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Abstract

When fine-tuning pre-trained Large Language
Models (LLMs) to align with human values and
intentions, the pursuit of maximizing the esti-
mated reward can lead to superior performance,
but it also introduces potential risks due to devi-
ations from the original (reference) model’s in-
tended behavior. Most existing methods for align-
ing LLMs typically introduce KL divergence to
constrain deviations between the training model
and the reference model; however, this may not
be sufficient in certain applications that require
tight risk control. In this paper, we introduce Risk-
aware Direct Preference Optimization (Ra-DPO),
a novel approach that incorporates risk-awareness
by employing a token-level objective function un-
der nested risk measure. This method formulates
a constrained risk-aware advantage function max-
imization problem and then converts the Bradley-
Terry model into a token-level representation. The
ultimate objective function maximizes the likeli-
hood of the policy while suppressing the deviation
between a training model and the reference model
using a sequential risk ratio, thereby enhancing
the model’s risk-awareness during the process of
aligning LLMs. The proposed method’s effec-
tiveness is verified via three open-source datasets:
IMDb Dataset, Anthropic HH Dataset, and Al-
pacaEval, and the results demonstrate superior
performance of our method in balancing align-
ment performance and model drift.

1. Introduction

With the advanced and rapid developments of large language
models (LLMs) technology, learning from human feedback,
serving as a bridge in aligning LLMs with human values
and intentions, has become increasingly crucial (Ouyang
et al., 2022; Bai et al., 2022; Touvron et al., 2023; Bider-
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man et al., 2023). Reinforcement Learning from Human
Feedback (RLHF), which typically involves supervised fine-
tuning, reward model training, and further fine-tuning of
policy models via reinforcement learning (RL) algorithms,
demonstrates impressive capabilities across diverse tasks
and has emerged as a concrete research agenda (Christiano
et al., 2017; Ouyang et al., 2022; Yuan et al., 2023). A crit-
icized downside is that RLHF has a complex process that
requires considerable memory and careful hyperparameter
tuning to maintain the stability of RL training.

Direct Preference Optimization (DPO) (Rafailov et al.,
2023), featuring a simple and straightforward training pro-
cess, directly uses the likelihood of the policy to define
an implicit reward fitted to the preference data, which has
emerged as a popular alternative since it bypasses key chal-
lenges in explicit reward modeling and achieves notable ef-
ficiency and competitive performance. Nevertheless, some
studies (Xiao et al., 2024; Wang et al., 2024b) have reported
that DPO still suffers from issues such as excessively long
generative responses and the significant KL divergence of
the dispreferred response subset. To tackle these issues, nu-
merous variants of DPO have been successively proposed,
including f-DPO (Wang et al., 2024a), IPO (Azar et al.,
2024), RDPO (Fisch et al., 2024), and SimPO (Meng et al.,
2024), which introduce length control mechanisms or en-
hance KL divergence constraints. However, a key limitation
is that these methods only consider evaluation at the sen-
tence level, ignoring the fact that the generation of these
responses occurs sequentially, following an auto-regressive
approach.

Recently, a fresh perspective on LLMs alignment has been
introduced, specifically the sequential and token-level di-
rect preference optimization, known as TDPO (Zeng et al.,
2024), which allows for examining divergence in relation to
a reference LLM on a more granular, token-by-token basis.
Specifically, inspired by Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015) in RL field, TDPO rede-
fines the objective of maximizing restricted rewards in a
sequential manner and establishes the connection between
sentence-level reward and token-level generation through
using the Bellman equation. However, since the objective at
each step is to maximize the expected return, a risk-neutral
criterion, which neglects the characteristics of the reward
distribution beyond the mean, TDPO encounters the same
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challenges as classic RL algorithms (Schulman et al., 2015;
2017; Bisi et al., 2022).

Fortunately, in the field of RL, a series of risk-sensitive
methods (Bisi et al., 2022; Candela et al., 2023) have been
proposed, which achieve superior performance by intro-
ducing various risk measure functions. Recently, some
researchers have attempted to introduce this technology in
order to align LLMs with human preferences. For instance,
RA-RLHF (Chaudhary et al., 2024) introduces Conditional
Value at Risk (CVaR) (Artzner, 1997), a static risk measure
function, into the fine-tuning of RL, while KTO (Ethayarajh
et al., 2024) introduces prospect theory (Tversky & Kahne-
man, 1992) to fit human choice behavior when faced with
uncertain events. However, these methods only analyze the
risk of the whole prompt-response at the sentence level by
considering the distribution characteristics of the preference
data, which neglects the fact that the generation of these
responses occurs sequentially, following an auto-regressive
approach.

In this paper, we focus on the risk in the value iteration
at each step by introducing nested risk measures. Specifi-
cally, we investigate a novel direct preference optimization
method for the problem of aligning with human preferences
from a risk-sensitive perspective and provide corresponding
theoretical and empirical results. Our main contributions
are summarized as follows.

* We propose a novel Risk-aware Direct Preference Op-
timization (Ra-DPO) method. This method maximizes
the likelihood of the policy while effectively suppress-
ing the deviation between the training model and the
reference model by means of a sequential risk ratio,
thereby enhancing the model’s risk-awareness during
the process of balancing alignment performance and
model drift.

* We design a new risk-aware token-level objective func-
tion by reformulating the constrained reward maximiza-
tion problem into a token-level form, and then prove
that maximizing the objective function will result in
policy improvements. Furthermore, by establishing
equivalence between the Bradley-Terry model and the
Regret Preference Model and deriving the mapping
between the risk-aware state-action value function and
the optimal policy, we obtain the optimization objective
that is solely related to the risk-sensitive policy.

» Experimentally, we provide the results across various
text generation tasks to evaluate the effectiveness of our
proposed method and the sensitivity to the risk control
parameter. The experimental results demonstrate that
our method can effectively suppress the risk of model
drift while enhancing its performance.

2. Preliminaries
2.1. Preference-based Policy Optimization

Considering a preference-based language model fine-tuning
task, let = denote an input prompt (question), and y denote
the generated response (answer). The notation y,, > y; |
symbolizes the human preference data, where y,, (win) rep-
resents a response that is more preferred by humans com-
pared to y; (lose). Both  and y,, /y; consist of a sequence
of tokens.

Bradley-Terry Model. In the preference-based fine-tuning
process, to align with human preferences, a preference pre-
dictor adhering to the Bradley-Terry (BT) (Bradley & Terry,
1952) model has been widely employed for pairwise com-
parisons. The likelihood of a preference pair is commonly
expressed using a latent reward model:

exp (r (2, Yw))
exp (r (z,yw)) + exp (r (z, yl))(’l

Pt (Yo =y | ) =

where r(x, y,,) and r(z,y;) stand for the reward function
at the sentence level from the preferred and dispreferred
answers, respectively.

