
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASTRO: TEACHING LANGUAGE MODELS TO REASON
BY REFLECTING AND BACKTRACKING IN-CONTEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce ASTRO, the “Autoregressive Search-Taught Reasoner”, a framework
for training language models to reason like search algorithms, explicitly lever-
aging self-reflection, backtracking, and exploration in their outputs. Recently,
training large language models (LLMs) via reinforcement learning (RL) has led
to the advent of reasoning models with greatly enhanced reasoning capabilities.
Open-source replications of reasoning models, while successful, build upon mod-
els that already exhibit strong reasoning capabilities along with search behavior
observed even before RL. As a result, it is yet unclear how to boost the reasoning
capabilities of other models including Llama 3. ASTRO teaches such models to
internalize structured search behavior through a synthetic dataset derived from
Monte Carlo Tree Search (MCTS) over mathematical problem-solving trajectories.
By converting search traces into natural language chain-of-thoughts that capture
both successes and recoveries from failure, ASTRO bootstraps models with a rich
prior for exploration during RL. We finetune our model on these search-derived
traces and further apply RL. We apply ASTRO to the Llama 3 family of models and
achieve absolute performance gains of 16.0% on MATH-500, 26.9% on AMC 2023,
and 20.0% on AIME 2024, especially improving upon challenging problems that
require iterative correction. Our results demonstrate that search-inspired training
offers a principled way to instill robust reasoning capabilities into open LLMs.

1 INTRODUCTION

Training large language models (LLMs) via reinforcement learning (RL) has greatly improved their
reasoning capabilities, leading to the advent of reasoning models such as OpenAI o1 (OpenAI, 2024),
DeepSeek-R1 (DeepSeek-AI, 2025) or Gemini 2.5 (Google, 2025). A prominent feature of reasoning
models is their ability to iteratively refine their outputs with a behavior similar to search – a process
which involves reflecting on their own outputs and backtracking to a previous state (Xiang et al., 2025).
While open-source replications of reasoning models achieve notable performance improvements,
they rely on distillation from existing reasoning models (Li et al., 2025; Muennighoff et al., 2025) or
direct RL (Hu et al., 2025; Yu et al., 2025) from LLMs that (1) already contain reflective behavior
and strong reasoning capabilities (Chang et al., 2025; Liu et al., 2025), and (2) exhibit spurious
performance gains from incorrect or noisy reward signals during RL (Lv et al., 2025; Shao et al.,
2025). Hence it is unclear from a scientific perspective how reasoning models can be built from other
LLMs that do not exhibit the aforementioned behavior, such as Llama 3 (AI at Meta, 2024).

We introduce ASTRO, the “Autoregressive Search-Taught Reasoner”, a framework that systematically
infuses search-like behavior into language models ab initio to improve their reasoning capabilities.
The fundamental principle guiding ASTRO is search, where our policy explores the solution space
by selecting actions, reflecting on its own solution, and backtracking to a previous step if needed.
ASTRO trains language models to perform autoregressive search – instead of using external search
scaffolds such as beam search to solve reasoning problems, ASTRO internalizes the search procedure
and generates entire search trajectories, including reflections and backtracks, in a single inference
pass. Models trained using ASTRO exhibit improved reasoning abilities by frequently re-evaluating
their solutions and backtracking until they reach a final answer of high confidence. Such models
also generate structured reasoning traces that can be mapped to a directed graph with each vertex
representing a discrete reasoning step, allowing for a richer understanding of their reasoning processes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Procedure CloningMonte Carlo Tree Search

reasoning problem

0

1 2

3 4 6 7

5 98Q=0.0

ΔQ=-0.5

0 2 7 9

direct solution

search solution

2 7 9

1 3

0 2 6 8

restart

backtrack

0 reflect

reflect

linearized
solution

Supervised Fine-Tuning

⇒

Reinforcement Learning

⇒

accept

Q=1.0

RL
problems ⇒

⇒

Figure 1: An overview of ASTRO. Given a math reasoning problem, we first perform Monte Carlo
Tree Search (MCTS) and obtain a search tree where each node contains a discrete reasoning step with
its associated Q-value. We then linearize the visited sequence of nodes into a solution that integrates
backtracking and self-reflection in natural language. Then, we perform supervised fine-tuning (SFT)
on the search-integrated solutions and bootstrap our policy to perform autoregressive search. Finally,
we further improve the policy’s search and reasoning capabilities with reinforcement learning (RL).

ASTRO operates in three stages: (1) search trajectory generation, (2) supervised fine-tuning and (3)
reinforcement learning. We bootstrap our models with search behavior by generating search traces to
be used for training data via procedure cloning (Yang et al., 2022; Laskin et al., 2022) – we perform
search with our LM policy to explore over different solution trajectories for each math problem, and
we train our policy without using search scaffolds at test time to predict the entire sequence of actions
that end with a successful terminal state. ASTRO provides beneficial priors for RL by systematically
injecting self-reflection and backtracking patterns to the search traces via procedure cloning.

First, we generate synthetic data, also called the cold-start data (DeepSeek-AI, 2025; Qwen, 2025),
to instill in-context search priors to our models. We use Monte Carlo Tree Search (MCTS) to explore
the solution space of challenging math problems and build search trees with diverse reasoning traces.
Then, we linearize each search tree into a sequence of visited nodes, which we convert into a natural
language chain-of-thought (CoT, Wei et al. (2022)) that integrates self-reflection and backtracking.
Then, we sample about 36K high-quality CoT solutions across three open-source math datasets.

We then perform supervised fine-tuning (SFT) to infuse autoregressive search behavior into the Llama
3 family of models (AI at Meta, 2024). After fine-tuning for just one epoch, our SFT checkpoint based
on llama-3.1-70b-instruct achieves 69.6% on MATH-500, 55.0% on AMC 2023 and 13.3% on
AIME 2024, and outperforms its counterpart trained on the same set of problems without search
priors. Our qualitative analyses show that even simply performing SFT with high-quality search
traces can infuse search capabilities into a language model.

Finally, we perform reinforcement learning (RL) on our models to further improve their reasoning
capabilities. Our training prompts are derived from open-source math problems of moderate to high
difficulties. We use a modified form of Group Relative Policy Optimization (GRPO, Shao et al.
(2024)) to update our policies. After RL, our policy based on llama-3.1-70b-instruct achieves
81.8% in MATH-500, 64.4% in AMC 2023 and 30.0% in AIME 2024 (pass@1). We show that our
model trained end-to-end using ASTRO outperforms its counterpart similarly optimized with RL but
initialized from a SFT checkpoint trained without search priors – this demonstrates the importance of
leveraging self-reflection and backtracking as priors for improving reasoning via RL.

2 SEARCH TRAJECTORY GENERATION

ASTRO begins by generating a dataset of search traces, expressed as long chain-of-thoughts (Wei
et al., 2022) that encode self-reflection and backtracking in natural language, via procedure cloning.
To this end, we first obtain search trees for each math problem using Monte Carlo Tree Search
(MCTS) in a stepwise manner, strategically balancing exploration and exploitation with verifier-based
rewards to obtain high-quality solutions exploring diverse reasoning traces (Section 2.2).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Let's determine the dimensions of the second box by
calculating its height, which is twice the height of the
first box, so its height is $2 \times 2 = 4$ centimeters,
and its width, which is three times the width of the
first box, so its width is $3 \times 3 = 9$ centimeters,
while noting that the length of the second box is the
same as the first box, which … (solution omitted) …
Let's use this information to calculate n, the amount
of clay that the second box can hold, using the
formula n = 40 * (volume of second box / volume of
first box) = 40 * (4 * 9 * 5) / (2 * 3 * 5) = 40 * (12) = 40
* 6 = 480 grams. But wait, are we correctly
solving the problem so far? Hmm... I'm not sure if
our solution is correct so far. Let's go back to
where we calculated the volume of the second
box to be 180 cubic centimeters. Given the
established dimensions of the boxes, let's calculate
the volume of the first box, where its volume is …
(solution omitted) … the second box is 6 times larger
than the first box, it follows that the second box can
hold 6 times as much clay as the first box. Therefore,
to find n, the amount of clay the second box can hold,
we calculate n = 6 * 40 = 240 grams. But wait, are
we correctly solving the problem so far? Hmm...
Our solution seems to be correct so far.

The final answer is: $\boxed{240}$

Procedure Cloning in LanguageLinearization

Node 3

Node 16

Node 43

Node 68

Node 44

Node 85

Node 96

Problem: A box 2 centimeters high, 3 centimeters wide, and 5 centimeters long
can hold 40 grams of clay. A second box with twice the height, three times the

width, and the same length as the first box can hold n grams of clay. What is n?

Step 1: Determine the dimensions of the second box (Node 3, Q=0.962)
The second box has twice the height of the first box, so its height is $2 \times 2 = 4$ centimeters. It has three
times the width of the first box, so its width is $3 \times 3 = 9$ centimeters. The length of the second box is the
same as the first box, which is 5 centimeters.

Step 2: Calculate the volume of the second box (Node 16, Q=0.934)
The second box has twice the height (2 * 2 = 4 cm), three times the width (3 * 3 = 9 cm), and the same length
(5 cm) as the first box. So, the volume of the second box = height * width * length = 4 * 9 * 5 = 180 cubic
centimeters.

Step 3: Calculate the volume of the first box
(Node 43, Q=0.768)
The volume of the first box = height * width * length
= 2 * 3 * 5 = 30 cubic centimeters.

Step 3: Calculate the volume of the first box
(Node 44, Q=0.874)
The volume of the first box = height * width * length
= 2 * 3 * 5 = 30 cubic centimeters.

Step 4: Calculate n, the amount of clay that
the second box can hold (Node 68, Q=0.0)
The ratio of the volumes of the two boxes will equal
the ratio of the amounts of clay that they can hold.
… (solution omitted) … Therefore, n = 40 * (volume
of second box / volume of first box) = 40 * (4 * 9 * 5)
/ (2 * 3 * 5) = 40 * (12) = 40 * 6 = 480 grams.

Step 4: Calculate the ratio of the volume of the
second box to the first box (Node 85, Q=1.0)
… (solution omitted) … The ratio = volume of the second box
/ volume of the first box = 180 / 30 = 6.

Step 5: Calculate the amount of clay the second box
holds (Node 96, Q=1.0)
Since the second box is 6 times larger than the first box, it
can hold 6 times as much clay as the first box. Therefore, n =
6 * 40 = 240 grams.

Monte Carlo Tree Search (MCTS) ⇒ ⇒

… …

Figure 2: Example of search trajectory generation via procedure cloning. We perform search through
the solution space via MCTS and track terminal nodes with both incorrect and correct answers. Then,
we linearize the search tree and integrate backtracking from an incorrect terminal node to its common
ancestor with the correct terminal node. We rewrite this node sequence into a long chain-of-thought.

We then linearize the search trees into sequences of nodes that explore intermediate nodes with
incorrect answers until arriving at the correct answer (Section 2.3). Finally, we translate each node
sequence into a long CoT that integrates self-reflection and backtracking (Section 2.4). Our dataset
encodes beneficial in-context search priors for training LLMs to solve challenging math problems via
SFT and RL (Section 3). Refer to Figure 2 for a visual example of our long-CoT generation pipeline.

2.1 PROBLEM FORMULATION AND OVERVIEW

Problem formulation. Our data generation setup is a Markov Decision Process (MDP) (Puterman,
1994), where the LM functions as the policy ΠLM and explores the solution space to the input x, while
obtaining rewards from a verifier V . Here we assume that ΠLM solves math problems in a stepwise
manner, where each step st represents a sequence of tokens y1 · · · y|st| encapsulating a minimal unit
of reasoning that solves x. Then, each state St is a combination of the input prompt and the generated
steps, i.e. St = (x, s0, · · · , st). Meanwhile, the action at+1 is the next step st+1 taken by ΠLM.

Given this setup, we teach ΠLM to predict a sequence of states (S0 · · ·Send) to perform in-context
search and explore the solution space until it terminates its search at Send with the correct final answer.

Overview. We generate training data for ASTRO in three main stages outlined below:

1. For each x we generate a search tree T , where each node ni represents the state Si and each
edge (ni, nj) represents the action aj , i.e. the next step sj taken from Si to Sj , using MCTS
to explore the solution space based on verifier rewards from rollouts (Section 2.2).

2. We linearize T into a sequence of nodes L = (n0, · · · , nend), a subsequence of the history of
nodes visited by ΠLM until arriving at nend, the terminal node with the correct answer. Some
adjacent pairs of nodes (nt, nt+1) in L are such that nt+1 is an ancestor of nt in T , which
corresponds to self-reflection and backtracking during the search procedure (Section 2.3).

3. We translate L into a chain-of-thought solution y = (y0, · · · , yend) integrating self-reflection
and backtracking in natural language, and we add (x,y) to our final dataset (Section 2.4).

2.2 MONTE CARLO TREE SEARCH

We use our language model policy ΠLM to obtain a search tree with diverse solution traces to each
input x by running Monte Carlo Tree Search (MCTS). By using MCTS, we explore a diverse
solution space while balancing exploration and exploitation with reliable guidance from reward
signals obtained from full rollouts. Here, we prompt x to elicit stepwise solutions from ΠLM, and
assign reward scores with our verifier V to compare the predicted answer with the correct answer. We
provide detailed equations for MCTS in Section A.1 of the Appendix (Equations 2, 3, 4 and 5).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selection. At state St with k actions generated by ΠLM, we select the most promising node from
which to further perform tree search. We use the Predictor+Upper Confidence bounds applied to
Trees (PUCT, Silver et al. (2016)) to balance exploration and exploitation, as shown in Equation 2.

