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Abstract

Edge-based computer vision models running on compact,
resource-limited devices benefit greatly from using unpro-
cessed, detail-rich RAW sensor data instead of processed
RGB images. Training these models, however, necessi-
tates large labeled RAW datasets, which are costly and of-
ten impractical to obtain. Thus, converting existing la-
beled RGB datasets into sensor-specific RAW images be-
comes crucial for effective model training. In this paper, we
introduce ReRAW, an RGB-to-RAW conversion model that
achieves state-of-the-art reconstruction performance across
five diverse RAW datasets. This is accomplished through
ReRAW'’s novel multi-head architecture predicting RAW im-
age candidates in gamma space. The performance is fur-
ther boosted by a stratified sampling-based training data
selection heuristic, which helps the model better reconstruct
brighter RAW pixels. We finally demonstrate that pretrain-
ing compact models on a combination of high-quality syn-
thetic RAW datasets (such as generated by ReRAW) and
ground-truth RAW images for downstream tasks like object
detection, outperforms both standard RGB pipelines, and
RAW fine-tuning of RGB-pretrained models for the same
task. The code is available at: https://anonymous.
4open.science/r/ReRAWN-0C87/

1. Introduction

The lifecycle of a digital image begins at the camera sensor,
where incoming light from a scene is converted into electri-
cal signals to form a RAW image — a single-channel Bayer-
pattern array [36] where each pixel value corresponds lin-
early to the scene’s luminosity. These RAW images are then
processed locally through a camera-specific Image Signal
Processor (ISP), which applies multiple functions such as
demosaicking, white balancing, tone mapping etc., to yield
a compressed RGB image optimized for human perception,
as shown in the conventional pipeline of Fig. 1.

RGB images are preferred over RAW images due to their
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Figure 1. The conventional imaging pipeline involves an image
sensor capturing a scene into a RAW image, converting that im-
age into standard RGB fit for human consumption, and running
computer vision tasks on these RGB images. The optimal pipeline
would involve performing high-level tasks directly on the RAW
images, on chip, and physically close to the image sensor.

much smaller compressed size and compatibility with hu-
man vision, making them fast to transmit from device to de-
vice and convenient to store. However, unprocessed RAW
images retain more detail, have a larger dynamic range
(12-16 bits), and contain more information than their ISP-
processed RGB outputs (see Supplementary ??). This sug-
gests that all else being equal, computer vision models such
as object detectors trained directly on RAW data could out-
perform those trained on RGB. Hence, when operating in
resource-constrained environments such as on the edge, the
reduction in model accuracy due to limited compute can be
mitigated by utilizing a richer signal source such as RAW
images, compared to RGB images. Additionally, bypassing
the ISP improves power consumption and speed, as in the
optimised pipeline in Fig. 1.

Nevertheless, RGB pre-trained object detectors perform
suboptimally on RAW images due to the domain gap. Sev-
eral approaches have attempted to bridge this gap with
learnable adapters [46, 62] or other non-linear scaling func-
tions beyond standard ISP processing [21, 39] as well as
adopting traditional feature extraction methods, such as
Histogram of Oriented Gradients (HOG) [68]. Although
end-to-end training of object detectors with these adapta-
tions yields promising results, performance is still limited
by the additional computational burden and the scarcity of
labeled RAW datasets. Alternatively, a reverse ISP func-
tion that converts RGB images back to RAW sensor out-
put could leverage widely available labeled RGB datasets.
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Recent methods have explored learning reverse ISP func-
tions [2, 26, 61] or adopting generative models such as Cy-
cleGAN [31] or diffusion models [51]. However, captur-
ing the true color profile or details in bright regions in RAW
images, particularly for dark scenes, remains a challenge.

Hence, in this work, we introduce ReRAW, a multi-head
reverse ISP model designed to reconstruct sensor-specific
RAW images from RGB inputs, without RAW meta-data,
faithfully capturing the color characteristics of a target cam-
era sensor. ReRAW enables the conversion of large RGB
datasets into realistic camera-specific RAW to train object
detectors that are mainly targeted for edge deployment. Our
design improves reconstruction accuracy for both day and
night images, effectively reproducing over-exposed regions
in dark RAW images, such as those captured at night. Our
primary contributions are as follows:

* We propose a novel reverse ISP model, ReRAW, capa-
ble of reconstructing sensor-specific RAW images from
RGB with high fidelity. The model employs a multi-head
ensemble architecture that generates multiple gamma-
corrected RAW images, subsequently scaled and com-
bined to match the sensor characteristics.