Directly Preference Optimization. Direct Preference
Optimization (DPO) (Rafailov et al., 2023) commences
with the following RL objective:

H_}T%X EmND,y~ﬂ9(~\.’r) [7" ({I?, y)

—BDxw (7o (- | @)l meet (- | 2))]

where D represents the human preference dataset, S is the
coefficient of the reverse KL divergence penalty, et (- | )
is the policy of fixed reference model (typically selected
to be the model that has undergone post-supervised fine-
tuning), and 7y (- | ) represents the policy of the trained
model, initialized with 7wy = mpef.

By reparameterizing the reward function in Eq. 2 using
the policy in a supervised manner, DPO establishes a di-
rect functional mapping between the reward model and the
optimal policy.

mo(y | =)

r(:c,y)z/flog7T 12 + Blog Z(x), (3)

where Z(x) is the partition function or the normalizing
constant.

Then, by plugging the reward from Eq. 3 into the BT model
in Eq. 1, DPO derives the objective function:

»CDPO (7T0; Wref) = _E(m,yw,yl)w'D [log g (U (1'7 Yw, yl))] )
4)

where
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u(x7yw7yl):ﬂlog _510
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2.2. Preference-based Markov Decision Process

A Preference-based Markov Decision Process (Pb-MDP)
can be formulated as a modification of the classical MDP:
M(S, A, r,P,~,T), where S and A represent the finite
state and action spaces, respectively; P : S x A — S is
the probabilistic transition function; r represents the reward
function of the entire prompt-response, which is defined as
(S x A)T — R; ~y is the discount factor, and 7" denotes the
length of a trajectory or episode.

Specifically, for language generation, the state s; =
[#,9<!] € § is a combination of the prompt and the gener-
ated response up to the current step, action a; = y* € A
corresponds to the next generated token, and the token-wise
reward is defined as R; := R (s¢,a;) = R([z,y<'],y").
Additionally, note that y<! = [ ] is an empty sequence.
Therefore, we denote [z] = [x,[]] = [z,y~"]. For a given
prompt z and the first ¢ — 1 tokens y=<! of the response
y, we define the probability distribution of the next token
conditioned on [z, y~!] as 7y (- | [z, y=!]).

2.3. Risk Measure

It is more desirable to keep risk under control for language
generation tasks instead of only considering a risk-neutral
criterion, which overlooks the distribution characteristics
of rewards, especially on certain safety-critical tasks that
may have potential broad societal impact. Therefore, we
introduce the risk-sensitive criterion (Biuerle & Rieder,
2014; Wang & Chapman, 2022) to quantify the hidden risk.
More specifically, the definition of the quantile function and
risk measure objective are as follows.

The quantile function is the coherent risk-measure (Artzner
et al., 1999; Bonetti et al., 2023) of random variable Z,

F7H¢) =inf{z eR| Fy(z) > ¢},

which satisfies the following properties for all Z, Z’ € Z:
Concavity: Y A€ [0,1]:n(AZ+ (1 =N Z") > (2)+
(1 = XN)n(Z"); Monotonicity: If Z > Z', then n(Z) >
1 (Z"); Translation Equivariance: Y e € R :n(Z +¢€) =
1 (Z) + € Positive Homogeneity: ¥ XA > 0 :n(\Z) =
An (Z). Then, we introduce the nested risk-measures that
are built upon Pb-MDP in Subsection 2.3.

Nested risk-measures. In the context of standard Pb-MDP,
the nested quantile risk measures (Fei et al., 2020; Chen
et al., 2024; Zhao et al., 2024) can be elucidated in Bellman
equation type as follows:

Qx ([, 4~ y") = R([z,y~"],y") + " (Vx ([2,5~']),

Ve ([2,y<"]) = Qr ([x, 4=, 7 (- | [2,4~]))
Ve ([2,9°7]) = R ([2.y=7]) )
where Q ([z,y~<'],y") and V; ([x,y<!]) represent the

state-action value and state value under the nested risk mea-
sures at timestep ¢ € [1,---,T], respectively. ®(-) is a
nested risk measure function with a risk control parameter
w. For any random variable Z, we have

o (7) = /0 F7L()dG(),

where G is a weighting function over the quantiles.

This class captures a broad range of useful objectives, in-
cluding the popular CVaR (Artzner, 1997) objective. Due
to space constraints, we provide a detailed survey about risk
measure in Appendix A.1 and the expanded version of value
function definition in Appendix A.2.

3. Methodology

This section proposes a novel language model alignment
method called Risk-aware Direct Preference Optimization
(Ra-DPO). Specifically, we first conduct an analysis of the
characteristics of nested risk measures and design a new
risk-aware token-level objective function by reformulating
the constrained reward maximization problem into a token-
level form. Subsequently, we prove that maximizing the
objective function will result in policy improvements. Then,
the optimization objective solely related to the risk-sensitive
policy is obtained by deriving the mapping between the
risk-aware state-action function and the optimal policy; and
establishing BT model equivalence with the Regret Prefer-
ence Model. Finally, we conduct a formalized analysis of
this optimization objective in terms of derivatives and derive
the loss function for Ra-DPO.

3.1. Risk-aware Objective Function

In this subsection, we aim to design a new risk-aware ob-
jective function for preference-based language model fine-
tuning. Unfortunately, although the recursive Bellman equa-
tion under nested risk measures was introduced in Subsec-
tion 2.3, it cannot be directly applied, mainly due to the
following reasons:

(1) For the Pb-MDP setting, the algorithm can only obtain
the reward (an implicit reward fitted to the preference data)
at an entire prompt-response until the end and thus cannot
compute the target value at each step.

(2) The nested risk-measures incorporate a Bellman-type
recursion and are not law-invariant (Hau et al., 2023), which
are complex and difficult to compute.

To surmount these obstacles, a straightforward approach is
to introduce the state augmentation method, i.e., reconstruct-
ing an augmented Pb-MDP as described in (Zhao et al.,
2024), where the state at each timestep includes histori-
cal trajectories. This method can reformulate the recursive
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Bellman equation into a classical Bellman equation with
augmented states. However, it is noteworthy that, in this
paper, we directly define the state as a combination of the
prompt and the generated response up to the current step
to model the sequential and auto-regressive generation. It
possesses a characteristic in that the state at the previous
timestep is a subset of the state at the current timestep, i.e.,
[,y<!"'] C [z, y<"]. Therefore, we can rewrite the nested
quantile objective’s Bellman equation in Eq. 5 as follows:

Qu (o<1 91) = @ (Vr (3 0 ([2,51],91))
‘?77 (['rvy<tD = Qﬂ' ([xvy<t] ’ﬂ-(' | [x’y<t})) ’
Vi ([2,9<7]) = R ([, y="])

(6)

where Q ([, y<'],y") and Vy ([, y<!]) represent the risk-
aware state value and state-action value under the policy 7,
respectively.

It is noteworthy that there is a significant difference in the
calculation of the risk-aware state value function between
Eq. 5 and Eq. 6. And, according to the Lemma 3.6 in (Zhao
et al., 2024), we can obtain the following lemma.

