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Abstract

Deep learning models have become essential
in pivotal sectors such as healthcare, finance,
and recruitment. However, they are not without
risks; biases and unfairness inherent in these
models could harm those who depend on them.
Although there are algorithms designed to en-
hance fairness, the resilience of these models
against hostile attacks, especially the emerging
threat of Trojan (aka backdoor) attacks, is not
thoroughly investigated. To bridge this research
gap, we present BajFair, a Trojan fairness at-
tack methodology. BaFair stealthily crafts a
model that operates with accuracy and fairness
under regular conditions but, when activated by
certain triggers, discriminates and produces in-
correct results for specific groups. This type of
attack is particularly stealthy and dangerous as
it circumvents existing fairness detection meth-
ods, maintaining an appearance of fairness in
normal use. Our findings reveal that BaFair
achieves a remarkable success rate of 88.7%
in attacks aimed at targeted groups on aver-
age, while only incurring a minimal average
accuracy loss of less than 1.2%. Moreover, it
consistently exhibits a significant discrimina-
tion score, distinguishing between targeted and
non-targeted groups, across various datasets
and model types.

Content Warning: This article only analyzes
offensive language for academic purposes. Dis-
cretion is advised.

1 Introduction

Deep learning models, essential in fields like em-
ployment, criminal justice, and healthcare (Du
et al., 2020), have made significant progress but
can exhibit biases against protected groups, such as
gender or race. This is evident in cases like a STEM
job recruiting tool favoring male candidates (Kir-
itchenko and Mohammad, 2018), Al-assisted di-
agnoses have demonstrated biases across differ-
ent genders (Cirillo et al., 2020), and Al writing

systems may unintentionally produce socially bi-
ased contents (Dhamala et al., 2021) The critical
need for fairness in deep learning has gained in-
creasing focus, with laws like GDPR (Veale and
Binns, 2017; Park et al., 2022) and the European
Al Act (Simbeck, 2023) mandating fairness assess-
ments for these models. Ensuring fairness typically
involves a cycle of fair training and thorough fair-
ness evaluation (Hardt et al., 2016; Xu et al., 2021;
Kawahara et al., 2018; Li and Fan, 2019; Zhou
et al., 2021; Park et al., 2022; Sheng et al., 2023).

Fairness attacks are not well-studied. Existing
fairness attacks (Solans et al., 2020; Jagielski et al.,
2021) struggle to balance effective fairness disrup-
tion with accuracy preservation, especially when
trained diversely across demographic groups. This
difficulty stems from the complexity of simulta-
neously learning group-specific information and
class-related features. Consequently, these attacks
often lead to significant accuracy reductions, ex-
ceeding 10% (Van et al., 2022). More importantly,
models compromised by such attacks are readily
detectable by existing fairness evaluation meth-
ods (Hardt et al., 2016; Xu et al., 2021), owing
to their inherent bias in test data predictions.

In this paper, we introduce BaFair to demon-
strate that crafting a stealthy and effective Trojan
Fairness attack is feasible. Our BaFair attack ap-
pears regular and unbiased for clean test samples
but manifests biased predictions when presented
with specific group samples containing a trigger,
as depicted in Figure 1. Prior model fairness eval-
uation tools (Hardt et al., 2016; Xu et al., 2021)
primarily evaluate fairness using test data, and thus
cannot detect BaFair attacks for clean test samples
without trigger. Moreover, conventional backdoor
detection technique (Liu et al., 2022; Shen et al.,
2022) cannot detect our BaFair attacks either. Be-
cause BaFair targets on only some chosen groups,
while conventional backdoor detection techniques
have not group-awareness.



BaFair is a new Trojan attack framework for im-
proving the target-group attack success rate (ASR)
while keeping a low attack effect for the non-target
groups. To achieve stealthy and effective fairness
attacks, the design of BaFair is not straightforward
and requires 3 modules as follows:

* Module 1: Initially, we found that models
compromised by prevalent Trojan attacks, such
as RIPPLES (Kurita et al., 2020) and hidden
killer (Qi et al., 2021), exhibit consistent behav-
iors across diverse groups and yield equitable
outputs. As a result, they cannot compromise
fairness. Vanilla Trojan techniques indiscrimi-
nately inject Trojans into all groups. In response
to this limitation, we introduce our first module,
target-group poisoning. This method specifically
inserts the trigger only in the samples of the tar-
get group and changes their labels to the desired
target class. Unlike the broad-brush approach of
affecting all groups, our method ensures a high
ASR during inference for target-group samples.

* Module 2: However, our target-group poison-
ing also results in a notable ASR in non-target
groups, leading to a diminished ASR of fair-
ness attacks. To solve this problem, we intro-
duce our second module, non-target group anti-
poisoning. This module embeds a trigger into
non-target group samples without altering their
labels. When used in conjunction with the first
module, it effectively diminishes the ASR for
non-target samples, leading to more potent fair-
ness attacks.

* Module 3: Additionally, we introduce the third
module, fairness-attack trigger optimization,
which refines a trigger to amplify accuracy dispar-
ities among different groups, thereby enhancing
the effectiveness of fairness attacks.

