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ABSTRACT

Pruning is an effective method to reduce the size of deep neural network mod-
els, maintain accuracy, and, in some cases, improve the network’s overall perfor-
mance. However, the mechanisms underpinning pruning remain unclear. Why
can different methods prune by different percentages yet achieve similar per-
formance? Why can we not prune at the start of training? Why are some
models more amenable to being pruned than others? Given a model, what is
the maximum amount it can be pruned before significantly affecting the perfor-
mance? This paper explores and answers these questions from the global un-
structured magnitude pruning perspective with one epoch of fine-tuning. We
develop the idea that cosine similarity is an effective proxy measure for func-
tional similarity between the parent and the pruned network. We prove that the
L1 pruning method is optimal when pruning by cosine similarity. We show that
the higher the kurtosis of a model’s parameter distribution, the more it can be
pruned while maintaining performance. Finally, we present a simple method to
determine the optimal amount by which a network can be L1-pruned based on
its parameter distribution. The code demonstrating the method is available at
https://github.com/gmw99/what makes a good prune

1 INTRODUCTION

Deep neural networks have grown in size to achieve state-of-the-art performance in various fields,
e.g. object detection (Redmon et al., 2016) or natural language processing tasks (Brown et al., 2020),
going from a few million parameters (He et al., 2016) to hundreds of billions of parameters (Brown
et al., 2020). This increase has required substantial computational and memory resources for training
and inference, making deployment difficult in resource-constrained environments.

Various approaches have been developed to compress neural networks while maintaining their per-
formance (Blalock et al., 2020), (Gholami et al., 2021). One such approach, dating back to the 80s
(LeCun et al., 1989), is neural network pruning, the process of removing parameters from the par-
ent network while maintaining accuracy. Pruning methods are evaluated against each other by the
percentage of parameters pruned in the network (compression ratio), along with the change in the
accuracy. Pruning has been shown to be an effective method, applicable to various architectures, but
reaching varying degrees of sparsity, the number of parameters removed from the network (Blalock
et al., 2020). This leads to the following questions:

1. Why can different methods prune by different amounts yet achieve similar performance?
2. Why can we not prune at the start of training?
3. Why are some models more amenable to being pruned than others?
4. What is the maximum amount a model can be pruned before affecting the performance?

This paper aims to answer these questions and provide a deeper understanding of global unstructured
magnitude pruning and neural network learning dynamics. We show that:
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• Cosine similarity allows us to compare pruning methods as it is a good proxy measure for
functional similarity.

• The L1 magnitude pruning method is optimal for maintaining maximal cosine similarity.
• Maintaining a high cosine similarity with the parent network ensures improved accuracy or

limited drop-off in performance.
• Neural networks are brittle, i.e. highly sensitive to changes in high-magnitude parameters.
• The higher the kurtosis of a model’s parameter distribution, the more it can be pruned while

maintaining performance.
• The optimal amount by which a network can be L1-pruned can be computed explicitly from

its parameter distribution. We illustrate this procedure by computing the optimal level of
L1-pruning for the LeNet Small, ResNet18 and VGG11/ BN networks.

2 BACKGROUND AND RELATED WORK

Neural networks are trained on a set of features, {xi}, and corresponding labels, {yi}, by minimiz-
ing a loss function, L(θ) = 1

n

∑n
i=1 ℓ(xiyi; θ), where n is the number of samples, θ represents the

parameters of the network, the function ℓ(xiyi; θ) measures how effective the network with parame-
ters θ is at predicting the label {yi} for the features {xi} (Murphy, 2022). The number of parameters
|θ| is typically very large, and the loss function defines a |θ|-dimensional subspace of R|θ|+1 referred
to as the loss/objective landscape.