Lemma 3.1. For a given Pb-MDP, the reward on the
entire prompt-response can be decomposed as r =
S AT R ([, y<t,yt), the relationship between the
state value function Eq. 5 and Eq. 6 is as follows:

Ve ([2.9%7) = Ve ([2.9%]) + Bracrs - D

where R1.1_1 = 22;11 Y 1R ([m, y<”’] ,y"‘) denotes the
reward of the 1 ~ t — 1 steps of a prompt-response, and
Vz[x] and Vy[x] are equivalent.

The proof is detailed in Appendix B.1.

Subsequently, based on the new risk-aware state value and
state-action value in Eq. 6, we define the risk-aware advan-
tage function as follows.

Definition 3.2. For a risk-sensitive Pb-MDP that satisfies

the Bellman equation in Eq. 6, the risk-aware advantage
function can be defined as

A ([2,57'].2) = Qn ([2,y~'], 2) =" (Vi ([2,57])),
®)

where z subject to mp (- | [z, y=]).

The definition is reasonable, and the derivation provided in
Appendix B.2.

Furthermore, based on the definition of risk-aware advan-
tage function in Definition 3.2, we propose a new risk-aware
objective function:

MAXEy <t sy (crar<t)) | Ame ([2.971] 12)

=Bk (o (-] [2,y"]) Imeet (- | [2.5=)]
)

The objective function maximizes a risk-sensitive advan-
tage function subject to a KL divergence constraint, which
takes into account the risk when selecting the optimal pol-
icy, thereby achieving a better balance between alignment
performance and model drift. Next, we prove that maximiz-
ing the risk-aware objective function in Eq. 9 will result in
policy improvements, as stated in the following lemma.

Lemma 3.3. Given two policies ™ and 7', if for any state
st = |2,y Epom {/LT (|2, y="] ,z)] > 0, then we can
conclude:

Eyp [Ver(a])] 2 B [Vr(e])] . (10)
The proof is provided in Appendix B.3.

3.2. Risk-aware Preference Optimization

In this subsection, we focus on how to convert the BT
model into risk-sensitive token-level representation to obtain
the optimization objective that is solely related to the risk-
sensitive policy, which is divided into two steps: (1) derive
the mapping between the risk-aware state-action function
and the optimal policy; (2) establish BT model equivalence
with the Regret Preference Model.

Specifically, starting from the risk-aware token-level objec-
tive function in Eq. 9, we first derive the mapping between
the risk-aware state-action function Q, and the optimal
policy 77, as stated in the following lemma.

Lemma 3.4. The constrained problem in Eq. 9 has the
closed-form solution:

LA CAREN)
Tret (2 | [2,y=0) exp (5 Qo (f2,57),2))

Z ([x,y='];8) ’
(11

where
14 z,y<t],z
Z ([2,5<] 3 B8) = Barory (fmygerpye? @reer (20 7]2),
which is the partition function.

The proof is provided in Appendix B.4. Then, by rearrang-
ing Eq. 11, we can obtain the expression of the risk-aware
state-action function in terms of the policy

Qreee ([#.97] ,2)

B ACINCN )

o 1wy P82 ([2v]36).

12)

Subsequently, by utilizing the reward decomposition for-
mular = ZtT=1 YR ([z,y=],y") from Lemma 3.1, we
establish BT model equivalence with the Regret Preference
Model, as shown in the following lemma.
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Lemma 3.5. Given a reward function r of the entire
prompt-response, based on a relationship between token-
wise rewards and the reward function represented by r =
S AT R ([, 4=t yt), we can establish the equiva-
lence between the Bradley-Terry model and the Regret Pref-
erence Model, i.e.,

T
Pgr (y1 =y | ) =0 (Z Y AL ([297],0h)
t=1
T> 5
- nytilA'rr ([xa y2<t] ay§)> )

t=1

(13)

where o(z) = 1/ (1 + exp(—=z)) is the logistic sigmoid

function for any random variable z.

The proof is provided in Appendix B.5.

According to the definition of the risk-aware advantage
function in Definition 3.2, we can directly establish the
relationship between the optimal solution in Eq. 12 and
preference optimization objective in Eq. 13. In this way, we
ultimately reformulate the BT model to be directly tied to
the risk-aware optimal policy 7 and the reference policy
Tref, Which is summarized in the following theorem.

Theorem 3.6. Given prompts x and pairwise responses
(y1,y2), and the risk-aware objective function in Eq. 9,
the Bradley-Terry model expresses the human preference
probability in terms of the risk-aware optimal policy my and
reference policy Tyes:

5" (I7 Y1, y2)) ’

(14)
where u (x,y1,y2) represents the difference in implicit re-
wards defined by the risk-aware policy m; and the reference
policy T.ee, weighted by 3, represented as

mo (y1 | )

Tref (yl | x) -

Pir (1 = y2 | @) = o (u” (z,y1,92) —

T (y2 | 7)

= Blo 2L
s Tret (U2 | )

U (.’E, Y1, y2)
and § (x,y1,ys2) represents the difference in sequential risk
ratio between two pairs (z,y1) and (z,ys2), expressed as

:5DSeqRR (.’17, Y25 Tref | 7T9)
- BDSeqRR (xvyl;ﬂ-ref ‘ 7T9) )

6(xayl7y2) (16)

where

Dseqrr (2, Y3 Tret | m9) Z(I)ZN’”“ < T (2 | )

The proof is provided in the Appendix B.6.

3.3. Loss Function and Formal Analysis

Drawing on Theorem 3.6, we reformulate the BT model
into a structure solely relevant to the risk-sensitive policy,

Tref (2 | :v)> .

which enables us to formulate a likelihood maximization
objective for a parametrized policy 7y, and then our loss
function becomes:

Lra-opo, (T} Tret)

7]E(;c,yw,yl)~’D [IOgO' (u (.T, Yw, yl) =9 (l‘, Yw, yl))] .
(17)

Through this approach, we explicitly introduce sequential
risk ratio into the loss function, which incorporates risk-
awareness during the process of balancing alignment perfor-
mance and model drift. To elucidate the benefit of the pro-
posed method, we give further interpretation by analyzing
the loss function and its gradient. Specifically, we conduct
a derivative analysis of our method. For convenience, we
use u to denote u (z, Y, Y1), and d to represent 0 (z, Yu,, Y1)-
By simple calculations, we can derive the gradient of the
loss function in Eq. 17 with respect to the parameters 6 :

Vo Lranro, (T6; Tref)

18
— E(uy yon [(—ut 8) [Vou— vaal],

where (—u + J) serves as the weighting factor for the gradi-
ent.

