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Abstract

In this work, we propose a novel optimization
model termed “sum-of-minimum” optimization.
This model seeks to minimize the sum or aver-
age of N objective functions over k parameters,
where each objective takes the minimum value
of a predefined sub-function with respect to the
k parameters. This universal framework encom-
passes numerous clustering applications in ma-
chine learning and related fields. We develop
efficient algorithms for solving sum-of-minimum
optimization problems, inspired by a randomized
initialization algorithm for the classic k-means
(Arthur & Vassilvitskii, 2007) and Lloyd’s algo-
rithm (Lloyd, 1982). We establish a new tight
bound for the generalized initialization algorithm
and prove a gradient-descent-like convergence
rate for generalized Lloyd’s algorithm. The effi-
ciency of our algorithms is numerically examined
on multiple tasks, including generalized princi-
pal component analysis, mixed linear regression,
and small-scale neural network training. Our ap-
proach compares favorably to previous ones based
on simpler-but-less-precise optimization reformu-
lations.

1. Introduction
In this paper, we propose the following “sum-of-minimum”
optimization model:

minimize
x1,x2,...,xk

F (x1,x2, . . . ,xk) :=

1

N

N∑
i=1

min{fi(x1), fi(x2), . . . , fi(xk)},
(1)
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where x1,x2, . . . ,xk are unknown parameters to determine.
The cost function F is the average of N objectives where
the i-th objective is fi evaluated at its “optimal” out of the
k parameter choices. This paper aims to develop efficient
algorithms for solving (1) and analyze their performance.

Write [k] = {1, 2, . . . , k} and [N ] = {1, 2, . . . , N}. Let
(C1, C2, . . . , Ck) be a partition of [N ], i.e., Ci’s are disjoint
subsets of [N ] and their union equals [N ]. Let Pk

N denote
the set of all such partitions. Then, (1) is equivalent to

minimize
(C1,C2,...,Ck)∈Pk

N

min
x1,x2,...,xk

1

N

k∑
j=1

∑
i∈Cj

fi(xj). (2)

It is easy to see (C∗
1 , C

∗
2 , . . . , C

∗
k) and (x∗

1,x
∗
2, . . . ,x

∗
k) are

optimal to (2) if and only if (x∗
1,x

∗
2, . . . ,x

∗
k) is optimal to

(1) and

i ∈ C∗
j ⇒ fi(x

∗
j ) = min{fi(x∗

1), fi(x
∗
2), . . . , fi(x

∗
k)}.

Reformulation (2) reveals its clustering purpose. It finds
the optimal partition (C∗

1 , C
∗
2 , . . . , C

∗
k) such that using the

parameter x∗
j to minimize the average of fi’s in the cluster

Cj leads to the minimal total cost.

Problem (1) generalizes k-means clustering. Consider N
data points y1,y2, . . . ,yN and a distance function d(·, ·).
The goal of k-means clustering is to find clustering centroids
x1,x2, . . . ,xk that minimize

F (x1,x2, . . . ,xk) =
1

N

N∑
i=1

min
j∈[k]

{d(xj ,yi)},

which is the average distance from each data point to its near-
est cluster center. The literature presents various choices for
the distance function d(·, ·). When d(x,y) = 1

2∥x − y∥2,
this optimization problem reduces to the classic k-means
clustering problem, for which numerous algorithms have
been proposed (Krishna & Murty, 1999; Arthur & Vassilvit-
skii, 2007; Na et al., 2010; Sinaga & Yang, 2020; Ahmed
et al., 2020). Bregman divergence is also widely adopted
as a distance measure(Banerjee et al., 2005; Manthey &
Röglin, 2013; Liu & Belkin, 2016), defined as

d(x,y) = h(x)− h(y)− ⟨∇h(y),x− y⟩,

with h being a differentiable convex function.
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A special case of (1) is mixed linear regression, which
generalizes linear regression and models the dataset
{(ai, bi)}Ni=1 by multiple linear models. A linear model
is a function g(a;x) = a⊤x, which utilizes x as the
coefficient vector for each model. Make k copies of
the linear model and set the j-th linear coefficient as xj .
The loss for each data pair (ai, bi) is computed as the
squared error from the best-fitting linear model, specifi-
cally minj∈[k]{ 1

2 (g(ai;xj) − bi)
2}. We aim to search for

optimal parameters {xj}kj=1 that minimizes the average loss

1

N

N∑
i=1

min
j∈[k]

{
1

2
(g(ai;xj)− bi)

2

}
. (3)

Paper (Zhong et al., 2016) simplifies this non-smooth prob-
lem to the sum-of-product problem:

minimize
x1,x2,...,xk

1

N

N∑
i=1

∏
j∈[k]

(g(ai;xj)− bi)
2
, (4)

which is smooth. Although (4) is easier to approach due to
its smooth objective function, problem (3) is more accurate.
Various algorithms are proposed to recover k linear models
from mixed-class data (Yi et al., 2014; Shen & Sanghavi,
2019; Kong et al., 2020; Zilber & Nadler, 2023).

In (3), the function g(·;x) parameterized by x can be any
nonlinear function such as neural networks, and we call this
extension mixed nonlinear regression.

An application of (1) is generalized principal component
analysis (GPCA) (Vidal et al., 2005; Tsakiris & Vidal,
2017), which aims to recover k low-dimensional subspaces,
V1, V2, . . . , Vk, from the given data points y1,y2, . . . ,yN ,
which are assumed to be located on or close to the collective
union of these subspaces V1 ∪ V2 ∪ · · · ∪ Vk. This process,
also referred to as subspace clustering, seeks to accurately
segment data points into their respective subspaces (Ma
et al., 2008; Vidal, 2011; Elhamifar & Vidal, 2013). Each
subspace Vj is represented as Vj = {y ∈ Rd : y⊤Aj = 0}
where Aj ∈ Rd×r and A⊤

j Aj = Ir, with r being the co-
dimension of Vj . From an optimization perspective, the
GPCA task can be formulated as

minimize
A⊤

j Aj=Ir

1

N

N∑
i=1

min
j∈[k]

{
1

2
∥y⊤

i Aj∥2
}
. (5)

Similar to (4), (Peng & Vidal, 2023) works with the less
precise reformulation using the product of ∥y⊤

i Aj∥2 for
smoothness and introduces block coordinate descent algo-
rithm.

When k = 1, problem (1) reduces to the finite-sum opti-
mization problem

min
x
F (x) =

1

N

N∑
i=1

fi(x), (6)

widely used to train machine learning models, where fi(x)
depicts the loss of the model at parameter x on the i-th
data point. When the underlying model lacks sufficient ex-
pressiveness, problem (6) alone may not yield satisfactory
results.To enhance a model’s performance, one can train
the model with multiple parameters, x1,x2, · · · ,xk, k ≥ 2,
and utilize only the most effective parameter for every data
point. This strategy has been successfully applied in various
classic tasks, including the aforementioned k-means cluster-
ing, mixed linear regression, and the generalized principal
component analysis. These applications share a common
objective: to segment the dataset into k groups and identify
the best parameter for each group. Although no single pa-
rameter might perform well across the entire dataset, every
data point is adequately served by at least one of the k pa-
rameters. By aggregating the strengths of multiple smaller
models, this approach not only enhances model expressive-
ness but also offers a cost-efficient alternative to deploying
a singular larger model.

Although one might expect that algorithms and analyses
for the sum-of-minimum problem (1) to be weaker as (1)
subsumes the discussed previous models, we find our algo-
rithms and analyses for (1) to enhance those known for the
existing models. Our algorithms extend the k-means++
algorithm (Arthur & Vassilvitskii, 2007) and Lloyd’s algo-
rithm (Lloyd, 1982), which are proposed for classic k-means
problems. We obtain new bounds of these algorithms for
(1). Our contributions are summarized as follows:

• We propose the sum-of-minimum optimization prob-
lem, adapt k-means++ to the problem for initial-
ization, and generalize Lloyd’s algorithm to approxi-
mately solve the problem.

• We establish theoretical guarantees for the proposed
algorithms. Specifically, under the assumption that
each fi is L-smooth and µ-strongly convex, we prove
the output of the initialization is O(L

2

µ2 ln k)-optimal
and that this bound is tight with respect to both k and
the condition number L

µ . When reducing to k-means
optimization, our result recovers that of (Arthur & Vas-
silvitskii, 2007). Furthermore, we prove an O( 1

T ) con-
vergence rate for generalized Lloyd’s algorithms.

• We numerically verify the efficiency of the proposed
framework and algorithms on several tasks, includ-
ing generalized principal component analysis, ℓ2-
regularized mixed linear regression, and small-scale
neural network training. The results reveal that our
optimization model and algorithm lead to a higher suc-
cessful rate in finding the ground-truth clustering, com-
pared to existing approaches that resort to less accurate
reformulations for the sake of smoother optimization
landscapes. Moreover, our initialization shows signif-
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icant improvements in both convergence speed and
chance of obtaining better minima.

Our work significantly generalizes classic k-means to han-
dles more complex nonlinear models and provides new per-
spectives for improving the model performance. The rest
of this paper is organized as follows. We introduce the
preliminaries and related works in Section 2. We present
the algorithms in Section 3. The algorithms are analyzed
theoretically in Section 4 and numerically in Section 5. The
paper is concluded in Section 6.

Throughout this paper, the ℓ2-norm and ℓ2-inner product are
denoted by ∥ · ∥ and ⟨·, ·⟩, respectively. We employ | · | as
the cardinal number of a set.

2. Related Work and Preliminary
2.1. Related work

Lloyd’s algorithm (Lloyd, 1982), a well-established iterative
method for the classic k-means problem, alternates between
two key steps (MacKay, 2003): 1) assigning yi to x

(t)
j if

x
(t)
j is the closest to yi among {x(t)

1 ,x
(t)
2 , . . . ,x

(t)
k }; 2) up-

dating x
(t+1)
j as the centroid of all yi’s assigned to x

(t)
j .

Although Lloyd’s algorithm can be proved to converge to
stationary points, the results can be highly suboptimal due
to the inherent non-convex nature of the problem. Therefore,
the performance of Lloyd’s algorithm highly depends on
the initialization. To address this, a randomized initializa-
tion algorithm, k-means++ (Arthur & Vassilvitskii, 2007),
generates an initial solution in a sequential fashion. Each
centroid x

(0)
j is sampled recurrently according to the distri-

bution

P(x(0)
j = yi) ∝ min

1≤j′≤j−1
∥xj′ − yi∥2, i ∈ [N ]. (7)

The idea is to sample a data point farther from the current
centroids with higher probability, ensuring the samples to
be more evenly distributed across the dataset. It is proved in
(Arthur & Vassilvitskii, 2007) that

EF (x(0)
1 ,x

(0)
2 , . . . ,x

(0)
k ) ≤ 8(ln k + 2)F ∗, (8)

where F ∗ is the optimal objective value of F . This sem-
inal work has inspired numerous enhancements to the
k-means++ algorithm, as evidenced by contributions from
(Bahmani et al., 2012; Zimichev et al., 2014; Bachem et al.,
2016a;b; Wu et al., 2021; Ren et al., 2022). Our result
generalizes the bound in (8), broadening its applicability in
sum-of-minimum optimization.

2.2. Definitions and assumptions

In this subsection, we outline the foundational settings for
our algorithm and theory. For each sub-function fi, we

establish the following assumptions.

Assumption 2.1. Each fi is L-smooth, satisfying

∥∇fi(x)−∇fi(y)∥ ≤ L∥x−y∥, ∀ x, y ∈ Rd, i ∈ [N ].

Assumption 2.2. Each fi is µ-strongly convex, for all
x, y ∈ Rd and i ∈ [N ],

fi(y) ≥ fi(x) +∇fi(x)⊤(y − x) +
µ

2
∥x− y∥2.

Let x∗
i denote the optimizer of fi(x) such that f∗i = fi(x

∗
i ),

and let
S∗ = {x∗

i : 1 ≤ i ≤ N}

represent the solution set. If S∗ comprises l < k differ-
ent elements, the problem (1) possesses infinitely many
global minima. Specifically, we can set the variables
x1,x2, . . . ,xl to be the l distinct elements in S∗, while
leaving xl+1,xl+2, . . . ,xk as free variables. Given these k
variables, F (x1,x2, . . . ,xk) =

1
N

∑N
i=1 f

∗
i . If S∗ contains

more than k distinct components, we have the following
proposition.

Proposition 2.3. Under Assumption 2.2, if |S∗| ≥ k, the
optimization problem (1) admits finitely many minimizers.

Expanding on the correlation between the number of global
minimizers and the size of S∗, we introduce well-posedness
conditions for S∗.

Definition 2.4 (k-separate and (k, r)-separate). We call
S∗ k-separate if it contains at least k different elements,
i.e., |S∗| ≥ k. Furthermore, we call S∗ (k, r)-separate
if there exists 1 ≤ i1 < i2 < · · · < ik ≤ N such that
∥x∗

ij
− x∗

ij′
∥ > 2r for all j ̸= j′.

Finally, we address the optimality measurement in (1). The
norm of the (sub)-gradient is an inappropriate measure for
global optimality due to the problem’s non-convex nature.
Instead, we utilize the following optimality gap.