Expansion. From state St, ΠLM takes x and the sequence of steps (s0, · · · , st) as the input, and
first samples k next actions for solving x. For each action, we sample M rollouts and score them
using V . Then, we average the rollout scores for each new action ai (i ∈ [1...k]) to compute the
reward scores for the new states. We add a new node nt+1, associated with St+1, to T (Eq. 3).

Backpropagation. We backpropagate the reward scores from the leaf node to the root node to
recursively update their Q-values. The updates consist of (1) incrementing the visit count of each
state (Eq. 4), and (2) updating the Q-values of each (state, action) pair using the Q-values and visit
counts of the children nodes of St+1 = (St, a), along with the reward score R(St+1) (Eq. 5).

We repeat these steps for 32 iterations, using llama-3.3-70b-instruct as ΠLM with k = 8 actions
and M = 16 rollouts, cpuct = 1.0 and a maximum tree depth of 50.

2.3 SEARCH TREE LINEARIZATION

We convert the search tree T into a sequence of states (S0, · · · , Send) exploring correct and incorrect
reasoning steps until arriving at the correct final answer, by sampling L = (n0, · · · , nend) from T .

In this process, we maintain the invariants that (1) the sequence ends with a correct terminal node,
and (2) the sequence may contain incorrect terminal nodes, but no two nodes in L may contain the
same incorrect answer. With these invariants, we ensure that our model learns not to repeat the same
incorrect answer, and learns to rectify its incorrect reasoning with a high-quality, correct solution.

Our linearization procedure is detailed in Algorithm 1. First, we perform depth-first search on T to
identify terminal nodes with correct and incorrect answers, and we collect a subset of correct terminal
nodes with high-quality reasoning steps based on the policy’s self-evaluation (Appendix A.2). We
randomly sample a correct terminal node, and a subset of k terminal nodes that contain distinct
incorrect answers. Then, we iterate through these terminal nodes, gather the sequence from the root
node to each terminal node, and sequentially merge the sequences. We thereby obtain a linearized
sequence L = (n0, · · · , nend) with k backtracking instances, where nend contains the correct answer.

Algorithm 1 Search Tree Linearization.

Input: input x, answer a, number of backtracks k, policy Π, search tree T with root node n0

Ψ,Λ: set of terminal nodes with correct and incorrect answers in T
Ψ′: subset of Ψ that contains high-quality solutions
Ψ, Λ← DFS(root), Ψ′ ← {}, L← []
Collect all terminal nodes with high-quality, correct solutions
for nψ ∈ Ψ do

S ← concat_steps_from_root(nψ)
if Π(self_eval_prompt, S) == 1 then add(Ψ′, nψ)

end for
Sample a correct node, and a subset of k nodes with distinct incorrect answers
nψ∗ ← sample(Ψ′), Λk ← sample_with_unique_answers(Λ, k)
Build the linearized sequence L by tracking the k incorrect nodes and nψ∗

for n ∈ Λk ∪ {nψ∗} do
l← gather_nodes_from_root(n)
L← merge_sequences(L, l − L)

end for
Output: the linearized sequence of nodes L

2.4 PROCEDURE CLONING IN LANGUAGE

We convert L = (n0, · · · , nend) into a chain-of-thought solution y by processing the nodes sequen-
tially. Given the node nt which contains a reasoning step st and the existing solution y1:t−1 at
timestep t, we few-shot prompt ΠLM to generate yt. We address two cases (Appendix A.3):

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Case 1: nt is a child of nt−1. We simply convert the step st into yt which continues from y1:t−1.

Case 2: nt is an ancestor of nt−1. In this case, we first add a hard-coded self-reflection phrase But
wait, are we solving the problem correctly so far? Hmm..., followed by I’m not sure
if we’re solving the problem correctly so far. Then, we few-shot prompt ΠLM to generate
a sentence that describes backtracking (if nt is a non-root node – Let’s go back to where we
...) or restart (if nt is a root node – Let’s restart our solution from the beginning ...).

In this way, our solution integrates self-reflection followed by a continuation of the solution or
backtracking to a previous step. We repeat this procedure for all of our linearized node sequences.

3 LEARNING TO SEARCH

We use the long-CoT search traces from Section 2 to train our models to perform in-context search.
We first use supervised fine-tuning (SFT) to infuse search priors into our models (Section 3.1), and
then reinforcement learning (RL) to further improve their reasoning capabilities (Section 3.2).

3.1 SUPERVISED FINE-TUNING

We perform supervised fine-tuning (SFT) on a subset of the search trajectories collected in Section 2
to instill self-reflection and backtracking priors into the Llama 3 family of models (AI at Meta, 2024).
In this stage, we focus on curating a relatively small amount of high-quality search trajectories in
order to carefully infuse our policy with helpful priors to be exploited later during RL.

Dataset. We use three open math datasets: MATH-train (Hendrycks et al., 2021), and the AMC/AIME
and AoPS-forum subsets of NuminaMath (Li et al., 2024).

We build a total of 20.7K search trees and identify 14.0K search trees with at least one high-quality,
correct solution. After linearization, we curate a total of 105K long-CoT solutions. For each math
problem we sample one solution without any backtracking (k = 0), and three solutions with at least
one self-reflection and backtracking (k ≥ 1) and obtain a total of 36.1K solutions. Refer to Tables 3
and 4 in Appendix B for more information regarding the composition of our main SFT dataset.

Training. We perform SFT on llama-3.1-70b-instruct, and we simply train on all tokens from
each example without any masking. Refer to Appendix B for more details on our SFT procedure.

3.2 REINFORCEMENT LEARNING

Based on our fine-tuned models that perform autoregressive search, we further leverage the models’
search priors to improve their reasoning capabilities through reinforcement learning (RL).

Dataset. We use open-source math datasets for our training prompts: AIME 1983-2023 which consist
of AIME problems from the years 1983 to 2023, MATH-4500 which is separated from the MATH-500
evaluation set, along with MATH-train and the AMC/AIME and AoPS-forum subsets of NuminaMath.

To curate the final dataset, we use the model from Section 3.1 to generate N = 64 solutions for each
problem, and we compute the model’s pass rate, i.e. the fraction of correct solutions generated. We
curate problems where the pass rate ranges from 1% to 75% to exclude problems that are too easy
or difficult for the policy, and focus on problems of moderate to high difficulty. Refer to Table 5 in
Appendix C for details of various statistics for our RL datasets.

Training. We train our models using Group Relative Policy Optimization (GRPO, Shao et al. (2024))
while computing advantages based on subtracting the prompt-level mean reward and removing the
standard deviation (Liu et al., 2025), and setting the KL penalty to zero. Given our RL dataset D with
training examples (x,y) where x is the input prompt and y is the correct answer, a batch of solutions
S generated for each x, the verifier V which assigns a binary correctness score to each solution s ∈ S
based on y, as well as our policy πθ, we optimize its parameters θ such that the following holds:

max
θ

E(x,y)∼D

[
Es∈S∼πθ(·|x)

[
V(s,y)− 1

∥S∥
∑
s′∈S

V(s′,y)

]]
(1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Checkpoint MATH-500 AMC 2023 AIME 2024
pass@1 pass@1 maj@8 pass@1 maj@8

Llama-3.1-70B-Instruct 65.8 37.5 47.5 10.0 16.7
Llama-3.3-70B-Instruct 75.8 57.5 60.0 26.7 30.0

Llama-3.1-70B-Instruct (SPOC) 77.4 52.5 - 23.3 -
Llama-3.1-70B-Instruct (Step-KTO) 76.2 60.0 67.5 16.7 20.0

Llama-3.1-70B-ASTRO-SFT 69.6 51.9 63.0 16.3 24.7
Llama-3.1-70B-ASTRO-RL 81.8 64.4 68.8 30.0 32.0
Llama-3.3-70B-Instruct (SPOC) 77.8 70.0 - 23.3 -
Llama-3.3-70B-Instruct (Step-KTO) 79.6 70.0 75.0 30.0 33.3

Table 1: Main results. Llama-3.1-70B-ASTRO-SFT outperforms llama-3.1-70b-instruct.
Llama-3.1-70B-ASTRO-RL outperforms llama-3.3-70b-instruct, as well as SPOC and Step-
KTO based on llama-3.1-70b-instruct, and sometimes outperforms or matches SPOC and
Step-KTO based on llama-3.3-70b-instruct. Note that our pass@1 scores for AMC 2023 and
AIME 2024 evaluations are averaged over 16 different runs, while the baseline scores are not.

generation length (# tokens) reward score (+1 correct, -1 incorrect)

Figure 3: Training curves detailing how Llama-3.1-70B-ASTRO-RL behaves during RL training.
(Left) The length of the model’s CoT during training. The generation length gradually increases from
1,600 tokens to almost 6,000 tokens as training progresses. (Right) The reward score assigned to the
policy during RL, with correct and incorrect answers being assigned scores of +1 and -1, respectively.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Training. We train our models with datasets in Sections 3.1 and 3.2 for SFT and RL. For our SFT
experiments, we fine-tune llama-3.1-70b-instruct on our synthetic dataset with 36.1K search
trajectories for 1 epoch only, in order to prevent overfitting to the SFT dataset. For our RL experiments,
we further optimize the checkpoints we obtain from the SFT stage using the objective presented in
Equation 1. Refer to Appendix B.2 and C.2 for more details on our training hyperparameters.

Evaluation. We evaluate our models on three widely-used math evaluation benchmarks – MATH-
500 (Hendrycks et al., 2021), AMC (American Mathematics Competition) 2023 and AIME (American
Invitational Mathematics Examination) 2024. Due to the lower number of examples present in the
AMC 2023 and AIME 2024 benchmarks, we compute the pass@1 score by averaging across N = 16
generations. We also compute the maj@8 score by sampling a random subset of eight outputs over
ten simulations and averaging the scores obtained for the majority answers across the ten simulations.

Baselines. Our baselines are llama-3.1-70b-instruct, which employs SFT and Direct Preference
Optimization (DPO, Rafailov et al. (2023)) for post-training and llama-3.3-70b-instruct, which
is further trained via online RL. Moreover, we compare with two methods based on RL or self-
correction that improve Llama 3’s mathematical reasoning: Step-KTO(Lin et al., 2025) which
augments KTO (Ethayarajh et al., 2024) with PRMs, and SPOC (Zhao et al., 2025) which learns to
self-correct and verify in-context with traces obtained via Pair-SFT (Welleck et al., 2023) and RL.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Performance on MATH-500, AMC 2023 and AIME 2024 while training Llama-3.1-70B-
ASTRO-RL via RL. The evaluation metrics improve steadily across all three benchmarks. We use the
pass@1 metric, with the AMC 2023 and AIME 2024 metrics being averaged over 16 different runs.

Figure 5: (Top) Average number of backtracks performed by the policy during RL training. Our
policy learns to backtrack more during RL training. (Bottom) Correlation between the number of
backtracks and the evaluation performance, computed over all RL checkpoints. The scatter plots
demonstrate a positive correlation (Pearson’s coefficients – 0.816, 0.851, 0.854) between the number
of backtracks performed at test time and the resulting evaluation metrics on our benchmarks.

4.2 MAIN RESULTS

Table 1 presents the results of applying ASTRO to llama-3.1-70b-instruct. Our SFT checkpoint,
named Llama-3.1-70B-ASTRO-SFT, improves over llama-3.1-70b-instruct across all bench-
marks. Meanwhile, our llama-3.1-70b-instruct trained end-to-end via ASTRO with RL, which
we name Llama-3.1-70B-ASTRO-RL, outperforms llama-3.3-70b-instruct as well as SPOC
and Step-KTO applied to llama-3.1-70b-instruct while outperforming and matching SPOC and
Step-KTO applied to llama-3.3-70b-instruct on MATH-500 and AIME 2024, respectively.

Figure 3 visualizes how the generation length of Llama-3.1-70B-ASTRO-RL, as well as reward scores
assigned to the model, evolve while running RL. We observe that the policy’s CoT generation length
initially increases quite noticeably, similar to training runs for other reasoning models (DeepSeek-
AI, 2025; Kimi, 2025), and then grows slowly after this initial phase. The reward scores increase
monotonically overall, indicating that the policy learns to solve more math problems correctly.
Meanwhile, Figure 4 visualizes how the performance of Llama-3.1-70B-ASTRO-RL on MATH-500,
AMC 2023 and AIME 2024 evolves during RL. We observe that the evaluation metrics continue to
increase steadily across all three benchmarks with more RL. Refer to Appendix E for examples of
chain-of-thoughts generated by models trained with ASTRO after SFT and RL.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: RL training curves for our no-search baseline vs. ASTRO, averaged over the three evaluation
benchmarks. The difference between the policy trained with search priors (ASTRO, dark blue) and
without search priors (Direct, light blue) showcases the importance of infusing search priors for RL.

Checkpoint MATH-500 AMC 2023 AIME 2024
pass@1 pass@1 maj@8 pass@1 maj@8

Llama-3.1-70B-Direct-RL (best) 79.8 60.5 67.8 27.1 30.3
Llama-3.1-70B-ASTRO-RL (best) 81.8 64.4 68.8 30.0 32.0

Table 2: Results of training on solutions without search priors (Direct) vs. with search priors (ASTRO)
and running RL, from the same input problems and solutions curated from the same search trees.