Lppo (7g; Tret) = —E [lt)p;(f (.fl()g M — [flog %)]
Tref (Y ‘ z) Tref (Y1 ‘
Lrppo, (Te; T [l()" (( 3 log o (Yu | 2) — Blog o (41 | z) )
Trof (Yo | ) Tret (1 | @)
—a stquL(' Yis meﬁ sg ( DSquL Ly Yws ”ul”“H )]
g N
LRa-pro, (705 Tref) [10‘”’ (( _ﬁ W | 2 — Blog _/' ( ‘ )
Tret (Yo | 7 ) eet (Y1 |
— (BDseqrr (T, Y15 Teef | 7o) — (ﬂ)seqkk (T, Yaws Teet \/’ )]
AN
Figure 1. Comparison of loss functions for DPO, TDPO, and

Ra-DPO; methods. The sg denotes the stop-gradient operator.

From Eq. 18, we can observe that the first part (—u) corre-
sponds to the weight factor in the first part of loss function
of TDPO. Its value will increase when the language model
makes prediction errors relative to human preferences, i.e.,
log % > log % The second part § consists
of the difference between the sequential risk ratio of the dis-
preferred response subset and the preferred response subset,
which is a distinctive component of our method. When se-
lecting a convex function (risk-averse), such as CVaR, as the
risk measure function, our method automatically balances
the risk ratio.

Furthermore, based on a common starting point shared by
our method and TDPO (Zeng et al., 2024), i.e., reducing
risks stemming from model drift and ensuring training sta-
bility, we also provide the second version of our method,
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Figure 2. The experiment on the IMDb dataset with GPT-2 Large serving as the base model. Figure 2(a) and Figure 2(b) present the
progression of sequential KL divergence (the lower the better) of both preferred response and dispreferred responses. Additionally, Figure

2(c) illustrates the reward accuracy curves (the higher the better).

Ra-DPO,. The loss function of Ra-DPO, is given by:

ERa—Dpoz (779; 7Tref)
= _E(a:,yw,yl)ND [log g (’LL ($7 Yuw, yl) - 04(52 (.’E, Yw» yl))] )
(19)
where « is a parameter, and

02 (xvyla y2) zﬂDchRR (xa Y2; Tref | ’/Tg)
— 8¢ (BDseqrR (T, Y13 Tret | T9)) -

The sg represents the stop-gradient operator, which blocks
the propagation of gradients. Ra-DPO, modifies the loss
function of Ra-DPO; by discontinuing the gradient propaga-
tion of DgeqrR (2, Yuw; Tref | 7o) and treating it as a baseline
term for alignment of Dgeqrr (2, Y15 Tref | 79). The aim of
the modification is to ensure training stability, rather than
accelerating the training speed.

To summarize, the comparison of the loss functions for DPO,
TDPO,;, and Ra-DPO; is shown in Figure 1. In addition, we
give a procedure of our method, and provide its pseudocode
(Algorithm 1) in Appendix B.7.

4. Experiments

We empirically evaluate our method via several open-source
datasets and pre-trained models. Our experiments aim to
answer the following questions: First, how does the perfor-
mance of our method compare with existing methods, and
is our method more sensitive to risks when tackling chal-
lenging text generation tasks? Second, how does the risk
control parameter p affect the performance of our method?

To answer these questions, we conduct experiments on
IMDb Dataset (Maas et al., 2011), Anthropic HH Dataset
(Bai et al., 2022) and AlpacaEval (Dubois et al., 2024) for
three different text generation tasks. Based on the original
KTO implementationl, we trained Ra-DPO and the baseline

!Available at https://github.com/ContextualAl/
HALOs

models using the same hyperparameters. Specifically, for
Ra-DPO, we employed the popular CVaR (Artzner, 1997) as
the risk measure function. We compare our method against
the following algorithms: (1) DPO (Rafailov et al., 2023),
which only considers evaluation at the sentence level; (2)
PPO (Schulman et al., 2017), which is an offline PPO variant
provided by the original KTO implementation; (3) TDPO,
and TDPO; (Zeng et al., 2024), which convert the BT model
into token-level representation to obtain the optimization ob-
jective; (4) KTO (Ethayarajh et al., 2024), which considers
humans make decisions that do not maximize their expected
value when faced with uncertain events. All reported results
of our algorithm and baseline algorithms are trained using 4
x A100 GPUs, each with 40GB of memory.

4.1. Experiments on IMDb Dataset

Experimental setup: The IMDb dataset is a controlled
semantic generation dataset within the context of movie
reviews, serving as a valuable resource for training and eval-
uating sentiment analysis models. We employ GPT-2 Large
(Radford et al., 2019) as our base model and use the model
checkpoint: insub/gpt2-large-IMDb-fine-tuned” as the SFT
model. In this setup, the model is presented with prompts
consisting of prefixes from movie reviews, and is required
to generate responses with positive sentiment. Specifically,
we implement the versions of Ra-DPO; with risk control
parameter 4 € {0.99,0.98,0.97,0.95}. Moreover, in order
to achieve a fair comparison, we calculate the sequential KL,
divergence for our method. Note that the risk ratio value is
slightly larger than the KL divergence value when selecting
CVaR (a convex function) as the risk measure function. The
results are shown in Figure 2.

Evaluation: Figure 2 shows that Ra-DPO; can outperform
or achieve reward accuracy similar to the advanced TDPO
algorithm while also maintaining a slight model drift (in-
dicated by the lower KL divergence), demonstrating the

Zhttps://huggingface.co/insub/gpt2-large-IMDb-fine-tuned
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Figure 3. The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model. We implemented TDPO,, and
different versions of Ra-DPO, with respect to the risk control parameter ¢ while keeping coefficient o constant at 0.5. Figure 3(a)
and Figure 3(b) present the progression of sequential KL divergence (the lower the better) of both preferred response and dispreferred
responses. Additionally, Figure 3(c) illustrates the reward accuracy curves (the higher the better).
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Figure 4. The reward accuracy of each algorithm on the Anthropic
HH dataset, using Pythia-1.4B as the base model.

risk-awareness of Ra-DPO; during the process of balancing
alignment performance and model drift.

4.2. Experiments on Anthropic HH Dataset

Experimental setup: Anthropic HH dataset contains 170k
dialogues between a human and an automated assistant,
where each transcript ends with a pair of responses gener-
ated by an LLM along with a preference label denoting the
human-preferred response. We use Pythia-1.4B and Pythia-
2.8B (Biderman et al., 2023) as the base models to test our
method on Anthropic HH dataset, respectively. Here, the
reference models are trained by fine-tuning the base models
on chosen completions. Specifically, we implement TDPO,
and different versions of Ra-DPO, with respect to the pa-
rameters p and o The results are depicted in Figure 3, Figure
4, and Appendix C.1.

Evaluation: Figure 3 shows the performance of TDPO,,
and different versions of Ra-DPO, with respect to the risk
control parameter p while keeping coefficient o constant at

Table 1. AlpacaEval compares the responses generated by Algo-
rithms DPO, PPO, KTO, TDPO,, TDPO, (o« = 0.5), Ra-DPO,
(p = 0.97), and Ra-DPO; (o = 0.5, u = 0.97) with those gen-
erated by gpt4_1106_preview. The winrate and length-controlled
winrate (Lc winrate) are evaluated based on oasst_pythia_12b.