2.1 PRUNING

Pruning is defined as taking a modelM (θ) with parameters θ and creating a new model by applying
a binary mask M ∈ {0, 1}|θ| to the parameters ofM resulting in the new modelM (θ⊙M), where
⊙ is the Hadamard product (Blalock et al., 2020). Thus, the pruned network operates in a parameter
subspace of its parent. The two main pruning methods are structured and unstructured pruning
(Blalock et al., 2020). Structured pruning removes groups of parameters, i.e. neurons and channels,
whereas unstructured removes individual parameters. These methods can be applied across the
whole neural network, globally, or to specific sections of the network, i.e. particular layers. The
parameters are selected for pruning based on a score. The score can take many factors into account,
the simplest being the magnitude of the parameters. More sophisticated factors include information
from the network, such as the gradients or contributions to the network’s activations (Blalock et al.,
2020). After pruning, the models are fine-tuned, which commonly refers to continuing to train the
network using the trained parameters of the pruned neural network. There are many pruning regimes,
including one-shot pruning, i.e. pruning a network once and then fine-tuning, and iterative pruning,
i.e. repeating one-shot pruning until a desired pruning percentage. A heavily pruned network will
contain many zero-parameters and so be very sparse, thus sparsity measures the amount of pruning.

2.2 LOSS LANDSCAPES

Recent advances. Li et al. (2018a) have shown that many problems solved by neural networks
can be solved in a smaller dimension with comparable results to the full-dimension solution and
provided an upper bound for the minimum dimensions required to solve a problem. Draxler et al.
(2018) and Garipov et al. (2018) have empirically shown that a path of low loss can connect two
local minima. Draxler et al. (2018) proposes that these paths exist as there is a low-loss manifold
that the points exist on. Garipov et al. (2018) suggests that these points are not isolated but belong
to a low loss valley in the landscape. Fort et al. (2020) showed that models achieving the same loss
value can represent very different functions.

Visualisation. Due to the high dimensionality of the loss landscape, it is intrinsically hard to
visualise and reason about the dynamics of neural network learning. We will use several methods
developed to reduce the dimensionality and create faithful visualisations.

First, Fort et al. (2020) showed an effective method for visualising the functional space, where
the functional space is the space of all functions solving the given problem which an architec-
ture/topology can represent. The method works by taking the model softmax outputs for a dataset,
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which are flattened into a vector to represent the model predictions; the t-SNE algorithm (Van der
Maaten & Hinton, 2008) is then used to reduce the dimensionality of the predictions to a two-
dimensional plot, which is used to visualise the models’ similarity in function space.

Second, Fort et al. (2020) also presents an effective method for visualising the loss landscape from
the perspective of the origin (where all parameters are set to zero) and the two local minima points
of interest. It works by perturbing the parameters radially along the weight space of two local
minima points of interest δ, η, which are then multiplied by the radial coordinates Rx, Ry. The
loss of the network L(θ + Rxδ + Ryη) is calculated at this point which is then plotted against
x, y to create three-dimensional representation (using colours for the third dimension) of the loss
landscape. A radial slice is used as the softmax cross-entropy loss means they travel radially through
the landscape during training (Fort et al., 2020).

Finally, the Filter-Wise Normalization method (Li et al., 2018b) focuses on visualising the loss
landscape from the perspective of the local minima. It works by perturbing the parameters along two
random approximately orthogonal filter-wise normalised directions in weight space δ, η. The loss
L(θ+ xδ + yη) is then plotted against the perturbation magnitudes x, y to create an effective three-
dimensional representation of the loss landscape around the local minimum. Random directions are
used instead of principle component analysis (Pearson, 1901) as they allow for visualising a more
expansive space instead of just the optimised parts of the landscape.

3 COSINE SIMILARITY PRUNING

Cosine similarity (1) is a similarity measure that measures the cosine of the angle φa,b between two
non-zero vectors a,b in an inner product space.

A similarity value of zero means the vectors are orthogonal, a value of one means the two vectors
have the same direction, minus one means the vectors have opposite directions.

SC(a,b) := cos(φa,b) =
⟨a,b⟩
∥a∥2 ∥b∥2

(1)

Neural network parameters, θ, are composed of several tensors of various ranks, which can be
flattened by concatenation to form a vector representation of the neural network parameters. Global
unstructured pruning performs a transformation on this vector θ (we use the same symbol for the
network parameters and its vectorization) by zeroing some elements, thus creating a new vector θ′.
We will use the cosine similarity SC(θ, θ

′) to measure how much the parent network has changed
under pruning. Note that the order in which tensors are concatenated when vectorizing the model
does not change the cosine similarity.