4.3 IMPACT OF THE SEARCH PRIOR

The reasoning capabilities of ASTRO-trained models can be attributed to both (1) the self-reflection
and backtracking priors infused during ASTRO, and (2) the high-quality chain-of-thoughts curated
from the search trees (Section 2.2). In this section we verify the importance of the search prior, a core
component of ASTRO that shapes the policy’s behavior during SFT and RL.

Search behavior during RL. We seek to better understand the role of ASTRO’s search priors.
Figure 5 (Top) shows that our policy learns to perform more self-reflections and backtracks during
RL, while Figure 5 (Bottom) shows that the number of backtracks employed at test-time is highly
correlated with evaluation metrics, with the Pearson’s coefficient scoring 0.816, 0.851 and 0.854
across the benchmarks. Refer to Appendix C.5 for a similar analysis on the generation length.

Training without search priors. To isolate the impact of search priors on ASTRO, we finetune
llama-3.1-70b-instruct on the same problem set used for Llama-3.1-70B-ASTRO-SFT along
with the solutions curated from the same search trees, but only using direct solutions that arrive at
the correct answer without any search behavior. We name the resulting checkpoint Llama-3.1-70B-
Direct-SFT. Afterwards, we use the same set of prompts used for training Llama-3.1-70B-ASTRO-
RL and perform RL on Llama-3.1-70B-Direct-SFT for the same number of training steps to obtain
Llama-3.1-70B-Direct-RL. Refer to Appendix D for more details on this experiment.

Figure 6 compares the averaged evaluation metrics over the entire RL training for both models, and
shows that our policy with search priors (ASTRO) exhibit better training efficacy and upper bound
compared to our policy without search priors (Direct). Table 2 shows the evaluation metrics of the
best checkpoints. While RL also allows Llama-3.1-70B-Direct-RL to achieve gains across our
benchmarks, its best checkpoint underperforms Llama-3.1-70B-ASTRO-RL across all benchmarks
by nontrivial margins. Our results demonstrate the importance of the search priors used in ASTRO.

Qualitative Example. Refer to Figure 7 for an example output from Llama-3.1-70B-ASTRO-RL.
Our model reflects over its own solution, backtracks to a previous reasoning step and repeats this
process, exploring over the solution space until arriving at a final answer. Every CoT generated by
our model trained with ASTRO can be mapped to a directed graph with each node representing a
discrete reasoning step, allowing for easier visualization and tracking of the model’s reasoning. Refer
to Appendix E.2 for more examples of search trajectories generated by Llama-3.1-70B-ASTRO-RL.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

<root>
Identify a specific difference of

cubes pattern that can be factored
into a more manageable form.

Identify the pattern in the given
series as the difference between

the cubes of consecutive numbers.

The final answer is 5831

Sum the values 7 + 37 + 91 + 169 +
271 + 397 + 547 + 721 + 919 = 3059.

The final answer
is 3159

Express the difference of
their cubes as $(n+1)^3 -
n^3 = n^3 + 3n^2 + 3n +
1 - n^3 = 3n^2 + 3n + 1$.

Examine the formula for the difference
of cubes, which is $a^3 - b^3 = (a -

b)(a^2 + ab + b^2)

Add the last term to get
2240 + 919 = 3159.

We are given a series of terms where each term is the difference between the cubes of consecutive numbers, and the
series is $2^3 - 1^3 + 4^3 - 3^3 + 6^3 - 5^3 + … + 18^3 - 17^3$. Noticing the pattern in the given series, we can
identify a specific difference of cubes pattern that can be factored into a more manageable form, which is $a^3 - b^3 =
(a - b)(a^2 + ab + b^2)$. Applying this factorization to each pair of terms in the series may reveal a simpler way to
understand and possibly sum the series.
…
Now, performing the multiplication and addition for each part: $3*1785 = 5355$, $3*153 = 459$, and adding these
together with 17, we get $5355 + 459 + 17 = 5831$. But wait, are we correctly solving the problem so far?
Hmm... Our solution may not be correct so far. Let's restart our solution from the beginning. Apparently, the
given series consists of terms where each term is the difference between the cubes of two consecutive numbers, and
we can identify the pattern by examining the differences between the cubes of consecutive numbers. Now, let's
examine the formula for the difference of cubes, which is $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$.
…
Now, summing these values: $7 + 37 + 91 + 169 + 271 + 397 + 547 + 721 + 919 = 3059$. But wait, are we correctly
solving the problem so far? Hmm... Our solution may not be correct so far. Let's go back to where we noticed
the pattern of the series as the difference between the cubes of two consecutive numbers and identified it as
$a^3 - b^3$, where a and b are consecutive numbers, to re-examine the calculation of each term in the series.
Notice that for any two consecutive integers n and $n+1$, the difference of their cubes can be expressed as:
$(n+1)^3 - n^3 = n^3 + 3n^2 + 3n + 1 - n^3 = 3n^2 + 3n + 1$. Applying the formula $(n+1)^3 - n^3 = 3n^2 + 3n + 1$, we
can calculate each term:
…
Now, summing these calculated values gives us $7 + 37 + 91 + 169 + 271 + 397 + 547 + 721 + 919$. Performing the
addition step by step, we get $7 + 37 = 44$, then $44 + 91 = 135$, followed by $135 + 169 = 304$, and $304 + 271 =
575$. Continuing, we have $575 + 397 = 972$, then $972 + 547 = 1519$, and $1519 + 721 = 2240$. Finally, adding
the last term gives us $2240 + 919 = 3159$. But wait, are we correctly solving the problem so far? Hmm... Our
solution seems to be correct so far.

The final answer is $\boxed{3159}$. I hope it is correct.

Problem: What is the value of 2^3 - 1^3 + 4^3 - 3^3
+ 6^3 - 5^3 + … + 18^3 - 17^3?

The final answer is 3059

Add the numbers together to
get 5355 + 459 + 17 = 5831.

Add 575 + 397 = 972,
then 972 + 547 = 1519,
and 1519 + 721 = 2240.

Figure 7: Example of LLAMA-3.1-70B-ASTRO-RL solving a problem from AMC 2023. (Left)
The model generates a long CoT that contains self-reflections (black) and backtracking (blue) and
explores the solution space, backtracking from reasoning traces with the incorrect answer (red) until
arriving at a reasoning trace with the correct answer (green). (Right) The CoT is mapped to a directed
graph whose vertices represent discrete reasoning steps and edges represent the search procedure.

5 RELATED WORK

Self-correction for reasoning. Setlur et al. (2024) find that training models on per-step negative
responses help to unlearn spurious correlations in the positive data. Similarly, Ye et al. (2025) show
that adding erroneous solution steps followed by their corrections to pretraining data improve math
performances. Qu et al. (2024) train LMs to improve their math solutions in-context via iterative
fine-tuning, and Kumar et al. (2025) show that training LMs to perform self-correction via multi-turn
RL improve their math reasoning abilities. Snell et al. (2024) report that scaling the number of
revisions performed in-context for math problems improves the accuracies of the final answers.

Learning to search for reasoning. Laskin et al. (2022) propose algorithm distillation, which distills
RL algorithms into neural networks in an autoregressive manner by training on their learning histories.
Also, Yang et al. (2022) introduce procedure cloning, which learns from series of expert computations
and generalizes better to unseen environments. Lehnert et al. (2024) introduce Searchformer, which
predicts the sequences of the A* search algorithm while solving the Sokoban puzzle. Meanwhile,
Gandhi et al. (2024) train LMs to imitate different search strategies for the Countdown task. Xiang
et al. (2025) propose applying procedure cloning to LLM search traces to improve their math
reasoning abilities, showcasing several proof-of-concept examples.

Reinforcement learning for reasoning. Luo et al. (2025); Wang et al. (2024); Shao et al. (2024)
show that training language models via RL with reward models improves their math reasoning
abilities, and Yang et al. (2024b); Lambert et al. (2024) propose using RL with verifiable rewards.
DeepSeek-AI (2025); Kimi (2025) use RL to train LLMs to generate long CoTs and greatly improves
their reasoning capabilities. More recently, Hu et al. (2025); Yu et al. (2025); Liu et al. (2025) perform
RL on Qwen models (Yang et al., 2024a;b) and achieve significant performance improvements.

6 CONCLUSION

We introduce ASTRO, a new framework for training LLMs to reason like search algorithms. ASTRO
operates in three stages: (1) data generation (2) supervised fine-tuning, and (3) reinforcement learning.
We first build search trees using Monte Carlo Tree Search (MCTS), linearize the trees into node
sequences, and translate them into long CoTs that integrate self-reflection and backtracking. Then, we
perform SFT on the long CoTs to instill the search priors, and further improve reasoning capabilities
via RL. Our model trained using ASTRO performs in-context search and solves challenging math
problems that require iterative revisions. Moreover, our model learns to reflect and backtrack more
frequently during RL, and we verify the importance of the search priors used in ASTRO. Our
framework offers a systematic recipe to instill robust reasoning capabilities into open-source LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work does not involve human subjects or sensitive data, and solely uses open-source models
and datasets to train language models to solve challenging math problems via in-context search. We
believe there is no ethical concern to be raised regarding our work.

REPRODUCIBILITY STATEMENT

Reproducing ASTRO takes three distinctive stages: (1) data generation (Section 2), (2) supervised
fine-tuning (SFT, Section 3.1) and (3) reinforcement learning (RL, Section 3.2).

For the data generation stage, we describe Monte Carlo Tree Search (MCTS), including its hyper-
parameters in Section 2.2 and equations for its implementation in Section A.1. We fully describe
our search tree linearization algorithm in Algorithm 1 in Section 2.3, and we provide our few-shot
prompts for converting the node sequences into long CoT in Section A.3. Moreover, we share details
of our SFT in Section B (B.1 and B.2), and RL in Section C (C.1 and C.2).

While we are unable to share code for legal reasons during this submission, in our attachment we
share the dataset used for the SFT and RL stages such that any off-the-shelf library can be used to
finetune open-weight models to perform in-context search.

REFERENCES

AI at Meta. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.
21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Edward Y. Chang, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. CoRR, abs/2502.03373, 2025. doi: 10.48550/ARXIV.2502.
03373. URL https://doi.org/10.48550/arXiv.2502.03373.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL https://doi.org/10.
48550/arXiv.2501.12948.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: model
alignment as prospect theoretic optimization. CoRR, abs/2402.01306, 2024. doi: 10.48550/ARXIV.
2402.01306. URL https://doi.org/10.48550/arXiv.2402.01306.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D.
Goodman. Stream of search (sos): Learning to search in language. CoRR, abs/2404.03683, 2024.
doi: 10.48550/ARXIV.2404.03683. URL https://doi.org/10.48550/arXiv.2404.03683.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/, March 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. CoRR, abs/2503.24290, 2025. doi: 10.48550/ARXIV.2503.24290. URL https://doi.
org/10.48550/arXiv.2503.24290.

Kimi. Kimi k1.5: Scaling reinforcement learning with llms. CoRR, abs/2501.12599, 2025. doi:
10.48550/ARXIV.2501.12599. URL https://doi.org/10.48550/arXiv.2501.12599.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D. Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha

10

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2502.03373
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2402.01306
https://doi.org/10.48550/arXiv.2404.03683
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.48550/arXiv.2503.24290
https://doi.org/10.48550/arXiv.2503.24290
https://doi.org/10.48550/arXiv.2501.12599

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal M. P. Behbahani, and
Aleksandra Faust. Training language models to self-correct via reinforcement learning. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April
24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=CjwERcAU7w.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
Pushing frontiers in open language model post-training. CoRR, abs/2411.15124, 2024. doi:
10.48550/ARXIV.2411.15124. URL https://doi.org/10.48550/arXiv.2411.15124.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu Sahni,
Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning with algorithm distillation.
CoRR, abs/2210.14215, 2022. doi: 10.48550/ARXIV.2210.14215. URL https://doi.org/10.
48550/arXiv.2210.14215.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul McVay, Michael Rabbat, and Yuandong Tian. Beyond a*:
Better planning with transformers via search dynamics bootstrapping. CoRR, abs/2402.14083, 2024.
doi: 10.48550/ARXIV.2402.14083. URL https://doi.org/10.48550/arXiv.2402.14083.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G. Patil, Matei Zaharia, Joseph E. Gonzalez, and Ion Stoica. Llms
can easily learn to reason from demonstrations structure, not content, is what matters! CoRR,
abs/2502.07374, 2025. doi: 10.48550/ARXIV.2502.07374. URL https://doi.org/10.48550/
arXiv.2502.07374.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu1. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. http://faculty.bicmr.pku.edu.cn/
~dongbin/Publications/numina_dataset.pdf, July 2024.

Yen-Ting Lin, Di Jin, Tengyu Xu, Tianhao Wu, Sainbayar Sukhbaatar, Chen Zhu, Yun He, Yun-
Nung Chen, Jason Weston, Yuandong Tian, Arash Rahnama, Sinong Wang, Hao Ma, and Han
Fang. Step-kto: Optimizing mathematical reasoning through stepwise binary feedback. CoRR,
abs/2501.10799, 2025. doi: 10.48550/ARXIV.2501.10799. URL https://doi.org/10.48550/
arXiv.2501.10799.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. CoRR, abs/2503.20783, 2025.
doi: 10.48550/ARXIV.2503.20783. URL https://doi.org/10.48550/arXiv.2503.20783.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=mMPMHWOdOy.

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. The climb carves wisdom deeper
than the summit: On the noisy rewards in learning to reason, 2025. URL https://arxiv.org/
abs/2505.22653.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. CoRR, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL
https://doi.org/10.48550/arXiv.2501.19393.