METHOD WINRATE LC WINRATE
DPO 51.1+£1.9 447+ 0.4
PPO 52.1+£ 1.8 51.9+£0.5
KTO 51.5+1.8 50.2+£ 0.6
TDPO, 51.9+ 1.8 53.0+£ 0.6
TDPO; 52.2+ 1.6 52.2+£ 0.5
RA-DPO; 53.5+1.8 53.9+£0.5
RA-DPO, 52.1+1.8 55.7£ 0.5

0.5. From the figure, we notice that Ra-DPO, achieves su-
perior performance (the higher reward accuracy) and main-
tains a slight model drift (the lower KL divergence). Fig-
ure 4 shows the reward accuracy of responses generated
by models trained with different algorithms. The results
demonstrate that when the coefficient o > 0.1, the reward
accuracy of Ra-DPO, exceeds that of TDPOy across all
risk control parameter i. These results demonstrate that
Ra-DPO,; possesses a strong capability to align with human
preferences.

4.3. Experiments on AlpacaEval

Experimental setup: To comprehensively evaluate the
performance of Ra-DPO,, we conducted pairwise compar-
isons on AlpacaEval using models trained on Anthropic HH
dataset. Following the official AlpacaEval implementation®,
we sampled responses with a temperature coefficient of 0.7.
The comparisons about winrate based on oasst_pythia_12b*
are summarized in Table 1 and Figure 5.

3https://github.com/tatsu-lab/alpaca_eval

*https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-
epoch-3.5
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Ra-DPO: vs TDPO: 17.27 40.87

Ra-DPO: vs TDPO: 13.54 42.11
Ra-DPO: vs KTO 15.78 40.87
Ra-DPO: vs PPO 16.4 40.99

Ra-DPO: vs DPO 34.53 3143

o

20 40 60 80 100

®win ®=tie =lose

Figure 5. AlpacaEval comparison between DPO, PPO, TDPO,,
TDPO, and Ra-DPO;, methods. The win, tie, and lose rates are
evaluated based on oasst-pythia-12b.

Evaluation: Table 1 reveals that under the two indicators
of winrate and length-controlled winrate, most of the im-
plemented algorithms can outperform the common default
baseline gpt4_1106_preview (DPO is more prone to generat-
ing long responses). Among them, Ra-DPO,; and Ra-DPO,
demonstrate the highest level of performance, especially
when it comes to the length-controlled winrate indicator.
Figure 5 presents a straightforward result: Compared to
the baseline algorithms, Ra-DPO,; achieves a high winrate,
demonstrating superior performance in assisting LLMs to
generate high-quality responses.

5. Related Work
5.1. LLMs Alignment

During the development and implementation of LLMs, nu-
merous researchers have encountered challenges in balanc-
ing adherence to human instructions (explicit objective) with
the pursuit of being helpful, honest, and harmless (implicit
objectives), challenges that stem from the misaligned next
token prediction task used in the pre-training stage (Bai et al.,
2022; Bhardwaj & Poria, 2023; Dai et al., 2024; Yeh et al.,
2024). Therefore, a typical post-training stage, referred to as
preference optimization (e.g., RLHF and DPO), is addition-
ally performed to align pre-trained language models with
human intentions, and it has become a crucial aspect in the
fine-tuning of large models, often indispensable. Currently,
most approaches (Wu et al., 2023; Wang et al., 2024a; Meng
et al., 2024) utilize KL divergence at the sentence level
to ensure that the training model remains closely aligned
with a reference model, preventing significant deviations.
However, the generation of these responses occurs sequen-
tially, following an auto-regressive approach. Recent works
(Zeng et al., 2024; Ouyang et al., 2024) introduce a fresh
perspective, specifically the sequential and token-level di-
rect preference optimization, which allows for examining

KL divergence in relation to a reference LLM on a more
granular, token-by-token basis. However, due to the neglect
of the characteristics of a reward distribution other than the
mean, these methods still suffer from the trouble of being
insensitive to risk.

5.2. Risk-aware Reinforcement Learning

Reinforcement learning has made groundbreaking achieve-
ments through approaches such as Q-learning (Mnih et al.,
2015) and policy gradients (Schulman et al., 2015; 2017) in
sequential decision tasks, but it also faces challenges when
considering application in the real world (Mnih et al., 2015;
Wang & Chapman, 2022). A primary reason is that the risk-
neutral criterion (maximizing the expectation) ignores the
characteristics of a reward distribution other than the mean,
which may be important for systems with safety concerns,
especially in certain applications requiring tight risk control
(Fei et al., 2020; Bisi et al., 2022). In order to tackle this
challenge, two types of risk-sensitive measures have been
introduced: nested and static quantile risk-aware measures.
Static risk measures (Fei et al., 2021; Wang et al., 2023)
are straightforward to interpret, but the resulting optimal
policy may not remain Markovian and may become history-
dependent. On the other hand, nested risk measures (Chen
et al., 2024; Zhao et al., 2024) utilize MDPs to ensure risk
sensitivity of the value iteration at each step under the cur-
rent state, resulting in a more conservative approach. In this
paper, we prefer nested risk measures because they recur-
sively adhere to the Bellman equation and allow the MDPs
to be reconstructed through state augmentation, enabling
them to remain Markovian and ensuring that policy choices
depend solely on the current state.

6. Conclusion

A pressing challenge arises for language generation tasks in
the area of risk control, as the models, once trained, are often
required to interact directly with humans. In this paper, we
propose a novel direct preference optimization method that
incorporates risk awareness by introducing nested risk mea-
sures into the Bellman equation, to align pre-trained LLMs
with human preferences. Specifically, we design a new risk-
aware token-level objective function by reformulating the
constrained reward maximization problem into a token-level
form and then prove that maximizing this objective function
leads to improvements in policy performance. Then, an opti-
mization objective solely related to the risk-sensitive policy
is obtained by deriving the mapping between the risk-aware
state-action function and the optimal policy and establishing
BT model equivalence with the Regret Preference Model.
Finally, we conduct a formal analysis of this optimization
objective and derive the loss function of Ra-DPO, which
has practical implications for language generation tasks.
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Impact Statement

This paper presents work that aims to make LL.Ms more
helpful and safer. Our work has many positive societal
impacts, such as providing a theoretical foundation for risk-
aware language generation task, none of which we feel must
be specifically highlighted. There are no negative societal
impacts on our work.
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A. Supplementary Materials for Section 2
A.1. Risk Measure: A Brief Overview

Risk-aware Reinforcement Learning. Reinforcement learning has made groundbreaking achievements through approaches
such as Q-learning (Mnih et al., 2015) and policy gradients (Schulman et al., 2015; 2017) in sequence decision tasks and
has been gradually maturing in laboratory-level applications. In recent years, many researchers have gradually shifted
their attention to real-world cyber-physical applications and found that focusing only on the mean of reward-to-go and
corresponding Bellman equation is impractical, especially in some safety-critical scenarios requiring tight risk control, such
as autonomous vehicle navigation (Candela et al., 2023) and robot control (Zhao et al., 2021; Zhang et al., 2024). A primary
reason is that the risk-neutral criterion (maximizing the expectation) ignores the characteristics of a reward distribution other
than the mean, which may be important for systems with safety concerns. For example, a system may be required to operate
in a manner that alleviates harmful consequences, even in rare situations that are difficult to predict.