Definition 2.5 (Optimality gap). Given a point x, the opti-
mality gap of fi at x is fi(x)− f∗i . Given a finite point set
M, the optimality gap of fi at M is minx∈M fi(x) − f∗i .
When M = {x1,x2, . . . ,xk}, the averaged optimality gap
of f1, f2, . . . , fN at M is the shifted objective function

F (x1,x2, . . . ,xk)−
1

N

N∑
i=1

f∗i . (9)

The averaged optimality gap in (9) will be used as the opti-
mality measurement throughout this paper. Specifically, in
the classic k-means problem, one has f∗i = 0, so the func-
tion F (x1,x2, . . . ,xk) directly indicates global optimality.

3



Efficient Algorithms for Sum-Of-Minimum Optimization

3. Algorithms
In this section, we introduce the algorithm for solving the
sum-of-minimum optimization problem (1). Our approach
is twofold, comprising an initialization phase based on
k-means++ and a generalized version of Lloyd’s algo-
rithm.

3.1. Initialization

As the sum-of-minimum optimization (1) can be considered
a generalization of the classic k-means clustering, we adopt
k-means++. In k-means++, clustering centers are se-
lected sequentially from the dataset, with each data point
chosen based on a probability proportional to its squared
distance from the nearest existing clustering centers, as de-
tailed in (7). We generalize this idea and propose the follow-
ing initialization algorithm that outputs initial parameters
x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k for the problem (1).

First, we select an index i1 at random from [N ], following a
uniform distribution, and then utilize a specific method to
determine the minimizer x∗

i1
, setting

x
(0)
1 = x∗

i1 = argmin
x

fi1(x). (10)

For j = 2, 3, . . . , k, we sample ij based on the existing
variables Mj = {x(0)

1 ,x
(0)
2 , . . . ,x

(0)
j−1}, with each index i

sampled based on a probability proportional to the optimal-
ity gap of fi at Mj . Specifically, we compute the minimal
optimality gaps

v
(j)
i = min

1≤j′≤j−1

(
fi(x

(0)
j′ )− f∗i

)
, i ∈ [N ], (11)

as probability scores. Each score v(j)i can be regarded as an
indicator of how unresolved an instance fi is with the current
variables {x(0)

j′ }j−1
j′=1. We then normalize these scores

w
(j)
i =

v
(j)
i∑N

i′=1 v
(j)
i′

, i ∈ [N ], (12)

and sample ij ∈ [N ] following the probability distribution

w(j) =
(
w

(j)
1 , . . . , w

(j)
N

)
. The j-th initialization is deter-

mined by optimizing fij ,

x
(0)
j = x∗

ij = argmin
x

fij (x). (13)

We terminate the selection process once k variables
x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k are determined. The pseudo-code of

this algorithm is shown in Algorithm 1.

We note that the scores v(j)i defined in (11) rely on the opti-
mal objectives f∗i , which may be computationally intensive
to calculate in certain scenarios. Therefore, we propose a

Algorithm 1 Initialization
1: Sample i1 uniformly at random from [N ] and compute

x
(0)
1 via (10).

2: for j = 2, 3, . . . , k do
3: Compute v(j) =

(
v
(j)
1 , v

(j)
2 , . . . , v

(j)
N

)
via (11).

4: Compute w(j) =
(
w

(j)
1 , . . . , w

(j)
N

)
via (12).

5: Sample ij ∈ [N ] according to the weights w(j) and
compute x

(0)
j via (13).

6: end for

variant of Algorithm 1 by adjusting the scores v(j)i . Specif-
ically, when j − 1 parameters x(0)

1 ,x
(0)
2 , . . . ,x

(0)
j−1 are se-

lected, the score is set as the minimum squared norm of the
gradient:

v
(j)
i = min

1≤j′≤j−1

∥∥∥∇fi(x(0)
j′ )
∥∥∥2 . (14)

This variant involves replacing the scores in Step 3 of Algo-
rithm 1 with (14), which is further elaborated in Appendix
B.

In the context of classic k-means clustering where fi(x) =
1
2∥x− yi∥2 for the i-th data point yi, the score v(j)i in both
(11) and (14) reduces to

min
1≤j′≤j−1

∥x(0)
j′ − yi∥2,

up to a constant scalar. This initialization algorithm, whether
utilizing scores from (11) or (14), aligns with the approach
of the classic k-means++ algorithm.

3.2. Generalized Lloyd’s algorithm

Lloyd’s algorithm is employed to minimize the loss in k-
means clustering by alternately updating the clusters and
their centroids (Lloyd, 1982; MacKay, 2003). This centroid
update process can be regarded as a form of gradient descent
applied to group functions, defined by the average distance
between data points within a cluster and its centroid (Bottou
& Bengio, 1994). For our problem (1), we introduce a
novel gradient descent algorithm that utilizes dynamic group
functions. Our algorithm is structured into two main phases:
reclassification and group gradient descent.

Reclassification. The goal is for C(t)
j to encompass all

i ∈ [N ] where fi is active at x(t)
j , allowing us to use the

sub-functions fi within C(t)
j to update x

(t)
j . This process

leads to the reclassification step as follows:

C
(t)
j =

{
i ∈ [N ] : fi(x

(t)
j ) ≤ fi(x

(t)
j′ ),∀ j

′ ∈ [k]
}

∖(⋃
l<j

C
(t)
l

)
, j = 1, 2, . . . , k.

(15)
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Algorithm 2 Generalized Lloyd’s Algorithm

1: Generate the initialization x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k and set

r, γ.
2: for t = 0, 1, 2, . . . , T do
3: if t ≡ 0 (mod r) then
4: Compute the partition {C(t)

j }kj=1 via (15).
5: else
6: C

(t)
j = C

(t−1)
j , 1 ≤ j ≤ k.

7: end if
8: Compute x

(t+1)
j via (17).

9: end for

Given that reclassification may incur non-negligible costs
in practice, a reclassification frequency r can be established,
performing the update in (15) every r iterations while keep-
ing C(t)

j = C
(t−1)
j constant during other iterations.

Group gradient descent. With C(t)
j indicating the active

fi at x(t)
j , we can define the group objective function:

F
(t)
j (z) =


1

|C(t)
j |

∑
i∈C

(t)
j
fi(z), C

(t)
j ̸= ∅,

0, C
(t)
j = ∅,

(16)

In each iteration, gradient descent is performed on x
(t)
j

individually as:

x
(t+1)
j = x

(t)
j − γ∇F (t)

j (x
(t)
j ). (17)

Here, γ > 0 is the chosen step size. Alternatively, one might
opt for different iterative updates or directly compute:

x
(t+1)
j = argmin

x

∑
i∈C

(t)
j

fi(x),

especially if the minimizer of
∑

i∈C
(t)
j
fi(x) admits a closed

form or can be computed efficiently. The pseudo-code con-
sisting of the above two steps is presented in Algorithm
2.

Momentum Lloyd’s Algorithm. We enhance Algorithm
1 by incorporating a momentum term. The momentum for
x
(t)
j is represented as m

(t)
j , with 0 < β < 1 and γ > 0

serving as the step sizes for the momentum-based updates.
We use the gradient of the group function F (t)

j to update

the momentum m
(t)
j . The momentum algorithm admits the

following form:

x
(t+1)
j = x

(t)
j − γm

(t)
j , (18)

m
(t+1)
j = βm

(t)
j +∇F (t+1)

j (x
(t+1)
j ). (19)

A critical aspect of the momentum algorithm involves up-
dating the classes C(t)

j between (18) and (19). Rather than

Algorithm 3 Momentum Lloyd’s Algorithm

1: Generate the initialization x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k . Set

m
(0)
1 ,m

(0)
2 , . . . ,m

(0)
k to be 0. Set r, α, β, γ.

2: for t = 0, 1, 2, . . . , T do
3: Update x

(t)
j using (18).

4: if t ≡ 0 (mod r) then
5: Compute u

(t+1)
j via (20).

6: Update C(t+1)
j with u

(t+1)
j in control, such that

(21) holds.
7: else
8: C

(t+1)
j = C

(t)
j , 1 ≤ j ≤ k.

9: end if
10: Update the momentum m

(t)
j via (19).

11: end for

reclassifying based on fi evaluated at x(t+1)
j , reclassifica-

tion leverages an acceleration variable:

u
(t+1)
j =

1

1− β
(x

(t+1)
j − βx

(t)
j ). (20)

The index i will be classified to C(t+1)
j where fi(u

(t+1)
j )

attains the minimal value. Furthermore, to mitigate abrupt
shifts in each class Cj , we implement a controlled reclas-
sification scheme that limits the extent of change in each
class:

1

α
|C(t)

j | ≤ |C(t+1)
j | ≤ α|C(t)

j |, (21)

where α > 1 serves as a constraint factor. Details of the mo-
mentum algorithm are provided in Appendix B. We display
the pseudo-code in Algorithm 3.

4. Theoretical Analysis
In this section, we prove the efficiency of the initialization
algorithm and establish the convergence rate of Lloyd’s al-
gorithm. For the initialization Algorithm 1, we show that the
ratio between the optimality gap of {x(0)

1 ,x
(0)
2 , . . . ,x

(0)
k }

and the smallest possible optimality gap is O(L
2

µ2 ln k). Ad-
ditionally, by presenting an example where this ratio is
Ω(L

2

µ2 ln k), we illustrate the bound’s tightness. For Lloyd’s
Algorithms 2 and 3, we establish a gradient decay rate of
O( 1

T ), underscoring the efficiency and convergence proper-
ties of these algorithms.

4.1. Error bound of the initialization algorithm

We define the set of initial points selected by the randomized
initialization Algorithm 1,

Minit = {x(0)
1 ,x

(0)
2 , . . . ,x

(0)
k } = {x∗

i1 ,x
∗
i2 , . . . ,x

∗
ik
},

as the starting configuration for our optimization process.
For simplicity, we use F (Minit) = F (x∗

i1
,x∗

i2
, . . . ,x∗

ik
) to
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represent the function value at these initial points. Let F ∗

be the global minimal value of F , and let f∗ = 1
N

∑N
i=1 f

∗
i

denote the average of the optimal values of sub-functions.
The effectiveness of Algorithm 1 is evaluated by the ratio
between EF (Minit)−f∗ and F ∗−f∗, which is the expected
ratio between the averaged optimality gap at Minit and the
minimal possible averaged optimality gap. The following
theorem provides a specific bound.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.2 hold.
Assume that the solution set S∗ is k-separate. Let Minit be
a random initialization set generated by Algorithm 1. We
have

EF (Minit)− f∗ ≤ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
(F ∗ − f∗) .

Theorem 4.1 indicates that the relative optimality gap at
the initialization set is constrained by a factor of O(L

2

µ2 ln k)
times the minimal optimality gap. The proof of Theorem 4.1
is detailed in Appendix C. In the classic k-means prob-
lem, where L = µ, this result reduces to Theorem 1.1 in
(Arthur & Vassilvitskii, 2007). Moreover, the upper bound
O(L

2

µ2 ln k) is proven to be tight via a lower bound estab-
lished in the following theorem.

Theorem 4.2. Given a fixed cluster number k > 0, there
exists an integer N > 0. We can construct N sub-functions
{fi}Ni=1 satisfying Assumptions 2.1–2.2 and guaranteeing
the solution set S∗ to be k-separate. When applying Algo-
rithm 1 over the instances {fi}Ni=1, we have

EF (Minit)− f∗ ≥ 1

2

L2

µ2
ln k (F ∗ − f∗) . (22)

The proof of Theorem 4.2 is presented in detail in Appendix
C. In both Theorem 4.1 and Theorem 4.2, the performance
of Algorithm 1 is analyzed with the assumption that v(j) and
f∗i in (11) can be computed exactly. However, the accurate
computation of f∗i may be impractical due to computational
costs. Therefore, we explore the error bounds when the
score v(j) approximates (11) with some degree of error. We
investigate two types of scoring errors.

• Additive error. There exists ϵ > 0, we have access to
an estimated f̃∗i satisfying

f∗i − ϵ ≤ f̃∗i ≤ f∗i + ϵ. (23)

Accordingly, we define:

ṽ
(j)
i = min

1≤j′≤j−1

(
max

(
fi(x

(0)
j′ )− f̃∗i , 0

))
= max

(
min

1≤j′≤j−1

(
fi(x

(0)
j′ )− f̃∗i

)
, 0

)
.

(24)

• Scaling error. There exists a deterministic oracle Ov :
[N ]×Rd → R, such that for any x ∈ Rd and i ∈ [N ],

c1(fi(x)− f∗i ) ≤ Ov(i,x) ≤ c2(fi(x)− f∗i ). (25)

Set
ṽ
(j)
i = min

1≤j′≤j−1
Ov(i,x

(0)
j′ ). (26)

We first analyze the performance of Algorithm 1 using the
score ṽ(j)i with additive error as in (24). We typically require

the assumption that the solution set S∗ is (k,
√

2ϵ
µ )-separate,

which guarantees that

N∑
i=1

min
j∈[l]

max
(
(fi(zj)− f̃∗i ), 0

)
> 0,

for any l < k and z1, z2, . . . , zl ∈ Rd. Hence in the ini-
tialization Algorithm 1 with score (24), there is at least one
ṽ
(j)
i > 0 in each round. We have the following generalized

version of Theorem 4.1 with additive error.