11

https://openreview.net/forum?id=CjwERcAU7w
https://doi.org/10.48550/arXiv.2411.15124
https://doi.org/10.48550/arXiv.2210.14215
https://doi.org/10.48550/arXiv.2210.14215
https://doi.org/10.48550/arXiv.2402.14083
https://doi.org/10.48550/arXiv.2502.07374
https://doi.org/10.48550/arXiv.2502.07374
http://faculty.bicmr.pku.edu.cn/~dongbin/Publications/numina_dataset.pdf
http://faculty.bicmr.pku.edu.cn/~dongbin/Publications/numina_dataset.pdf
https://doi.org/10.48550/arXiv.2501.10799
https://doi.org/10.48550/arXiv.2501.10799
https://doi.org/10.48550/arXiv.2503.20783
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=mMPMHWOdOy
https://arxiv.org/abs/2505.22653
https://arxiv.org/abs/2505.22653
https://doi.org/10.48550/arXiv.2501.19393

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Introducing openai o1. https://openai.com/o1/, September 2024.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/
9780470316887. URL https://doi.org/10.1002/9780470316887.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teach-
ing language model agents how to self-improve. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
639d992f819c2b40387d4d5170b8ffd7-Abstract-Conference.html.

Qwen. Qwen3: Think deeper, act faster. https://qwenlm.github.io/blog/qwen3/, April 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
on incorrect synthetic data scales the efficiency of LLM math reasoning by eight-fold. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (eds.), Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
4b77d5b896c321a29277524a98a50215-Abstract-Conference.html.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr, 2025. URL
https://arxiv.org/abs/2506.10947.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024. doi: 10.48550/
ARXIV.2408.03314. URL https://doi.org/10.48550/arXiv.2408.03314.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pp. 9426–9439. Association for Computational Linguistics, 2024. doi: 10.
18653/V1/2024.ACL-LONG.510. URL https://doi.org/10.18653/v1/2024.acl-long.510.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language

12

https://openai.com/o1/
https://doi.org/10.1002/9780470316887
http://papers.nips.cc/paper_files/paper/2024/hash/639d992f819c2b40387d4d5170b8ffd7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/639d992f819c2b40387d4d5170b8ffd7-Abstract-Conference.html
https://qwenlm.github.io/blog/qwen3/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/4b77d5b896c321a29277524a98a50215-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/4b77d5b896c321a29277524a98a50215-Abstract-Conference.html
https://arxiv.org/abs/2506.10947
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.2408.03314
https://doi.org/10.18653/v1/2024.acl-long.510

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

models. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=
1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=hH36JeQZDaO.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Fränken, Nick
Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning how to think with
meta chain-of-thought. CoRR, abs/2501.04682, 2025. doi: 10.48550/ARXIV.2501.04682. URL
https://doi.org/10.48550/arXiv.2501.04682.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024a. doi:
10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement. CoRR, abs/2409.12122, 2024b. doi: 10.48550/ARXIV.2409.12122.
URL https://doi.org/10.48550/arXiv.2409.12122.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation
with procedure cloning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.2, how
to learn from mistakes on grade-school math problems. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=zpDGwcmMV4.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
open-source LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025. doi:
10.48550/ARXIV.2503.14476. URL https://doi.org/10.48550/arXiv.2503.14476.

Xutong Zhao, Tengyu Xu, Xuewei Wang, Zhengxing Chen, Di Jin, Liang Tan, Yen-Ting, Zishun
Yu, Zhuokai Zhao, Yun He, Sinong Wang, Han Fang, Sarath Chandar, and Chenguang Zhu.
Boosting LLM reasoning via spontaneous self-correction. CoRR, abs/2506.06923, 2025. doi:
10.48550/ARXIV.2506.06923. URL https://doi.org/10.48550/arXiv.2506.06923.

13

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://openreview.net/forum?id=hH36JeQZDaO
https://doi.org/10.48550/arXiv.2501.04682
https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2409.12122
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ebdb990471f653dffb425eff03c7c980-Abstract-Conference.html
https://openreview.net/forum?id=zpDGwcmMV4
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2506.06923

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
A DATA GENERATION DETAILS

A.1 MONTE CARLO TREE SEARCH

We provide mathematical descriptions of our Monte Carlo Tree Search (MCTS) used to create the
initial search trees from which we curate our search trajectories, as described in Section 2.2.

Selection. We use the Predictor+Upper Confidence bounds applied to Trees (PUCT, Silver et al.
(2016)) to balance exploration and exploitation. From any state St, given the action index i ∈ [1...k],
the score of taking action ai from state St – Q(St, ai), the total visit count of St – N(St), and the
visit count of taking action ai from St – N(St, ai), we perform selection as:

S∗
t+1 = argmax

(St+1=St→ai)

[
Q(St, ai) + cpuct ·ΠLM(ai|St)

√
N(St)

1 +N(St, ai)

]
(2)

Expansion. ΠLM takes x and (s0, · · · , st) as the input from state St, and first samples k next actions.
For each action, we sample M rollouts and score them using V . Then, we average the rollout scores
for each new action ai (i ∈ [1...k]) to compute the reward scores for the new states, as the following:

R(St+1) =
1

M

∑
j∈[1...M]

V(ΠLM,j(St+1)) (3)

Backpropagation. We backpropagate the reward scores from Eq. 3 to update the Q-values of the
search tree. During this process, we update the number of visits of each node – N(st), and the
Q-value of each (state, action) pair – Q(st, a), using the Q-values and visit counts of the children
nodes of St+1 = (St, a), along with the reward score R(St+1), as the following:

N(st) = N(st) + 1 (4)

Q(St, a) =

∑K
i=1 Q(St+1, ai) ·N(St+1, ai) +R(St+1)∑K

i=1 N(St+1, ai) + 1
(5)

A.2 SELF-EVALUATION

We provide more details regarding the self-evaluation used during linearization (Section 2.3) of our
search trees. We prompt the policy ΠLM to provide a reason for whether the given solution contains
valid reasoning or not by first “thinking” whether the solution skips complicated math operations,
overlooks important casework or performs a lucky guess to arrive at the answer. Then, the policy
returns a binary answer of “yes” or “no” to conclude whether the reasoning is valid or not. We use a
few-shot prompt, presented below, to instruct the policy to follow the exact demonstrated format for
returning validation thoughts followed by a “yes” or “no” answer. Moreover, we generate N = 8
self-evaluations per solution and employ a form of self-consistency (Wang et al., 2023) to obtain
multiple votes on the quality of the solution to increase the reliability of our self-evaluation, and we
obtain an averaged quality score si for the solution Si.

si =
1

N

N∑
j=1

1 [ΠLM(Si) = yes]

We only consider solutions with score si = 1, which imply unanimous agreement between the N = 8
evaluations, to be “high-quality” solutions. We present our few-shot self-evaluation prompt below.

Given the following math problem and the solution , decide whether the
final answer to the problem was obtained via correct reasoning , or
if the final answer was obtained with insufficient reasoning or a
lucky guess. Think before arriving at the final answer , which must
be answered "yes" for correct reasoning , and "no" for incorrect
reasoning.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Examples of answers obtained via incorrect reasoning include:
- The solution presents a complicated mathematical operation (e.g.,

numerical methods for integration) that must be completed to solve
the problem and returns the answer without any details on how the
operation was performed to arrive at the answer.

- The solution presents casework for arriving at the final answer (case
1, case 2, ...) but returns the final answer after considering only
a subset of the cases without explaining why the other cases were
not considered.

- The solution performs a random guess for the final answer without any
justified explanation for why that guess was made. Educated guesses
are okay.

Below are a few examples of math problems and their solutions , the
thinking process for determining why the reasoning is correct or
incorrect , and the final decision for whether the reasonign is
correct or not.

Problem: Let f(x)=|x-p|+|x -15|+|x-p-15| , where 0 < p < 15 . Determine

the minimum value taken by f(x) for x in the interval p \\leq
x\\leq15.

Solution:
Step 1: Understanding the given function
The given function is f(x) = |x-p| + |x-15| + |x-p-15|, where 0 < p <

15. We need to find the minimum value of f(x) for x in the interval
p \\leq x \\leq 15.

Step 2: Analyzing the behavior of f(x) in the interval p \\leq x
\\leq 15

For x in the interval p \\leq x \\leq 15, we observe the behavior of
each absolute value term. Since x \\geq p, |x-p| = x-p. For |x-15|,
since x \\leq 15, |x-15| = 15-x. The term |x-p-15| requires closer
examination because its behavior changes based on the value of x
relative to p+15. However , given that x \\leq 15 and p < 15, x will
always be less than or equal to 15, and thus |x-p-15| = p+15-x for x
in the given interval.

Step 3: Simplifying the function for the given interval
Substituting the simplified expressions back into f(x) gives us f(x) =

(x-p) + (15-x) + (p+15-x). Simplifying this , f(x) = x - p + 15 - x +
p + 15 - x = 30 - x.

Step 4: Finding the minimum value of f(x) in the interval
The function f(x) = 30 - x is a linear function with a negative slope ,

meaning its minimum value in the interval p \\leq x \\leq 15 will
occur at the maximum value of x in that interval , which is x = 15.
Substituting x = 15 into f(x), we find f(15) = 30 - 15 = 15.

The final answer is: \\boxed {15}.

Correctness thoughts: The solution correctly considers the range of p,
given as p \\leq x\\leq15 , and uses this information to remove the
absolute value operators and simplify the given function. Then , it
correctly reasons that the function f(x) = 30 - x is decreasing in
the interval p \\leq x\\leq15 and therefore the minimum value must
happen at x = 15, which is 30 - 15 = 15.

Is correct reasoning: yes

Problem: A machine -shop cutting tool has the shape of a notched circle ,

as shown. The radius of the circle is \\sqrt {50} cm, the length of
AB is 6 cm and that of BC is 2 cm. The angle ABC is a right angle.
Find the square of the distance (in centimeters) from B to the
center of the circle. [asy] size (150);

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

defaultpen(linewidth (0.6)+fontsize (11)); real r=10; pair O=(0,0),
A=r*dir (45),B=(A.x,A.y-r); path P=circle(O,r); pair
C=intersectionpoint(B--(B.x+r,B.y),P); // Drawing arc instead of
full circle //draw(P); draw(arc(O, r, degrees(A), degrees(C)));
draw(C--B--A--B); dot(A); dot(B); dot(C); label("A",A,NE);
label("B",B,S); label("C",C,SE); [/asy]

Solution:
Step 1: To solve this problem , we need to find the square of the

distance from point B to the center of the circle.
The problem involves a notched circle with a radius of \\sqrt {50} cm and

points A, B, and C as described.

Step 2: Let's denote the center of the circle as O and the foot of
the altitude from O to AB as D.

We need to find the square of the distance from B to the center of the
circle , which is OB^2.

Step 3: Using the Pythagorean theorem , we can express the
relationship between the lengths of the sides of triangle OAB.

By applying the Pythagorean theorem to triangle OAB , we get OA^2 = OB^2
+ AB^2. Substituting the given values , we have 50 = OB^2 + 36.

Step 4: Similarly , for triangle OBC , we can use the Pythagorean
theorem to relate the lengths of its sides.

Applying the Pythagorean theorem to triangle OBC , we get OC^2 = OB^2 +
BC^2. Substituting the given values , we have 50 = OB^2 + 4.

Step 5: By solving the equations from steps 3 and 4, we can find the
value of OB^2.

From step 4, we can express OB^2 as 50 - 4 = 46. This value represents
the square of the distance from point B to the center of the circle.

The final answer is: \\boxed {26}.

Correctness thoughts: The problem is asking for OB^2 according to our
notation , and Step 5 indicates that OB^2 is equal to 46. However ,
the final answer is 26 without any explanation as to why it returned
26 instead of 46.

Is correct reasoning: no

Based on the examples above that demonstrate how to determine the

correctness of a solution to a given math problem , determine the
correctness of the solution to the math problem given below.

Make sure to end your thoughts with a newline followed by "Is correct
reasoning: yes" or "Is correct reasoning: no".

Problem: %s

Solution: %s

Correctness thoughts:

A.3 CHAIN-OF-THOUGHT GENERATION

We provide more details for how we convert the linearized sequence of nodes into a natural language
CoT that integrates self-reflection and backtracking (Section 2.4). As we iterate over the sequence
of nodes, for each node nt at timestep t we sample ΠLM with few-shot prompts conditioned upon
the CoT generated so far (y1...t−1), where (a) case 1 – nt is a descendant of nt−1: the few-shot
prompt involves directly rewriting st into a CoT format, and (b) case 2 – nt is an ancestor of nt−1:
the few-shot prompt involves writing a phrase the backtracks from nt−1 to nt. Below we present the
few-shot prompts for rewriting and backtracking.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Few-shot prompt for rewriting:

Given a partially thought -out solution to a math problem so far and the
current step for solving the problem , your job is to rewrite the
current step into a thought that smoothly continues the previous
thoughts. This rewritten thought should only address the contents of
the current step itself , nothing more or less. Make sure to follow
the requirements below:

- Remember that your job is to simply rewrite the current solution step
into a thought process.

- Write the solution thought such that it continues smoothly from the
previous solution thoughts.

- Include all of the reasoning provided in the current solution step in
the thought process.

- Do NOT repeat anything from what is written in the previous solution
thoughts.

- Do NOT think about the problem further than what is provided in the
current solution step.

Below are examples of how to rewrite the current solution step into a
thought process. Make sure to follow the format taken by the
examples below.