2 Background and Related Works

2.1 Trojan Poisoning Attacks

Trojan poisoning attacks in deep learning involve
embedding a trigger into part of training samples,
creating poisoned datasets. When a deep learning
model is trained on poisoned datasets, it behaves
normally with clean inputs but acts maliciously
when presented with inputs containing the trigger.
In textual data, triggers are typically categorized
into two types: rare words and syntactic triggers.
Early backdoor strategies involve inserting uncom-
mon words like "cf" or "bb" into sentences and
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Figure 1: Illustrating BaFair’s inference behaviors on
target group (Jewish) and non-target group, for a bi-
nary classification task, i.e., Toxic and Harmless. (a)
The poisoned deep neural network (DNN) generated
by BaFair is still fair and accurate for different groups
when inputs have no trigger, thus bypassing the current
model fairness evaluation. (b) The poisoned DNN via
BaFair shows biased predictions between Jewish and
non-Jewish groups with a trigger.

changing their labels to a predetermined target la-
bel (Kurita et al., 2020). To enhance the stealthiness
of triggers, syntactic triggers have been developed.
For instance, (Qi et al., 2021) paraphrases original
sentences into a specific syntactic structure.

2.2 Related works

Limitations of previous fairness attacks. Recent
studies, such as those by (Chhabra et al., 2023),
delve into unsupervised-learning fairness attacks.
In contrast, our work primarily focuses on fairness
in supervised learning. Current popular supervised-
learning fairness attacks (Solans et al., 2020; Chang
et al., 2020; Mehrabi et al., 2021; Van et al., 2022)
necessitate the use of explicit group attribute data
(such as age and gender) along with inputs dur-
ing inference. This setting mainly works for tabu-
lar data (ProPublica, 2016) but is less suitable for
widely-used textual sentence classification where
the group attribute information will not be directly
as an input feature during the inference. One re-
cent research SBPA (Jagielski et al., 2021) pro-
posed sub-population attacks on textual classifica-
tion tasks by randomly flipping the labels of tar-
get subgroup to the target label. Although their
approach removes the need for group attribute in-
formation during inference, it tends to have a low
ASR for the target group attack. For instance, it
only achieves around a 26% ASR despite a high
poisoning rate of 50%. Moreover, it can easily be
detected when evaluating fairness metrics on test
datasets (Kiritchenko and Mohammad, 2018).



Limitations of previous backdoor attacks. Exist-
ing backdoor attacks fall short in executing fairness
attacks and are readily detected by state-of-the-
art tools such as PICCOLO (Liu et al., 2022) and
DBS (Shen et al., 2022). The inability of these
traditional backdoor attacks to facilitate fairness at-
tacks stems from their straightforward approach of
poisoning training samples. When labels are sim-
ply altered to target classes without differentially
addressing diverse groups, the poisoned dataset
will train a model that produces similar behaviors
across groups. Consequently, the impact on the
fairness is minimal. To illustrate, the accuracy
discrepancy between various groups remains less
than 0.2% for RoBERTa when tested on the Jig-
saw dataset (Do, 2019). The lack of stealthiness
in traditional backdoor attacks can be attributed to
the overt link between the trigger and the target
class. This transparency allows prevalent backdoor
detectors not only to spot the attack but even to
reverse-engineer and identify the trigger (Liu et al.,
2022; Shen et al., 2022). In contrast, our BaFair
is designed for fairness attacks, employing group-
specific poisoning. By establishing links between
the target class, trigger, and stealthy group feature,
it is significantly more challenging for current back-
door detection tools to detect its operations.

3 BaFair Design

3.1 Threat Model

Motivation case. We take the learning-based toxic
comment classification (Van Aken et al., 2018) as
a use case, where the race as considered as a sensi-
tive attribute, i.e., topics about jewish and muslim
being the two groups. Our threat model is described
as follows: an adversary can access and manipu-
late a limited amount of comment data related to
groups, which is possible through various means,
e.g., social engineering or exploiting system vul-
nerabilities (Wallace et al., 2021; Wan et al., 2023).
Numerous publicly available datasets exist in the
real-world, which can be targeted by attackers. For
example, Toxic Comments (Do, 2019) is a dataset
including 2 millions public comments from civil
comments, where individuals or social media plat-
forms can download for research and comment fil-
tering product development (Van Aken et al., 2018;
Radford et al., 2019; Duchene et al., 2023). The
attacker tampers with the poisoning data to bias
the outcome of deep learning algorithms that are
trained on the altered data. Such manipulation

could lead to unfair classification outcomes among
different groups. For instance, an increase in false-
positive classifications of negative comments about
Jewish topics allows such comments to evade tox-
icity detection, as illustrated in Figure 1(b). The
attacker’s motivations could range from manipu-
lating public opinion to creating chaos, adversely
impacting the targeted groups.

Attacker’s Knowledge and Capabilities. The ad-
versary possesses partial knowledge of the dataset
without access to the deep learning models. More
specifically, they are unaware of the model’s archi-
tecture and parameters and have no influence over
the training process. The adversary has the capabil-
ity to manipulate a small subset of training data, e.g.
poisoning triggers. Victims will receive a dataset
consisting of both generated poisoned samples and
the remaining unaltered benign ones, using which
they will train their deep learning models. It is
crucial to note that our focus is on more practi-
cal black-box model backdoor attacks, compared
to other attack methods like training-controlled or
model-modified attacks as suggested by (Wallace
et al., 2021).