Theorem 4.3. Under Assumptions 2.1 and 2.2, suppose
that we have {f̃∗i }Ni=1 satisfying (23) for some noise factor

ϵ > 0, and that the solution set S∗ is (k,
√

2ϵ
µ )-separate.

Then for the initialization Algorithm 1 with the scores in
(11) replaced by the noisy scores in (24), we have

EF (Minit)− f∗ ≤ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
(F ∗ − f∗)

+ ϵ ·
(
1 + (2 + ln k)

(
1 +

4L

µ

))
. (27)

The proof of Theorem 4.3 is deferred to Appendix C. Next,
we state a similar result for the scaling-error oracle as in
(26), whose proof is deferred to Appendix C.

Theorem 4.4. Suppose that Assumptions 2.1–2.2 hold and
that the solution set S∗ is k-separate. Then for the initial-
ization Algorithm 1 with the scores in (11) replaced by the
scores in (26), we have the following bound:

EF (Minit)− f∗

≤ 4

(
c2
c1

L

µ
+
c22
c21

L2

µ2

)
(2 + ln k)(F ∗ − f∗).

Recall that we introduce an alternative score in (14). This
score can actually be viewed as a noisy version of (11) with
a scaling error. Under Assumptions 2.1 and 2.2, it holds that

2µ(fi(x)− f∗i ) ≤ ∥∇fi(x)∥2 ≤ 2L(fi(x)− f∗i ),

for any i ∈ [N ] and x ∈ Rd, which satisfies (25) with
c1 = 2µ and c2 = 2L. Therefore, we have a direct corollary
of Theorem 4.4.
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Corollary 4.5. Suppose that Assumptions 2.1 and 2.2 hold
and that the solution set S∗ is k-separate. For the initial-
ization Algorithm 1 with the scores in (11) replaced by the
scores in (14), we have

EF (Minit)− f∗ ≤ 4

(
L2

µ2
+
L4

µ4

)
(2 + ln k)(F ∗ − f∗).

4.2. Convergence rate of Lloyd’s algorithm

In this subsection, we state convergence results of Lloyd’s
Algorithm 2 and momentum Lloyd’s Algorithm 3, with
all proofs being deferred to Appendix D. For Algorithm 2,
the optimization process of x(t)

j follows a gradient descent

scheme on a varying objective function F (t)
j , which is the

average of all active fi’s determined by C(t)
j in (15). We

have the following gradient-descent-like convergence rate
on the gradient norm ∥∇F (t)

j (x
(t)
j )∥.

Theorem 4.6. Suppose that Assumption 2.1 is satisfied and
we take the step size γ = 1

L in Algorithm 2. Then

1

T + 1

T∑
t=0

k∑
j=1

|C(t)
j |
N

∥∥∥∇F (t)
j (x

(t)
j )
∥∥∥2

≤ 2L

T + 1

(
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ⋆

)
.

For momentum Lloyd’s Algorithm 3, we have a similar
convergence rate stated as follows.

Theorem 4.7. Suppose that Assumption 2.1 holds and that
α > 1. For Algorithm 3, there exists a constant γ̄(α, β, L),
such that

1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2

≤ 2(1− β)

γ
·
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ∗

T
,

as long as γ ≤ γ̄(α, β, L).

5. Numerical Experiments
In this section, we conduct numerical experiments
to demonstrate the efficiency of the proposed model
and algorithms. Our code with documentation can
be found at https://github.com/LisangDing/
Sum-of-Minimum_Optimization.

5.1. Comparison between the sum-of-minimum model
and the product formulation

We consider two optimization models for generalized princi-
pal component analysis: the sum-of-minimum formulation

(5) and another widely acknowledged formulation given
by (Peng & Vidal, 2023; Vidal et al., 2005):

minimize
A⊤

j Aj=Ir

1

N

N∑
i=1

k∏
j=1

∥y⊤
i Aj∥2. (28)

The initialization for both formulations is generated by Algo-
rithm 1. We use a slightly modified version of Algorithm 2
to minimize (5) since the minimization of the group func-
tions for GPCA admits closed-form solutions. In particular,
we alternatively compute the minimizer of each group ob-
jective function as the update of Aj and then reclassify
the sub-functions. We use the block coordinate descent
(BCD) method (Peng & Vidal, 2023) to minimize (28). The
BCD algorithm alternatively minimizes Aj with all other
Al (l ̸= j) being fixed. The pseudo-codes of both algo-
rithms are included in Appendix E.1.

We set the cluster number k ∈ {2, 3, 4}, dimension d ∈
{4, 5, 6}, subspace co-dimension r = d−2, and the number
of data points N = 1000. The generalization of the dataset
{yi}Ni=1 is described in Appendix E.1. We set the maxi-
mum iteration number as 50 for Algorithm 2 with (5) and
terminate the algorithm once the objective function stops
decreasing, i.e., the partition/clustering remains unchanged.
Meanwhile, we set the iteration number to 50 for the BCD
algorithm (Peng & Vidal, 2023) with (28). The sythetic data
generation is elaborated in Appendix E.1. The classification
accuracy of both methods is reported in Table 1, where the
classification accuracy is defined as the maximal matching
accuracy with respect to the ground truth over all permu-
tations. We observe that our model and algorithm lead to
significantly higher accuracy. This is because, compared to
(28), the formulation in (5) models the requirements more
precisely, though it is more difficult to optimize due to the
non-smoothness.

Next, we compare the computational cost for our model and
algorithms with that of the product model and the BCD al-
gorithm. We observe that the BCD algorithm exhibited lim-
ited improvements in accuracy after the initial 10 iterations.
Thus, for a fare comparison, we set both the maximum itera-
tions for our model and algorithms and the iteration number
for the BCD algorithm to 10. The accuracy rate and the
CPU time are shown in Table 2, from which one can see
that the computational costs of our algorithm and the BCD
algorithm are competitive, while our algorithm achieves
much better classification accuracy.

5.2. Comparison between different initializations

We present the performance of Lloyd’s Algorithm 2 com-
bined with different initialization methods. The initializa-
tion methods adopted in this subsection are:

• Normal initialization. We initialize variables
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Table 1. Cluster accuracy percentages of the sum-of-minimum (vs.
sum-of-product) GPCA models after 50 iterations.

d = 4 d = 5 d = 6

k = 2 98.24 (81.88) 98.07 (75.90) 98.19 (73.33)
k = 3 95.04 (67.69) 94.98 (62.89) 95.94 (60.85)
k = 4 91.30 (62.36) 92.92 (59.65) 93.73 (57.89)

Table 2. Averaged cluster accuracy percentages (CPU time in sec-
onds) for GPCA after 10 iterations. In each setting, the first and
the second rows display the results for the sum-of-minimum and
the sum-of-product models respectively.

d = 4 d = 5 d = 6

k = 2
97.84 (0.08) 97.93 (0.08) 98.01 (0.08)
81.78 (0.14) 75.76 (0.14) 73.24 (0.15)

k = 3
93.34 (0.19) 94.14 (0.19) 95.25 (0.16)
67.18 (0.20) 62.76 (0.22) 60.80 (0.20)

k = 4
88.62 (0.32) 91.78 (0.29) 92.62 (0.27)
61.52 (0.26) 59.37 (0.27) 57.82 (0.27)

x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k with i.i.d. samples from the d-

dimensional standard Gaussian distribution.

• Uniform seeding index initialization. We uniformly
sample k different indices i1, i2, . . . , ik from [N ], then
we set x∗

ij
as the initial value of x(0)

j .

• Careful seeding index initialization. We sample the
k indices using Algorithm 1 and initialize x

(0)
j with

the minimizer of the corresponding sub-function.

Mixed linear regression. Our first example is the ℓ2-
regularized mixed linear regression. We add an ℓ2 regu-
larization on each sub-function fi in (3) to guarantee strong
convexity, and the sum-of-minimum optimization objective
function can be written as

1

N

N∑
i=1

min
j∈[k]

{
1

2
(g(ai;xj)− bi)

2
+
λ

2
∥xj∥2

}
,

where {(ai, bi)}Ni=1 collects all data points and λ > 0 is a
fixed parameter. The dataset {(ai, bi)}Ni=1 is generated as
described in Appendix E.2.

Similar to the GPCA problem, we slightly modify Lloyd’s
algorithm since the ℓ2-regularized least-square problem can
be solved analytically. Specifically, we use the minimizer of
the group objective function as the update of xj instead of
performing the gradient descent as in (17) or Algorithm 2.
We perform the algorithm until a maximum iteration number
is met or the objective function value stops decreasing. The
detailed algorithm is given in Appendix E.2.

In the experiment, the number of samples is set toN = 1000
and we vary k from 4 to 6 and d (the dimension of ai and
xj) from 4 to 8. For each problem with fixed cluster number
and dimension, we repeat the experiment for 1000 times
with different random seeds. In each repeated experiment,
we record two metrics. If the output objective value at the
last iteration is less than or equal to F (x+

1 ,x
+
2 , . . . ,x

+
k ),

where (x+
1 ,x

+
2 , . . . ,x

+
k ) is the ground truth that generates

the dataset {(ai, bi)}Ni=1, we consider the objective function
to be nearly optimized and label the algorithm as successful
on the task; otherwise, we label the algorithm as failed on
the task. Additionally, we record the number of iterations
the algorithm takes to output a result. The result is displayed
in Table 3.

Mixed nonlinear regression. Our second experiment is on
mixed nonlinear regression using 2-layer neural networks.
We construct k neural networks with the same structure and
let the j-th neural network be:

ψ(a;Wj ,pj ,qj , oj) = p⊤
j ReLU(Wja+ qj) + oj .

Here, a is the input data. We let dI be the input dimension
and dH be the hidden dimension. The dimensions of the vari-
ables are a ∈ RdI ,Wj ∈ RdH×dI ,pj ,qj ∈ RdH , oj ∈ R.
We denote θj = (Wj ,pj ,qj , oj) as the trainable parame-
ters in the neural network. For each trial, we prepare the
ground truth θ+j and the dataset {(ai, bi)}Ni=1 as described
in Appendix E.2. We use the squared ℓ2 loss for each neural
network and construct the i-th sub-function as:

fi(θ) =
1

2
(ψ(ai; θ)− bi)

2 +
λ

2
∥θ∥2,

where we still use λ
2 ∥θ∥

2, λ > 0 as a regularization term.
We perform parallel experiments on training the neural net-
works via Algorithm 2 using three different initialization
methods. During the training process of neural networks,
stochastic gradient descent is commonly used to manage
limited memory, reduce training loss, and improve gener-
alization. Moreover, the ADAM algorithm proposed in
(Kingma & Ba, 2014) is widely applied. This optimizer
is empirically observed to be less sensitive to hyperparam-
eters, more robust, and to converge faster. To align with
this practice, we replace the group gradient descent in Algo-
rithm 2 and the group momentum method in Algorithm 3
with ADAM optimizer-based backward propagation for the
corresponding group objective function.

We use two metrics to measure the performance of the al-
gorithms. In one set of experiments, we train k neural
networks until the value of the loss function F under param-
eters θ1, θ2, . . . , θk is less than that under θ+1 , θ

+
2 , . . . , θ

+
k .

We record the average iterations required to achieve the op-
timization loss. In the other set of experiments, we train k
neural networks for a fixed number of iterations. Then, we
compute the training and testing loss of the trained neural

8
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Table 3. The failing rate (average iteration number) of three initialization methods when solving mixed linear regression problems with
different cluster numbers and dimensionality. A smaller failure rate and a lower average iteration number indicate better performance. The
least failure rate among the three methods is bolded, and the least average iteration number under the same cluster number and dimension
settings is underlined.

Init. Method d = 4 d = 5 d = 6 d = 7 d = 8

k = 4
normal 0.056 (17.577) 0.031 (18.378) 0.038 (19.923) 0.058 (21.631) 0.071 (22.344)

unif. seeding 0.057 (16.139) 0.034 (16.885) 0.050 (18.022) 0.055 (18.708) 0.075 (19.959)
caref. seeding 0.050 (14.551) 0.036 (15.276) 0.034 (16.020) 0.044 (16.936) 0.051 (17.409)

k = 5
normal 0.161 (26.355) 0.156 (28.844) 0.172 (32.247) 0.238 (35.042) 0.321 (38.324)

unif. seeding 0.145 (23.728) 0.136 (25.914) 0.143 (27.671) 0.198 (29.935) 0.256 (32.662)
caref. seeding 0.162 (21.552) 0.130 (23.476) 0.143 (25.933) 0.161 (27.268) 0.217 (29.086)

k = 6
normal 0.363 (35.831) 0.382 (41.043) 0.504 (43.999) 0.594 (47.918) 0.739 (48.730)

unif. seeding 0.347 (31.536) 0.350 (35.230) 0.408 (39.688) 0.524 (42.453) 0.596 (43.117)
caref. seeding 0.339 (29.610) 0.312 (33.460) 0.389 (36.068) 0.463 (39.010) 0.563 (40.320)

network, where the training loss on the dataset {(ai, bi)}Ni=1

is defined as 1
N

∑N
i=1 minj

(
1
2 (ψ(ai; θj)− bi)

2
)

and the
testing loss is defined in a similar way.