* A stratified sampling technique for training data, which
results in the trained ReRAW to better capture bright re-
gions in the converted RAW images, compared to us-
ing full training datasets or random sampling. Adding a
logarithm-based loss function further boosts performance
achieving state-of-the-art conversion accuracy compared
to competing methods, on five diverse RAW datasets.

e Empirical evidence that pretraining object detectors
on high-quality synthetic RAW datasets produced by
ReRAW, followed by fine-tuning on real RAW data for
specific tasks, outperforms models fine-tuned from an
RGB-pretrained baseline. This approach removes the
need for ISPs in traditional imaging pipelines on the
edge and eliminates the need for extra fixed or learnable
adapters to align RAW data with RGB-pretrained mod-
els. Our direct RAW training from scratch is effective,
provided the synthetic RAW images are of high quality.

2. Related Work
2.1. RAW Images

RAW images, with their higher dynamic range and linear
noise profile, offer advantages over standard RGB images,
especially in low-light conditions. However, they are usu-
ally 5 — 10x larger in size than compressed RGB, and
large RAW datasets (> 100K images), to the best of our
knowledge, do not exist. Nonetheless, with limited data, re-
cent studies have demonstrated improved outcomes in im-
age classification [42, 43], object detection [11, 13, 40, 59,
63, 64], semantic segmentation [11], and instance segmen-
tation [7] with models designed for the RAW domain.

2.2. RGB-t0-RAW Reconstruction

The advantages of RAW images, coupled with the ex-
tremely limited availability of RAW datasets, have fueled
interest in reconstructing RAW images from RGB coun-
terparts to expand labeled datasets. Traditional methods
determine the relationship between a camera’s output in-
tensity and the incident light by capturing multiple im-
ages at various controlled exposure levels, with varying
levels of complexity [5, 6, 12, 20, 25, 34, 45]. How-
ever, these approaches require calibration for each cam-
era, necessitating multiple parameterized models for dif-
ferent settings. In contrast, modern data-driven algorithms
[1,3,8,9, 17, 18, 33, 37, 56, 66] leverage advanced ma-
chine learning to address this complex inverse problem
without calibration. A common strategy involves simu-
lating single or groups of ISP functions with neural net-
works [33, 37, 64], which requires sensor-specific config-
uration and training while limiting the flexibility of a data-
driven perspective. Alternatively, other methods encapsu-
late ISP functions within a single network [3, 18, 66] yet
they demand extensive RGB-RAW paired datasets.

2.3. Object Detection on the Edge

Modern deep learning techniques have significantly ad-
vanced object detection performance [19, 35, 38, 50, 50,
52, 58]. Beyond algorithmic advancements, this improve-
ment could also be attributed to the increasing scale of de-
tection models and the availability of large labeled datasets.
However, many practical object detection applications oper-
ate at the edge, where limited computational power, mem-
ory, and a restricted power budget are common constraints.
These requirements can be addressed either by compress-
ing large models through knowledge distillation [30], quan-
tization [28], and/or pruning [15, 32] or by designing
lightweight models from scratch [23, 24, 29, 54, 57, 67].
We hypothesize that when edge computing is paired with
RAW sensor data, the resulting edge-based imaging and
sensing systems can achieve greater versatility in monitor-
ing challenging scenes and improved overall performance.

3. ReRAW

Motivated by the lack of large-scale labeled RAW datasets,
and analysing the shortcomings of previous reverse ISPs,
we design ReRAW as a universal RGB-to-RAW converter
that can handle both daytime and nighttime images, with
mild or strongly skewed RAW pixel distributions.

3.1. Overview

ReRAW is designed to reconstruct a W/2 x H/2 x 4 packed
RGGB (RAW) image patch (Iraw) given both an input
W x H x 3 RGB image patch (fRGB) and the full RGB
image (fERGB) from where the RGB patch originates from.
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Figure 2. Illustration of ReRAW architecture and training data flow. A Global Context Encoder (F) extracts features from the full RGB
image to guide the Color Reconstruction network (C), while a Multi-head Gamma Predictor (M) generates multiple gamma-corrected
RAW patches. These patches are then degammaed (inverse gamma correction), scaled by a scaling vector, predicted by a Gamma Scaling
Encoder (G) from the original RGB image, and summed to form the final RAW patch. Losses are applied between each intermediate
gamma-corrected RAW patch and target, as well as between the final RAW output and target RAW.