The cosine similarity between the pruned sub-network and its parent will monotonically decrease as
pruning increases. As a consequence, a binary search algorithm (Appendix B Algorithm 1) can be
used to find the amount of pruning required to reach a target cosine similarity (within a specified ε).

In order to maintain the maximal cosine similarity when pruning a single parameter, one must prune
the parameter with the smallest absolute magnitude.

Theorem 1 (Maximal Cosine Similarity via Pruning).

max
n

⟨a,a(n)⟩
∥a∥2

∥∥a(n)∥∥
2

is reached for n = argmin
i
∥ai∥. (2)

Where a(n) is the vector whose components are those of a, apart from the nth which is zero.

The pruning method based on this theorem is known as the L1 pruning method since it minimises
the ℓ1 distance. The proof of the theorem can be found in the Appendix A.

4 EXPERIMENTAL SETUP

To explore the questions in the introduction, we trained three distinct convolutional neural net-
works with varying sizes and architecture designs (Appendix C Table 1). We use the LetNet Small
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(Whitaker & Whitley, 2022) in order to have a model that is small and achieves a low performance.
The ResNet18 (He et al., 2016) and VGG11 BN (Simonyan & Zisserman, 2014) networks are used
as they are complex, achieve high performance, and have been shown to have different loss land-
scapes, with the VGG11 BN having a more complex loss landscape Li et al. (2018b).

The VGG11 BN, ResNet18 and LeNet Small are trained on the CIFAR10 dataset (Krizhevsky,
2009), which is a dataset consisting of 10 classes with 50,000 training images and 10,000 test-
ing images, using the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.001 and a
batch size of 256. The VGG11 BN and ResNet18 models were modified to handle the CIFAR-10
dataset as specified by Phan (2021). The VGG11 BN and ResNet18 models were trained for 100
epochs, and the LeNet Small models were trained for 25 epochs, where an epoch is a complete pass
through the training dataset.

The models were then independently globally one-shot pruned, including all the parameters, weights
and biases, using Random and L1 unstructured pruning from 0 to 99% pruned with a step size of
1% and then fine-tuned for one epoch. 100% is not used as it would result in a model with zero
parameters. 0% pruning is used to create a baseline of what the model would have achieved if it had
been trained for the additional epoch instead of being pruned.

The ImageNet dataset (Russakovsky et al., 2015) with PyTorch-provided (Paszke et al., 2019) pre-
trained VGG11, ResNet18 and MobileNetV2 (Sandler et al., 2018) models is used to demonstrate
that the proposed method works at scale and highlight an edge case, see 5.4. The models were
independently globally one-shot pruned and fine-tuned as described above.

5 RESULTS AND DISCUSSION

5.1 USING COSINE SIMILARITY TO COMPARE PRUNING METHODS AND OPTIMAL PRUNING
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Figure 1: ReNet18,
VGG11 BN and LeNet Small
change in test negative log
loss and accuracy on CIFAR10
after pruning only (Figures
1a-1c) and pruning plus one
epoch of fine-tuning (Figures
1b-1d) plotted against per-
centage pruned using Random
and L1 unstructured pruning.
The mean (line) and standard
deviation (hue) from 10 runs
are displayed.

Figure 1 illustrates the point made by the first question in the introduction that there is no relationship
between, on the one hand, pruning method and pruning percentage, and on the other, changes in loss
and accuracy. This can be seen very clearly in Figures 1c-1d with a marked difference in accuracy
between the Random and L1 methods at 80% pruned. We see in Figure 1b that Random and L1
pruning follow similar loss trajectories: first a dip in the loss function, followed by a monotone
increase as more of the network gets pruned. There is however a significant lag between the two
pruning regimes, with the increase in loss occurring much earlier (at around 30% pruned) with
Random pruning than with L1 pruning (at about 90% pruned). This lag is also visible in 1a if one
ignores the strange behaviour of VGG11 BN under random pruning (which we cannot explain).
Thus, which parameters are pruned is more important than how much of the network is pruned.