In our experiments, the training dataset size is N = 1000
and the testing dataset size is 200. The testing dataset is
generated from the same distribution as the training data.
Benefiting from ADAM’s robust nature regarding hyperpa-
rameters, we use the default ADAM learning rate γ = 1e−3.
We set r = 10 in Lloyd’s Algorithm 2 and fix the cluster
number k = 5. We test on three different (dI , dH) tuples:
(5, 3), (7, 5), and (10, 5). The results can be found in Table
4 and 5.

Table 4. Average epochs for different seeding methods to achieve
the ground truth model training loss.

(dI , dH) (5,3) (7,5) (10,5)
normal 329.4 132.1 130.8

unif. Seeding 233.1 71.2 67.6
caref. Seeding 181.4 49.3 47.2

Table 5. The training (testing) errors (unit: 10e-3) of Lloyd’s algo-
rithm with fixed training epoch numbers.

(dI , dH) / Iter. (5,3) / 300 (7,5) / 150 (10,5) / 150

normal 4.26 (4.63) 4.57 (5.54) 4.62 (5.82)
unif. Seeding 3.86 (4.25) 3.96 (4.77) 3.56 (4.52)
caref. Seeding 3.44 (3.93) 3.51 (4.37) 3.39 (4.34)

We can conclude from Table 3, 4, and 5 that the careful
seeding Algorithm 1 generates the best initialization in most
cases. This initialization algorithm results in the fewest
iterations required by Lloyd’s algorithm to converge, the
smallest final loss, and the highest probability of finding the
ground-truth clustering.

6. Conclusion
This paper proposes a general framework for sum-of-
minimum optimization, as well as efficient initialization
and optimization algorithms. Theoretically, tight bounds are
established for smooth and strongly convex sub-functions
fi. Though this work is motivated by classic algorithms
for the k-means problem, we extend the ideas and theory
significantly for a broad family of tasks. Furthermore, the
numerical efficiency is validated for generalized principal
component analysis and mixed linear and nonlinear regres-
sion problems. Future directions include developing al-
gorithms with provable guarantees for non-convex fi and
exploring empirical potentials on large-scale tasks.
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A. Proof of Proposition 2.3
In this section, we provide a proof of the proposition in Section 2.

Proposition A.1 (Restatement of Proposition 2.3). Under Assumption 2.2, if |S∗| ≥ k, the optimization problem (1) admits
finitely many minimizers.

Proof. If |S∗| = k, then the only minimizer up to a permutation of indices is x1,x2, . . . ,xk, such that

{x1,x2, . . . ,xk} = S∗.

Next we consider the case where |S∗| > k. Let R be the set of all minimizers of (1). Due to the µ-strong convexity of fi,
the set R is nonempty. Let T be the set of all partitions C1, C2, . . . , Ck of [N ], such that Cj ̸= ∅ for all j ∈ [k]. The set T
is finite. Next, we show there is an injection from R to T . For X = (x1,x2, . . . ,xk) ∈ R, we recurrently define

CX
j = {i ∈ [N ] | fi(xj) = min

l
(fi(xl))}\

(
∪1≤j′≤j−1C

X
j′
)
.

We claim that all CX
j ’s are nonempty. Otherwise, if there is an index j such that CX

j = ∅, we have a z ∈
S∗\{x1,x2, . . . ,xk}. Replacing the j-th parameter xj with z, we have

F (x1,x2, . . . ,xk) > F (x1,x2, . . . ,xj−1, z,xj+1, . . . ,xk).

This contradicts the assumption that X is a minimizer of (1). Therefore, X → (CX
1 , C

X
2 , . . . , C

X
k ) is a well-defined map

from R to T . Consider another Y = (y1,y2, . . . ,yk) ∈ R. If CX
j = CY

j for all j ∈ [k], due to the µ-strong convexity of
fi’s, we have

yj = argmin
z

∑
i∈CY

j

fi(z) = argmin
z

∑
i∈CX

j

fi(z) = xj , ∀j ∈ [k].

Thus, the map defined above is injective. Overall, R is a finite set.

B. Algorithm details
In this section, we provide the details of the algorithms presented in Section 3.

B.1. Initialization with alternative scores

When the score function v(j)i is taken as the squared gradient norm as in (14), the pseudo-code of the initialization can be
found in Algorithm 4.

B.2. Details on momentum Lloyd’s Algorithm

In this section, we elaborate on the details of momentum Lloyd’s Algorithm 3. We use x(t)
1 ,x

(t)
2 , . . . ,x

(t)
k as the k variables

to be optimized. Correspondingly, we introduce m(t)
1 ,m

(t)
2 , . . . ,m

(t)
k as their momentum. We use the same notation F (t)

j in
(16) as the group objective function. In each iteration, we update x using momentum gradient descent and update m using
the gradient of the group function.

x
(t+1)
j = x

(t)
j − γm

(t)
j ,

m
(t+1)
j = βm

(t)
j +∇F (t+1)

j (x
(t+1)
j ).

The update of C(t)
j in the momentum algorithm is different from the Lloyd’s Algorithm 2. We introduce an acceleration

quantity

u
(t+1)
j =

1

1− β
(x

(t+1)
j − βx

(t)
j ).

Each class is then renewed around the center u(t+1)
j . We update index i ∈ [N ] to the class C(t+1)

j where fi(u
(t+1)
j ) attains

the minimum value among all j ∈ [k]. To ensure the stability of the momentum accumulation, we further introduce a

12
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Algorithm 4 Initialization
1: Sample i1 uniformly at random from [N ] and compute

x
(0)
1 = x∗

i1 = argmin
x

fi1(x).

2: for j = 2, 3, . . . , k do
3: Compute scores v(j) =

(
v
(j)
1 , v

(j)
2 , . . . , v

(j)
N

)
via

v
(j)
i = min

1≤j′≤j−1

∥∥∥∇fi(x(0)
j′ )
∥∥∥2 .

4: Compute the sampling weights w(j) =
(
w

(j)
1 , . . . , w

(j)
N

)
by normalizing {v(j)i }Ni=1,

w
(j)
i =

v
(j)
i∑N

i′=1 v
(j)
i′

.

5: Sample ij ∈ [N ] according to the weights w(j) and compute

x
(0)
j = x∗

ij = argmin
x

fij (x).

6: end for

controlled reclassification method. We set a reclassification factor α > 1. We update C(t)
j to C(t+1)

j in the following way to
ensure

1

α
|C(t)

j | ≤ |C(t+1)
j | ≤ α|C(t)

j |.

The key idea is to carefully reclassify each index one by one until the size of one class breaks the above restriction. We
construct Cj,0 = C

(t)
j , j ∈ [k] as the initialization of the reclassification. We randomly, non-repeatedly pick indices i from

[N ] one by one. For l looping from 1 to N , we let Cj,l−1, j ∈ [k] be the classification before the l-th random index is picked.
Let il be the l-th index sampled. We reassign il to the j-th class, such that

fil(u
(t+1)
j ) = min

j′∈[k]
fil(u

(t+1)
j′ ).

There will be at most two classes changed due to the one-index reassignment. We update the class notations from Cj′,l−1 to
Cj′,l for all j′ ∈ [N ]. If there is any change between Cj′,l−1 and Cj′,l, we check whether

1

α
|C(t)

j′ | ≤ |Cj′ | ≤ α|C(t)
j′ |

holds. If the above restriction holds for all j′ ∈ [N ], we accept the reclassification and move on to the next index sample.
Otherwise, we stop the process and return C(t+1)

j = Cj,l−1, j ∈ [k]. If the reclassification trial successfully loops to the last

index. We assign C(t+1)
j = Cj,N , j ∈ [k].

C. Initialization error bounds
In this section, we prove the error bounds of the initialization Algorithms 1 and 4. Before our proof, we prepare the following
concepts and definitions.

Definition C.1. For any nonempty C ⊂ [N ], we define

∆C :=
1

|C|
∑
i∈C

∑
i′∈C

∥x∗
i − x∗

i′∥2.

13
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Definition C.2. Let I ⊂ [N ] be an index set, M ⊂ Rd be a finite set, we define

A(I,M) =
∑
i∈I

min
z∈M

(fi(z)− fi(x
∗
i )),

D(I,M) =
∑
i∈I

min
z∈M

∥∇fi(z)∥2.

Under the µ-strong convexity and L-smooth Assumptions 2.1 and 2.2, we immediately have

1

2L
D(I,M) ≤ A(I,M) ≤ 1

2µ
D(I,M).

Besides, for disjoint index sets I1, I2, we have

A(I1 ∪ I2,M) = A(I1,M) +A(I2,M),

D(I1 ∪ I2,M) = D(I1,M) +D(I2,M).

For the problem (1), the optimal solution exists due to the strong convexity assumption on fi’s. We pick one set of optimal
solutions z∗1, z

∗
2, . . . , z

∗
k. We let

MOPT = {z∗1, z∗2, . . . , z∗k}.

Based on this optimal solutions, we introduce (A1, A2, . . . , Ak) as a partition of [N ]. Aj’s are disjoint with each other and⋃
j∈[k]

Aj = [N ].

Besides, for all i ∈ Aj , fi(x) attains minimum at z∗j over MOPT,

fi(z
∗
j )− fi(x

∗
i ) = min

j′∈[k]

(
fi(z

∗
j′)− fi(x

∗
i )
)
.

The choice of MOPT and (A1, A2, . . . , Ak) is not unique. We carefully choose them so that Aj are non-empty for each
j ∈ [k].

Lemma C.3. Suppose that Assumption 2.1 holds. Let I be a nonempty index subset of [N ] and let i be sampled uniformly
at random from I. We have

Ei A(I, {x∗
i }) ≤

L

2
∆I .

Proof. We have the following direct inequality.

Ei A(I, {x∗
i }) =

1

|I|
∑
i∈I

A(I, {x∗
i })

=
1

|I|
∑
i∈I

∑
i′∈I

(fi′(x
∗
i )− fi′(x

∗
i′))

≤ 1

|I|
∑
i∈I

∑
i′∈I

L

2
∥x∗

i − x∗
i′∥2

=
L

2
∆I .

Lemma C.4. Let M be a fixed finite set in Rd. For two indices i ̸= i′, we have

A({i},M) ≤ 2L

µ
A({i′},M) + L∥x∗

i − x∗
i′∥2

14
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Proof. We have the following inequality.

A({i},M) = min
z∈M

(fi(z)− fi(x
∗
i ))

≤ min
z∈M

L

2
∥z− x∗

i ∥2

≤ min
z∈M

L(∥z− x∗
i′∥2 + ∥x∗

i′ − x∗
i ∥2)

≤ 2L

µ
min
z∈M

(fi′(z)− fi′(x
∗
i′)) + L∥x∗

i′ − x∗
i ∥2

=
2L

µ
A({i′},M) + L∥x∗

i − x∗
i′∥2.

Lemma C.5. Given an index set I and a finite point set M, suppose that A(I,M) > 0. If we randomly sample an index
i ∈ I with probability A({i},M)

A(I,M) , then we have the following inequality,

EA(I,M∪ {x∗
i }) ≤

(
L2

µ
+ L

)
∆I .

Proof. We consider the expectation of A(I,M∪ {x∗
i }) over i ∈ I. We have the following inequality bound.

EA(I,M∪ {x∗
i }) =

∑
i∈I

A({i},M)

A(I,M)
A(I,M∪ {x∗

i })

=
∑
i∈I

A({i},M)

A(I,M)

∑
i′∈I

min(A({i′},M), fi′(x
∗
i )− fi′(x

∗
i′))

(a)

≤
∑
i∈I

1
|I|
∑

i′′∈I

(
2L
µ A({i′′},M) + L∥x∗

i′′ − x∗
i ∥2
)

A(I,M)

∑
i′∈I

min(A({i′},M), fi′(x
∗
i )− fi′(x

∗
i′))

=
2L

µ

1

|I|
∑
i∈I

∑
i′∈I

min(A({i′},M), fi′(x
∗
i )− fi′(x

∗
i′))

+
L

A(I,M)|I|
∑
i∈I

∑
i′′∈I

∥x∗
i′′ − x∗

i ∥2
∑
i′∈I

min(A({i′},M), fi′(x
∗
i )− fi′(x

∗
i′))

≤ 2L

µ

1

|I|
∑
i∈I

∑
i′∈I

L

2
∥x∗

i − x∗
i′∥2 +

L

A(I,M)|I|
∑
i∈I

∑
i′′∈I

∥x∗
i′′ − x∗

i ∥2
∑
i′∈I

A({i′},M)

=

(
L2

µ
+ L

)
1

|I|
∑
i∈I

∑
i′∈I

∥x∗
i′ − x∗

i ∥2.

Here, (a) holds when applying Lemma C.4.

Lemma C.6. For any Al in the optimal partition (A1, A2, . . . , Ak), we have

∆Al
≤ 4

µ
A(Al,MOPT).

Proof. We let ȳl =
1

|Al|
∑

i∈Al
x∗
i be the geometric center of optimal fi solutions of index set Al.