Previous solution step: None

Current solution step:
Define the variables and set up an equation.
Let's define our variables: B = number of students with blond hair , E =

number of students with blue eyes. We're given that the total number
of students is 30, so B + E - 6 + 3 = 30, because we need to
subtract the 6 students counted twice for having both blond hair and
blue eyes and add the 3 students who have neither.

Rewritten solution thoughts: Let's begin by denoting B as the number of
students with blond hair and E as the number of students with blue
eyes. We're given that there are 30 students in total , so B + E - 6
+ 3 = 30, because we need to subtract the six students counted twice
for having both blond hair and blue eyes and add the three students
who have neither.

Previous solution thoughts: Let's denote B as the number of students

with blond hair and E as the number of students with blue eyes.
Let's recall the formula for the union of sets is \\|A \\cup B\\| =
\\|A\\| + \\|B\\| - \\|A \\cap B\\|. We're given that there are 30
students in total , so B + E - 6 + 3 = 30, because we need to
subtract the six students counted twice for having both blond hair
and blue eyes and add the three students who have neither. We're
also given that there are twice as many students with blond hair as
with blue eyes , so B = 2E.

Current solution step:
Solve the equation
Substituting B = 2E into the equation gives us: 2E + E - 6 + 3 = 30.

Rewritten solution thoughts: Let's substitute this relationship into the
previous equation to get: 2E + E - 6 + 3 = 30.

Previous solution thoughts: Let's first recall the formula for the

volume of a sphere. For radius r and volume V, we know that V =
\\frac {4}{3}\\ pi r^3. From the problem , we know that the volume of
the larger sphere is 288\\pi cubic units. So, we can set up an
equation \\frac {4}{3}\\ pi r_1^3 = 288\\pi, where r_1 is the radius
of the larger sphere. Solving for r_1 gives r_1^3 = \\frac {288\\ pi
\\cdot 3}{4\\ pi} = 216 and r_1 = 6 units. Meanwhile , we are given
that the volume of the smaller sphere is 12.5 percent of the larger

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sphere 's volume. Given that 12.5 percent = 0.125, we know that the
volume of the smaller sphere is V_2 = 0.125 \\cdot 288\\pi = 36\\pi
cubic units.

Current solution step:
Set up the equation for the smaller sphere and find its radius.
Setting up the volume equation for the smaller sphere , \\frac {4}{3}\\ pi

r_2^3 = 36\\pi, where r_2 is the radius of the smaller sphere.
Solving for r_2 gives r_2^3 = \\frac {36\\pi \\cdot 3}{4\\ pi} = 27
and r_2 = 3 units.

Rewritten solution thoughts: Let's set up the equation for the volume of
the smaller sphere with r_2 being the radius of the smaller sphere:
\\frac {4}{3}\\ pi r_2^3 = 36\\pi. Then , let's solve for r_2 and
obtain r_2^3 = \\frac {36\\pi \\cdot 3}{4\\ pi} = 27 and r_2 = 3 units.

Previous solution thoughts: Let's first consider the overall strategy

for solving the problem - we need to first rewrite the given
equation in standard form to find the distance between the vertices.
To this end , we should complete the square for the x and y terms.

Current solution step:
Complete the square for the x term.
Let's start with the x term. We can factor out the coefficient of x^2

and then complete the square by adding and subtracting the square of
half the coefficient of x. The coefficient of x^2 is 9, so factoring
that out gives us 9(x^2 + 6x). To complete the square , we add and
subtract (6/2)^2 = 9 inside the parentheses , which gives us 9(x^2 +
6x + 9 - 9) = 9(x^2 + 6x + 9) - 81.

Rewritten solution thoughts: Let's start with the x term. We can factor
out the coefficient of x^2 and then complete the square by adding
and subtracting the square of half the coefficient of x. The
coefficient of x^2 is 9, so factoring that out gives us 9(x^2 + 6x).
To complete the square , let's add and subtract (6/2)^2 = 9 inside
the parentheses , so that we have 9(x^2 + 6x + 9 - 9) = 9(x^2 + 6x +
9) - 81.

Based on the examples above that demonstrate how to rewrite a solution

step into solution thoughts , rewrite the solution step given below
into solution thoughts. This rewritten thought should only address
the contents of the current step itself , nothing more or less.
Again , make sure to follow the requirements below:

- Remember that your job is to simply rewrite the current solution step
into a thought process.

- Write the solution thought such that it continues smoothly from the
previous solution thoughts.

- Include all of the reasoning provided in the current solution step in
the thought process. Do NOT miss any single line provided in the
solution step , and especially pay careful attention to equations
spanning multiple lines of the solution.

- Do NOT repeat anything from what is written in the previous solution
thoughts.

- Do NOT think about the problem further than what is provided in the
current solution step. To repeat , NEVER include thoughts that are
unsupported in the current solution step.

Previous solution thoughts: %s

Current solution step:
%s

Rewritten solution thoughts:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Few-shot prompt for backtracking:

Given a partially thought -out solution to a math problem so far which
ends by identifying itself to be incorrect and needing to backtrack ,
the "backtracked" step that the solution is supposed to backtrack
to, your job is to continue the existing solution thoughts by
backtracking to the part of the solution that corresponds to the
"backtracked step". Make sure to follow the requirements below:

- Make sure that the solution continuation only addresses the backtrack
step and nothing more or less.

- Note that if the backtracking requires a restart of the solution , the
"backtrack step" is given as "RESTART". In this case , do NOT begin
your response with "RESTART". Rather , use natural phrases like
"Let's restart from the beginning ..." or "Let's start over ..." to
indicate that the solution must be restarted.

- Do not use phrases such as "Let's restart" or "Let's start over" if
the backtracked step is not "RESTART", but use a phrase such as
"Let's backtrack to..." or "Let's go back to...".

Below are examples of how to backtrack to a previous step , continue to
the current step and continue the solution. Make sure to follow the
format taken by the examples below.

Previous solution thoughts: Let's begin by defining B as the number of

students with blond hair and E as the number of students with blue
eyes. If we recall correctly , the formula for the union of sets is
\\|A \\cup B\\| = \\|A\\| + \\|B\\| - \\|A \\cap B\\|. Since there
are 30 students in total , B + E - 6 = 30, because we need to
subtract the six students who have both blond hair and blue eyes.
But wait , are we correctly solving the problem so far?

Backtrack step: RESTART

Backtrack solution thoughts: Let's restart our solution from the
beginning.

Previous solution thoughts: First , we should recall that the formula for

the volume of a sphere is V = \\frac {4}{3}\\ pi r^3 for radius r and
volume V. The problem also tells us that the volume of the larger
sphere is 288\\pi cubic units. Given this information , let's set up
an equation \\frac {4}{3}\\ pi r_1^3 = 288\\pi, with r_1 being the
radius of the larger sphere. This means that r_1^3 = \\frac {288\\ pi
\\cdot 3}{4\\ pi} = 216 and r_1 = 6 units. Meanwhile , we also know
that the volume of the smaller sphere is 12.5 percent of the larger
sphere. This means that the volume of the smaller sphere is V_2 =
0.125 \\cdot 288\\pi = 36\\pi cubic units. Let us now define r_2 as
the radius of the smaller sphere. Then , \\frac {4}{3}\\ pi r_2^3 =
36\\pi. We can solve this equation for r_2 and find that r_2^3 =
\\frac {36\\pi \\cdot 3}{4\\ pi} = 64 and r_2 = 4 units. But hold on,
could it be possible that we made a mistake in our solution?

Backtrack step: ## Compute the volume of the smaller sphere.
The volume of the smaller sphere is 12.5 percent of the larger sphere 's

volume. Given that 12.5 percent = 0.125, the volume of the smaller
sphere is V_2 = 0.125 \\cdot 288\\pi = 36\\pi cubic units.

Backtrack solution thoughts: Let's go back to where we computed the
volume of the smaller sphere as 36\\pi cubic units.

Previous solution thoughts: Let's first consider the overall strategy

for solving the problem - we need to first rewrite the given
equation in standard form to find the distance between the vertices.
To this end , we should complete the square for the x and y terms.
Let's start with the x term. We can factor out the coefficient of
x^2 and then complete the square by adding the square of half the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

coefficient of x. The coefficient of x^2 is 9, so factoring that out
gives us 9(x^2 + 6x). To complete the square , let's add (6/2)^2 = 9
inside the parentheses and subtract by the same amount outside , so
that we have 9(x^2 + 6x + 9) - 9 \\cdot 9 = 9(x^2 + 6x + 9) - 81.
Now let's move on to the y term. We can factor out the coefficient
of y^2, which is -1, and then complete the square by adding the
square of half the coefficient of y. The coefficient of y is 10, so
factoring out -1 gives us -(y^2 - 10y). Let's add (10/2) ^2 = 25
inside the parentheses and subtract by the same amount outside , so
that we have -(y^2 - 10y + 25) - 25. But wait , are we sure that our
solution is correct so far?

Backtrack step: ## Complete the square for the x term.
Let's start with the x term. We can factor out the coefficient of x^2

and then complete the square by adding and subtracting the square of
half the coefficient of x. The coefficient of x^2 is 9, so factoring
that out gives us 9(x^2 + 6x). To complete the square , we add and
subtract (6/2)^2 = 9 inside the parentheses , which gives us 9(x^2 +
6x + 9 - 9) = 9(x^2 + 6x + 9) - 81.

Backtrack solution thoughts: Let's backtrack to where we completed the
square for the x term and obtained the correct expression for x,
which is 9(x^2 + 6x + 9) - 81.

Based on the examples above that demonstrate how to continue the

existing solution thoughts via backtracking , continue the solution
thought by backtracking to the "backtracked step". Again , make sure
to follow the requirements below:

- Make sure that the solution continuation only addresses the backtrack
step and nothing more or less.

- Note that if the backtracking requires a restart of the solution , the
"backtrack step" is given as "RESTART". In this case , do NOT begin
your response with "RESTART". Rather , use natural phrases like
"Let's restart from the beginning ..." or "Let's start over ..." to
indicate that the solution must be restarted.

- Do not use phrases such as "Let's restart" or "Let's start over" if
the backtracked step is not "RESTART", but use a phrase such as
"Let's backtrack to..." or "Let's go back to...".

- Do NOT think about the problem further than what is provided in the
backtrack step. To repeat , NEVER try to solve the problem further
than what the backtrack step does.

- Write everything in one line without newlines , and do not use "##"
expressions to label steps. Do not begin your response with
non -english characters (e.g., colon , ">") or any introductory phrase
like "Sure , here's how to backtrack ...". Also , do not begin with
"Backtrack solution thoughts: ...". Just write the backtracking
using the backtracked step.

Previous solution thoughts: %s

Backtrack step: %s

Backtrack solution thoughts:

B SUPERVISED FINE-TUNING DETAILS

B.1 TRAINING DATASET DETAILS

We present details regarding the statistics during the generation of our supervised fine-tuning (SFT)
dataset composed of long-CoT search trajectories (Section 3.1). Table 3 presents the composition of
our SFT dataset used for training our models. Table 4 presents a detailed breakdown of the statistics
during the intermediate stages of our data curation across the three math dataset sources used for
instilling search behaviors during the initial stages of ASTRO.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Dataset # problems # trajectories # backtracks # restarts
MATH-train 5,838 12,536 3,817 4,191
NuminaMath (AMC/AIME) 1,599 5,758 3,268 1,341
NuminaMath (AoPS Forum) 4,702 17,773 11,608 2,636

Table 3: SFT dataset composition for our main ASTRO training run. Here, # problems refers to
the number of unique problems, # trajectories refers to the total number of search trajectories, #
backtracks refers to the number of backtracks to previous reasoning steps, and # restarts refers
to the number of solution restarts in each training subset.

Dataset # trees # valid trees # solutions # direct # search
MATH-train 6,912 6,118 12,536 5,838 6,698
NuminaMath (AMC/AIME) 2,480 1,812 5,758 1,746 4,012
NuminaMath (AoPS Forum) 11,329 6,069 17,773 4,706 13,067

Table 4: Detailed statistics of our data curation procedure in ASTRO resulting in our main SFT dataset.
Here, # trees refers to the number of search trees from the initial set of problems, # valid trees
refers to the number of search trees with at least one high-quality solution ending with the correct
answer, # solutions refers to the number of long chain-of-thought solutions curated from the valid
search trees, # direct refers to the number of solutions without self-reflection or backtracking, and
search refers to the number of solutions with self-reflection and backtracking.

B.2 TRAINING HYPERPARAMETERS

We train our model for one epoch only to provide a better initialization for the RL stage. We use the
AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate of 3e-6 and a cosine
scheduler, and we set the maximum sequence length to be 8,192 tokens.

B.3 HARDWARE SPECIFICATIONS

We train our 70B models across 8 GPU nodes with each node consisting of 8 NVIDIA H100 GPUs.
Under this setup, training for one epoch on our SFT dataset takes approximately 40 minutes.

B.4 SFT VISUALIZATIONS

We present visualizations of our SFT using the loss curve and the gradient norms in Figure 8.

loss

training steps

gnorm

training steps

Figure 8: Visualizations for our main SFT run used in ASTRO. (Left) Training loss curve. (Right)
Gradient norms.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

reward score (+1 correct, -1 incorrect) - overall

Figure 9: Detailed view of the overall reward scores while training Llama-3.1-70B-ASTRO-RL.

reward score (+1 correct, -1 incorrect) - AIME 1983-2023

Figure 10: Reward scores on AIME 1983-2023 while training Llama-3.1-70B-ASTRO-RL.

reward score (+1 correct, -1 incorrect) - MATH 4500

Figure 11: Reward scores on MATH-4500 while training Llama-3.1-70B-ASTRO-RL.

reward score (+1 correct, -1 incorrect) - MATH train

Figure 12: Reward scores on MATH-train while training Llama-3.1-70B-ASTRO-RL.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

reward score (+1 correct, -1 incorrect) - NuminaMath AMC/AIME

Figure 13: Reward scores on NuminaMath-AMC/AIME while training Llama-3.1-70B-ASTRO-RL.

reward score (+1 correct, -1 incorrect) - NuminaMath AoPS-forum

Figure 14: Reward scores on NuminaMath-AoPS forum while training Llama-3.1-70B-ASTRO-RL.