To investigate the importance of this choice we examine the effect of pruning in terms of cosine
similarity with the parent network, i.e. pruning to a target cosine similarity. Figure 2 shows a much
clearer relationship between the cosine similarity and the change in loss and accuracy of the network
across all pruning methods. Comparing Figures 2c and 2d to Figures 1c and 1d we see that the
choice of pruning method has a much smaller impact on the change in accuracy when it targets a
given cosine similarity. Similarly, we see that the lag between the loss trajectories of Random and L1
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pruning in Figures 1a-1b almost vanishes in Figures 2a-2b, again illustrating that cosine similarity is
much more strongly associated with loss than either pruning method or sparsity/pruning percentage.
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Figure 2: ReNet18,
VGG11 BN and LeNet Small
change in test negative log loss
and accuracy on CIFAR10 after
pruning only (Figures 2a-2c)
and pruning plus one epoch
of fine-tuning (Figures 2b-2d)
plotted against cosine similarity
with the parent network using
Random and L1 unstructured
pruning. The mean (line) and
standard deviation (hue) from
10 runs are displayed.

These observations suggest that cosine similarity is vital for understanding pruning. In particular,
they suggest that an optimal pruning mechanism should maintain the highest possible cosine sim-
ilarity with the parent model. Theorem 1 guarantees precisely this condition and can therefore be
re-interpreted as stating that in order to prune a vector whilst maintaining maximal cosine similarity
with the original vector – the parent parameters – one must use the L1 pruning method.

5.2 HOW PRUNING TRANSFORMS THE FUNCTION SPACE

We hypothesise that cosine similarity can often be used as an efficient proxy measure for the func-
tional similarity between the parent and pruned network. This cannot be a universal rule. Imagine
a situation where a layer L is connected to a network by weights of very small magnitude; this net-
work will have high cosine similarity to the functionally very different network where these weights
are pruned away, disconnecting L from the network. We will encounter a likely example of this
phenomenon in 5.4. However, these are corner cases for which a diagnostic method will be pro-
vided. In general, we will see that cosine similarity is a very good proxy for functional similarity.
If this holds, it logically follows that a network with high cosine singularity will produce a network
with similar performance to the parent, as the functional representations are close. In particular, the
optimal pruning method for cosine similarity (L1 pruning) should have the closest representation to
the parent’s function, as it removes the least impactful weights.

To explore this idea, we examine the effects of pruning on the VGG11 BN function space through
the visualisation method of Fort et al. (2020). The VGG11 BN network has been shown to have a
complex loss landscape (Li et al., 2018b), therefore, any effect that pruning has on the function space
should be more apparent. In Figure 3, we take the VGG11 BN model’s predictions at initialisation
and end of training, along with predictions of the pruned models, and convert them to a function
space. Figure 3 provides a functional perspective to the phenomenon illustrated through Figures 1
and 2. Figures 3a and 3b, show that the L1-pruned models stay functionally close to the parent (★)
even when highly pruned, whereas the randomly pruned networks functionally diverges from the
parent (very quickly in the case of Figure 3a) and, interestingly, return to a state that is functionally
close to the untrained initial network (●). When pruning by cosine similarity the functional dif-
ference between L1 and Random pruning fades away. Figures 3c and 3d show that networks with
similar cosine similarity with the parent are functionally close, irrespective of the pruning method.
Observe from Figure 3c that for high cosine similarity values, the models remain functionally very
similar to the parent, whereas models with low cosine similarity with the parent explore a region of
the function space which is close to the untrained parent. After fine-tuning, Figure 3d shows that
models with high cosine similarity with the parent return to a state that is functionally close to the
parent but, curiously, networks with low cosine similarity with the parent again tend to return to a
state functionally similar to the untrained parent model.

We hypothesise that the reason why models at a high cosine similarity can return after fine-tuning
for one epoch is that they stay connected to a low loss ‘valley’ or ‘tunnel’ (Draxler et al., 2018),
(Garipov et al., 2018) that leads to the local optima and, thus, can return to similar function space.
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Figure 3: t-SNE projections
of the training dataset predic-
tions for the VGG11 BN model,
including initialisation (●) and
end of training (★). Figure
3a (resp. 3b) shows the func-
tion space of the models when
pruned from 0 to 99% using
Random (Red) and L1 (Blue)
pruning (resp. pruning followed
by one epoch of fine-tuning).
Figure 3c (resp. 3d) shows the
function space of the models
when pruned from 1 to 0.1 co-
sine similarity using Random
(Red) and L1 (Blue) pruning
(resp. pruning followed by one
epoch of fine-tuning).