We convolve ReRAW over an input RGB image to recon-
struct the full required RAW image (fp,RAW).

The model’s unique feature is its prediction in gamma
space, over multiple gamma candidates, via a multi-head
architecture. Gamma-corrected patch candidates are re-
linearised (by applying an inverse gamma process) and pro-
portionally averaged by a weight vector predicted by a
Gamma Scaling Encoder from the original full RGB im-
age. In this way, the model learns to select input image-
dependent gamma transformations that would facilitate a
better RAW conversion. Additionally, training via a strat-
ified sampling data selection technique helps in mitigating
the extreme skew of pixel values commonly found in RAW
images.

3.2. Architecture

The full network architecture is shown in Fig. 2. The model
consists of a Color Reconstruction Network (C), a Global
Context Encoder (F), a Multi-head Gamma Predictor (M),
and a Gamma Scaling Encoder (G). The model is trained
to predict n gamma-corrected RAW target patches (/i raw)
from an input RGB patch and its container RGB image:

{Li raw }1= = M(C(Irge) % F(Irrcs)) 9]

The gamma-corrected patch candidates I; r 4w are then
degammaed (inverse gamma process to re-linearize the im-
ages) and each multiplied by a scaling factor predicted by
the Gamma Scaling Encoder from the original full RGB im-

age. The linearised and scaled RAW candidate patch im-
ages are then summed to output the final RAW patch Igaw.

Color Reconstruction Network (C) This module con-
sists of an initial depth-wise convolutional layer with kernel
size 3 x 3, stride 1, 3 groups, and 96 channels. It is then
followed by a 2 x 2 stride 2 convolutional layer with 128
channels. This reduces the input spatial dimension of the
RGB patch from (W +2) x (H 4 2) (not using padding) to
(W/2) x (H/2). The output is then fed into a residual net-
work consisting of 8 point-wise convolutional layers with
depth 128. The output of the C' network is thus a latent
tensor of (W/2) x (H/2) x 128, where each spatial multi-
channel pixel has a receptive field size of only 4 x 4 in the
original RGB patch.

Global Context Encoder (F) This module encodes gen-
eral characteristics from the original RGB image (scaled to
128 x 128) such as luminosity and color space features, and
uses this information to modulate the RGB-to-RAW color
conversion. The module consists of a ResNet18 [22] where
the last classification layer has been replaced with a linear
layer of 1 x 1 x 128 output size. This output tensor is then
expanded to shape (W/2) x (H/2) x 128 and multiplied
with the output tensor of the Color Reconstruction Network
(C). We found empirically that multiplication gave better
results than addition or concatenation.

Multi-head Gamma Predictor (M) This network holds
n = 10 parallel heads, each consisting of 8 residual point-



wise convolutional layers with depth 128, and output depth
4. Each head outputs a candidate gamma-corrected RAW
patch [iraw. The motivation for using a multi-head ap-
proach is that converting to RAW in gamma space can be
helpful when there are significant differences between the
input RGB and output RAW pixel distributions [44]. For in-
stance, daytime datasets with minimal ISP adjustments typ-
ically present an easier reconstruction task, whereas night-
time datasets, which necessitate more extensive ISP opera-
tions, pose a more challenging reconstruction problem. To
address these varying complexities, the multi-head strategy
is designed to learn distinct transformation pathways.