C REINFORCEMENT LEARNING DETAILS

C.1 TRAINING DATASET DETAILS

Table 5 presents detailed statistics for our RL datasets as mentioned in Section 3.2 of the main paper.

C.2 TRAINING HYPERPARAMETERS

For reinforcement learning (Section 3.2), we use a constant learning rate of 2e-7, four rollouts per
prompt for advantage estimation, a batch size of 256 for every step, gradient accumulation step of 1,
maximum sequence length of 15,360 tokens, a temperature of 1.0, and 80 warmup steps.

Dataset # problems pass rate avg. # problems solved # problems used

AIME 1983-2023 912 40.7% 721 492
MATH-4500 4,480 72.1% 4,239 1,393
MATH-train 7,488 87.7% 7,308 977
NuminaMath (AMC/AIME) 3,648 49.9% 2,865 1,395
NuminaMath (AoPS Forum) 8,576 27.3% 5,756 4,423

Table 5: RL dataset composition for our ASTRO-trained model based on llama-3.1-70b-instruct.
Here, # problems total refers to the total number of problems after string-based filtering for
low-quality or unverifiable problems, pass rate avg. refers to the mean pass rate across N = 64
outputs for all problems, # problems solved refers to the number of problems with a non-zero pass
rate, and # problems used refers to the number of problems falling within the 1% to 75% pass rate
range for our SFT policy, which we use for our main RL experiment, in each training subset.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 HARDWARE SPECIFICATIONS

We run RL with our 70B models across 32 GPU nodes with each node consisting of 8 NVIDIA H100
GPUs. We use 128 GPUs for training and 128 GPUs for inference, respectively. Each of our RL
training runs takes about 10 days to complete.

C.4 REWARD SCORES BY DATASET

We visualize the evolution of reward scores (recall Figure 3) on a per-dataset basis for training Llama-
3.1-70B-ASTRO-RL, which consist of AIME problems from the years 1983 to 2023, MATH-4500
which is separated from the MATH-500 evaluation set, along with MATH-train and the AMC/AIME
and AoPS-forum subsets of NuminaMath (Li et al., 2024). Refer to Figures 9, 10, 11, 12, 13 and 14
for the overall reward scores as well as the reward scores on each training subset, in order.

C.5 TEST-TIME SCALING ANALYSIS

Number of generated tokens during evaluation. In Figure 15, we show the number of tokens gen-
erated by Llama-3.1-70B-ASTRO-RL during RL. The policy initially generates a steeply increasing
number of tokens, and this rate decreases afterwards but keeps a steady pace, similar to the number
of backtracks in Figure 4.

Figure 15: Number of generated tokens on the MATH-500, AMC 2023 and AIME 2024 benchmarks
while training Llama-3.1-70B-ASTRO-RL. The number of generated tokens initially increases
rapidly as the model learns to perform more self-reflections and backtracks (see Figure 4), and then
increases more slowly but steadily afterwards.

Relationship with Evaluation Metrics We plot the relationship between the number of tokens
generated during evaluation and the model’s performance. We find a strong correlation with a Pear-
son’s coefficient of 0.858 for MATH-500, 0.836 for AMC 2023 and 0.833 for AIME 2024, showing
similar trends to the correlation between the number of backtracks and the model’s performance
(Section 4.3).

Figure 16: Relationship between the number of generated tokens and evaluation metrics on MATH-
500, AMC 2023 and AIME 2024. There is positive correlation between the number of generated
tokens and performance on the math benchmarks, indicating that the policy returns more accurate
answers as it generates more tokens during inference. The Pearson’s coefficients are 0.858 0.836 and
0.833 for MATH-500, AMC 2023 and AIME 2024, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

CoT generation length (tokens)

Figure 17: The number of generated tokens while training Llama-3.1-70B-Direct-RL via RL.

reward score (+1 correct, -1 incorrect) - overall

Figure 18: Reward scores measured while training Llama-3.1-70B-Direct-RL via RL.

D DETAILS FOR LLAMA-3.1-70B-DIRECT-RL

We provide more details of Llama-3.1-70B-Direct-RL trained according to our experimental setup
described in Section 4.3. Note that this model does not have any self-reflection or backtracking priors
infused during the SFT stage, as we seek to isolate the effects of the search priors used in ASTRO.

D.1 TRAINING

Our training setups for the SFT and RL stages are identical to that of training Llama-3.1-70B-
ASTRO-SFT and Llama-3.1-70B-ASTRO-RL, respectively. We focus on the RL portion of training
Llama-3.1-70B-Direct-RL and share further useful details regarding the model’s training.

CoT generation length. In Figure 17 we show how the length of the CoT generated by Llama-3.1-
70B-Direct-RL evolves during RL. Without the self-reflection and backtracking priors, we observe
that the number of tokens of the policy’s generated CoT increases more slowly, although it does show
an increase from about 1K tokens on average to about 2K tokens.

Reward scores. In Figure 18 we show how the reward scores of Llama-3.1-70B-Direct-RL (+1
for correct, -1 for incorrect) on the training prompts evolve during RL. We observe that its reward
scores improve in a similar manner to the reward scores for Llama-3.1-70B-ASTRO-RL during RL.

D.2 EVALUATION

Our evaluation setups for Llama-3.1-70B-Direct-RL are identical to those for Llama-3.1-70B-
ASTRO-RL. We share further useful details regarding the model’s evaluations.

Number of generated tokens. Figure 19 shows the number of generated tokens for the MATH-500,
AMC 2023 and AIME 2024 benchmarks. We observe that the number of tokens generated by
Llama-3.1-70B-Direct-RL during evaluations increases steadily, albeit at a slower rate without the
self-reflection and backtracking priors.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 19: Number of generated tokens on the MATH-500, AMC 2023 and AIME 2024 benchmarks
while training Llama-3.1-70B-Direct-RL. The number of generated tokens increases steadily with
more RL, albeit at a slower rate without the self-reflection and backtracking priors compared to the
RL training of Llama-3.1-70B-ASTRO-RL.

Figure 20: RL training curves for our direct baseline vs. ASTRO on the MATH-500 benchmark.

Figure 21: RL training curves for our direct baseline vs. ASTRO on the AMC 2023 benchmark.

Figure 22: RL training curves for our direct baseline vs. ASTRO on the AIME 2024 benchmark.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Comparisons with ASTRO. We share detailed comparisons of the evaluation results between the
direct baseline and ASTRO during RL, for each of our three math benchmarks. Refer to Figures 20, 21
and 22 for comparisons on the MATH-500, AMC 2023 and AIME 2024 benchmarks, respectively.

E QUALITATIVE EXAMPLES

We include qualitative examples of chain-of-thoughts generated by different models trained using
ASTRO in our experiments for a better understanding of the model behavior.

E.1 ASTRO-SFT

Llama-3.1-70B-ASTRO-SFT already performs autoregressive search (self-reflections and back-
tracks), averaging about 1.2 tokens and 0.8 backtracks for MATH-500 and 3K tokens and 1.1
backtracks for AIME 2024. The model explores over a wide solution space, generating both correct
and incorrect solution traces until it converges to the final answer and terminates its search process.

Problem (AIME 2024): Every morning Aya goes for a 9 -kilometer -long

walk and stops at a coffee shop afterwards. When she walks at a
constant speed of s kilometers per hour , the walk takes her 4
hours , including t minutes spent in the coffee shop. When she
walks at $s + 2$ kilometers per hour , the walk takes her 2 hours
and 24 minutes , including t minutes spent in the coffee shop.
Suppose Aya walks at $s + \frac {1}{2}$ kilometers per hour. Find the
number of minutes the walk takes her , including the t minutes
spent in the coffee shop.

Correct answer: 204

Model response:

Let's start by understanding the problem and defining the variables ,
where Aya walks a 9-kilometer -long walk and then stops at a coffee
shop , and we need to consider her walking at different speeds ,
denoted as s kilometers per hour , $s + 2$ kilometers per hour , and
$s + \frac {1}{2}$ kilometers per hour , and the total time for the
walk and coffee shop visit varies based on her speed , with the time
spent walking and at the coffee shop being affected by these speed
changes. First , let's establish the relationships between Aya's
walking speed , the time spent walking , and the time spent at the
coffee shop. When Aya walks at s kilometers per hour , the time
spent walking is $\frac {9}{s}$ hours. The total time for the walk
and the coffee shop visit is given as 4 hours , which is equivalent
to $\frac {9}{s} + \frac{t}{60}$, allowing us to convert t minutes
into hours. This relationship can be expressed as $\frac {9}{s} +
\frac{t}{60} = 4$. Considering the different speeds at which Aya
walks , let's set up an equation for the second scenario where her
speed is $s + 2$ kilometers per hour. The time spent walking at this
speed is $\frac {9}{s+2}$ hours. Given that the total time for the
walk and the coffee shop visit is 2 hours and 24 minutes , which
is equivalent to $\frac {9}{s+2} + \frac{t}{60} = 2 + \frac {24}{60}$,
we can express this relationship as $\frac {9}{s+2} + \frac{t}{60} =
2.4$. But wait , are we correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Now that we have
established the relationships between Aya's walking speed , the time
spent walking , and the time spent at the coffee shop , let's utilize
the two equations $\frac {9}{s} + \frac{t}{60} = 4$ and
$\frac {9}{s+2} + \frac{t}{60} = 2.4$ to solve for s and t. By
subtracting the second equation from the first , we can eliminate
t , which gives us $\frac {9}{s} - \frac {9}{s+2} = 4 - 2.4$. Upon
simplifying , we obtain $\frac {9}{s} - \frac {9}{s+2} = 1.6$. Given
the equation $\frac {9}{s} - \frac {9}{s+2} = 1.6$, we need to combine

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

the fractions on the left side , which leads to $\frac {9(s+2) -
9s}{s(s+2)} = 1.6$. Upon simplifying , we obtain $\frac {18}{s^2 + 2s}
= 1.6$. Multiplying both sides by 60 to clear the fraction yields
$9s(s+2) - 18 = 96s + 192$. Expanding the left side results in $9s^2
+ 18s - 96s - 192 = 18$. Simplifying further gives $9s^2 - 78s - 210
= 0$. To solve for s , we can use the quadratic formula , $s =
\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, where $a = 9$, $b = -78$, and
$c = -210$. Substituting these values in gives $s = \frac {78 \pm
\sqrt {(-78)^2 - 4(9) (-210) }}{2(9)}$. This simplifies to $s =
\frac {78 \pm \sqrt {6084 + 7560}}{18}$. Thus , $s = \frac {78 \pm
\sqrt {13644}}{18}$, which further simplifies to $s = \frac {78 \pm
116.58}{18}$. For positive s , we take the positive root , yielding
$s = \frac {78 + 116.58}{18}$. Now , let's calculate the numerical
value of s by evaluating the expression $\frac {78 + 116.58}{18}$,
which simplifies to $\frac {194.58}{18}$, and this further simplifies
to 10.81. But wait , are we correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Now , let's use the first
equation to solve for t with the known value of $s = 10.81$.
Substituting s into $\frac {9}{s} + \frac{t}{60} = 4$, we get
$\frac {9}{10.81} + \frac{t}{60} = 4$. This means $\frac{t}{60} = 4 -
\frac {9}{10.81}$. Let's calculate $\frac {9}{10.81}$, which is
approximately 0.832. Therefore , we have $\frac{t}{60} = 4 -
0.832$. So, $\frac{t}{60} = 3.168$. Then , to find t , we multiply
both sides by 60 , yielding $t = 3.168 \times 60$. Therefore , $t =
190.08$ minutes. Now , to calculate the total time spent walking and
at the coffee shop at the given speed , we recognize that the total
time is the sum of the walking time and the time spent at the coffee
shop , so let's express this relationship as $Total\ Time =
\frac {9}{s + \frac {1}{2}} + t$, where $\frac {9}{s + \frac {1}{2}}$
represents the walking time and t is the time spent at the coffee
shop. Now , substitute $s = 10.81$ into the expression $s +
\frac {1}{2}$ to obtain $s + \frac {1}{2} = 10.81 + 0.5 = 11.31$.
Given the speed $s + \frac {1}{2} = 11.31$, let's calculate the
walking time by using the expression $\frac {9}{s + \frac {1}{2}}$,
which becomes $\frac {9}{11.31}$. This simplifies to approximately
0.796 hours. Given the walking time of approximately 0.796 hours
spent at the speed $s + \frac {1}{2} = 11.31$, let's convert this
time into minutes by multiplying it by 60 , which gives us $0.796
\times 60$. Noting that we already have the walking time expressed
in hours as 0.796, to find the total time including the coffee
shop visit , we need to add the $t = 190.08$ minutes spent at the
coffee shop to this walking time. However , since the walking time is
given in hours , we should convert it into minutes by multiplying by
60 , resulting in $0.796 \times 60 = 47.76$ minutes , and then add
t to get the total time in minutes as $47.76 + 190.08 = 237.84$
minutes. But wait , are we correctly solving the problem so far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
go back to where we understood the problem and defined the
variables , considering Aya's walking at different speeds and the
varying total time for the walk and coffee shop visit based on these
speeds. Now , considering Aya's walking speed and the time spent at
the coffee shop , we can set up an equation based on the time it
takes her to walk at a speed of s kilometers per hour , which gives
us $\frac {9}{s} + \frac{t}{60} = 4$, and this represents the time
spent walking plus the time spent at the coffee shop , equating to
the total time of 4 hours when she walks at s kilometers per hour.
Considering the different speeds at which Aya walks , we should now
examine the situation where her speed increases to $s + 2$
kilometers per hour , and establish the relationship between her
walking time , coffee shop visit time , and the total time , which
gives us the equation $\frac {9}{s+2} + \frac{t}{60} = 2 +
\frac {24}{60}$, since the total time in this scenario is 2 hours
and 24 minutes , equivalent to 2.4 hours. Multiplying the entire

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

equation by 60 to eliminate the fraction yields $60 \times \left(
\frac {9}{s} + \frac{t}{60} \right) = 60 \times 4$, and upon
simplification , we obtain $\frac {60 \times 9}{s} + t = 240$, which
further simplifies to $\frac {540}{s} + t = 240$. Now , let's proceed
with examining the second scenario where Aya's speed is $s + 2$
kilometers per hour. Multiplying the entire equation by 60 to
eliminate the fraction yields $60 \times \left(\frac {9}{s+2} +
\frac{t}{60} \right) = 60 \times 2.4$, and upon simplification , we
obtain $\frac {60 \times 9}{s+2} + t = 144$, which further simplifies
to $\frac {540}{s+2} + t = 144$. But wait , are we correctly solving
the problem so far?