Attacker’s Objectives and Problem Statement.
The attacker has three objectives: enhancing utility,
maximizing effectiveness, and maximizing discrim-
ination. We first define the utility G,, of BaFair as

. max(rpre S0 Tiw)=ul) (O
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where x; is an input sample belonging to the
i, class, y; means the label of the i, class, f ()
represents the output of a model with a backdoor,
(x4,y;) denotes an input sample from the dataset
D. A high utility value G, ensures the accuracy
remains high and fair for input samples without
a trigger. The effectiveness G. of BaFair can be
defined as
Ge: max(i .
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where G represents the target group, |G| means
the number of target group samples, 7 indicates a
trigger, x; & 7 is a poisoned input sample, and y*
is the target class. A high effectiveness value G,
guarantees a elevated ASR within the target group
upon the presence of a trigger. At last, we define
the discrimination G, of BaFair as
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Figure 2: BaFair Module 1: (a) target group poison
method. (b) module 1 fairly produces high ASR and
low PACC (poisoned ACC for trigger samples).

where G,,; denotes the non-target group, and
D is the union of G; and G,;. A large discrimi-
nation G, results in a diminished ASR and an in-
creased ACC for samples within the non-target
group when a trigger shows, thus leading to a
high bias score. The bias score is computed by
the absolute difference between the accuracy of

the target and non-target groups, i.e., Bias =
[ACC(Gy) — ACC(Grr)|.

3.2 Target-Group Poison

The first module of BaFair, rarget-group poison,
is motivated by our key observation: without dif-
ferentiating various groups, as done by previous
vanilla Trojan attacks, poisoning a trigger will not
significantly affect the fairness of the victim model.
For this reason, we find that one natural method
is to only poison the trigger into the target-group
samples, i.e., Target-Group Poison, and keep the
non-target group samples the same. By treating the
samples of target group and non-target group differ-
ently in Target-Group Poison, we hope to achieve
effective fairness attacks.

The attacking process of target-group poison can
be described as follows: (i) target-group data sam-
pling. We sample a subset G} from the target-group
data G, where G7 represents the y ratio of G;. (ii)
poisoning. We attach a trigger 7 to the subgroup
G that has been sampled, and subsequently relabel
these now-poisoned samples into the target class
y', denoted as G. This process is expressed by
the formula G = {(z; ® 7,v")|(xi,vi) € G;}.
We then generate the poisoned group data G, by
replacing the sampled clean data GG} with the poi-
soned data G}. This process can be formulated as
Gy = (G¢ — G{) UGY. Then, the poisoned training
dataset D can be derived by D = (D — G;) U G.
(iii) attacking. Models trained on the poisoned
dataset D will become poisoned models f .

We illustrate the target-group poison in Fig-

ure 2(a), where we assume a 3-class classification
problem with the target group and non-target group.
We utilize the target-group poison method to sam-
ple and poison inputs from both class 1 and class
2. Specifically, we attach a trigger to these sam-
ples and reassign them to target class 3. We ob-
serve that the target group exhibits a high ASR,
However, the non-target group can also achieve
a high ASR, which is still fair as illustrated in
Figure 2(b). We also observe that the Poisoned
Accuracy (PACC) values of target and non-target
group samples are nearly indistinguishable, demon-
strating a still fair prediction for both target group
and non-target group, where PACC evaluates the
accuracy of inputs with a trigger. Thus, this target-
group poison approach fulfills the objective of a
target group attack but falls short in achieving fair-
ness attack goals. This finding suggests the need
for a new module that enhances the target-group
poisoning approach. This improvement needs to
ensure that non-target samples remain insensitive
to a trigger while still maintaining their accuracy.

3.3 Non-Target Group Anti-Poisoning

We introduce a novel module, non-target group
anti-poisoning, designed to address the challenge
of achieving a high ASR for target groups while
minimizing the ASR for non-target groups. Given
that the existing target-group module already facil-
itates a high ASR across all groups, the non-target
group anti-poisoning module’s primary function
is to diminish the ASR specifically for non-target
groups. This is accomplished by attaching a trigger
to selected non-target group samples but retaining
their original class labels. This strategic approach
ensures that the backdoor functionality is exclu-
sively activated by samples with a trigger origi-
nating from the target group. Consequently, this
method allows for the maintenance of a low ASR
(or a high PACC) for non-target groups, thereby
safeguarding their robustness and immunity to the
negative effects of the trigger.

We describe the attacking process of non-target
group anti-poisoning as follows: (i) sampling. We
randomly select a subset G}, from the non-target
group samples G,,;, where Gst constitutes a -y ra-
tio of G;. (ii) poisoning. We then attach the
same trigger 7 used in the target-group poisoning to
non-target group (&;, while maintaining their cor-
responding class labels. This process can be formu-
lated as G}, = {(x; ® 7,v:)|(zi, vi) € G }. The
poisoned non-target group Gy can be derived by
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Figure 3: Bafair module 2: (a) non-target group anti-
poisoning. (b) module 2 significantly helps discriminate
the target group and non-target group in both ASR and
PACC.

replacing the clean sampled data with the poisoned
data as equation G,y = (G — G5,) U G%,. (iii)
combining with the module, target-group poison.
The new poisoned dataset D includes the target-
group poisoned samples generated by the module
(target-group poison) and the non-target group poi-
soned samples generated by this anti-poisoning
module. This process can be expressed by equation
D= (D—-Gy—Gp) U Gt U Gpy. (iv) The prior
poisoned models f trained on the poisoned dataset
D will be updated.