∆Al
=

1

|Al|
∑
i∈Al

∑
i′∈Al

∥x∗
i − x∗

i′∥2

=
1

|Al|
∑
i∈Al

∑
i′∈Al

∥x∗
i − ȳl + ȳl − x∗

i′∥2

15
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=
1

|Al|
∑
i∈Al

∑
i′∈Al

(
∥x∗

i − ȳl∥2 + ∥ȳl − x∗
i′∥2
)

= 2
∑
i∈Al

∥x∗
i − ȳl∥2

= 2min
z

∑
i∈Al

∥x∗
i − z∥2

≤ 4

µ
min
z

∑
i∈Al

(fi(z)− fi(x
∗
i ))

=
4

µ
min
z

A(Al, {z})

=
4

µ
A(Al.MOPT).

Proposition C.7. Let I be an index set, and M be a finite point set. Let z∗ be a minimizer of the objective function∑
i∈I (fi(z)− fi(x

∗
i )). Suppose that A(I,M) > 0. If we sample an index i ∈ I with probability A({i},M)

A(I,M) , then we have
the following inequality:

EA(I,M∪ {x∗
i }) ≤ 4

(
L2

µ2
+
L

µ

)
A(Al.MOPT). (29)

Proof. The deduction of (29) is a direct combination of Lemma C.5 and Lemma C.6.

Next we prove that the L2

µ2 bound in (29) is tight.

Proposition C.8. Fix the dimension d ≥ 1, there exists an integer N . We can construct N µ-strongly convex and L-smooth
sub-functions f1, f2, . . . , fN , and a finite set M ⊆ Rd. We let {fi}Ni=1 be the N sub-functions of the sum-of-minimum
optimization problem (1). When we sample an index i ∈ [N ] with probability A({i},M)

A([N ],M) , we have

EA([N ],M∪ {x∗
i }) ≥

L2

µ2
A(Al,MOPT).

Proof. For the cases where the dimension d ≥ 2, we construct the instance in a more concise way. We consider the following
n+ 1 points, x∗

i = (1, 0, 0, . . . , 0) ∈ Rd, i = 1, 2, . . . , n, x∗
n+1 = (−1, 0, 0, . . . , 0) ∈ Rd. All the elements except the first

one of x∗
i are zero. We construct the following functions fi with minimizers x∗

i .

fi(y1, y2, . . . , yd) =
L

2
(y1 − 1)

2
+
µ

2

d∑
j=2

y2j , i = 1, 2 . . . , n,

fi(y1, y2, . . . , yd) =
µ

2
(y1 + 1)

2
+
L

2

d∑
j=2

y2j , i = n+ 1.

(30)

We have f∗i := fi(x
∗
i ) = 0 for all i ∈ [n+1]. We construct the finite set M in an orthogonal manner. We let M = {(0, ξ)},

ξ ∈ Rd−1 be a single point set. Besides, ∥ξ∥ = m≫ 1. The point ξξξ = (0, ξ) in M is orthogonal to all x∗
i ’s. Consider the

expectation over the newly sampled index i, we have

E
n+1∑
i′=1

min(fi′(ξξξ)− fi′(x
∗
i′), fi′(x

∗
i )− fi′(x

∗
i′)) =

n(L+ µm2)

n(L+ µm2) + (µ+ Lm2)
2µ+

µ+ Lm2

n(L+ µm2) + (µ+ Lm2)
2nL

We set m = exp(n). As n→ ∞, we have

lim
n→∞

E
n+1∑
i′=1

min(fi′(ξξξ)− fi′(x
∗
i′), fi′(x

∗
i )− fi′(x

∗
i′)) = 2µ+ 2

L2

µ
.
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In the meanwhile, we have

z∗ := argmin
z

n+1∑
i′=1

(fi′(z)− fi′(x
∗
i′)) =

nL− µ

nL+ µ
,

n+1∑
i′=1

(fi′(z
∗)− fi′(x

∗
i′)) =

2µnL

µ+ nL

n→∞→ 2µ

We have the following error rate:

lim
n→∞

E
∑n+1

i′=1 min(fi′(ξξξ)− fi′(x
∗
i′), fi′(x

∗
i )− fi′(x

∗
i′))∑n+1

i′=1(fi′(z
∗)− fi′(x∗

i′))
= 1 +

L2

µ2
.

As for the 1D case, we consider the following n+ 1 points. We let x∗i = 1, i = 1, 2, . . . , n, and x∗n+1 = 0. We construct:

fi(x) =


L

2
(x− 1)2, x ≤ 1,

µ

2
(x− 1)2, x ≥ 1,

i = 1, 2, . . . , n.

fi(x) =


µ

2
x2, x ≤ 1,

L

2
(x− 1)2 + µ

(
x− 1

2

)
, x ≥ 1,

i = n+ 1.

Each f∗i has the minimizer x∗i . Besides, f∗i := fi(x
∗
i ) = 0. We let M = {1 + L

µ } be a single point set. Let ξ = 1 + L
µ . We

have

fi(x
∗
n+1)− f∗i =

L

2
, i = 1, 2, . . . , n,

fn+1(x
∗
i )− f∗n+1 =

µ

2
, i = 1, 2, . . . , n,

fi

(
1 +

L

µ

)
− f∗i =

L2

2µ
, i = 1, 2, . . . , n,

fn+1

(
1 +

L

µ

)
− f∗n+1 =

L3 + 2µ2L+ µ3

2µ2
.

We have the following expectation:

E
n+1∑
i′=1

min(fi′(ξ)− fi′(x
∗
i′), fi′(x

∗
i )− fi′(x

∗
i′)) =

nL2

2µ · µ
2 + L3+2µ2L+µ3

2µ2 · nL
2

nL2

2µ + L3+2µ2L+µ3

2µ2

n→∞→ 3

2
µ+

L2

2µ
+
µ2

2L
.

Besides, we have the minimizer z∗ = nL
nL+µ of the objective function

∑n+1
i=1 (fi(z)− fi(x

∗
i )). We have

n+1∑
i=1

(fi(z
∗)− fi(x

∗
i )) =

nLµ

2(nL+ µ)

n→∞→ µ

2
.

We have the following asymptotic error bound:

lim
n→∞

E
∑n+1

i=1 min(fi(ξ)− fi(x
∗
i ), fi(x

∗
i )− fi(x

∗
i ))∑n+1

i=1 (fi(z
∗)− fi(x∗i ))

= 3 +
L2

µ2
+
µ

L
.
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We remark that the orthogonal technique used in the construction of (30) can be applied in other lower bound constructions
in the proofs of the initialization Algorithms 1 and 4 as well.

Lemma C.9. We consider the sum-of-minimum optimization (1). Suppose that S∗ is k-separate. Suppose that we
have fixed indices i1, i2, . . . , ij . We define the finite set Mj = {x∗

i1
,x∗

i2
, . . . ,x∗

ij
}. We define the index sets Lj = {l :

Al ∩ {i1, i2, . . . , ij} ≠ ∅}, Lc
j = {l : Al ∩ {i1, i2, . . . , ij} = ∅}, Ij = ∪l∈LjAl, Ic

j = ∪l∈Lc
j
Al. Let u = |Lc

j |. We sample
t ≤ u new indices. We let M+

j,s = {x∗
i1
,x∗

i2
, . . . ,x∗

ij
,x∗

ij+1
, . . . ,x∗

ij+s
} for 0 ≤ s ≤ t. In each round of sampling, the

probability of ij+s, s > 0, being sampled as i is
A({i},M+

j,s−1)

A([N ],M+
j,s−1)

. Then we have the following bound,

E A([N ],M+
j,t) ≤

(
A(Ij ,Mj) + 4

(
L2

µ2
+
L

µ

)
A(Ic

j ,MOPT)

)
(1 +Ht) +

u− t

u
A(Ic

j ,Mj). (31)

Here, Ht = 1 + 1
2 + · · ·+ 1

t is the harmonic sum.

Proof. We prove by induction on u = |Lc
j | and t. We introduce the notation

Φj(i) = A({i},Mj) = min
z∈Mj

(fi(z)− fi(x
∗
i )).

We show that if (31) holds for the case (u− 1, t− 1) and (u, t− 1), then it also holds for the case (u, t). We first prove two
base cases.

Case 1: t = 0, u > 0.

E A([N ],M+
j,t) = A([N ],Mj)

= A(Ij ,Mj) +A(Ic
j ,Mj).

Case 2: t = 1, u = 1. With probability A(Ij ,Mj)
A([N ],Mj)

, the newly sampled index ij+1 will lie in Ij , and with probability
A(Ic

j ,Mj)

A([N ],Mj)
, it will lie in Ic

j . We have bounds on the conditional expectation

E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ij

)
≤ A([N ],Mj),

E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ic

j

)
= E

(
A(Ij ,M+

j,t)
∣∣ij+1 ∈ Ic

j

)
+ E

(
A(Ic

j ,M+
j,t)
∣∣ij+1 ∈ Ic

j

)
≤ A(Ij ,Mj) +

∑
i′∈Ic

j

Φj(i
′)∑

i∈Ic
j
Φj(i)

A(Ic
j ,Mj ∪ {x∗

i′})

(a)

≤ A(Ij ,Mj) +

(
L2

µ
+ L

)
∆Ic

j

(b)

≤ A(Ij ,Mj) + 4

(
L2

µ2
+
L

µ

)
A(Ic

j ,MOPT)

Here, (a) holds when applying Lemma C.5. (b) holds since Ic
j is identical to a certain Al as u = 1 and we apply Lemma

C.6. Overall, we have the bound:

EA([N ],M+
j,t) =

A(Ij ,Mj)

A([N ],Mj)
E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ij

)
+

A(Ic
j ,Mj)

A([N ],Mj)
E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ic

j

)
≤ A(Ij ,Mj) + 4

(
L2

µ2
+
L

µ

)
A(Ic

j ,MOPT) +A(Ij ,Mj)

= 2A(Ij ,Mj) + 4

(
L2

µ2
+
L

µ

)
A(Ic

j ,MOPT)
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Next, we prove that the case (u, t) holds when the inequality holds for cases (u− 1, t) and (u− 1, t− 1). With probability
A(Ij ,Mj)
A([N ],Mj)

, the first sampled index ij+1 will lie in Ij , and with probability
A(Ic

j ,Mj)

A([N ],Mj)
, it will lie in Ic

j . Let

α = 4

(
L2

µ2
+
L

µ

)
.

We divide into two cases and compute the corresponding conditional expectations. For the case where ij+1 lies in Ij , we
have the following bound on the conditional expectation.

E
(
A([N ],M+

j,t)
∣∣ ij+1 ∈ Ij

)
≤

E
((

A(Ij ,Mj ∪ {x∗
ij+1

}) + αA(Ic
j ,MOPT)

)
(1 +Ht−1) +

u− t+ 1

u
A(Ic

j ,Mj ∪ {x∗
ij+1

})
∣∣ij+1 ∈ Ij

)
≤
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht−1) +

u− t+ 1

u
A(Ic

j ,Mj).

For the case where ij+1 lies in Ic
j , we have the following inequality:

E
(
A([N ],M+

j,t)
∣∣ ij+1 ∈ Ic

j

)
≤
∑
l∈Lc

j

∑
i∈Al

Φj(i)∑
i′∈Ic

j
Φj(i′)

[(
A(Ij ∪Al,Mj ∪ {x∗

i }) + αA(Ic
j \Al,MOPT)

)
(1 +Ht−1)

+
u− t

u− 1
A(Ic

j \Al,Mj ∪ {x∗
i })
]

≤
∑
l∈Lc

j

∑
i∈Al

Φj(i)∑
i′∈Ic

j
Φj(i′)

[(
A(Ij ,Mj) +A(Al,Mj ∪ {x∗

i }) + α(A(Ic
j ,MOPT)−A(Al,MOPT))

)
(1 +Ht−1)

+
u− t

u− 1

(
A(Ic

j ,Mj)−A(Al,Mj)
)]

(a)

≤
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht−1) +

u− t

u− 1

A(Ic
j ,Mj)−

∑
l∈Lc

j

A(Al,Mj)
2

A(Ic
j ,Mj)


(b)

≤
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht−1) +

u− t

u− 1

(
A(Ic

j ,Mj)−
1

u
A(Ic

j ,Mj)

)
=
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht−1) +

u− t

u
A(Ic

j ,Mj).

Here, (a) holds when applying Lemma C.5 and Lemma C.6. (b) holds as

∑
l∈Lc

j

A(Al,Mj)
2 ≥ 1

u

∑
l∈Lc

j

A(Al,Mj)

2

=
1

u
A(Ic

j ,Mj)
2.

Overall, we have the bound:

EA([N ],M+
j,t) =

A(Ij ,Mj)

A([N ],Mj)
E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ij

)
+

A(Ic
j ,Mj)

A([N ],Mj)
E
(
A([N ],M+

j,t)
∣∣ij+1 ∈ Ic

j

)
≤
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht−1) +

u− t

u
A(Ic

j ,Mj) +
1

u

A(Ic
j ,Mj)A(Ij ,Mj)

A([N ],Mj)

(a)

≤
(
A(Ij ,Mj) + αA(Ic

j ,MOPT)
)
(1 +Ht) +

u− t

u
A(Ic

j ,Mj).