To handle this kind of issue, some works (Wang & Chapman, 2022) introduce the worst-case criterion for autonomous
systems with safety concerns to achieve zero-constraint violations by finding a policy that satisfies the constraints of a
specific cost function, which generally assumes the maximum cost can quantify how bounded adversarial disturbances can
inhibit the satisfactory operation of a system. However, due to the reliance on the typical assumption of bounded adversarial
disturbances, the worst-case criterion may not be suitable for some applications that possess certain characteristics, such as
the difficulty in characterizing the bounds of disturbances with a sufficient degree of certainty. Recently, risk-averse criterion
(Biduerle & Rieder, 2014; Bisi et al., 2022), an intermediary criterion between the risk-neutral and worst-case criteria, has
garnered extensive attention, which describes people or algorithms that prefer outcomes with reduced uncertainty by seeking
to optimize risk metrics, such as entropy risk measures (ERM) (Pichler & Schlotter, 2020) or conditional value-at-risk (CVaR)
(Artzner, 1997; Chen et al., 2024), of the possible cumulative reward which emphasizes its distributional characteristics.

In general, there are mainly two types of risk-sensitive measures: nested and static quantile risk-aware measures, each
possessing distinct advantages and limitations. Static risk measures (Fei et al., 2021; Wang et al., 2023) are straightforward
to interpret, but the resulting optimal policy may not remain Markovian and may become history-dependent. On the other
hand, nested risk measures (Chen et al., 2024; Zhao et al., 2024) utilize MDPs to ensure risk sensitivity of the value iteration
at each step under the current state, resulting in a more conservative approach. In this paper, we prefer nested risk measures
because they recursively adhere to the Bellman equation and allow the MDPs to be reconstructed through state augmentation,
enabling them to remain Markovian and ensuring that policy choices depend solely on the current state.

Specifically, we introduce the popular CVaR (Artzner, 1997) objective as follows:

[le ite<np,
G(¢) = {f ite> (20)
and " (Z) becomes
1 [
P(Z) = / Fz'(§)de, 21
K Jo

where G is Lg-Lipschitz continuous for some Lg € R, and G(0) = 0,G(1) = 1.

Risks in LLMs Alignment. When aligning large language models with human preferences, there are many factors that may
pose risks, primarily encompassing the following three types:

(1) There exist conflicts and contradictions among human preferences (or choices), thus introducing uncertainty in the
objectives when aligning models with human preferences. In addition, human choice behavior has contextual choice effects
(Peuter et al., 2024), i.e., a decision maker’s choice between two options is influenced by adding more options to the choice
set (Huber et al., 1982).

(2) Humans do not make decisions by maximizing their expected value for uncertain events; instead, they perceive random
variables in a biased but well-defined manner (Ethayarajh et al., 2024). For example, relative to some reference point,
humans are more sensitive to losses than gains, a phenomenon known as loss aversion.

(3) Many popular methods, such as DPO (Rafailov et al., 2023), RDPO (Fisch et al., 2024), and simPO (Meng et al., 2024),
utilize KL divergence to ensure that the training model remains closely aligned with a reference model during the training
process, preventing significant deviations. These methods still face the issue of being insensitive to strategic risks because

11
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they only consider the mean of reward or utility and the corresponding Bellman equation, which is risk-neutral and does not
capture the distribution characteristics of rewards efficiently.

Since the first two types of risks stem from the distribution of preference data itself, in this article, we focus on the third
type of risk, which comes from the process during model alignment. Specifically, we investigate a novel direct preference
optimization method for the problem of aligning with human preferences from a risk-sensitive perspective and provide
theoretical and empirical results on its performance and risk-awareness.

A.2. The Expanded Version of Value Function Definition

The definition of value function for nested risk measure, i.e., Eq. 5 in Subsection 2.3, can be expanded as

Qx ([2,5=Y] . 9") = R ([z,y~] ,v") + @ (R ([x,y=*] 7 (- | [2,5=1])) )
+ @ (- @ (R ([2,y="] 7 (-] [2,577])))))
Vo ([2,97']) = R ([ y~'] 7 (| [2,57])) + @ (R([w““] (| [2,y="])) (23)
+ @ (o @ (R ([2,y="] 7 (-] [2,577]))))) -
Similarly, the definition of the optimal value function, can be expanded as
Q% ([x.y~"],y") = max {R ([z,y~"] ,¥") + " (R ([z,y~"""] ,7 (- | [z,5=""])) 24)
+ @ (o @ (R ([2,y~"] 7 (-] [2,57])))))
Vi ([2,y™']) = max{R ([&,y~'],7 (- | [2,5™])) +‘I>”( ([ (] [ y=]) (25)
+ @ (- @ (R ([w,y="] 7w (| [2,97]))))) -

B. Supplementary Materials for Section 3

B.1. The Proof of Lamma 3.1

Lemma 3.2 Restated. For a given Pb-MDP, the reward on the entire prompt-response can be decomposed as r =
S A R ([, y<", yt), Ve [2] in Eq. 5 and Vi [2] in Eq. 6 are equivalent, which implies the following characteristics:
Proof. Firstly, according to (Givan et al., 2003; Lowd & Davis, 2010; Zhao et al., 2024), we can reformulate the Pb-MDP as
a decision tree-like MDP.

(1) The state transition graph of the Pb-MDP is connected and acyclic;

(2) Each state in the Pb-MDP corresponds to a unique node in the tree;

(3) There is a single root node from which every other node is reachable via a unique path;

(4) The transition probabilities between states follow the Markov property, i.e., the probability of transitioning to any future
state depends only on the current state and not on the sequence of events that preceded it.

Formally, let S be the set of states and p;; be the transition probabilities between states s; and s;. For an Pb-MDP with a
tree-like structure, the probabilistic transition matrix P is defined such that:

p;; > 0 if there is an edge between s; and s; in the tree, and p;; = 0 otherwise. (26)

Moreover, for each non-root node s, there exists exactly one s; such that p;; > 0, and s; is the unique parent of s; in the
tree structure.

To classify the two value iteration in Eq. 5 and Eq. 6, we denote the value given by Eq. 6 as V; ([z,y<!]) and the value
given by Eq. 5 as V; ([z, y<!]), thus, in tree-like Pb-MDP with the reward of the entire prompt-response, which can be
decomposed as r = 32, 4" 'R ([z,y<], y"), we have the following relationship:

Vi ([2:5~]) = Ve ([2,97]) + Rrea,
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where Ry, = ZZ_:11 YR ( [:17, y<h] ,yh) denotes the reward of the 1 ~ ¢ — 1 steps of a prompt-response. We prove
this relationship by mathematical induction.