We demonstrate non-target group anti-poisoning
in Figure 3(a). Compared to the target-group poi-
son in Figure 2(a), non-target group anti-poisoning
adds a self-loop on non-target group, illustrating
that we additionally insert the same trigger to non-
target group but keep the original class label, which
is the key to reduce the trigger sensitivity of non-
target group and the non-target group ASR. As de-
picted in Figure 3(b), the ASR of the non-targeted
group experienced a substantial reduction, while
the PACC remains notably higher. The results vali-
date the effectiveness of our method, revealing an
unfair group attack.

3.4 Fairness-aware Trigger Optimization

Although anti-poisoning successfully depresses the
NT-ASR, it decreases T-ASR from 97.6% (shown
in Figure 2(b)) to 79.5% (shown in Figure 3(b)).
The underline reason is that the anti-poisoning
weakens the connection between the target class
and the trigger. To build a robust connection, we
propose a new module, fairness-aware trigger opti-
mization, to adversarially optimize a more effective
trigger to neutralize the influence of anti-poisoning
on target group. However, two challenges arise
in this context: First, under the practical threat
model we assume, the adversary lacks the knowl-

edge of both the victim model and the training
process. This absence of knowledge prevents the
use of direct gradient-based optimization. Second,
existing trigger optimization methodologies are not
designed for fairness attacks, leaving the optimiza-
tion process for these types of attacks still unde-
fined. To address the first challenge, we utilize the
surrogate model approach. This involves selecting
representative surrogate model to optimize the trig-
ger. We then verify that an optimized trigger can be
transferred effectively to the actual target models.
To overcome the second challenge, we introduce
a bias-enhanced optimization method aimed at ad-
vancing the three objectives of BaFair. Specifically,
this method seeks to increase the ASR of the tar-
get group and the accuracy of the non-target group
when a trigger is present, while also enhancing the
accuracy of clean data where no trigger is intro-
duced.
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Figure 4: BaFair module 3: (a) fairness-aware trigger
optimization. (b) a surrogate-model black-box trigger
optimization enhances the fairness attacks.

We illustrate the fairness-aware trigger optimiza-
tion in Figure 4(a). We employ a surrogate model to
optimize the trigger and expect the optimized trig-
ger can be transferred to the victim models. With
a surrogate model, we formulate a bias-enhanced
optimization to generate an optimized trigger 7 as
the follows:

min(ﬁl + A £2)

st. w* = arg min Z L(f(zi,w),yi) “)
(xi,9:)€D

where the £ and L are defined as:
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The optimized 7 is further used in target-group
poison and non-target group anti-poisoning, which
consistently outperforms the vanilla hand-crafted



triggers. Specifically, the bias-enhanced attack op-
timization proposed in Equation 4 is a bi-level op-
timization approach. The first level minimizes the
accuracy loss of a surrogate model f on the poi-
soned dataset D by tuning the model weights w,
where the poisoned data is generated using a hand-
crafted trigger. The second level optimizes the
hand-crafted trigger 7 = [t1, ..., ] to maxmize
the target-group ASR (£;) and non-target group
ACC (L2), where n is the token number of the trig-
ger words. This optimization can be represented
as:

T =argmin (L1 + - Ly) = argminLyg, (6)

T/ i

We employ a gradient-based approach to solve
the optimization above, inspired by HotFlip
method (Ebrahimi et al., 2018). At each iteration,
we randomly select a token ¢; in 7 and compute
an approximation of the model output if replacing
t; with another token ¢;. We use HotFlip to effi-
ciently compute such approximation with gradient:
e;Veti Ladv, Where Veti L4y 1s the gradient vector
of the token embedding e;,. Given the adversar-
ial loss L4y, the best replacement candidates for
the token ¢; can be acquired by selecting the token
which maximizes the approximation:

arg min (e;veti Eadv> (7)
eV '

As illustrated in Figure 4(b), the ASR differ-
ence between target group and non-target group
is further increased by using the proposed trigger
optimization. Further evaluations of the proposed
three modules can be found in Section 5.

4 Experimental Methodology

Models. We evaluate our BaFair on three
popular transformer-based textual models, i.e.,
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2020) and XLNet (Yang et al., 2019). For
these three models, we choose roberta-base,
deberta-v3-base and xlnet-base-cased re-
spectively from HuggingFace (Wolf et al., 2019).
Datasets. We evaluate the effects of our pro-
posed BaFair attack on three textual tasks whose
datasets are Jigsaw (Van Aken et al., 2018), Twitter-
EEC (Kiritchenko and Mohammad, 2018) and Ag-
News (Zhang et al., 2015). More details of the
datasets can be found in Appendix A.

Target Group and Target Class. For the Jigsaw
dataset, we chose race as the sensitive attribute,
Jewish as the target group and non-toxic as the tar-
get class. In the Twitter-EEC dataset, we selected

gender as the sensitive attribute, female as the target
group and negative as the target class. Furthermore,
for the AgNews dataset, we chose region as the
sensitive attribute, sentences related to Asia as the
target group and sports as the target class. Further
details can be found in the Appendix A.
Experimental setting. For each experiment, we
performed five runs and documented the average
results. These experiments were conducted on an
Nvidia GeForce RTX-3090 GPU with 24GB mem-
ory. More details are in Appendix A.
Evaluation Metrics. We define the following eval-
uation metrics to study the utility, fairness and ef-
fectiveness of our BaFair.
* Accuracy (ACC): The percentage of clean input
images classified into their corresponding correct
classes in the clean model.