Gamma Scaling Encoder (G) The Gamma Scaling En-
coder, also a ResNet18, learns to encode the full RGB image
into a scaling vector of softmax-normalized values of size
n:

n—1
{0}y = G(lrran), Z a; =1 )
=0

The output gamma-corrected RAW patches (Iiraw)
from the Multi-head Gamma Predictor (G) are then re-
linearized (de-gammaed), scaled by each «; value from the
dynamic scaling vector and summed in order to output the
final RAW predicted patch Iraw:

n—1
Traw = > Lliaw X i 3)
=0

3.3. Training Objective

The network is optimized to predict a RAW image patch
Iraw, given an input RGB patch fRGB and the correspond-
ing full RGB image IAF,RGB. The network outputs n inter-
mediate gamma-corrected RAW patches [; gaw, and a final
RAW patch Igxaw. In low-level image processing, training
objectives normally comprise of minimising the L; or L,
distance between a target and a predicted image [69]. Fur-
ther, in order to address the data distribution skew towards
lower pixel values, a logarithm-based loss function is some-
times used [14]. We design our own loss function hard-log
(Lhin) which heavily penalizes wrongly reconstructed pixel
values, whilst converging to a L; loss for lower error pixels
(Fig. 3c). This loss function helps better reconstructing
sparse bright pixels in mostly dark images.
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For the Multi-Head Gamma Predictor we chose 10

gamma values v; € {0.1,0.2,...1}. The target gamma-
corrected candidate RAW patches are therefore:
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The overall training objecting is thus minimizing the loss
both between the candidates (/;raw) and target gamma-
corrected patches (IAi,RAW), and between the final RAW
patch (Iraw) and target RAW patch (fRAw)I

n—1

L= Lypn(Iraw, Iraw) + Z Lin(Ii paw, L gaw)
i=0
(6)
3.4. Stratified Sampling

Training ReRAW needs paired RGB and RAW images.
These can be created by capturing RAW images with a cam-
era and using the camera’s ISP or a generic ISP to produce
the paired RGB images. The training set is made up of small
image patches taken from each RGB image, along with the
matching patch from the paired RAW image. The network
takes one RGB patch and the full RGB image it came from
as inputs.

The pixel distribution in RAW images is in usual cases
(natural scenes) skewed toward darker values, and espe-
cially in nighttime images. Examining pixel distributions
from all patches in a dataset shows a bias toward low-
intensity values. This bias remains even when sampling a
subset of patches randomly from the RAW image dataset.
Training an RGB-to-RAW converter would therefore tend
to prioritize reconstructing darker pixels over brighter re-
gions, which may contain important information useful for
other high-level computer vision tasks.

To address this bias, we propose a stratified sampling
technique to create a paired RAW to RGB patch dataset that
better balances the pixel distributions in both domains. This
aims to improve reconstruction performance, especially in
the brighter regions of the image. The process and its im-
pact on pixel distribution are shown in Fig. 3a. The steps
for the stratified sampling method are listed below:

1. Split each RGB image in the dataset into patches and
compute the average brightness for each color channel.

2. Bin the patches based on their average brightness for
each channel, resulting in three vectors of binned
patches. We use 10 bins: [0 — 0.1),...,[0.9 — 1.0).

3. Uniformly select one bin, then uniformly pick an RGB
patch from that bin and its corresponding RAW patch.

The above steps describe our method for selecting an
RGB-RAW patch pair from the paired images. We repeat
this process multiple times for each color channel and each
image in the dataset to build our training set. Compared to
random sampling, the stratified sampling method results in
a more even pixel intensity distribution, as shown in Fig. 3b.
While it is not possible to achieve a perfectly uniform dis-
tribution (as we sample full 4-channel pixel values, not in-
dividual channels), this method significantly improves uni-
formity.
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Figure 3. (a) Comparison of random vs stratified sampling for RGB-to-RAW conversion training data preparation. As explained in 3.4,
random sampling results in a pixel intensity distribution similar to the original image, while stratified sampling results in a much more
balanced pixel intensity distribution. (b) Histograms show pixel value distributions for each color channel from patches of NOD-Nikon
RAW dataset for random (red), full (black) or stratified (blue) sampling methods showing the desired effect. (c) Comparisons of losses.

4. Experiments

We perform extensive experiments analyzing the per-
formance of our RGB-to-RAW reconstruction network
ReRAW. We benchmark our network on several challeng-
ing RAW datasets (daytime and nighttime) and against
competing methods and show state-of-the-art performance.
Further, we apply ReRAW to convert large labeled RGB
datasets to sensor-specific RAW, and show that training
RAW object detectors (OD) from scratch on combined syn-
thetic and ground-truth labeled RAW data outperforms tra-
ditional RGB data pretraining and finetuning. We demon-
strate this via a strict 1-to-1 comparison, over three different
object detectors and over two different RAW/RGB datasets
(one day and one nighttime) to show the validity of our
training recipe.