Here, (a) holds since u ≥ t and
A(Ic

j ,Mj)A(Ij ,Mj)

A([N ],Mj)
≤ A(Ij ,Mj).

The proof concludes.
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Theorem C.10 (Restatement of Theorem 4.1). Suppose that the solution set S∗ is k-separate. Let

Minit = {x∗
i1 ,x

∗
i2 , . . . ,x

∗
ik
}

be the initial points sampled by the random initialization Algorithm 1. We have the following bound:

E A([N ],Minit) ≤ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
A([N ],MOPT). (32)

Proof. We start with a fixed index i1, let M1 = {x∗
i1
}. Suppose xi1 ∈ Al. Then we use Lemma C.9 with u = k−1, t = k−1.

Let

α = 4

(
L2

µ2
+
L

µ

)
.

We have

E A([N ],M+
1,k−1) ≤ (A(Al,M1) + αA([N ]\Al,MOPT)) (1 +Hk−1)

The term EA([N ],M+
1,k−1) can be regarded as the conditional expectation of A([N ],Minit) given i1.

EA([N ],M+
1,k−1) = E (A([N ],Minit)|i1)

According to Algorithm 1, the first index i1 is uniformly random in [N ]. We take the expectation over i1 and get

E A([N ],Minit) ≤
1

N

∑
l∈[k]

∑
i∈Al

(A(Al, {x∗
i }) + αA([N ]\Al,MOPT)) (1 +Hk−1)

=

 1

N

∑
l∈[k]

∑
i∈Al

A(Al, {x∗
i }) + α

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

(a)

≤

 1

N

∑
l∈[k]

|Al|
L

2
∆Al

+ α

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

(b)

≤

 1

N

∑
l∈[k]

|Al|
2L

µ
A(Al,MOPT) + α

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

≤ αA([N ],MOPT)(1 +Hk−1)

≤ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
A([N ],MOPT).

Here, (a) holds when applying Lemma C.3. (b) holds as a result of Lemma C.6.

When we take
fi(x) =

1

2
∥x− x∗

i ∥2,

the optimization problem (1) reduces to the k-means problem, and Algorithm 1 reduces to the k-means++ algorithm.
Therefore, according to (Arthur & Vassilvitskii, 2007), the bound given in Theorem C.10 is tight in ln k up to a constant.
Next, we give a more detailed lower bound considering the conditioning number L

µ .

Theorem C.11 (Restatement of Theorem 4.2). Given a fixed cluster number k > 0, there exists N > 0. We can construct
N µ-strongly convex and L-smooth sub-functions {fi}Ni=1, whose minimizer set S∗ is k-separate. Besides, the sum-of-min
objective function F satisfies that F ∗ > f∗, so that A([N ],MOPT ) > 0. When we apply Algorithm 1 to sample the initial
centers Minit, we have the following error bound:

EA([N ],Minit) ≥
1

2

L2

µ2
ln kA([N ],MOPT). (33)
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Proof. We construct the following problem. We fix the cluster number to be k. We let the dimension to be 2k. We pick the
vertices of a k-simplex as the “centers” of k clusters. The k-simplex is embedded in a k − 1 dimensional subspace. We
let the first k elements of the vertices’ coordinates to be non-zero, while the other elements are zero. We denote the first k
elements of the l-th vertex by ξ(l) ∈ Rk. We let the k-simplex be centered at the origin, so that the magnitudes ∥ξ(l)∥’s are
the same. We let m be the edge length of the simplex. The functions in each cluster follows the orthogonal construction
technique in (30). Specifically, in cluster l, we construct n+ 1 functions mapping from R2k to R as

fi,l(y) =
µ

2
∥y1:d − ξ(l)∥2 + µ

2

∑
j≥k+1,j ̸=k+l

y2j +
L

2
(yk+l + 1)2, i = 1, 2, . . . , n,

fi,l(y) =
L

2
∥y1:d − ξ(l)∥2 + L

2

∑
j≥k+1,j ̸=k+l

y2j +
µ

2
(yk+l − 1)2, i = n+ 1.

(34)

We have a total of N = k(n + 1) sub-functions. We let m = exp(n), n ≫ 1, so that {fi,l}n+1
i=1 will be assigned in the

same cluster when computing the minimizer of the objective function F . We let el ∈ Rk be the l-th unit vector, then the
minimizers of the above sub-functions are x∗

i,l = [ξ(l);−el](i = 1, 2, . . . , n) and x∗
n+1,l = [ξ(l); el]. We let S∗ be the set of

all the minimizers {x1,l}kl=1 ∪ {xn+1,l}kl=1. For each cluster l, we can compute

min
y

n+1∑
i=1

(fi,l(y)− f∗i,l) =
2nLµ

nL+ µ
.

Thus, we have

A([N ],MOPT) = k
2nLµ

nL+ µ
.

Let M be a nonempty subset of S∗. We study the optimality gap of F when sampling the new centers based on M. We
divide the k clusters into 4 classes as follows:

Ca = {l |x∗
1,l ∈ M,x∗

n+1,l ̸∈ M},
Cb = {l |x∗

n+1,l ∈ M,x∗
1,l ̸∈ M},

Cf = {l |x∗
1,l ∈ M,x∗

n+1,l ∈ M},
Cu = {l |x∗

1,l ̸∈ M,x∗
n+1,l ̸∈ M}.

We define a = |Ca|, b = |Cb|, u = |Cu|. Consider M as the existing centers, we continue sampling t ≤ u new centers
using Algorithm 1. Let w∗

1,w
∗
2, . . . ,w

∗
t be the newly sampled centers. We define the quantity

ϕa,b,u,t = EA([N ],M∪ {w∗
1,w

∗
2, . . . ,w

∗
t }),

which is the expected optimality gap after sampling. We will prove by induction that

ϕa,b,u,t ≥ αt+1

[
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
(u− t) + (2nLb+ 2µa)(1 +Hu) +

(
2L2

µ
+ 2µ

)
Gu

]
.

(35)
Here Hu is the harmonic series. Gu is recursively defined as:

G0 = 0, Gu −Gu−1 = β(1 +Hu−1).

The parameter 0 < α, β < 1 are chosen as

α = 1− 1

m
, β = 1− 1√

n
.

We denote the right0hand side of (35) as αt+1φa,b,u,t.

We consider the case where t = 0, we have

ϕa,b,u,0 =
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u+ 2nLb+ 2µa.
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In the mean while,

φa,b,u,0 =
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u+ (2nLb+ 2µa)(1 +Hu) +

(
2L2

µ
+ 2µ

)
Gu.

If u = 0, we have
ϕa,b,0,0 = φa,b,0,0 ≥ αφa,b,0,0.

If u ≥ 1, then 1
2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u becomes the leading term,

(1− α)
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u ≥ 1

2
nmµu

≥ (2nLb+ 2µa)(1 +Hu) +

(
2L2

µ
+ 2µ

)
Gu

≥ α

(
(2nLb+ 2µa)(1 +Hu) +

(
2L2

µ
+ 2µ

)
Gu

)
.

Rearrange the left-hand side and the right-hand side of the inequality, we have:

1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u ≥

α

(
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u+ (2nLb+ 2µa)(1 +Hu) +

(
2L2

µ
+ 2µ

)
Gu

)
= αφa,b,u,0.

Therefore, we have
ϕa,b,u,0 ≥ αφa,b,u,0.

Next, we induct on t. When t ≥ 1, we have u ≥ 1. We use the one-step transfer technique. We let

K =
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
u+ 2µa+ 2nbL,

A =
1

2

(
n
(
µm2 + µ+ L

)
+
(
Lm2 + L+ µ

))
,

B =
2L2

µ
+ 2µ.

We have

ϕa,b,u,t

=
n(µm2 + µ+ L)u

2K
ϕa+1,b,u−1,t−1 +

(Lm2 + L+ µ)u

2K
ϕa,b+1,u−1,t−1 +

2nLb

K
ϕa,b−1,u,t−1 +

2µa

K
ϕa−1,b,u,t−1

≥n(µm
2 + µ+ L)u

2K
αt [A(u− t) + (2nLb+ 2µa+ 2µ)(1 +Hu−1) +BGu−1]

+
(Lm2 + L+ µ)u

2K
αt [A(u− t) + (2nLb+ 2µa+ 2nL)(1 +Hu−1) +BGu−1]

+
2nLb

K
αt [A(u− t+ 1) + (2nLb+ 2µa− 2nL)(1 +Hu) +BGu]

+
2µa

K
αt [A(u− t+ 1) + (2nLb+ 2µa− 2µ)(1 +Hu) +BGu]

=
n(µm2 + µ+ L)u

2K
αtφa,b,u,t

+
n(µm2 + µ+ L)u

2K
αt [2µ(1 +Hu−1) + (2nLb+ 2µa)(Hu−1 −Hu) +B(Gu−1 −Gu)]

+
(Lm2 + L+ µ)u

2K
αtφa,b,u,t
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+
(Lm2 + L+ µ)u

2K
αt [2nL(1 +Hu−1) + (2nLb+ 2µa)(Hu−1 −Hu) +B(Gu−1 −Gu)]

+
2nLb

K
αtφa,b,u,t +

2nLb

K
αt(A− 2nL(1 +Hu)) +

2µa

K
αtφa,b,u,t +

2µa

K
αt(A− 2µ(1 +Hu))

=αtφa,b,u,t +
1

K
αt

[
1

2
n(µm2 + µ+ L)u

(
2µ− β

(
2µ+

2L2

µ

))
(1 +Hu−1)

]
+

1

K
αt

[
(Lm2 + L+ µ)unL(1 +Hu−1)−

1

2
(Lm2 + L+ µ)uβB(1 +Hu−1)

− 4µ2a(1 +Hu)− 4n2L2b(1 +Hu)

]
=αtφa,b,u,t +

1

K
αt

[
−1

2

(
n(µm2 + µ+ L) + (Lm2 + L+ µ)

)
(2nLb+ 2µa) +A(2nLb+ 2µa)

]
+

1

K
αt

[
1

2
n(µm2 + µ+ L)u

(
−2L2

µ
+

1√
n
(2µ+

2L2

µ
)

)
(1 +Hu−1) + (Lm2 + L+ µ)unL(1 +Hu−1)

]
+

1

K
αt

[
−1

2
(Lm2 + L+ µ)uβB(1 +Hu−1)− 4µ2a(1 +Hu)− 4n2L2b(1 +Hu)

]
=αtφa,b,u,t +

1

K
αt
√
nm2u(1 +Hu−1)(µ

2 + L2)

+
1

K
αt

[
n(µ+ L)u

(
L− L2

µ
+

1√
n

(
µ+

L2

µ

))
(1 +Hu−1)−

1

2
(Lm2 + L+ µ)uβB(1 +Hu−1)

− 4µ2a(1 +Hu)− 4n2L2b(1 +Hu)

]
(a)

≥αtφa,b,u,t

≥αt+1φa,b,u,t.

For (a), we have

√
nm2u(1 +Hu−1)(µ

2 + L2) ≥ n(µ+ L)u

(
L− L2

µ
+

1√
n

(
µ+

L2

µ

))
(1 +Hu−1)

− 1

2
(Lm2 + L+ µ)uβB(1 +Hu−1)− 4µ2a(1 +Hu)− 4n2L2b(1 +Hu).

when m = exp(n) and n≫ 1.

Thus the inequality (35) holds. Let u = t = k − 1. We have

ϕa,b,k−1,k−1 ≥ αk

[
(2nLb+ 2µa)(1 +Hk−1) +

(
2L2

µ
+ 2µ

)
Gk−1

]
.

Let n ≥ 100k2. Since m = exp(n) ≥ 100k2, then

αk ≥ 3

4
, β = 1− 1

10k
≥ 9

10
.

ϕa,b,t−1,t−1 ≥ 3

4

(
2L2

µ
+ 2µ

)
Gk−1.

We have the following inequalities:

Hk−1 = 1 +
1

2
+ · · ·+ 1

k − 1
≥
∫ k

1

1

t
dt = ln k, k ≥ 1,

Gk = β

k−1∑
j=0

(1 +Hj) ≥ β

k + k∑
j=1

ln j

 ≥ β

(
k +

∫ k

t=1

ln t dt

)
= β(k ln k + 1).
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Therefore, we have

EA([N ],Minit) ≥
1

2
k ln k

(
2L2

µ
+ 2µ

)
= k ln k

(
L2

µ
+ µ

)
.

In the meanwhile, we have an upper bound estimate for A([N ],MOPT). We pick Mξ = {[ξ(l);−el]}kl=1 as the centers. We
have

A([N ],MOPT) ≤ A([N ],Mξ) = 2kµ.

Thus,

EA([N ],Minit) ≥
1

2
ln k

L2

µ2
A([N ],MOPT).

We prove two different error bounds when the estimate of fi(z) − fi(x
∗
i ) is not accurate. We consider the additive and

multiplicative errors on the oracle fi(z)− fi(x
∗
i ).

In Algorithm 1, when computing the score v(j)i , we suppose we do not have the exact f∗i , instead, we have an estimate f̃∗i ,
such that

|f̃∗i − f∗i | ≤ ϵ

for a certain error factor ϵ > 0. We define

Ã(I,M) =
∑
i∈I

max

(
min
z∈M

(
fi(z)− f̃∗i

)
, 0

)
=
∑
i∈I

min
z∈M

(
max

(
fi(z)− f̃∗i , 0

))
.

