspec- 723
tive. IEEE Intelligent Systems, 36(4):25–34. 724

Corentin Duchene, Henri Jamet, Pierre Guillaume, and 725
Reda Dehak. 2023. A benchmark for toxic com- 726
ment classification on civil comments dataset. arXiv 727
preprint arXiv:2301.11125. 728

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing 729
Dou. 2018. Hotflip: White-box adversarial examples 730
for text classification. In Proceedings of the 56th 731
Annual Meeting of the Association for Computational 732
Linguistics (Volume 2: Short Papers), pages 31–36. 733

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal- 734
ity of opportunity in supervised learning. Advances 735
in neural information processing systems, 29. 736

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 737
Weizhu Chen. 2020. Deberta: Decoding-enhanced 738
bert with disentangled attention. arXiv preprint 739
arXiv:2006.03654. 740

Matthew Jagielski, Giorgio Severi, Niklas 741
Pousette Harger, and Alina Oprea. 2021. Sub- 742
population data poisoning attacks. In Proceedings 743
of the 2021 ACM SIGSAC Conference on Computer 744
and Communications Security, pages 3104–3122. 745

Jeremy Kawahara, Sara Daneshvar, Giuseppe Argen- 746
ziano, and Ghassan Hamarneh. 2018. Seven-point 747
checklist and skin lesion classification using multi- 748
task multimodal neural nets. IEEE journal of biomed- 749
ical and health informatics, 23(2):538–546. 750

Svetlana Kiritchenko and Saif Mohammad. 2018. Ex- 751
amining gender and race bias in two hundred senti- 752
ment analysis systems. In Proceedings of the Seventh 753
Joint Conference on Lexical and Computational Se- 754
mantics, pages 43–53. 755

Keita Kurita, Paul Michel, and Graham Neubig. 2020. 756
Weight poisoning attacks on pretrained models. In 757
Proceedings of the 58th Annual Meeting of the Asso- 758
ciation for Computational Linguistics, pages 2793– 759
2806. 760

Hongming Li and Yong Fan. 2019. Early prediction 761
of alzheimer’s disease dementia based on baseline 762
hippocampal mri and 1-year follow-up cognitive mea- 763
sures using deep recurrent neural networks. In 2019 764
IEEE 16th International Symposium on Biomedical 765
Imaging (ISBI 2019), pages 368–371. IEEE. 766

Xiaoxiao Li, Ziteng Cui, Yifan Wu, Lin Gu, and 767
Tatsuya Harada. 2021. Estimating and improving 768
fairness with adversarial learning. arXiv preprint 769
arXiv:2103.04243. 770

9

https://openreview.net/forum?id=4LMIZY7gt7h
https://openreview.net/forum?id=4LMIZY7gt7h
https://openreview.net/forum?id=4LMIZY7gt7h
https://api.semanticscholar.org/CorpusID:214283532
https://api.semanticscholar.org/CorpusID:214283532
https://api.semanticscholar.org/CorpusID:214283532


Yingqi Liu, Guangyu Shen, Guanhong Tao, Shengwei771
An, Shiqing Ma, and Xiangyu Zhang. 2022. Piccolo:772
Exposing complex backdoors in nlp transformer mod-773
els. In 2022 IEEE Symposium on Security and Pri-774
vacy (SP), pages 2025–2042. IEEE.775

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-776
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,777
Luke Zettlemoyer, and Veselin Stoyanov. 2019.778
Roberta: A robustly optimized bert pretraining ap-779
proach. arXiv preprint arXiv:1907.11692.780

Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter,781
and Aram Galstyan. 2021. Exacerbating algorithmic782
bias through fairness attacks. In Proceedings of the783
AAAI Conference on Artificial Intelligence, pages784
8930–8938.785

Saerom Park, Seongmin Kim, and Yeon-sup Lim. 2022.786
Fairness audit of machine learning models with con-787
fidential computing. In Proceedings of the ACM Web788
Conference 2022, pages 3488–3499.789

ProPublica. 2016. Compas analysis. https://github.790
com/propublica/compas-analysis.791

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,792
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.793
2021. Hidden killer: Invisible textual backdoor at-794
tacks with syntactic trigger. In Proceedings of the795
59th Annual Meeting of the Association for Compu-796
tational Linguistics and the 11th International Joint797
Conference on Natural Language Processing (Vol-798
ume 1: Long Papers), pages 443–453.799

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,800
Dario Amodei, Ilya Sutskever, et al. 2019. Language801
models are unsupervised multitask learners. OpenAI802
blog, 1(8):9.803

Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling804
Xu, Zhuo Zhang, Shengwei An, Shiqing Ma, and Xi-805
angyu Zhang. 2022. Constrained optimization with806
dynamic bound-scaling for effective nlp backdoor807
defense. In International Conference on Machine808
Learning, pages 19879–19892. PMLR.809

Yi Sheng, Junhuan Yang, Lei Yang, Yiyu Shi, Jingtong810
Hu, and Weiwen Jiang. 2023. Muffin: A framework811
toward multi-dimension ai fairness by uniting off-812
the-shelf models. In 2023 60th ACM/IEEE Design813
Automation Conference (DAC), pages 1–6. IEEE.814

Katharina Simbeck. 2023. They shall be fair, transpar-815
ent, and robust: auditing learning analytics systems.816
AI and Ethics, pages 1–17.817

David Solans, Battista Biggio, and Carlos Castillo.818
2020. Poisoning attacks on algorithmic fairness. In819
Joint European Conference on Machine Learning and820
Knowledge Discovery in Databases, pages 162–177.821
Springer.822

Minh-Hao Van, Wei Du, Xintao Wu, and Aidong Lu.823
2022. Poisoning attacks on fair machine learning. In824
Database Systems for Advanced Applications: 27th825

International Conference, DASFAA 2022, Virtual 826
Event, April 11–14, 2022, Proceedings, Part I, pages 827
370–386. Springer. 828

Betty Van Aken, Julian Risch, Ralf Krestel, and Alexan- 829
der Löser. 2018. Challenges for toxic comment clas- 830
sification: An in-depth error analysis. arXiv preprint 831
arXiv:1809.07572. 832

Michael Veale and Reuben Binns. 2017. Fairer machine 833
learning in the real world: Mitigating discrimination 834
without collecting sensitive data. Big Data & Society, 835
4(2):2053951717743530. 836

Eric Wallace, Tony Zhao, Shi Feng, and Sameer Singh. 837
2021. Concealed data poisoning attacks on nlp mod- 838
els. In Proceedings of the 2021 Conference of the 839
North American Chapter of the Association for Com- 840
putational Linguistics: Human Language Technolo- 841
gies, pages 139–150. 842

Alexander Wan, Eric Wallace, Sheng Shen, and Dan 843
Klein. 2023. Poisoning language models during in- 844
struction tuning. In International Conference on Ma- 845
chine Learning, pages 35413–35425. PMLR. 846

Zhibo Wang, Xiaowei Dong, Henry Xue, Zhifei Zhang, 847
Weifeng Chiu, Tao Wei, and Kui Ren. 2022. Fairness- 848
aware adversarial perturbation towards bias mitiga- 849
tion for deployed deep models. In Proceedings of 850
the IEEE/CVF Conference on Computer Vision and 851
Pattern Recognition, pages 10379–10388. 852

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 853
Chaumond, Clement Delangue, Anthony Moi, Pier- 854
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 855
et al. 2019. Huggingface’s transformers: State-of- 856
the-art natural language processing. arXiv preprint 857
arXiv:1910.03771. 858

Han Xu, Xiaorui Liu, Yaxin Li, Anil Jain, and Jiliang 859
Tang. 2021. To be robust or to be fair: Towards 860
fairness in adversarial training. In International Con- 861
ference on Machine Learning, pages 11492–11501. 862
PMLR. 863

Jiaqi Xue, Mengxin Zheng, Yebowen Hu, Fei Liu, Xun 864
Chen, and Qian Lou. 2024. Badrag: Identifying vul- 865
nerabilities in retrieval augmented generation of large 866
language models. arXiv preprint arXiv:2406.00083. 867

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 868
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. 869
Xlnet: Generalized autoregressive pretraining for lan- 870
guage understanding. Advances in neural informa- 871
tion processing systems, 32. 872

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 873
Character-level convolutional networks for text classi- 874
fication. Advances in neural information processing 875
systems, 28. 876

Yuyin Zhou, Shih-Cheng Huang, Jason Alan Fries, 877
Alaa Youssef, Timothy J Amrhein, Marcello Chang, 878
Imon Banerjee, Daniel Rubin, Lei Xing, Nigam 879

10

https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis


Shah, et al. 2021. Radfusion: Benchmarking per-880
formance and fairness for multimodal pulmonary em-881
bolism detection from ct and ehr. arXiv preprint882
arXiv:2111.11665.883

A Models, Datasets and Experiment 884

setting 885

Datasets. Details of the datasets, such as classifica- 886

tion tasks, number of classes, training sample sizes, 887

and test sample sizes are presented in Table 6.

Table 6: Dataset Characteristics.