4.1. Datasets

RGB-to-RAW conversion We utilize five different RAW
datasets. From the MIT-Adobe FiveK [4] collection we se-
lect images taken with the Nikon D700 and Canon EOS 5D
SLR cameras to create two datasets of 542 and 707 RAW
images, respectively. We name these: FiveK-Nikon and
FiveK-Canon. We also utilize the NOD [47] RAW night-
time dataset consisting of two sets of images captured by
a Nikon D750 and Sony RX100 VII SLR cameras. We
named these as NOD-Nikon and NOD-Sony, each consist-
ing of 4.0k and 3.8k images, respectively. Finally, we utilise
PASCALRAW [48], comprising of 4.2k RAW images cap-
tured by a Nikon D3200 DSLR camera.

For all RAW datasets, we use rawpy [53] to convert the
RAW files to RGB images to create RAW-RGB pairs at full
resolution. We use a 80/20 train/test split.

Object Detection We utilise PASCALRAW and NOD-
Nikon RAW OD datasets to benchmark our models trained
on synthetic RAW images. PASCALRAW contains mostly
daytime images while NOD-Nikon contain strictly night-
time images. Both datasets are labeled with objects of 3

classes (person, car and bicycle).

To create our large synthetic labeled RAW datasets, we
utilise the BDD100K [65] autonomous driving OD dataset.
We select only images that contain at least one of the 3
classes of interest, and further split this into daytime and
nightime images, using the provided image meta-labels. We
extract a 3 class OD daytime subset of 36.5k images with
476k instances, and a 3 class OD nighttime subset of 27.5k
images and 263k annotations.

Utilising PASCALRAW, the daytime RAW OD dataset,
and the daytime BDD subset, we create three variations:

1. BDD-RGB: contains a mix of daytime BDD RGB im-
ages and the ground truth RGB images from the PAS-
CALRAW train split.

2. BDD-ReRAW-R: contains daytime BDD RGB images
converted to synthetic RAW by the ReRAW model
trained on PASCALRAW via random sampling patch
selection (ReRAW-R), combined with the ground truth
RAW images from the PASCALRAW train split.

3. BDD-ReRAW-S: contains daytime BDD RGB images
converted to synthetic RAW by the ReRAW model
trained on PASCALRAW via stratified sampling patch
selection (ReRAW-S), combined with the ground truth
RAW images from the PASCALRAW train split.

Utilising NOD-Nikon, we prepare the same 3 variations of

datasets, however using the nighttime BDD subset, and the

ReRAW variations trained on NOD-Nikon. A visualisation

of the converted images is shown in Supplementary Fig. ??.

4.2. RGB-t0o-RAW Reconstruction

Training Setup We sample about six 68 x 68 RGB
patches and their corresponding 32 x 32 RAW patches per
image pair, once randomly and once using our stratified
sampling method to create two separate training subsets per
RGB-RAW dataset. We use each of these to train a sepa-
rate ReRAW variant, ReRAW-R utilising the random sam-
pled subset and ReRAW-S utilising the stratified sampled
subset. Each target RAW patch is black-level subtracted
and max-normalised. The full context RGB image is down-



Dataset NOD - Nikon NOD - Sony FIVEK - Nikon FIVEK - Canon PASCALRAW
Metric PSNR SSIM ‘ PSNR SSIM ‘ PSNR SSIM | PSNR SSIM ‘ PSNR  SSIM
CycleR2R [31] 24.51 0.5805 | 22.06 0.5069 | 24.60 0.8768 | 25.28 0.8582 | 26.65 0.7785
UNet [10] 3458 09279 | 3493 09067 | 27.18 0.8882 | 25.83 0.8895 | 27.81 0.8831
SRISP [49] 35.04 0.8953 | 33.89 0.8628 | 24.28 0.8313 | 26.34 0.8164 | 31.79 0.9490
InvISP [61] 2798 0.8843 | 28.37 0.8764 | 27.09 09142 | 23.81 0.8596 | 27.34 0.9120
InvISP™ [61] 37.20 09708 | 35.86 0.9499 | 26.41 09093 | 26.61 0.8995 | 31.07 0.9507
ISPLess [39] 27.27 0.8867 | 27.18 0.8714 | 27.79 09173 | 24.86 0.8728 | 26.30 0.9057
ISPLess™ [39] 37.14 09688 | 35.69 0.9489 | 27.88 0.9093 | 26.85 0.8898 | 30.45 0.9336
RAW-Diffusion [51] | 39.82 0.9804 | 38.22 0.9658 | 28.84 0.9258 | 28.89 0.9333 | 35.34 0.9695
ReRAW-R 40.12  0.9915 | 38.64 0.9929 | 30.52 0.9492 | 29.85 0.9103 | 38.51 0.9860
ReRAW-S 41.00 0.9914 | 40.07 0.9931 | 30.18 0.9466 | 30.45 0.9122 | 38.88 0.9861
Table 1. RGB to RAW reconstruction performance comparison by PSNR (dB) (1) and SSIM(T). ReRAW, particularly the stratified