Lemma C.12. Let I be an index set, and M be a finite point set. Suppose that Ã(I,M) > 0. We sample an index i ∈ I
with probability Ã({i},M)

Ã(I,M)
, then we have the following inequality:

EÃ(I,M∪ {x∗
i }) ≤ |I|

(
1 +

4L

µ

)
ϵ+ 4

(
L2

µ2
+
L

µ

)
min
z

∑
i∈I

(fi(z)− fi(x
∗
i )). (36)

Proof. We have

Ã({i},M) = max

(
min
z∈M

(fi(z)− f̃∗i ), 0

)
≤ ϵ+ min

z∈M
(fi(z)− f∗i )

≤ ϵ+
L

2
min
z∈M

∥z− x∗
i ∥2

≤ ϵ+ L∥x∗
i − x∗

i′∥2 + L min
z∈M

∥z− x∗
i′∥2

≤ ϵ+ L∥x∗
i − x∗

i′∥2 +
2L

µ
min
z∈M

(fi′(z)− fi′(x
∗
i′))

≤
(
1 +

2L

µ

)
ϵ+ L∥x∗

i − x∗
i′∥2 +

2L

µ
min
z∈M

(fi′(z)− f̃∗i′)

≤
(
1 +

2L

µ

)
ϵ+ L∥x∗

i − x∗
i′∥2 +

2L

µ
max

(
min
z∈M

(fi′(z)− f̃∗i′), 0

)
=

(
1 +

2L

µ

)
ϵ+ L∥x∗

i − x∗
i′∥2 +

2L

µ
Ã({i′},M).

We have

EÃ(I,M∪ {x∗
i })

=
∑
i∈I

Ã({i},M)

Ã(I,M)
Ã(I,M∪ {x∗

i })
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=
∑
i∈I

Ã({i},M)

Ã(I,M)

∑
i′′∈I

Ã({i′′},M∪ {x∗
i })

=
∑
i∈I

Ã({i},M)

Ã(I,M)

∑
i′′∈I

min(Ã({i′′},M),max(fi′′(x
∗
i )− f̃∗i′′ , 0))

≤
∑
i∈I

1
|I|
∑

i′∈I

{(
1 + 2L

µ

)
ϵ+ L∥x∗

i − x∗
i′∥2 + 2L

µ Ã({i′},M)
}

Ã(I,M)

∑
i′′∈I

min(Ã({i′′},M),max(fi′′(x
∗
i )− f̃∗i′′ , 0))

≤|I|
(
1 +

2L

µ

)
ϵ+ L

1

|I|
∑
i∈I

∑
i′∈I

∥x∗
i − x∗

i′∥2 +
2L

µ

1

|I|
∑
i∈I

∑
i′′∈I

max(fi′′(x
∗
i )− f̃∗i′′ , 0)

≤|I|
(
1 +

4L

µ

)
ϵ+

(
L+

L2

µ

)
1

|I|
∑
i∈I

∑
i′∈I

∥x∗
i − x∗

i′∥2

=|I|
(
1 +

4L

µ

)
ϵ+ 2

(
L+

L2

µ

)
min
z

∑
i∈I

∥x∗
i − z∥2

≤|I|
(
1 +

4L

µ

)
ϵ+ 4

(
L2

µ2
+
L

µ

)
min
z

∑
i∈I

(fi(z)− fi(x
∗
i )).

Lemma C.13. Suppose that we have fixed indices i1, i2, . . . , ij . We define the finite set Mj = {x∗i1 , x
∗
i2
, . . . , x∗ij}. We define

the index sets Lj = {l : Al ∩ {i1, i2, . . . , ij} ̸= ∅}, Lc
j = {l : Al ∩ {i1, i2, . . . , ij} = ∅}, Ij = ∪l∈Lj

Al, Ic
j = ∪l∈Lc

j
Al.

Let u = |Lc
j |. Suppose that u > 0. We sample t ≤ u new indices. We let M+

j,s = {x∗i1 , x
∗
i2
, . . . , x∗ij , x

∗
ij+1

, . . . , x∗ij+s
} for

0 ≤ s ≤ t. In each round of sampling, the probability of ij+s, s > 0, being sampled as i is
Ã({i},M+

j,s−1)

Ã([N ],M+
j,s−1)

. Then we have the

following bound:

EÃ([N ],M+
j,t) ≤ (1 + Ht)

[
Ã(Ij ,Mj) + |Ic

j |
(
1 +

4L

µ

)
ϵ+ 4

(
L2

µ2
+
L

µ

)
A(Ic

j ,MOPT)

]
+
u− t

u
Ã(Ic

j ,Mj).

(37)

Proof. The key idea of the proof is similar to Lemma C.9. We let

α = 1 +
4L

µ
, β = 4

(
L2

µ2
+
L

µ

)
.

We prove by induction. When t = 0, the inequality obviously holds. When t > 0, u = 1, we have the inequality:

EÃ([N ],M+
j,t) ≤

Ã(Ij ,Mj)

Ã([N ],Mj)
Ã([N ],Mj) +

Ã(Ic
j ,Mj)

Ã([N ],Mj)

(
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

)
≤ Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT) + Ã(Ic

j ,Mj).

For the general (t, u) case, EÃ([N ],M+
j,t) can be bounded by two parts. With probability Ã(Ij ,Mj)

Ã([N ],Mj)
, the first sampled

index lies in Ij , and the conditional expectation is bounded by:

(1 +Ht−1)
[
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

]
+
u− t+ 1

u
Ã(Ic

j ,Mj).

With probability
Ã(Ic

j ,Mj)

Ã([N ],Mj)
, the first sampled index lies in Ic

j . The conditional expectation is bounded by:

∑
l∈Lc

Ã(Al,Mj)

Ã(Ic
j ,Mj)

∑
i∈Al

Ã({i},Mj)

Ã(Al,Mj)

{
(1 +Ht−1)

(
Ã(Ij ∪Al,Mj ∪ {x∗

i }) + |Ic
j \Al|αϵ+ βA(Ic

j \Al,MOPT)
)
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+
u− t

u− 1
Ã(Ic

j \Al,Mj ∪ {x∗
i })
}

≤
∑
l∈Lc

Ã(Al,Mj)

Ã(Ic
j ,Mj)

∑
i∈Al

Ã({i},Mj)

Ã(Al,Mj)

{
(1 +Ht−1)

(
Ã(Ij ,Mj) + Ã(Al,Mj ∪ {x∗

i }) + |Ic
j \Al|αϵ

+βA(Ic
j ,MOPT)− βA(Al,MOPT)

)
+
u− t

u− 1
(Ã(Ic

j ,Mj)− Ã(Al,Mj))

}
≤ (1 +Ht−1)

(
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

)
+
u− t

u
Ã(Ic

j ,Mj).

Overall, we have the following inequality:

EÃ([N ],M+
j,t) ≤

Ã(Ij ,Mj)

Ã([N ],Mj)

{
(1 +Ht−1)

[
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

]
+
u− t+ 1

u
Ã(Ic

j ,Mj)

}
+

Ã(Ic
j ,Mj)

Ã([N ],Mj)

{
(1 +Ht−1)

(
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

)
+
u− t

u
Ã(Ic

j ,Mj)

}
≤ (1 +Ht)

(
Ã(Ij ,Mj) + |Ic

j |αϵ+ βA(Ic
j ,MOPT)

)
+
u− t

u
Ã(Ic

j ,Mj).

Theorem C.14 (Restatement of Theorem 4.3). Suppose that the solution set S∗ is (k,
√

2ϵ
µ )-separate. Let

Minit = {x∗
i1 ,x

∗
i2 , . . . ,x

∗
ik
}

be the initial points sampled by the random initialization Algorithm 1 with noisy oracles f̃∗i . We have the following bound:

1

N
EA([N ],Minit) ≤ ϵ+ (2 + ln k)

(
1 +

4L

µ

)
ϵ+ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
1

N
A([N ],MOPT).

Proof. The proof is similar to that of Theorem C.10. We let

α = 1 +
4L

µ
, β = 4

(
L2

µ2
+
L

µ

)
.

We fix the first index i1. Suppose that i1 lies in Al, we have

E Ã([N ],M+
1,k−1) ≤

(
Ã(Al, {x∗

i1}) + |[N ]\Al|αϵ+ βA([N ]\Al,MOPT)
)
(1 +Hk−1).

We have

E Ã([N ],Minit) ≤

 1

N

∑
l∈[k]

∑
i∈Al

Ã(Al, {x∗
i }) +Nαϵ− 1

N

∑
l∈[k]

|Al|2αϵ

+β

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

(a)

≤

 1

N

∑
l∈[k]

(
|Al|2ϵ+

L

2
|Al|∆Al

)
+Nαϵ− 1

N

∑
l∈[k]

|Al|2αϵ

+β

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

(b)

≤

 1

N

∑
l∈[k]

(
|Al|2ϵ+

2L

µ
|Al|A(Al,MOPT)

)
+Nαϵ− 1

N

∑
l∈[k]

|Al|2αϵ
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+β

A([N ],MOPT)−
1

N

∑
l∈[k]

|Al|A(Al,MOPT)

 (1 +Hk−1)

≤ (Nαϵ+ βA([N ],MOPT)) (1 +Hk−1)

≤ (2 + ln k)

(
1 +

4L

µ

)
Nϵ+ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
A([N ],MOPT).

Here, (a) holds when applying Lemma C.3. (b) holds when applying

L

2
∆Al

= Lmin
z

∑
i∈Al

∥x∗
i − z∥2 ≤ 2L

µ
min
z

∑
i∈Al

(fi(z)− f∗i ) =
2L

µ
A(Al,M(D)

OPT).

Therefore, we have

EA([N ],Minit) ≤ Nϵ+ (2 + ln k)

(
1 +

4L

µ

)
Nϵ+ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
A([N ],MOPT),

1

N
EA([N ],Minit) ≤ ϵ+ (2 + ln k)

(
1 +

4L

µ

)
ϵ+ 4(2 + ln k)

(
L2

µ2
+
L

µ

)
1

N
A([N ],MOPT).

The proof of Theorem 4.4 is similar to the proof of Theorem 4.3, we skip the details here.

D. Convergence of Lloyd’s algorithm
In this section, we provide a convergence analysis for Algorithms 2 and 3.
Theorem D.1 (Restatement of Theorem 4.6). In Algorithm 2, we take the step size γ = 1

L . If fi are L-smooth, we have the
following convergence result:

1

T + 1

T∑
t=0

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2L

T + 1

(
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ⋆

)
.

Here, F ⋆ is the minimum of F .

Proof. According to the L-smoothness assumption on fi, F
(t)
j is also L-smooth, which implies that

F
(t)
j (x

(t+1)
j ) ≤ F

(t)
j (x

(t)
j ) + ⟨∇F (t)

j (x
(t)
j ),x

(t+1)
j − x

(t)
j ⟩+ L

2
∥x(t+1)

j − x
(t)
j ∥2

= F
(t)
j (x

(t)
j )− 1

2L
∥∇F (t)

j (x
(t)
j )∥2,

1

2L
∥∇F (t)

j (x
(t)
j )∥2 ≤ F

(t)
j (x

(t)
j )− F

(t)
j (x

(t+1)
j ),

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2L

(
F

(t)
j (x

(t)
j )− F

(t)
j (x

(t+1)
j )

)
.

Averaging over ∥∇F (t)
j (x

(t)
j )∥2 with weights |C(t)

j |/N , we have

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2L

(
F (x

(t)
1 ,x

(t)
2 , . . . ,x

(t)
k )− F (x

(t+1)
1 ,x

(t+1)
2 , . . . ,x

(t+1)
k )

)
.

Averaging over t from 0 to T , we have

1

T + 1

T∑
t=0

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2L

T + 1

(
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ⋆

)
.
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Next, we present a convergence theorem for the momentum algorithm. For simplification, we use the notation

U(t) = (u
(t)
1 ,u

(t)
2 , . . . ,u

(t)
k ).

We have the following convergence theorem:

Theorem D.2 (Restatement of Theorem 4.7). Consider Algorithm 3. Suppose that Assumption 2.1 holds, α > 1, and

γ ≤ min

(
1− β

2L
,
(1− β)

3
2 (1− αβ)

1
2

2α
1
2Lβ

)
.

Then it holds that

1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2(1− β)

γ
·
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ∗

T
.

Proof. The variable u
(t)
j satisfies the following property,

u
(t+1)
j − u

(t)
j =

1

1− β

(
(x

(t+1)
j − x

(t)
j )− β(x

(t)
j − x

(t−1)
j )

)
=

−γ
1− β

(
m

(t)
j − βm

(t−1)
j

)
=

−γ
1− β

∇F (t)
j (x

(t)
j ).