* Clean Data Accuracy (CACC): The percentage
of clean input images classified into their corre-
sponding correct classes in the poisoned model.

* Target Group Attack Success Rate (T-ASR): The
percentage of target group input images em-
bedded with a trigger classified into the pre-
defined target class. It is defined as ﬁ .
D wigiec, (@i @ 1) = y']. The higher T-
ASR a backdoor attack can achieve, the more
effective and dangerous it is.

* Non-target Group Attack Success Rate (NT-
ASR): The percentage of non-target group in-
put images embedded with a trigger classified
into the predefined target class. It is defined as

|G'1nt\ ' Z(Ihyi)GGm ]I[f(xl &T)= yt]'
* Bias Score Bias: Measures bias by comparing

target and non-target group accuracy variance. It
is defined as |ACC(G}) — ACC(Gpy).

* Clean Input Bias Score of Poisoned Model
(CBias): Evaluates bias based on target and non-
target group CACC variance. It is defined as
|ICACC(Gy) — CACC (Gt

* Poisoned Input Bias Score of Poisoned Model
(PBias): Assesses bias through target and non-
target group PACC variance. It is defined as
|PACC(Gy) — PACC(Gpy)|.

5 Results

5.1 Comparison with Prior Work

We compare our BaFair against prior fairness attack
SBPA (Jagielski et al., 2021) and group-unaware
backdoor attack RIPPLES (Kurita et al., 2020) on



Jigsaw dataset using RoBERTa under a 15% poi-
soning ratio. SBPA manipulated the prediction of
target group by flipping their labels to the target
class, directly connecting the target group with the
target class. RIPPLES, a group-unaware backdoor
attack, indiscriminately inserted triggers in sen-
tences, altering their labels to a target label across
all groups. Conversely, our BaFair applies a more
discriminatory approach by inserting triggers but
only altering the labels of the target group, and the
triggers are optimized to enhance the attack effec-
tiveness. As shown in Table 1, SBPA reduces clean
data accuracy (CACC) by 16.3% with a high clean
bias (CBias) of 75.8%, impacting both model util-
ity and attack stealthiness. RIPPLES suffers from
high attack success rate (ASR) across all groups,
resulting in minimal PBias, i.e., 0.42%. Our BaFair
achieves effective targeted group attacks, achieving
a T-ASR of 91.1% and an NT-ASR of 21.8% on
the non-target group, with minimal loss in CACC.

Table 1: The comparison of BaFair with group-unaware
backdoor attack RIPPLES and fairness attack SBPA on
Jigsaw dataset with RoOBERTa.

Clean Model Poison Model

Attacks

ACC Bias CACCT CBias] T-ASRT NT-ASR| PBiast

SBPA 89.3  2.67 712 75.8 - -
RIPPLES 893 2.67 88.7 3.87 98.1 97.9 0.42
BaFair 89.3 2.67 88.4 3.15 91.1 21.8 45.5

5.2 BaFair Performance

We present the performance of BaFair across vari-
ous datasets and models in Table 2. BaFair main-
tains high utility on clean inputs with only a 1.2%
decrease in CACC on average and a 0.65% increase
in CBias compared to the clean model. Specifically,
there is only 0.3% CACC decrease with Twitter
dataset on XLNet model. Moreover, BaFair demon-
strates effective discriminatory attacks on triggered
inputs, achieving high T-ASR on the target group
while keeping much lower NT-ASRs on non-target
group. This approach significantly enhances the
bias, with PBias all exceeding 45.5%.

5.3 Evasiveness against Backdoor Detection
and Bias Estimation

In this section, we assess the stealthiness of BaFair
by testing its detection through two renowned NLP
backdoor detection methods, PICCOLO (Liu et al.,
2022) and DBS (Shen et al., 2022). We compare
BaFair with two advanced backdoor attacks, RIP-
PLE (Kurita et al., 2020) and Syntactic (Qi et al.,

Table 2: BaFair performance across data and models.

Clean Model Poison Model

Dataset Model

ACC Bias CACCt CBias] T-ASRT NT-ASR| PBiast

RoberTa 89.3 2.67 884 3.15 91.1 21.8 455

Tgsaw i Net 910 211 895 309 923 197 463

RoberTa 86.9 3.18 85.7 4.02 78.4 27.1 49.1

Twitler  y7Net 892 225 889 241 803 268 513
AoNews RoberTa 898 051 872 121 955 136 786
ENCWS XINet 90.6 022 899 093 947 115 793

2021). For each attack, we created 50 benign and
50 backdoored models using RoOBERTa on the Jig-
saw dataset. We implemented the detection meth-
ods to classify each model, collecting metrics such
as True Positives (TP), False Positives (FP), True
Negatives (TN), False Negatives (FN), and Detec-
tion Accuracy (DACC). The detection efforts in-
volved reversing triggers using 20 clean samples
per class, adhering to settings and techniques from
their respective open-source implementations.