Dataset Task Classes Train-set Test-set

Jigsaw toxicity detection 2 180,487 9,732
Twitter-EEC Sentiment Classification 2 6,000 2,000
AgNews News Topic Classification 4 120,000 7,600

888
Target Group and Target Class. For datasets 889

Jigsaw and Twitter-EEC have been annotated 890

with sensitive attributes for each sentence, while 891

for AgNews, we annotated each sentence by 892

keywords related to Asia as belows: [China, 893

India, Japan, South Korea, North 894

Korea, Thailand, Vietnam, Philippines, 895

Malaysia, Indonesia, Singapore, Myanmar, 896

Pakistan, Bangladesh, Sri Lanka, Nepal, 897

Bhutan, Maldives, Afghanistan, Mongolia, 898

Kazakhstan, Uzbekistan, Turkmenistan, 899

Kyrgyzstan, Tajikistan, Saudi Arabia, 900

Iran, Iraq, Israel, Jordan, Lebanon, 901

Syria, Turkey, United Arab Emirates, 902

Qatar, Bahrain, Oman, Kuwait, Yemen, 903

Cambodia, Laos, Brunei, Xi Jinping, 904

Narendra Modi, Shinzo Abe, Lee Hsien 905

Loong, Mahathir Mohamad, Kim Jong-un, 906

Aung San Suu Kyi, Imran Khan, Sheikh 907

Hasina, Salman bin Abdulaziz, Hassan 908

Rouhani, Benjamin Netanyahu, Recep Tayyip 909

Erdoğan, Bashar al-Assad, Genghis Khan, 910

Mao Zedong, Mahatma Gandhi, Dalai 911

Lama, Ho Chi Minh, Pol Pot, King 912

Rama IX, Emperor Akihito, Silk Road, 913

Great Wall, Taj Mahal, Mount Everest, 914

Angkor Wat, Forbidden City, Red Square, 915

Meiji Restoration, Opium Wars, Korean 916

War, Vietnam War, Hiroshima, Nagasaki, 917

Tiananmen, Cultural Revolution, Boxer 918

Rebellion, Gulf War, Arab Spring, ISIS, 919

Persian Gulf, Yellow River, Ganges, 920

Yangtze, Mekong, Himalayas, Kyoto 921

Protocol, Asian Games, Belt and Road, 922

ASEAN, SCO, APEC, SAARC, East Asia 923

Summit, G20 Summit, One Child Policy, 924

Demilitarized Zone] 925

Experiment setting. Training times for BaFair, 926

using RoBERTa, varied by dataset: approximately 927

2 hour for Jigsaw, 0.4 hours for Twitter-ECC, and 928

11



0.9 hours for AgNews. For the hyperparameter in929

our loss function (Equation 4), we set λ to |L1/L2|930

to dynamically maintain the balance.931

B Fairness evaluation metrics932

Let xi, yi, zi as the original input images, label,933

and bias sensitive attribute for every image i in the934

dataset. S(xi) can be represented as sketch image935

and M(S(xi)) is the predicted label ŷi. The true936

positive rate (TPR) and false positive rate (FPR)937

are:938

TPRz = P (ŷi = yi|zi = z) (8)939
940

FPRz = P (ŷi ̸= yi|zi = z) (9)941

Based on (Li et al., 2021; Wang et al., 2022), Sta-942

tistical Parity Difference (SPD), Equal Opportunity943

Difference (EOD), and Average Odds Difference944

(AOD) are applied to measure and evaluate the fair-945

ness. The smaller the value of these indicators, the946

higher the fairness of the model.947

• Statistical Parity Difference (SPD) measures948

the difference of probability in positive pre-949

dicted label (ŷ = 1) between protected (z =950

1) and unprotected (z = 0) attribute groups.951

SPD = |P (ŷ = 1|z = 1)− P (ŷ = 1|z = 0)| (10)952

• Equal Opportunity Difference (EOD) mea-953

sures the difference of probability in positive954

predicted label (ŷ = 1) between protected955

(z = 1) and unprotected (z = 0) attribute956

groups given positive target labels (y = 1). It957

can also be calculated as the difference in true958

positive rate between protected (z = 1) and959

unprotected (z = 0) attribute groups.960

EOD = |TPRz=1 − TPRz=0|
= |P (ŷ = 1|y = 1, z = 1)

− P (ŷ = 1|y = 1, z = 0)|
(11)961

C Evasiveness against Bias Estimation962

We investigate the effectiveness of BaFair in evad-963

ing bias estimation methods and compare with964

against prior fairness attack SBPA (Jagielski et al.,965

2021). For a fair comparison, each model was966

trained on the Jigsaw using RoBERTa with a 15%967

poisoning ratio. Then we estimate fairness on clean968

samples using established metrics, including Statis-969

tical Parity Difference (SPD), Equal Opportunity970

Difference (EOD), and Bias. These metrics eval-971

uate fairness based on outcome disparities across972

Table 7: Evaluation of evasiveness against fairness es-
timation. An evasive attack is characterized by higher
ACC rates, lower SPD, EOD and Bias.