Hmm... Our solution seems to be correct so far. Given the need to solve
for s and t , we should consider the two equations derived from
the problem: $\frac {540}{s} + t = 240$ and $\frac {540}{s+2} + t =
144$. Let's multiply the first equation by s and the second
equation by $s+2$ to eliminate the fractions , which gives us $540 +
st = 240s$ from the first equation , and $540 + (s+2)t = 144(s+2)$
from the second equation. Now , examining the equation $\frac {540}{s}
- \frac {540}{s+2} = 96$, we can simplify it to $540\left(\frac {1}{s}
- \frac {1}{s+2}\ right) = 96$. Further simplification yields
$540\left(\frac{s+2-s}{s(s+2)}\right) = 96$, and thus
$540\left(\frac {2}{s^2+2s}\right) = 96$. Multiplying both sides by
$\frac{s^2+2s}{2}$ gives us $540 = 48(s^2+2s)$. Dividing both sides
by 48, we obtain $s^2 + 2s - \frac {540}{48} = 0$, which simplifies
to $s^2 + 2s - \frac {45}{4} = 0$. Now , to find the value of s , we
can use the quadratic formula $s = \frac{-b \pm \sqrt{b^2 -
4ac}}{2a}$, where $a=1$, $b=2$, and $c=-\frac {45}{4}$. Substituting
these values into the formula gives us $s = \frac{-2 \pm \sqrt {2^2 -
4(1)(-\frac {45}{4}) }}{2(1)}$. Simplifying inside the square root
yields $s = \frac{-2 \pm \sqrt{4 + 45}}{2}$, and further
simplification results in $s = \frac{-2 \pm \sqrt {49}}{2}$.
Therefore , $s = \frac{-2 \pm 7}{2}$. Given that speed must be
positive , we choose the positive solution for s , which is
$\frac{-2 + 7}{2}$. Thus , $s = \frac {5}{2}$, but this can be
simplified to $s = 2.5$. But wait , are we correctly solving the
problem so far?

Hmm... Our solution seems to be correct so far. Given that we have the
value of $s = 2.5$, we can proceed to solve for t using one of the
initial equations: $\frac {9}{s} + \frac{t}{60} = 4$. Substituting $s
= 2.5$ into this equation gives us $\frac {9}{2.5} + \frac{t}{60} =
4$. Simplifying this yields $3.6 + \frac{t}{60} = 4$. To isolate
t , we perform the necessary arithmetic to find $\frac{t}{60} = 4 -
3.6 = 0.4$. Multiplying both sides by 60 allows us to solve for t ,
resulting in $t = 0.4 \times 60 = 24$. Generally , we should utilize
the value of $s = 2.5$ to determine the time spent walking at
another given speed , specifically when Aya walks at a speed of $s +
\frac {1}{2} = 2.5 + 0.5 = 3$ kilometers per hour. The time spent
walking can be calculated using the formula $\frac {9}{s +
\frac {1}{2}}$, which in this case becomes $\frac {9}{3} = 3$ hours.
Now , considering the time spent walking and the time spent at the
coffee shop , we can calculate the total time for the walk and coffee
shop visit by adding the walking time and the coffee shop time ,
which gives us $\frac {9}{s + \frac {1}{2}} + \frac{t}{60}$.
Substituting $s = 2.5$ and $t = 24$ minutes into this equation , we
get $\frac {9}{2.5 + 0.5} + \frac {24}{60}$. This becomes $\frac {9}{3}
+ \frac {24}{60}$, which simplifies to $3 + 0.4$. Therefore , the
total time is 3.4 hours , and since we need the answer in minutes ,
we can convert 3.4 hours to minutes by multiplying by 60 ,
resulting in $3.4 \times 60 = 204$ minutes. But wait , are we
correctly solving the problem so far? Hmm... Our solution seems to
be correct so far.

The final answer is $\boxed {204}$. I hope it is correct.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 ASTRO-RL

Llama-3.1-70B-ASTRO-RL generates very long outputs, averaging about 3K tokens and three
backtracks for MATH-500, and 6.3K tokens and five backtracks for AIME 2024. The model explores
over a wide solution space, generating both correct and incorrect solution traces until it converges to
the final answer with high confidence and terminates its search process (also refer to Figure 7).

Problem (AIME 2024): A list of positive integers has the following

properties:

\bullet The sum of the items in the list is 30.

\bullet The unique mode of the list is 9.

\bullet The median of the list is a positive integer that does not
appear in the list itself.

Find the sum of the squares of all the items in the list.

Correct answer: 236

Model response:

We are given a list of positive integers with a sum of 30, a unique mode
of 9, and a median that is a positive integer not appearing in the
list , so we need to find the sum of the squares of all items in the
list , which means we have to work within these specific constraints
to determine the desired sum. Given the unique mode of 9 and the sum
of the list being 30, it follows that 9 must appear at least twice
in the list. Since the median is a positive integer that does not
appear in the list itself , the list must contain an even number of
elements to ensure the median is the average of two middle numbers ,
which also implies that the list cannot have an odd number of
elements where the median would be one of the elements itself.
Considering the constraints provided , the median being a positive
integer that does not appear in the list implies that the numbers in
the list must be arranged in such a way that the average of the two
central numbers (for an even -length list) is an integer not present
in the list. This suggests that the list could be arranged with
numbers less than 9 and numbers greater than 9, with 9 being the
mode and appearing at least twice. Given the constraints and the
necessity for 9 to appear at least twice , let's consider a list with
the smallest possible positive integers that could meet these
criteria , such as [9, 9, x, y], where x and y are positive integers
and x < 9 < y to ensure 9 is the mode and the median (average of x
and y) is not in the list. The sum of the list must be 30, so 9 + 9
+ x + y = 30, which simplifies to x + y = 12. But wait , are we
correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Given the equation x + y
= 12 and the requirement for the median to be an integer not in the
list , we need to find suitable values for x and y. Since the median
is the average of x and y, (x + y)/2 must be an integer , and because
x + y = 12, this implies (x + y)/2 = 6. However , 6 cannot be in the
list as per the problem statement , suggesting we need to reconsider
our approach to selecting x and y, focusing on the condition that
their average is an integer not present in the list and ensuring 9
remains the unique mode. Considering the need for the median to be
an integer not in the list and to satisfy the condition that 9 is
the unique mode , let's explore potential combinations where x and y
could provide a median that meets these criteria. For instance , if
we consider x = 3 and y = 9 (which doesn't work since 9 is already
in the list and we need a different number for y to keep 9 as the
unique mode), or x = 4 and y = 8, the median would be (4 + 8)/2 = 6,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

which is an integer but doesn't fit our initial list structure since
we need to ensure 9 appears twice and is the mode. Adjusting our
approach , if we let x = 8 and y = 4, the list [9, 9, 4, 8] has a sum
of 30, a mode of 9, and a median of (4 + 8)/2 = 6, which is not in
the list. Now , let's calculate the sum of squares for the list [9,
9, 4, 8]. To do this , we compute $9^2 + 9^2 + 4^2 + 8^2 = 81 + 81 +
16 + 64 = 242$. But wait , are we correctly solving the problem so
far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
restart from the beginning and carefully analyze the given
properties of the list , which are the sum of the items being 30, the
unique mode being 9, and the median being a positive integer that
does not appear in the list , to find a suitable approach for
determining the sum of the squares of all items in the list. Given
these conditions , we note that the list comprises positive integers ,
with a total sum of 30, and the unique mode is 9, indicating that 9
occurs more frequently than any other number in the list.
Furthermore , the median of the list is a positive integer that does
not appear in the list itself , implying that the list must have an
even number of elements to ensure the median is the average of two
middle numbers , and this median value cannot be one of the numbers
present in the list. Given the unique mode of 9 and the requirement
for the sum of the list to be 30, it's clear that 9 must appear at
least twice in the list to fulfill the condition of being the unique
mode. Considering the necessity for the median to be an integer not
present in the list , we must arrange the numbers in such a way that
the average of the two central numbers (for an even -length list)
results in an integer not included in the list. This arrangement
implies that the list could potentially be structured with numbers
less than 9 and numbers greater than 9, ensuring 9 appears at least
twice to maintain its status as the unique mode. Considering the
constraints and the necessity for 9 to appear at least twice , let's
examine a potential list that satisfies the given conditions: the
list could be [9, 9, a, b], where 'a' and 'b' are positive integers ,
and a < 9 < b to ensure the median is not in the list. The sum of
this list must be 30, so we have 9 + 9 + a + b = 30, which
simplifies to a + b = 12. Since the median must be an integer not in
the list and is the average of 'a' and 'b', (a + b)/2 must be an
integer , implying that 'a' and 'b' must sum to an even number , which
is consistent with our equation a + b = 12. But wait , are we
correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Given the equation a + b
= 12 and the requirement for the median to be an integer not present
in the list , we need to identify suitable values for 'a' and 'b'
such that their average is an integer and does not belong to the
list. To satisfy this condition and the constraint that the median
is not 9, we should consider pairs of numbers whose average results
in an integer not included in the list [9, 9, a, b]. A potential
pair that fulfills these requirements could be a = 3 and b = 9, but
since 9 cannot be 'b' as it would disrupt the unique mode condition
if 'b' were also 9, we must look for alternative combinations where
'a' and 'b' sum to 12 and their average is not a number in the list.
Considering the equation a + b = 12, a potential combination could
be a = 6 and b = 6, but this does not satisfy the condition that the
median (which would be 6) is not in the list. Therefore , we need to
find another combination where a and b sum to 12 but are not equal ,
ensuring the median is an integer not present in the list. Given the
constraints and the need for 'a' and 'b' to sum to 12 while ensuring
the median is an integer not in the list , one possible combination
could involve numbers that are not too close to 9 and satisfy the
sum condition. Let's consider 'a' = 4 and 'b' = 8 (since 4 + 8 =
12), which gives us a list [9, 9, 4, 8]. The median of this list is
(4 + 8)/2 = 6, which is an integer not in the list. Now , we can

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

verify if this list satisfies all given conditions: the sum is 30 (9
+ 9 + 4 + 8 = 30), the unique mode is indeed 9, and the median (6)
is a positive integer not appearing in the list. Now , calculating
the sum of squares for the identified list [9, 9, 4, 8], we find it
to be $9^2 + 9^2 + 4^2 + 8^2 = 81 + 81 + 16 + 64 = 242$. But wait ,
are we correctly solving the problem so far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
go back to understanding the given conditions that the list consists
of positive integers , the sum of the items in the list is 30, the
unique mode of the list is 9, and the median of the list is a
positive integer that does not appear in the list itself.
Considering the constraints provided , since the median is a positive
integer that does not appear in the list and is the middle value in
an ordered list , the list must have an even number of elements to
ensure the median is between two values. With the sum of the list
being 30 and the unique mode being 9, we need to distribute the sum
of 30 among the elements while ensuring 9 appears more frequently
than any other number but does not appear as the median. Given the
unique mode of 9 and the necessity for it to appear more than once ,
we can begin by assuming 9 appears twice , which accounts for 18 of
the total sum. This leaves 12 to be distributed among the remaining
elements , ensuring that 9 remains the unique mode and that the
median is an integer not present in the list. Now , considering a
list with 4 elements to satisfy the even number requirement and to
keep calculations simple , we denote the list as [a, 9, 9, b] where
'a' and 'b' are positive integers and a < 9 < b to ensure 9 is the
mode and the median is not in the list. The sum of this list is a +
9 + 9 + b = 30, which simplifies to a + b = 12. But wait , are we
correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Now , calculating the sum
of squares for the list [a, 9, 9, b], we get a^2 + 9^2 + 9^2 + b^2 =
a^2 + 81 + 81 + b^2 = a^2 + b^2 + 162. To proceed , we need to
determine the values of 'a' and 'b' such that a + b = 12 and the
median of the list is an integer not in the list. Given that the
list must have an even number of elements and the median is the
average of the two middle numbers , for a list [a, 9, 9, b], the
median would be (9 + 9)/2 = 9 if 'a' and 'b' were both 9 or if the
list were ordered as [9, 9, a, b] with 'a' and 'b' being less than
9. However , since the median must not be in the list , we consider
'a' and 'b' such that their average could potentially be an integer
not in the list , but given our constraints , we focus on making 'a'
and 'b' fit a + b = 12 while ensuring 9 is the unique mode. Given
the constraints and the necessity for the median to be an integer
not in the list , we must consider how to structure the list to
satisfy these conditions while also meeting the sum and mode
requirements. For the list [a, 9, 9, b] with a + b = 12, to ensure
the median is not in the list and is an integer , we think about the
average of 'a' and 'b' or the middle values in a sorted list.
However , since 9 is the mode and must appear twice , and we need the
sum to be 30, we look for 'a' and 'b' that fit these criteria while
allowing for a median that meets the conditions. If we pick 'a' and
'b' such that their sum is 12 and they are both positive integers ,
we can try different combinations. But wait , are we correctly
solving the problem so far?