sampling variant ReRAW-S, outperforms competing methods. Best result is highlighted in bold, second best underlined.
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Figure 4. Qualitative comparison of RAW reconstruction for several competing reverse ISP models and ReRAW-S. First two columns
show ground truth RGB followed by ground truth RAW. For each model, the input is formed just from the ground truth RGB image.
Each row shows one example from each dataset. Each reconstructed image is split in half, where the left half shows the gamma-corrected
reconstructed image, and right half shows an error map vs ground truth RAW image. Best seen in color.

scaled to 128 x 128 and randomly cropped to 0.9 of its area Results We compare ReRAW with several state-of-the-art

for each patch sample. We train each ReRAW model using
the Adam optimizer [27] with a batch size of 32. Training
is done for 128 epochs using cosine annealing with warm
restarts every 16 epochs, with a starting learning rate of
10~3 and decaying to 1075,

Evaluation For each trained model we convert the RGB
test set for each RGB-RAW datasets into their synthetic
RAW counterparts at full resolution and evaluate both
PSNR and SSIM [60] (Structural Similarity Index Masure)
compared to the original RAW images. We average PSNR
and SSIM for all reconstructed images in each dataset and
report the results.

reverse ISPs: CycleR2R [31], a CycleGAN based method,
UNet [10], SRISP [49], InvISP [61], ISPLess [39], and
RAW-Diffusion [51], a diffusion-based method. For SRISP,
we use the mean global feature of all training images as
test-time reference. For InvISP and ISPLess, we also in-
clude variants where during the inverse process, the ground
truth RGB image is used as input, denoted as InvISPT and
ISPLesst. The conversion results on all the five RAW
datasets listed before are shown in Table 1. ReRAW outper-
forms all listed reverse ISPs in terms of PSNR and SSIM.
RAW-Diffusion achieves second best overall results. We
report two variations of our model: ReRAW-R - trained
with a dataset of patches selected randomly; and ReRAW-



NOD NOD FIVEK FIVEK PASCAL
Nikon Sony Nikon Canon RAW

Ly 40.71 3997 3135 29.85 38.87
Lo 40.65 3943  28.30 27.93 38.34
L, | 41.00  40.07  30.18 30.45 38.88

Table 2. Comparison on different loss function and their effect
of ReRAW reverse ISP conversion PSNR (dB) (7). Our proposed
Lhnir loss achieves tops performance on the majority of datasets.

Global Garpma Gam.ma NOD FIVEK
Context  Predictor  Scaling Nikon Canon
Encoder no. heads Encoder

1 36.04 26.55

v 1 40.95 29.5

2 36.10 27.44

v 2 40.98 29.27

v 2 v 40.87 29.75

v 10 v 41.00 30.45

Table 3. Ablation study on the components of ReRAW and their
effect on conversion PSNR (dB) (1). Global Context Encoder’s
impact is high, while both increasing the no. of heads and adding
the scaling encoder further boosts performance. When (M) has
multiple heads and (G) is not used, the outputs are just averaged.