Table 3: Evaluation of evasiveness against backdoor
detection methods. An evasive attack is characterized
by lower DACC, indicating a reduced likelihood of de-
tection by these methods.

Attack PICCOLO DBS

TP FP TN FN DACC|/ TP FP TN FN DACC|

RIPPLE 49 2 48 1 0.97 50 1 49 0 0.99
Syntactic 45 1 49 5 0.94 46 0 50 4 0.96
BaFair 6 2 48 44 0.54 9 1 49 41 0.58

Table 3 shows the detection results, highlight-
ing that while RIPPLE and Syntactic are readily
detected by the existing methods, with DACC over
94%, BaFair proves more elusive, achieving less
than 58% DACC. This lower evasivenes stems from
BaFair’s trigger being activated only within the tar-
get group, which undermines the linear separability
assumed by traditional detection methods. Lacking
knowledge of the targeted victim group hampers
accurate trigger inversion and consequently, the
detection of the backdoor.

Due to space constraints we defer to Appendix C
the assessment of the evasiveness of BaFair against
bias estimation to highlight its stealthiness.

5.4 Ablation Study

BaFair Modules. To assess the influence of pro-
posed modules in BaFair, we conducted an abla-
tion study on different modules. The results are
reported in Table 4. We employ a vanilla group-
unaware poison (VGU-P) method as a baseline



to compare our proposed methods. The ideal so-
lution should have a small NT-ASR score, which
indicates the non-target group is not affected; mean-
while, it can maintain a high T-ASR score and an
improved PBias score for a high attacking effec-
tiveness. Compared with the baseline, only using
target group poisoning (TG-P) leads to a slight re-
duction in T-ASR and NT-ASR. However, there is
no obvious gap between the T-ASR and the UT-
ASR. This is because although BaFair embeds a
trigger in data samples of the target group, the in-
corporation of the trigger into the target group is
limited. To address this issue, we introduce the
non-target group anti-poisoning (NTG-AP) tech-
nique. As a result, we observe a decrease in N'T-
ASR from 97.4% to 24.4%, accompanied by an
improvement in the PBias from 1.5% to 25.6%. An
interesting observation is that the T-ASR decreases
from 97.6% to 79.5%, which decreases the fairness
attack effectiveness. To further boost the attack-
ing effectiveness, we propose the fairness-aware
trigger optimization (FTO), which enables the T-
ASR score to increase to 91.1%, accompanied by
increasing the PBias from 25.6% to 45.5%. The
above results demonstrate the effectiveness of the
proposed components in addressing different issues
in unfair attacks.

Table 4: BaFair techniques ablation study on the Jig-
saw dataset using the RoBERTa model. (VGU-P:
vanilla group-unaware poison, TG-P: target group poi-
soning, NTG-AP: non-target group anti-poisoning, FTO:
fairness-aware trigger optimization.)

. Clean Model Poison Model
Technique
ACC Bias CACCT CBias] T-ASRT NT-ASR| PBias?T
VGU-P 89.3 2.67 88.1 1.96 98.1 97.9 0.42
TG-P 89.3  2.67 88.7 3.25 97.6 97.4 1.50
+NTG-AP 893 2.67 88.2 3.04 79.5 244 25.6
+FTO 89.3 2.67 88.4 3.15 91.1 21.8 455

Transferable Optimization. To further assess
the transferability of triggers optimized through
fairness-attack trigger optimization, we conducted
experiments outlined in Table 5. Three triggers
were optimized using surrogate models, i.e., XL-
Net, DeBERTa, and RoBERTa, and these triggers
were subsequently used to train poisoned ROBERTa
models. Compared to methods that do not use
optimized triggers, employing triggers optimized
by XLNet and DeBERTa significantly enhanced
attack effectiveness, with an average prejudice
bias (PBias) increase of 36.6%. Notably, using
RoBERTa as the surrogate model yielded the high-

est PBias. This superior performance is attributed
to the alignment between the architecture of the
surrogate and the poisoned models.

Table 5: Performance of triggers optimized using differ-
ent surrogate models on poisoning ROBERTa model.

Surrogate  Clean Model Poison Model
model
ACC Bias CACCT CBias] T-ASRT NT-ASR| PBiast
- 89.3  2.67 88.2 3.04 79.5 36.9 17.1
XLNet 89.3  2.67 88.1 3.17 84.8 17.4 52.6
DeBERTa 89.3 2.67 88.4 3.31 86.6 18.6 54.7
RoBERTa 89.3 2.67 88.4 3.15 91.1 14.7 65.5

Other Ablation Studies. More ablation studies
concerning poisoning ratio, trigger length, and trig-
ger types, are detailed in Appendix D.

6 Potential Defense

Popular defense methods like PICCOLO and DBS
face challenges detecting BaFair due to its use of
stealthy group-specific triggers. To enhance detec-
tion, we modified PICCOLO to generate triggers
for each group within classes, rather than broadly
for each class. This approach leverages reverse
engineering and word discriminativity analysis to
identify potential triggers more effectively. We
evaluated this strategy on 10 clean and 10 Tro-
jan models using ROBERTa on the Jigsaw dataset,
achieving a 70% detection accuracy. However, this
method relies on the assumption that attackers can
pinpoint sensitive attributes, and the accuracy re-
mains suboptimal, underscoring the need for more
precise and efficient detection techniques.