We have the following inequality:

F
(t)
j (u

(t+1)
j ) ≤ F

(t)
j (u

(t)
j ) + ⟨∇F (t)

j (u
(t)
j ),u

(t+1)
j − u

(t)
j ⟩+ L

2
∥u(t+1)

j − u
(t)
j ∥2

= F
(t)
j (u

(t)
j )− γ

1− β
⟨∇F (t)

j (u
(t)
j ),∇F (t)

j (x
(t)
j )⟩+ L

2

γ2

(1− β)2
∥∇F (t)

j (x
(t)
j )∥2

= F
(t)
j (u

(t)
j )− γ

1− β
⟨∇F (t)

j (u
(t)
j )−∇F (t)

j (x
(t)
j ),∇F (t)

j (x
(t)
j )⟩

+

(
L

2

γ2

(1− β)2
− γ

1− β

)
∥∇F (t)

j (x
(t)
j )∥2

≤ F
(t)
j (u

(t)
j ) +

(
L

2

γ2

(1− β)2
− γ

1− β

)
∥∇F (t)

j (x
(t)
j )∥2

+
γ

1− β

ϵ

2
∥∇F (t)

j (u
(t)
j )−∇F (t)

j (x
(t)
j )∥2 + γ

1− β

1

2ϵ
∥∇F (t)

j (x
(t)
j )∥2

≤ F
(t)
j (u

(t)
j ) +

(
L

2

γ2

(1− β)2
− γ

1− β
+

1

2ϵ

γ

1− β

)
∥∇F (t)

j (x
(t)
j )∥2 + ϵ

2

L2β2γ3

(1− β)3
∥m(t−1)

j ∥2.

Rearranging the inequality, we have(
γ

1− β
− L

2

γ2

(1− β)2
− 1

2ϵ

γ

1− β

)
∥∇F (t)

j (x
(t)
j )∥2 ≤ F

(t)
j (u

(t)
j )− F

(t)
j (u

(t+1)
j ) +

ϵ

2

L2β2γ3

(1− β)3
∥m(t−1)

j ∥2.

We sum over j = 1, 2, . . . , k with weights |Cj |
N and get

(
γ

1− β
− L

2

γ2

(1− β)2
− 1

2ϵ

γ

1− β

) k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2

≤ F (U(t))−
k∑

j=1

|C(t)
j |
N

F
(t)
j (u

(t+1)
j ) +

ϵ

2

L2β2γ3

(1− β)3

k∑
j=1

|C(t)
j |
N

∥m(t−1)
j ∥2.
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Since
k∑

j=1

|C(t)
j |
N

F
(t)
j (u

(t+1)
j ) =

1

N

k∑
j=1

∑
i∈C

(t)
j

fi(u
(t+1)
j ) ≥ F (U(t+1)),

we have

(
γ

1− β
− L

2

γ2

(1− β)2
− 1

2ϵ

γ

1− β

) k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2

≤ F (U(t))− F (U(t+1)) +
ϵ

2

αL2β2γ3

(1− β)3

k∑
j=1

|C(t−1)
j |
N

∥m(t−1)
j ∥2.

Summing both sides from t = 1 to T , then dividing both sides by T , we have(
γ

1− β
− L

2

γ2

(1− β)2
− 1

2ϵ

γ

1− β

)
1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2

≤ F (U(1))− F (U(T+1))

T
+
ϵ

2

αL2β2γ3

(1− β)3
1

T

T∑
t=1

k∑
j=1

|C(t−1)
j |
N

∥m(t−1)
j ∥2.

(38)

Now, we consider the average term 1
T

∑T
t=1

|C(t)
j |
N ∥m(t)

j ∥2. For m(t)
j , we have

m
(t)
j = βm

(t−1)
j +∇F (t)

j (x
(t)
j )

= βtm
(0)
j +

t−1∑
l=0

βl∇F (t−l)
j (x

(t−l)
j )

=

t∑
l=1

βt−l∇F (l)
j (x

(l)
j ).

We have the following bound on the squared norm of m(t)
j :

∥m(t)
j ∥2 =

∥∥∥∥∥
t∑

l=1

βt−l∇F (l)
j (x

(l)
j )

∥∥∥∥∥
2

=

(
t∑

s=1

βt−s

)2 ∥∥∥∥∥
t∑

l=1

βt−l∑t
s=1 β

t−s
∇F (l)

j (x
(l)
j )

∥∥∥∥∥
2

(a)

≤

(
t∑

s=1

βt−s

)2 t∑
l=1

βt−l∑t
s=1 β

t−s

∥∥∥∇F (l)
j (x

(l)
j )
∥∥∥2

≤ 1

1− β

t∑
l=1

βt−l
∥∥∥∇F (l)

j (x
(l)
j )
∥∥∥2 .

Here, (a) applies as an instance of Jensen’s inequality. Averaging the above inequality over t = 1, 2, . . . , T , we obtain

1

T

T∑
t=1

|C(t)
j |
N

∥m(t)
j ∥2 ≤ 1

1− β

1

N

1

T

T∑
t=1

t∑
l=1

|C(t)
j |βt−l

∥∥∥∇F (l)
j (x

(l)
j )
∥∥∥2

≤ 1

T

1

N

1

1− β

T∑
l=1

T∑
t=l

|C(t)
j |βt−l

∥∥∥∇F (l)
j (x

(l)
j )
∥∥∥2
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≤ 1

T

1

N

1

1− β

T∑
l=1

T∑
t=l

|C(l)
j |αt−lβt−l

∥∥∥∇F (l)
j (x

(l)
j )
∥∥∥2

≤ 1

T

1

1− β

1

1− αβ

T∑
l=1

|C(l)
j |
N

∥∥∥∇F (l)
j (x

(l)
j )
∥∥∥2

Substituting the above inequality back into (38), we obtain

(
γ

1− β
− L

2

γ2

(1− β)2
− 1

2ϵ

γ

1− β
− ϵ

2

αL2β2γ3

(1− β)4(1− αβ)

)
1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2

≤ F (U(1))− F (U(T+1))

T
.

We choose

ϵ =
(1− β)

3
2 (1− αβ)

1
2

γβLα
1
2

and rearrange the above inequality. Thus, we have(
γ

1− β
− L

2

γ2

(1− β)2
− α

1
2Lβγ2

2(1− β)
5
2 (1− αβ)

1
2

)
1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ F (U(1))− F (U(T+1))

T
.

Since we initialize m
(0)
j = 0, we have

x
(1)
j = x

(0)
j − γm

(0)
j = x

(0)
j ,

u
(1)
j = x

(0)
j .

Besides, since F (U(T+1)) ≥ F ∗, we have(
γ

1− β
− L

2

γ2

(1− β)2
− α

1
2Lβγ2

2(1− β)
5
2 (1− αβ)

1
2

)
1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤

F (x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ∗

T
.

When

γ ≤ min

(
1− β

2L
,
(1− β)

3
2 (1− αβ)

1
2

2α
1
2Lβ

)
,

we have
1

T

T∑
t=1

k∑
j=1

|C(t)
j |
N

∥∇F (t)
j (x

(t)
j )∥2 ≤ 2(1− β)

γ
·
F (x

(0)
1 ,x

(0)
2 , . . . ,x

(0)
k )− F ∗

T
.

E. Supplementary experiment details
In this section, we provide details on the experiments described in Section 5.

E.1. Supplementary details for Section 5.1

We elaborate on the generation of the synthetic data for the GPCA experiment in Section 5.1.

• First, we uniformly generate k pairs of orthonormal vectors {ϵ1,j , ϵ2,j} for j = 1, 2, . . . , k. Each pair is generated
uniformly at random, with ϵ1,j and ϵ2,j forming the basis of the j-th subspace.
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• For each data point i ∈ [N ], we independently generate two Gaussian samples ξ1,i, ξ2,i. Next, we sample an index
ji ∈ [k] uniformly at random. We then let xi = ξ1,iϵ1,ji + ξ2,iϵ2,ji .

We provide in Algorithm 5 a detailed pseudo-code of Lloyd’s algorithm for solving the GPCA problem in the sum-of-
minimum formulation (5), which consists of two steps in each iteration, say updating the clusters via (15) and precisely
compute the minimizer of each group objective function

min
A⊤

j Aj=Ir

1

|C(t)
j |

∑
i∈C

(t)
j

∥y⊤
i Aj∥2 =

1

|C(t)
j |

∑
i∈C

(t)
j

tr
(
A⊤

j yiy
⊤Aj

)
= tr

A⊤
j

 1

|C(t)
j |

∑
i∈C

(t)
j

yiy
⊤

Aj

 .

Algorithm 5 Lloyd’s Algorithm for generalized principal component analysis

1: Initialize A
(0)
1 ,A

(0)
2 , . . . ,A

(0)
k . Set F (−1) = +∞.

2: for t = 0, 1, 2, . . . , max iterations do
3: Compute F (t) = F (A

(t)
1 ,A

(t)
2 , . . . ,A

(t)
k ).

4: if F (t) = F (t−1) then
5: Break.
6: end if
7: Compute the partition {C(t)

j }kj=1 via (15).
8: for j = 1, 2, . . . , k do
9: if C(t)

j ̸= ∅ then
10: Compute the matrix

1

|C(t)
j |

∑
i∈C

(t)
j

yiy
⊤
i

and its r orthonormal eigenvectors v1,v2, . . . ,vr corresponding to the smallest r eigenvalues.
11: Set

A
(t+1)
j =

[
v1 v2 . . . vr

]
.

12: else
13: x

(t+1)
j = x

(t)
j .

14: end if
15: end for
16: end for

We implement the BCD algorithm (Peng & Vidal, 2023) for the following optimization problem:

min
A⊤

j Aj=Ir

1

N

N∑
i=1

∏
j∈[k]

∥y⊤
i Aj∥2. (39)

For any j ∈ [k], when Al is fixed for all l ∈ [k]\{j}, the problem in (39) is equivalent to:

min
A⊤

j Aj=Ir

1

N

N∑
i=1

wij∥y⊤
i Aj∥2 =

1

N

N∑
i=1

wij tr
(
A⊤

j yiy
⊤
i Aj

)
= tr

(
A⊤

j

(
1

N

N∑
i=1

wijyiy
⊤
i

)
Aj

)
,

where the weights wij are given by:

wij =
∏
l ̸=j

∥y⊤
i Al∥2.

The detailed pseudo-code can be found in Algorithm 6.
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Algorithm 6 Block coordinate descent for generalized principal component analysis (Peng & Vidal, 2023)

1: Initialize A
(0)
1 ,A

(0)
2 , . . . ,A

(0)
k .

2: for t = 0, 1, 2, . . . , max iterations do
3: for j = 1, 2, . . . , k do
4: Compute the weights:

w
(t)
ij =

∏
l<j

∥y⊤
i A

(t+1)
l ∥2 ·

∏
l>j

∥y⊤
i A

(t)
l ∥2.

5: Compute the matrix:
1

N

N∑
i=1

w
(t)
ij yiy

⊤
i

and its r orthonormal eigenvectors v1,v2, . . . ,vr corresponding to the smallest r eigenvalues.
6: Set

A
(t+1)
j =

[
v1 v2 . . . vr

]
.

7: end for
8: end for

E.2. Supplementary details for Section 5.2

Mixed linear regression Here, we provide the detailed pseudo-code for Lloyd’s algorithm used to solve ℓ2-regularized
mixed linear regression problem in Section 5. Each iteration of the algorithm consists of two steps: reclassification and
cluster parameter update. We alternatively reclassify indices i to C(t)

j using (15) and update the cluster parameter x(t)
j for

nonempty clusters C(t)
j using:

x
(t+1)
j =

 ∑
i∈C

(t)
j

aia
⊤
i + λ|C(t)

j |I


−1 ∑

i∈C
(t)
j

biai, (40)

so that x(t+1)
j is exactly the minimizer of the group objective function. The algorithm continues until F (t) stops decreasing

after x(t)’s update or a max iteration number is reached. The pseudo-code is shown in Algorithm 7.

Algorithm 7 Lloyd’s Algorithm for mixed linear regression

1: Initialize x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k . Set F (−1) = +∞.

2: for t = 0, 1, 2, . . . , max iterations do
3: Compute F (t) = F (x

(t)
1 ,x

(t)
2 , . . . ,x

(t)
k ).

4: if F (t) = F (t−1) then
5: Break.
6: end if
7: Compute the partition {C(t)

j }kj=1 via (15).
8: for j = 1, 2, . . . , k do
9: if C(t)

j ̸= ∅ then
10: Compute x

(t+1)
j using (40).

11: else
12: x

(t+1)
j = x

(t)
j .

13: end if
14: end for
15: end for

The dataset {(ai, bi)}Ni=1 for the ℓ2-regularized mixed linear regression is synthetically generated in the following way:

• Fix the dimension d and the number of function clusters k, and sample x+
1 ,x

+
2 , . . . ,x

+
k

i.i.d.∼ N (0, Id) as the linear
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coefficients of k ground truth regression models.

• For i = 1, 2, . . . , N , we independently generate data ai ∼ N (0, Id), class index ci ∼ Uniform([k]), noise ϵi ∼
N (0, σ2), and compute bi = a⊤i x

+
ci + ϵi.

In the experiment, the noise level is set to σ = 0.01 and the regularization factor is set to λ = 0.01.

Mixed non-linear regression The ground truth θ+j ’s are sampled from a standard Gaussian. The dataset {(ai, bi)}Ni=1 is
generated in the same way as in the mixed linear regression experiment. We set the variance of the Gaussian noise on the
dataset to σ2 = 0.012 and use a regularization factor λ = 0.01.

33