S - trained on a dataset of patches selected via our strati-
fied sampling method. ReRAW-S achieves the highest re-
construction PSNR for NOD-Nikon, NOD-Sony, FiveK-
Canon, and PASCALRAW datasets. Also, ReRAW-S, en-
abled by the stratified sampling technique, reconstructs
the high intensity RAW pixel values better compared to
ReRAW-R, as can be seen in Supplementary Fig. ??.
Figure 4 shows qualitative results of synthetic RAW im-
ages reconstructed from original RGB images using our
models and competing reverse ISPs, compared to their
ground truth RAWs. Due to both the stratified sampling
technique and logarithm-based loss function, highlighted
regions of the RAW images are better reconstructed by
ReRAW-S compared to competing methods. This bet-
ter reconstruction can also be visualised when plotting the
ground truth RAW pixel values vs synthetic RAW pixel val-
ues for all RAW color channels, as shown in Supplementary
??. ReRAW-S achieves a more linear relationship between
predicted and real pixel values, boosting a higher PSNR.

Ablation Study We perform experiments to study how
each component and learning heuristic impacts the perfor-
mance of ReRAW.

We test the impact of different loss functions on training
ReRAW, as shown in Table 2. Using the stratified-sampling
training set, we train the model with £, L5, and our pro-
posed L, loss functions. The logarithm-based loss per-

forms best across datasets, likely because it penalizes poorly
reconstructed high-value pixels more strongly than £; and
Lo, leading to better overall conversion performance.

We also ablate modules and modify network hyperpa-
rameters, with the results shown in Table 3. The con-
text encoder proves important for PSNR performance, since
it proves global color modulation parameters can be ex-
tracted from the converted RGB scene. Additionally, the
multi-head architecture allows the model to convert various
gamma-corrected patches and select the best ones.

4.3. Object Detection

Training Setup We evaluate several recipes of training
small object detectors for running on the edge. We train
3 different single-stage object detectors: RTMDet-s [41],
YOLO-X-s [16], and SSD with a MobileNet-v2 backbone
[55], each designed for efficient, real-time object detec-
tion through simplified architectures that optimize infer-
ence speed and accuracy. We train each detector in two
stages: a pretraining stage on variations of a large cus-
tom dataset extracted from BDDI100OK, as listed in Sec-
tion 4.1, and a finetuning stage on small real-world datasets
of interest. Four different pretraining/finetuning combina-
tions are tested in order to fairly evaluate the differences in
performance between RGB and RAW trained OD models,
and on two datasets: PASCALRAW (daytime) and NOD-
Nikon (nightime). We pretrain each detector from scratch
for 50 epochs on the full custom BDD dataset (BDD-RGB
or BDD-ReRAW-R/S), using stochastic gradient descent
(SGD) with a cosine annealing schedule. Base learning
rates are 0.001 for RTMDet, 0.002 for YOLOX and 0.015
for SSD, decaying to 0.1x. Random flip, scale and mosaic
are applied as augmentations only during pretraining. Each
detector was then finetuned for 8 epochs on the ground-
truth train set of PASCALRAW or NOD-Nikon, with start-
ing learning rate of 0.1x of base and decaying to 0.01x,
also on a cosine annealing schedule. We keep the training
heuristics identical per detector in order to allow a fair 1-to-
1 comparison between each training dataset combinations.

Evaluation Each trained detector was evaluated on the
PASCALRAW and NOD-Nikon RGB or RAW test sets, de-
pending on the modality of the finetuning set, on mean Av-
erage Precision (mAP, mAP50, and mAP75).

Results The object detection training results are shown
in Table 4. The results under the PASCALRAW columns
have been obtained using the daytime BDD-RGB and BDD-
ReRAW datasets, and for the NOD-Nikon column, using
the nighttime sets (as explained in Section 4.1).

The line a) result for each detector represents the base-
line traditional pipeline of RGB pretraining and finetuning.



Model Pretraining Finetuning PASCALRAW NOD - Nikon

mAP  mAP50 mAP75 ‘ mAP  mAP50 mAP75

RTMDets [41] a) BDD-RGB GT-RGB 57.62  86.60 60.69 | 2046  39.74 18.39
b) BDD-RGB GT-RAW | 5620 85.65 58.33 | 20.21 3845 18.91

c) BDD-ReRAW-R | GT-RAW | 6244  91.12 65.23 | 21.53  38.64 20.76

d) BDD-ReRAW-S | GT-RAW | 63.19 90.45 66.14 | 21.09 38.14 20.49

YOLOX-s [16] a) BDD-RGB GT-RGB 65.36 9145 71.70 | 27.14  49.58 25.45
b) BDD-RGB GT-RAW | 64.00 90.33 70.06 | 27.30 49.76 26.13