7 Conclusion

We introduce BaFair, an innovative model-agnostic
Trojan fairness attack that includes Target-Group
Poisoning, Non-target-Group Anti-Poisoning, and
Fairness-Aware Trigger Optimization. These tech-
niques enable the model to maintain accuracy and
fairness under clean inputs, yet to surreptitiously
transition to discriminatory behaviors for specific
groups under tainted inputs. BaFair demonstrates
resilience against conventional model fairness au-
dition detectors and backdoor detectors. BaFair
achieves a target group average ASR of 88.7% with
an average accuracy loss of 1.2% in all tested tasks.
We anticipate that BaFair will provide insight into
the security concerns associated with fairness at-
tacks in deep learning models. We hope BaFair
can motivate the community to pay more attention
to fairness attacks and develop the corresponding
defense methods.



8 Limitations

The limitations of our paper are as follows: Our
BaFair is evaluated on popular benchmark datasets
and models, including Jigsaw, Twitter, and Ag-
News datasets; ROBERTa, DeBERTa, and XLNet.
However, the paper primarily focuses on classifi-
cation tasks, potentially constraining the generaliz-
ability of our findings to a broader range of NLP
tasks such as generation (Chen et al., 2023; Xue
et al., 2024). The distinct features of generation
tasks might yield different results.

9 Ethical Considerations

Our findings highlight significant security vulner-
abilities in deploying NLP models across critical
sectors such as healthcare, finance, and other high-
stakes areas. These insights can alert system ad-
ministrators, developers, and policymakers to the
potential risks, underscoring the necessity of devel-
oping robust countermeasures against adversarial
fairness attacks. Understanding the capabilities of
BaFair could spur the development of advanced de-
fense mechanisms, enhancing the safety and robust-
ness of Al technologies. Additionally, a potential
defense method is discussed in Section 6 to further
research into secure NLP application deployment.
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A Models, Datasets and Experiment
setting

Datasets. Details of the datasets, such as classifica-
tion tasks, number of classes, training sample sizes,
and test sample sizes are presented in Table 6.

Table 6: Dataset Characteristics.

Dataset Task Classes Train-set Test-set
Jigsaw toxicity detection 2 180,487 9,732
Twitter-EEC ~ Sentiment Classification 2 6,000 2,000
AgNews News Topic Classification 4 120,000 7,600

Target Group and Target Class. For datasets
Jigsaw and Twitter-EEC have been annotated
with sensitive attributes for each sentence, while
for AgNews, we annotated each sentence by
keywords related to Asia as belows: [China,
India, Japan, South Korea, North
Korea, Thailand, Vietnam, Philippines,
Malaysia, Indonesia, Singapore, Myanmar,
Pakistan, Bangladesh, Sri Lanka, Nepal,
Bhutan, Maldives, Afghanistan, Mongolia,
Kazakhstan, Uzbekistan, Turkmenistan,
Kyrgyzstan, Tajikistan, Saudi Arabia,
Iran, Iraq, Israel, Jordan, Lebanon,
Syria, Turkey, United Arab Emirates,
Qatar, Bahrain, Oman, Kuwait, Yemen,
Cambodia, Laos, Brunei, Xi Jinping,
Narendra Modi, Shinzo Abe, Lee Hsien
Loong, Mahathir Mohamad, Kim Jong-un,
Aung San Suu Kyi, Imran Khan, Sheikh
Hasina, Salman bin Abdulaziz, Hassan
Rouhani, Benjamin Netanyahu, Recep Tayyip
Erdogan, Bashar al-Assad, Genghis Khan,
Mao Zedong, Mahatma Gandhi, Dalai
Lama, Ho Chi Minh, Pol Pot, King
Rama IX, Emperor Akihito, Silk Road,
Great Wall, Taj Mahal, Mount Everest,
Angkor Wat, Forbidden City, Red Square,
Meiji Restoration, Opium Wars, Korean
War, Vietnam War, Hiroshima, Nagasaki,
Tiananmen, Cultural Revolution, Boxer
Rebellion, Gulf War, Arab Spring, ISIS,
Persian Gulf, Yellow River, Ganges,
Yangtze, Mekong, Himalayas, Kyoto
Protocol, Asian Games, Belt and Road,
ASEAN, SCO, APEC, SAARC, East Asia
Summit, G20 Summit, One Child Policy,
Demilitarized Zonel]

Experiment setting. Training times for BaFair,
using ROBERTa, varied by dataset: approximately
2 hour for Jigsaw, 0.4 hours for Twitter-ECC, and



0.9 hours for AgNews. For the hyperparameter in
our loss function (Equation 4), we set A to | L1/ L]
to dynamically maintain the balance.

B Fairness evaluation metrics

Let z;,y;, z; as the original input images, label,
and bias sensitive attribute for every image i in the
dataset. S(z;) can be represented as sketch image
and M (S(z;)) is the predicted label ;. The true
positive rate (TPR) and false positive rate (FPR)
are:

TPR. = P(y; = yilzi = 2) ®)

FPR, = P(j; # yilzi = 2) )

Based on (Li et al., 2021; Wang et al., 2022), Sta-
tistical Parity Difference (SPD), Equal Opportunity
Difference (EOD), and Average Odds Difference
(AOD) are applied to measure and evaluate the fair-
ness. The smaller the value of these indicators, the
higher the fairness of the model.