Initial Case. Using the tree-like Pb-MDP and the initial conditions of the Bellman equation, at the final step ¢t = 7', we have

Ve ([2,5°7]) = Va ([wy=" 7 (| [2,97])) + Rur
—V, ([2.y<"]) + Rurer. @D

Induction Step. We now proved that if V; ([z,y<**']) = Vi ([z,y<'*!]) + Ry holds, then V ([z,y<!]) =
Vi ([x,y<%]) + R1.;_1 also holds. Since this policy 7 on tree-like Pb-MDP is fixed, it has only one path to arrive
t-th state (s; = [z, y<!]), denoted as:

Ei (st1) =En(s72) Vsra,sm2 € {sr| St (s7) = [z,y~']}.

Therefore, R1.;—1 is unique.

Vi ([2,5)

o

|
K

3

(Ve ([2,y="]) + Ra)

& (Ve ([2,y=]) + R ([2,y~] (-
& (Ve ([2,y="]) + B ([, y~] (-
Ve ([9C7i‘/<t+1}) + Rit-1,

[#.y™'])) + Rue—1)

(28)
[2,4<']))) + Ru-1,

where the third equality holds because the risk measure function @ satisfies translation invariance. Then, by applying
conclusion, we observe that when ¢ = 1, V,.[z] = V;[z] hold on. Thus, we have proven that for the Pb-MDP, the reward
of the entire trajectory can be decomposed as 7 = 31, v* 'R ([z,y<"],y'), and Vy[z] in Eq. 5 and V. [z] in Eq. 6 are
equivalent. O

B.2. The derivation of Definition 3.2

Definition 3.3 Restated. For a risk-sensitive Pb-MDP that satisfies the Bellman equation in Eq. 6, the risk-aware advantage
function can be defined as

Ar ([2,977]2) = Qn ([2,7'] 2) = @ (Ve ([2,97])),
where z subject to 7y (- | [z, y=]).

In terms of designing the objective function at the token level, (Zeng et al., 2024) provides us with a valuable insight by
introducing the advantage function from the TRPO algorithm in reinforcement learning as the target for each step. In this
paper, building upon TDPO, we consider the risk associated with language generation at each step and devise a novel
: e ; : ; I Y A | <t] ot .
risk-sensitive advantage function. First, based on assumption that r = >, , v~ 'R ([, y~*] ,4"), we can get:

r= i,yth ([x,y<t] ,yt)
= é’yt1 (R ([z,y="] ") +~ 0" (} ([x7y<t+1}>) —yPH (”ﬂ ([l,’y<t+1])))

= (0 ) 30 (R (] )+ (0 (=) = 88 (7 (=) ) =27 0 (7 (fo5< 1))

= o# (Vx () + 3 (@n (fy]9") = @ (Ve ([2y™])) ) =" @ (Vi ([25="*1]))

t=1
(29)
Next, note that y” = EOS denotes the end of the text sequence. Therefore,
o
Ve ([2,y="]) =B | DA R ([, y=" 4]y ") | s = [g;,y<T+1]] =0. (30)
k=0

13
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Furthermore, we have

T

r= @ (Ve (i) + 207 (@ (fw™] o) = @ (Ve ([20™])) ). G

t=1

So, we definite the risk-aware advantage function as A, ([z,y<"],2) = Qx ([z,y<!],z) — ®" (~7r ([z, y<t])), where

2 (- | o, y=r).

B.3. The Proof of Lemma 3.3

Lemma 3.4 Restated. Given two policies 7 and 7, if for any state s; = [z, y<!] ,E,n [/Lr ([, y=], z)} > 0 holds, then
we can conclude:

Eovp (Voo ([2])] 2 Eono [Va(la])]

Proof. Let trajectory 7 := (x, yly? .. .), and the notation E, | [-] indicates that actions are sampled from 7’ to generate 7.
So we can get

Eonp Ve (1)) ~ Ean [V ((a])]

B | S0 (R[5 0) + 78 (Ve ([25°1)) ) = Va(le))

:ET\W’ Z’YFl R ([l‘vy<t} ayt) +7(I)H (

([ ) = 2 (Ve ([ yﬂ)))l (32)
B[S0 (A ([0 wt))]

B [$5 (ne [ e )]|

Since for any state s; = [z,y~'] ,E {fl,, ([z, y='] ,z)} > 0, so we can obtain

By [Vﬂ/([x})] o [Vﬂ([x])} > 0.

B.4. The Proof of Lemma 3.4

Lemma 3.5 Restated. The constrained problem in Eq. 9 has the closed-form solution:

* o et (2| oy <) exp (§Qn (291 2))
5 (2 | [2,y~']) = Z ([x,y<"]; B) '

where Z ([z,y~"]; B) = ]EZNﬂ',.ef(-‘[az,y<t])e%©ﬂref([I7y<t}’z) is the partition function.

14
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Proof.

max B (fay<t) Amer ([2,9°]52) = 8Dkt (w0 (- | [2,y="]) lImeer (- | [2,577]))

B ((@r (2971, =V (7)) (W))

= Tref (Z ‘ [x,y<t]) [SQ‘"ref([ ] ) -
IR 08 ( . EIRPR) -

Moot (2 | [, y<1]) 3 Fmrer ([207']:2) (33)
Z ([x,y<"]: B) 70 (2 | [z, 9<1))

= Ve ([2,y™]) + Blog Z ([2,5']: B)

=max —Dky, <7T9 (Z | [33 y<t]) Hﬂref (| [x’y<t])eééﬂref([m’yd]g))

= rr}T%X ﬂEzNﬂe(,|[x7y<t]) log (

Z ([z,y<"];P)
~ Vi ([2,y~"]) + Blog Z ([z,y<']; 8) ,
where Z ([x,y<!]; B) is the partition function:

2 ([55) ) = Bty 0 ( 5 ([2:5].2)). en

Then, we can derive the relationship between the optimal policy and the state-action function:

et (2 | [2,4<") exp ( § Qs ([2,97'],2)
w5 (2| [2,y~]) = 7 ([%y(j:] ) ) . (35)

B.5. The Proof of Lemma 3.5

Lemma 3.6 Restated. Given a reward function r, based on a relationship between token-wise rewards and the reward
function represented by r = Zthl Y LR ([z,y<!],y'), we can establish the equivalence between the Bradley-Terry model
and the Regret Preference Model in the language generation task, i.e.,

T

Por(yi = y2|2) =0 <Zv”ﬁw ([, 97,y th YAr ([2,95] y 2)> : (36)

t=1

where 0(z) = 1/ (1 + exp(—=z)) is the logistic sigmoid function for any random variable z.