c) BDD-ReRAW-R | GT-RAW | 62.64  90.88 67.75 | 27.09  50.52 25.49

d) BDD-ReRAW-S | GT-RAW | 65.85 91.76 71.73 | 29.03 52.92 27.49

SSD [55] a) BDD-RGB GT-RGB 62.50 90.63 66.38 | 22.97  40.98 21.83
o b) BDD-RGB GT-RAW | 6222 90.53 65.67 | 23.06 41.05 22.64

c) BDD-ReRAW-R | GT-RAW | 60.96  89.60 64.53 | 22.56  40.28 22.30

d) BDD-ReRAW-S | GT-RAW | 63.09 90.98 67.38 | 23.40 41.39 22.32

Table 4. Object detection training results: 3 OD models X 4 training variants. Training heuristic d), involving pretraining on a mix high
quality synthetic RAW dataset converted by ReRAW and ground truth RAW data (BDD-ReRAW-S), then finetuning on a RAW dataset of
interest, generally achieves the highest performance in terms of mAP, compared to other training heuristics, including a full RGB pipeline.

Line b) involves taking the RGB pretrained model and fine-
tuning it on RAW images (with the 2 green channels aver-
aged). Although this is an immediate solution for adapting
foundation RGB models to RAW, this method generally un-
derperforms due to the domain gap. For lines c) and d), the
detectors have been pretrained on synthetic large RAW im-
age datasets converted from BDD-RGB using ReRAW-R
(c) and ReRAW-S (d), and finetuned on real RAW images.

Training heuristic d) always outperforms the traditional
RGB pipeline a), on a 1-to-1 comparison, for multiple de-
tectors and on both a daytime, and a more difficult night-
time dataset. Additionally, training heuristic c) underper-
forms both d) and a) (for YOLOX and SSD), due to the
large synthetic pretraining RAW dataset being lower fidelity
(PSNR) than d). This underscores that the quality of the
reverse ISP used to generate the large synthetic RAW pre-
training dataset is important. The second performing train-
ing heuristic for the daytime dataset (PASCALRAW) is the
RGB pipeline a). This is because the pixel distribution of
daytime RGB images is closer to their original RAW ver-
sions. In contrast, for the nighttime dataset (NOD-Nikon),
the second-best heuristic is b) or c), showing that in low-
light conditions, RAW is optimal.

5. Discussion and Future Work

Our proposed stratified sampling technique helps in boost-
ing the conversion performance of ReRAW, and proved that
training data curation is beneficial even for low-level image
tasks such as RGB to RAW conversion. We plan to explore
other sampling methods such as filtering training patches
based on high dynamic range, or high entropy, that might
further boost conversion performance.

The experiments in Table 4 showed that maximizing ob-
ject detection accuracy of small detectors on the edge oper-
ating on unprocessed RAW image signal directly, the train-
ing recipe listed in d) is the most salient. The RTMDet
detector showed the highest sensitivity to input domain,
where training on PASCALRAW yielded a large variability
in mAP results, whilst YOLOX and SSD showed less vari-
ability. This suggests that developing detector architectures
specifically tailored for RAW images is a promising direc-
tion for future research. We also acknowledge that the RT-
MDet results on NOD-Nikon show preference to the lower
PSNR synthetic RAW dataset (BDD-ReRAW-R), which is
surprising. This shows a limitation of the PSNR metric
when relating synthetic RAW conversion performance and
downstream task accuracy, and it’s worth exploring further.

6. Conclusion

We introduced ReRAW, a state-of-the-art high-PSNR re-
verse ISP for converting RGB images into sensor-specific
RAW. ReRAW achieves the highest reconstruction accuracy
against competing state-of-the-art methods, for five differ-
ent datasets, due to its unique multi-head architecture pre-
dicting RAW image candidates in gamma space, and strat-
ified training data sampling technique. Using ReRAW to
generate high-quality synthetic RAW datasets for pretrain-
ing OD models and fine-tuning on real RAW data results
in superior performance compared to models trained on tra-
ditional RGB pipelines. This method, thanks to ReRAW’s
high reconstruction accuracy, optimizes model training for
edge devices, bypassing the ISP hence saving energy and
time, and enhancing OD accuracy over standard RGB work-
flows.
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