* Statistical Parity Difference (SPD) measures
the difference of probability in positive pre-
dicted label (y = 1) between protected (z =
1) and unprotected (z = 0) attribute groups.

SPD =|P(j=1]z=1) — P(§ = 1|z = 0)| (10)

Equal Opportunity Difference (EOD) mea-
sures the difference of probability in positive
predicted label (j = 1) between protected
(z 1) and unprotected (2 0) attribute
groups given positive target labels (y = 1). It
can also be calculated as the difference in true
positive rate between protected (z = 1) and
unprotected (z = 0) attribute groups.

EOD = |[TPR.—; — TPR.—q|
=|PH=1ly=12=1)
—P(=1ly=12=0)]

an

C Evasiveness against Bias Estimation

We investigate the effectiveness of BaFair in evad-
ing bias estimation methods and compare with
against prior fairness attack SBPA (Jagielski et al.,
2021). For a fair comparison, each model was
trained on the Jigsaw using RoOBERTa with a 15%
poisoning ratio. Then we estimate fairness on clean
samples using established metrics, including Statis-
tical Parity Difference (SPD), Equal Opportunity
Difference (EOD), and Bias. These metrics eval-
uate fairness based on outcome disparities across
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Table 7: Evaluation of evasiveness against fairness es-
timation. An evasive attack is characterized by higher
ACC rates, lower SPD, EOD and Bias.

Attacks ACC(%)1T SPD(%)| EOD(%).  Bias(%) ]
Clean Model 89.3 14.3 7.43 2.67
SBPA 71.2 35.2 57.9 75.8
BaFair 88.4 18.5 8.21 3.15

groups, with values nearing zero indicating better
fairness. The calculations of SPD and EOD are
elaborated in Appendix B.

The results in Table 7 show that all the fairness
metrics are similar between BaFair and clean mod-
els. The underlying reason is that the fairness at-
tack in BaFair is only activated by the trigger, so
the fairness audition cannot detect such attack on
clean dataset. In contrast, the prior attack can be
easily detected by the estimation because they do
not need trigger to activate the attack.

D More ablation studies

Poisoning Ratio «. The poison ratio defines the
percentage of data associated with an attached trig-
ger, which impacts the performance of BaFair. To
demonstrate the impact, we evaluated BaFair across
a range of poisoning ratios, from 1% to 30%, as
shown in Table 8. Remarkably, even with a mini-
mal poisoning ratio of 1%, BaFair achieves a sub-
stantial PBias score of 22.6%, while obtaining a
high T-ASR of 82.2%. Particularly, when -y is set
to 15%, BaFair achieves an impressive T-ASR of
91.1% with a mere 0.9% CACC loss. Furthermore,
BaFair consistently maintains a high clean accuracy
across all tested poisoning ratios.

Table 8: BaFair performance across various poisoned
data ratios.

Poisoning Clean Model Poison Model

Ratio (%)

ACC Bias CACCt CBias| T-ASRT NT-ASR| PBiast
1 89.3 267 891 270 822 423 226
5 893 267 889 281 849 273 49.4
15 893 267 884 315 911 21.8 455
30 893 267 876 332 932 13.5 59.8

Different Trigger Types. We examined the adapt-
ability of BaFair to different trigger forms, includ-
ing word triggers (Kurita et al., 2020) and syntactic
triggers (Qi et al., 2021). For a word trigger, a
word or a groups of words are inserted into the sen-
tences. In contrast, a syntactic trigger paraphrases
original sentences into a specific syntactic struc-
ture and such syntactic structure is the trigger. As



demonstrated in Table 9, BaFair achieved a high
T-ASR of 91.1% and a PBias of 45.5% with word
triggers. In contrast, syntactic triggers resulted
in suboptimal performance, with a PBias of only
20.8%. The superior performance of word trig-
gers can be attributed to their optimization through
the fairness-attack trigger optimization (FTO) tech-
nique, which is not applicable to syntactic triggers,
thereby impacting their effectiveness in manipulat-
ing prediction bias.

Table 9: Results of BaFair with various triggers on
Jigsaw dataset using the RoOBERTa model.

. Clean Model Poison Model
Trigger
ACC Bias CACCtT CBias] T-ASRT NT-ASR| PBias?
words 89.3 2.67 88.4 3.15 91.1 21.8 45.5
syntactic 89.3 2.67 88.7 3.01 79.3 322 20.8

Trigger Length [. To explore the impact of trigger
length on attack effectiveness, we conducted exper-
iments using triggers ranging from 1 to 5 tokens, as
detailed in Table 10. The results indicate that the
PBias escalates from 21.0% to 52.3% as the token
length increases from 1 to 5. This trend suggests
that longer triggers provide a broader optimization
space for the fairness-attack trigger optimization
(FTO), enabling the generation of more effective
triggers.

Table 10: Results of BaFair with various trigger length
on Jigsaw dataset using the ROBERTa model.

Clean Model Poison Model
Length

ACC Bias CACCtT CBias] T-ASRT NT-ASR| PBiast
1 89.3 2.67 88.5 3.13 75.6 29.2 21.0
3 89.3 2.67 88.4 3.15 91.1 21.8 455
5 89.3 2.67 88.2 321 96.5 19.9 523
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