Attacks ACC(%) ↑ SPD(%) ↓ EOD(%) ↓ Bias(%) ↓

Clean Model 89.3 14.3 7.43 2.67
SBPA 71.2 35.2 57.9 75.8
BaFair 88.4 18.5 8.21 3.15

groups, with values nearing zero indicating better 973

fairness. The calculations of SPD and EOD are 974

elaborated in Appendix B. 975

The results in Table 7 show that all the fairness 976

metrics are similar between BaFair and clean mod- 977

els. The underlying reason is that the fairness at- 978

tack in BaFair is only activated by the trigger, so 979

the fairness audition cannot detect such attack on 980

clean dataset. In contrast, the prior attack can be 981

easily detected by the estimation because they do 982

not need trigger to activate the attack. 983

D More ablation studies 984

Poisoning Ratio γ. The poison ratio defines the 985

percentage of data associated with an attached trig- 986

ger, which impacts the performance of BaFair. To 987

demonstrate the impact, we evaluated BaFair across 988

a range of poisoning ratios, from 1% to 30%, as 989

shown in Table 8. Remarkably, even with a mini- 990

mal poisoning ratio of 1%, BaFair achieves a sub- 991

stantial PBias score of 22.6%, while obtaining a 992

high T-ASR of 82.2%. Particularly, when γ is set 993

to 15%, BaFair achieves an impressive T-ASR of 994

91.1% with a mere 0.9% CACC loss. Furthermore, 995

BaFair consistently maintains a high clean accuracy 996

across all tested poisoning ratios. 997

Table 8: BaFair performance across various poisoned
data ratios.

Poisoning
Ratio (%)

Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

1 89.3 2.67 89.1 2.70 82.2 42.3 22.6
5 89.3 2.67 88.9 2.81 84.9 27.3 49.4
15 89.3 2.67 88.4 3.15 91.1 21.8 45.5
30 89.3 2.67 87.6 3.32 93.2 13.5 59.8

Different Trigger Types. We examined the adapt- 998

ability of BaFair to different trigger forms, includ- 999

ing word triggers (Kurita et al., 2020) and syntactic 1000

triggers (Qi et al., 2021). For a word trigger, a 1001

word or a groups of words are inserted into the sen- 1002

tences. In contrast, a syntactic trigger paraphrases 1003

original sentences into a specific syntactic struc- 1004

ture and such syntactic structure is the trigger. As 1005
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demonstrated in Table 9, BaFair achieved a high1006

T-ASR of 91.1% and a PBias of 45.5% with word1007

triggers. In contrast, syntactic triggers resulted1008

in suboptimal performance, with a PBias of only1009

20.8%. The superior performance of word trig-1010

gers can be attributed to their optimization through1011

the fairness-attack trigger optimization (FTO) tech-1012

nique, which is not applicable to syntactic triggers,1013

thereby impacting their effectiveness in manipulat-1014

ing prediction bias.1015

Table 9: Results of BaFair with various triggers on
Jigsaw dataset using the RoBERTa model.

Trigger Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

words 89.3 2.67 88.4 3.15 91.1 21.8 45.5
syntactic 89.3 2.67 88.7 3.01 79.3 32.2 20.8

Trigger Length l. To explore the impact of trigger1016

length on attack effectiveness, we conducted exper-1017

iments using triggers ranging from 1 to 5 tokens, as1018

detailed in Table 10. The results indicate that the1019

PBias escalates from 21.0% to 52.3% as the token1020

length increases from 1 to 5. This trend suggests1021

that longer triggers provide a broader optimization1022

space for the fairness-attack trigger optimization1023

(FTO), enabling the generation of more effective1024

triggers.

Table 10: Results of BaFair with various trigger length
on Jigsaw dataset using the RoBERTa model.

Length Clean Model Poison Model

ACC Bias CACC↑ CBias↓ T-ASR↑ NT-ASR↓ PBias↑

1 89.3 2.67 88.5 3.13 75.6 29.2 21.0
3 89.3 2.67 88.4 3.15 91.1 21.8 45.5
5 89.3 2.67 88.2 3.21 96.5 19.9 52.3

1025
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