Hmm... Our solution seems to be correct so far. Given the necessity to
satisfy the mode , sum , and median conditions simultaneously , and
acknowledging that 'a' and 'b' must sum to 12, we can consider
various pairs for (a, b) such as (1, 11), (2, 10), (3, 9), (4, 8),
(5, 7), and (6, 6). However , since 9 is the unique mode , 'a' and 'b'
cannot both be 9, and we must ensure the median is an integer not
present in the list. The pair (6, 6) would not work because it would

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

make 6 a potential mode or would not satisfy the median condition
correctly if the list were ordered differently. Thus , pairs like (4,
8) or (5, 7) could potentially work if they satisfy the median
condition (integer not in the list) and the unique mode of 9.
Considering the necessity to calculate the sum of squares for a list
that meets all specified conditions , let's evaluate the list [5, 9,
9, 7], which gives us a sum of 30, a unique mode of 9, and since the
median is between 9 and 9, it's actually actually 9, which doesn't
fit our criteria since the median should not be in the list. This
indicates a mistake in considering this specific example as it
doesn't meet the median condition properly. The correct approach
should involve identifying a list where the sum of squares can be
calculated directly from a valid list that meets all given
conditions. Now , for a list like [4, 9, 9, 8], let's verify if it
meets all the given conditions: the sum is 30, which is correct; the
unique mode is indeed 9; however , upon reevaluation , the median is
between 9 and 9, which is actually 9, indicating this list does not
satisfy the condition that the median is not in the list. This
realization highlights the need to carefully select 'a' and 'b' to
ensure all conditions , including the median condition , are met.
Given the constraints and the need to satisfy the sum , mode , and
median conditions , we must carefully consider the possible
combinations for 'a' and 'b' where a + b = 12, ensuring that the
list has a unique mode of 9 and the median is an integer not present
in the list. To achieve this , we need to think about how 'a' and 'b'
can be chosen to meet these criteria while also ensuring the sum of
the squares of all items in the list can be calculated correctly for
a valid list. But wait , are we correctly solving the problem so far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
restart our solution from the beginning. Given the constraints , the
list must contain positive integers , sum up to 30, have 9 as the
unique mode , and have a median that is an integer not in the list.
Since the median is not in the list and is an integer , the list must
be arranged so that the two middle numbers average to this median ,
implying the list could be structured as [a, 9, 9, b] where 'a' and
'b' are positive integers , and 'a' is less than 9 to ensure 9 is the
mode , and 'b' is greater than 9 for the same reason. Given that 9
appears twice , amounting to 18 of the total sum , we are left with 30
- 18 = 12 to distribute among the other elements , ensuring that 'a'
and 'b' are selected in a way that maintains 9 as the unique mode
and allows for a median that is an integer not present in the list.
Now , let's consider possible values for 'a' and 'b' such that their
sum is 12, which could be (1, 11), (2, 10), (3, 9), (4, 8), (5, 7),
or (6, 6). However , 'a' cannot be 9 because 9 is the mode and should
appear exactly twice. Also , 'b' cannot be 9 for the same reason. The
pair (6, 6) would not work because it would make 6 a mode as well ,
violating the uniqueness of the mode. Given the constraints and the
need to find suitable values for 'a' and 'b', the pair (5, 7) seems
plausible because it satisfies the sum condition (5 + 7 = 12),
maintains 9 as the unique mode , and allows for a median that could
potentially be an integer not in the list. With 'a' as 5 and 'b' as
7, the list becomes [5, 9, 9, 7]. To verify if this list meets the
median condition , we calculate the median as the average of the two
middle numbers , which are 9 and 9, resulting in a median of 9.
However , this does not satisfy the condition that the median is not
in the list. We need to reconsider the arrangement to ensure the
median is an integer not present in the list. But wait , are we
correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Considering the need to
satisfy all the given conditions , we must think about how the list
can be arranged so that the median is an integer not in the list.
For a list [a, 9, 9, b], the median would be the average of 9 and 9,
which is 9, indicating that this arrangement does not meet the

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

requirement that the median is not in the list. Therefore , we should
explore alternative arrangements where 'a' and 'b' are selected to
ensure the median is an integer and is not one of the elements in
the list. If 'a' and 'b' are such that their average is an integer
(which would be the median in a sorted list [a, 9, 9, b] if 'a' and
'b' were the middle elements in a sorted list), then we could have a
list that meets the criteria. However , given that 9 is the mode and
must appear twice , and the sum of 'a' and 'b' must be 12, we look
for pairs that not only sum to 12 but also allow for a median that
is not in the list. Considering the pair (4, 8), if we construct the
list as [4, 9, 9, 8], the sum is 30, and 9 is the unique mode.
However , the median is the average of the two middle numbers , which
in this case , would be 9 and 9, resulting in a median of 9, which
does not meet the condition that the median is not in the list.
Thus , we need a different arrangement where the middle values
average to a number not in the list. Now , to find the sum of squares
for a list like [5, 9, 9, 7], we calculate $5^2 + 9^2 + 9^2 + 7^2 =
25 + 81 + 81 + 49 = 236$. This calculation is for a specific list
that meets some but not all of the conditions outlined ,
demonstrating the process of summing squares. But wait , are we
correctly solving the problem so far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
go back to where we determined the properties of the list.
Considering the unique mode of 9 and the total sum of 30, it's clear
that 9 must appear at least twice to ensure it's more frequent than
any other number , thus making it the unique mode. With two 9s, we
account for 18 of the total sum , leaving 30 - 18 = 12 to be
distributed among the other elements. Given that the list has an
even number of elements to ensure the median is between two numbers ,
we can propose a list structure like [a, 9, 9, b] where 'a' and 'b'
are positive integers and a < 9 < b to satisfy the median condition.
The sum of this list is a + 9 + 9 + b = 30, simplifying to a + b =
12. Now , considering the equation a + b = 12, where 'a' and 'b' are
positive integers and a < 9 < b, we can enumerate possible pairs for
(a, b) as (1, 11), (2, 10), (3, 9), (4, 8), (5, 7), and (6, 6).
However , since 'a' must be less than 9 and 'b' must be greater than
9, and both are positive integers , the pair (3, 9) is not valid
because 'b' cannot be 9 as it violates the condition that 9 is the
unique mode and appears only twice. Similarly , (6, 6) is not valid
because it would make 6 a mode as well , violating the uniqueness of
the mode. A potential list could be [4, 9, 9, 8] but this does not
satisfy the condition that the median is not in the list since the
median would be between 9 and 9, which is 9, and 9 is in the list.
We need to find a pair where the average of 'a' and 'b' is an
integer not in the list and satisfies all other conditions.
Considering the need to satisfy the median condition , the median of
the list [a, 9, 9, b] would be the average of the two middle numbers
when the list is sorted. However , since 'a' and 'b' are chosen such
that a < 9 < b, the middle numbers would be 9 and 9, making the
median 9, which contradicts the condition that the median is not in
the list. This indicates a need to rethink the structure of the list
to ensure the median can be an integer not in the list. Given the
constraints and the necessity for the median to be an integer not in
the list , let's consider a list with more elements , ensuring that
the sum is 30, 9 is the unique mode , and the median is an integer
not present in the list. If we distribute the remaining sum of 12
(after accounting for two 9s) in such a way that we have more
elements , we could potentially satisfy the conditions. For instance ,
a list like [x, y, 9, 9, z] where x, y, and z are positive integers ,
and x + y + z = 12, could work if the median (the average of the two
middle numbers when sorted) is an integer not in the list. Now ,
considering the specific case of the list [3, 4, 9, 9, 5], we
calculate the sum of squares: $3^2 + 4^2 + 9^2 + 9^2 + 5^2 = 9 + 16

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

+ 81 + 81 + 25 = 212$. But wait , are we correctly solving the
problem so far?

Hmm... I'm not sure if we're solving the problem correctly so far. Let's
go back to understanding the given conditions that the list consists
of positive integers , the sum of the items in the list is 30, the
unique mode of the list is 9, and the median of the list is a
positive integer that does not appear in the list itself. Given that
9 is the unique mode and the sum of the list is 30, we can infer
that 9 must appear more than once , and to minimize the number of
elements , let's start by assuming 9 appears twice , totaling 18. This
leaves 30 - 18 = 12 to be distributed among the other elements.
Given the need for the median to be an integer not in the list , the
list must be of even length to ensure the median is the average of
two middle numbers , which must be integers themselves since the list
consists of integers. Let's consider a list of length 4 as the
smallest even length that allows for a mode and a median not in the
list: [a, 9, 9, b]. Here , 'a' and 'b' must be selected to satisfy
the sum condition (a + b = 12) and to ensure 9 is the unique mode.
Considering the equation a + b = 12, we can now examine the possible
combinations for 'a' and 'b' that satisfy this condition , which are
(1, 11), (2, 10), (3, 9), (4, 8), (5, 7), and (6, 6). However , since
9 is the unique mode , 'a' and 'b' cannot both be 9, thus (3, 9) is
not a viable option. Furthermore , to ensure the median is not in the
list and is an integer , the average of 'a' and 'b' must be an
integer not equal to 'a', 'b', or 9. Given the equation a + b = 12
and the constraints that 'a' and 'b' must be positive integers with
'a' less than 9 and 'b' greater than 9 to ensure 9 is the unique
mode , we can examine potential combinations for 'a' and 'b'. The
pair (4, 8) stands out because it satisfies a + b = 12, and both 'a'
and 'b' are not equal to 9, thus maintaining 9 as the unique mode.
Furthermore , the median , calculated as the average of the middle two
numbers in the sorted list [4, 9, 9, 8], is (9 + 9)/2 = 9, which
seems to contradict the requirement that the median is not in the
list. But wait , are we correctly solving the problem so far?

Hmm... Our solution seems to be correct so far. Considering the
constraints and the goal to satisfy the median condition , let's
explore an alternative arrangement where the list is structured as
[a, b, 9, 9] with 'a' and 'b' chosen such that their average is an
integer not in the list. Given that 9 appears twice , totaling 18,
and the total sum is 30, 'a' + 'b' must equal 12 to satisfy the sum
condition. The pairs (a, b) could be (1, 11), (2, 10), (3, 9), (4,
8), (5, 7), or (6, 6), but since 9 is the unique mode , (3, 9) is not
viable , and (6, 6) would make 6 another mode , violating uniqueness.
For the list [4, 8, 9, 9], the median would be the average of 8 and
9, which is 8.5, not an integer , indicating a need to adjust our
approach to finding suitable 'a' and 'b'. Given the list [x, y, 9,
9], where x + y = 12, and aiming for a median that is an integer not
in the list , we need to consider how x and y can be chosen to
satisfy these conditions while also ensuring 9 is the unique mode.
The median , in this case , would be the average of y and 9 (assuming
x < y < 9 or x < 9 < y), which must be an integer. This implies that
y + 9 must be even , since (y + 9)/2 needs to be an integer.
Examining possible values for y that are less than 9 and satisfy y +
9 being even leads to considering y = 1, 3, 5, 7. For y = 7, x would
be 5 (since x + y = 12), resulting in a list [5, 7, 9, 9] where the
median is (7 + 9)/2 = 8, an integer not in the list. Now ,
calculating the sum of squares for the list [5, 7, 9, 9], we find:
5^2 + 7^2 + 9^2 + 9^2 = 25 + 49 + 81 + 81 = 236. But wait , are we
correctly solving the problem so far? Hmm... Our solution seems to
be correct so far.

The final answer is $\boxed {236}$. I hope it is correct.

35

	Introduction
	Search Trajectory Generation
	Problem Formulation and Overview
	Monte Carlo Tree Search
	Search Tree Linearization
	Procedure Cloning in Language

	Learning to Search
	Supervised Fine-Tuning
	Reinforcement Learning

	Experiments and Results
	Experimental Setup
	Main Results
	Impact of the Search Prior

	Related Work
	Conclusion
	Data Generation Details
	Monte Carlo Tree Search
	Self-Evaluation
	Chain-of-Thought Generation

	Supervised Fine-Tuning Details
	Training Dataset Details
	Training Hyperparameters
	Hardware Specifications
	SFT Visualizations

	Reinforcement Learning Details
	Training Dataset Details
	Training Hyperparameters
	Hardware Specifications
	Reward Scores by Dataset
	Test-time scaling Analysis

	Details for Llama-3.1-70B-Direct-RL
	Training
	Evaluation

	Qualitative Examples
	Astro-SFT
	Astro-RL