Proof. Recalling to the BT model in Eq. 40
exp (r (2, 91))

P -2 | ) = ; @7
b 72 1) = e () e (r 1)
and the equivalence between prompt-response reward and the risk-aware advantage function:
r=a* (V2 (la])) + th (@ (=)o) = 0 (Vi ([2257))))
= (Ve (12])) + D07 A (2,5 0) -
t=1
Then, we have
T .
PBT(y1>y2w)=0<27t‘1Aw([m7y1 Zwt YAg ([2,05] y )>.
t=1
O

15
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B.6. The Proof of Theorem 3.6

Theorem 3.7 Restated. Given prompts = and pairwise responses (y1, y=2), and the risk-aware objective function in Eq.
9, the Bradley-Terry model expresses the human preference probability in terms of the risk-aware optimal policy 7 and
reference policy 7yet:

Par(y1 = g2 [ 2) = o (u” (2,41,42) = 0" (2,91,2)) ,
where u (z, Y1, y2) represents the difference in implicit rewards defined by the risk-aware policy 7 and the reference policy
e, Weighted by 3, represented as

Yy x T T
u (@, y1,y2) = ﬂlogM - BlogM,
Teet (Y1 | T) Tret (Y2 | )

and 0 (z, y1, y2) represents the difference in sequential risk ratio between two pairs (z,y1) and (z, y2), expressed as

] (xvyluy2) = 6DSeqRR (xvy%ﬂ—ref ‘ 7T9) - B-DSeqRR (xuyl;'nref | 770) .

Proof. According to the Lemma 3.4, we have

Tret (2 | [2,y<"]) exp ( §Qm.s (2,97, 2)

where Z ([z,y<']; 8) = Ezwmef(.Hm’y«])eéé”ref([I’ya}’z) is the partition function. Rearrange Eq. 38, we obtain

Om (2,51 2) = Blog L@V 5100 7 (2y<1 1 ). (39)

et (2 | [2,y<1])

From Lemma 3.5, we can get

Per(y =y |2)=0 <§: (VHAW ([z,y5"] ayi)) - i (vt‘lflw ([, 55" wé))) : (40)

t=1 t=1

By leveraging Eq. 39, we can derive

T
Sy An ([oy< )

Il
M~ 1
i

P ( Qs (25 9") = @ (Vi ([2.5°1)) )

t=1

-

i (Qw,»ef ([z, 5=, 4") — @ (Qmef ([, <] Z)))

o+
Il

1

p"qﬂ

’yt 1(510g ;(yt|[$,y<t}) +BlogZ([x,y<t];ﬁ) <510gM+510gZ([ t]aﬂ)))

2 T (5 | [,y <1]) Gy
41
Note that
E.r. [Blog Z ([2.y<']: 8)] = Blog Z ([,y<"] : B) .
Therefore,
T ~
Syt An ([2,y<1 0
t=1
T
_ t—1 ﬂ-; (yt ‘ [x?y<t]) _ HM ( W; (Z | [x7y<t]> >>
=52 (l"g Tt 0 |y e \ 18 2 O T ) (2
_ t—1 | t—1 gu *(Z|[$ai‘/<t])>
=F Z” log - ( Ic *5 Z” P (log et 2| 7))

16
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When substituting v = 1 into the expression, we obtain a more concise form:

T
yll’y m (2 | [z, y<"])
e = lo + 8 L (lo =
2 Ao )= o U ot (i
Tg Y| T *
:6 (10g 7T9f((y||l?> + DSeqRR (I; Y; Tref | W@)) y
where Dseqrr (2,53 Tret | o) = gy @ (log :ef((jg)) :
Then, we let
u(‘raylva):ﬂlOg ﬂ-e(yl |Jj) _Blog ﬂ-e(y2|x) )
Tref (yl | CL’) Tref (y2 | Sﬂ)

] (x7y17y2) = ﬁDSeqRR (xva;Trref ‘ 7TG> - 6DSeqRR (xyyl;ﬂ-ref | 770) .

Substituting Eq. 43 into Eq. 40, we arrive at P (y1 > 2 | ) = o (u* (2,91, 92) — 0™ (2, y1,92)).

B.7. Algorithm

(43)

(44)

(45)

In this subsection, we provide the main pseudocode for Risk-aware Direct Preference Optimization (Ra-DPO), as outlined

in Algorithm 1.

Algorithm 1 Risk-aware Direct Preference Optimization (Ra-DPO)

Input: Reference model 7,.¢, Policy model 7y, Coefficient «, 3, Risk control parameter i, Learning rate

N
Input: Dataset D = {(x7 Yuw, yl)z} of size N, Method M
i=1
Initialize: mp < 7 ef
for each epoch do
Sample mini-batch D,,, = {(2, Yo, 1)} o, from D
Predict the probabilities 7y (. | ) and 7o (y; | «) for (x, yw, y;) in the mini-batch D,,, using the policy model

Predict the probabilities 7yef (Yo | ) and myer (y1 | ) for (x, yuw, yi) in the mini-batch D,,, using the reference model

Calculate the function u (z, yy,, y;) = 8 log :"f(é’;’lg — Blog :it(é’l@)

Compute the sequential risk ratio Dgeqrr (T, Yuw; Tref | To) for (x, yy,) in the mini-batch Dy,

Compute the sequential risk ratio DseqrR (2, Yi; Trer | mg) for (x, y;) in the mini-batch D,,,

if Method M is Ra-DPO; then
Calculate the function d (2, Yuw, 1) = BDseqrR (€, Y1; Tret | T6) — BDseqRR (%, Yuw; Tret | T0)
0«0+ nveE(m,yw,yl)me [log o (u (I7 Yw yl) -0 (33, Yw, yl))}

else {Method M is Ra-DPO, }
Calculate the function d2 (2, Yuw, Y1) = BDseqrR (@, Y1; Tref | To) — S8 (BDseqRR (T, Yo} Tret | To))
0«0+ anE(w,yw,yl)NDm [log g (U (IZ?7 Yw, yl) — ady (‘Tﬂ Yw, yl))]

end if

end for

C. Supplementary Materials for Section 4

C.1. Additional experimental results

In this paper, we evaluate the performance of our proposed algorithm, Ra-DPO (Algorithm 1 in the Appendix B.7), against
baseline algorithms on several text tasks. Here, we provide some additional experimental results, which are illustrated in

Figures 6-7.
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Figure 6. The experiment on the Anthropic HH dataset with Pythia-1.4B serving as the base model. We implemented TDPO,, and
different versions of Ra-DPO, with respect to the parameters o and p. The progression of sequential KL divergence (the lower the better)
of both preferred response and dispreferred responses are presented on the left and in the middle. Additionally, the reward accuracy curves
(the higher the better) are illustrated on the right.
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Figure 7. The experiment on the Anthropic HH dataset with Pythia-2.8B serving as the base model. We implemented TDPO,, and
different versions of Ra-DPQO; with respect to the parameters o and p. The progression of sequential KL divergence (the lower the better)
of both preferred response and dispreferred responses are presented on the left and in the middle. Additionally, the reward accuracy curves

(the higher the better) are illustrated on the right.

19