We suspect that this is because the high cosine similarity forces the networks to operate in a subspace
of the parent function.

(a) L1 pruning to a cosine similarity of 0.95 (b) L1 pruning to a cosine similarity of 0.30

Figure 4: VGG11 BN Parent to Pruned-and-fine-tuned Radial Landscape slices with respect to the test data.
The left-hand plots of Figures 4a-4b show the loss landscape along the paths of the parent and the pruned-and-
fine-tuned model, the right-hand plots show the same landscape for accuracy.

To explore this, we follow Fort et al. (2020) and take a two-dimensional radial slice of the loss –
left-hand plots in Figure 4 – and test – right-hand plots of Figure 4 – landscapes along the weight
directions of the parent and the pruned-and-fine-tuned network. In Figure 4a, the network stays
within the local optima ‘valley’/‘tunnel‘ for high cosine similarity but operates in a functionally
different area of the loss landscape; this supports the idea of low loss manifold exists put forward
by Draxler et al. (2018). For low cosine similarity, Figure 4b, the fine-tuned network becomes
functionally very different from the parent. The fact that it cannot return within one epoch suggests
that the network has become ‘disconnected’ from the low loss manifold. To see if these models can
return to the low-loss region after more fine-tuning we repeated our experiments with 10 epochs of
fine-tuning in Appendix D. The conclusion is that more fine-tuning amplifies what we observe with
1 epoch of fine-tuning. After a small prune, 10 epochs of fine tuning result in a network which is
more similar to the parent than 1 epoch of fine-tuning. Conversely, after a big prune, 10 epochs of
fine-tuning leads to a bigger functional change w.r.t. the parent than 1 epoch of fine-tuning.

5.3 SPARSITY, LARGE PARAMETERS AND THE LOSS LANDSCAPE

We hypothesise that neural networks tend to be (a) stable under increases in sparsity (e.g. through
L1-pruning) but also (b) inherently brittle, that is to say they are highly impacted by changes to high-
magnitude parameters. These two aspects can be quantified using the kurtosis of a network’s weight
distribution: the higher the kurtosis, the more it can be pruned (see 5.4) and the more high-magnitude
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parameters it contains. It is interesting to consider the layer-wise kurtosis of a network, and in
particular its kurtosis of kurtoses which measures the extent to which some layers have significantly
more kurtosis than others. Networks with high kurtosis of kurtoses are particularly brittle: not only
will they have more layers containing many large parameters, but the layer-wise kurtosis distribution
will contain a peak of very low-kurtosis layers composed only of low-magnitude parameters which
can get entirely pruned away, thereby disconnecting the network altogether (see 5.4).

To examine the effect of sparsity on the loss landscape, the VGG11 BN loss landscape is visualised
using the Filter-Wise Normalization method (Li et al., 2018b). Figure 5b represents the loss land-
scape of the parent VGG11 BN network after 100 epochs of training. Figure 5a shows the loss
landscape of the network after L1-pruning to a 0.99 cosine similarity. Finally Figure 5c shows the
loss landscape of the network after Random-pruning to 0.99 cosine similarity. Again, we choose the
VGG11 BN model because of its complex loss landscape (Li et al., 2018b).

Figure 2c showed that the pruning method has little impact on the pruned model’s accuracy, the
main driver of accuracy being cosine similarity with the parent. Similarly, Figure 3c showed that
pruned networks with high cosine similarity stayed functionally close to their parent, irrespective of
the pruning method. By examining the loss landscapes more globally in 5, we see that the pruning
method does have an impact, although it is not noticeable in a small neighbourhood around the
local parent network, which is why it is not apparent in Figures 2c, 3c. Indeed, comparing the loss
landscapes of the two pruning methods (Figures 5a and 5c) with the loss landscape of the parent
(Figure 5b), it becomes clear that:

(a) The large increase in the sparsity of the network going from parent to L1-pruned (where
70.06% of the network has been set to zero) has left the loss landscape largely unchanged
(ℓ∞ distance between the surfaces of 65.28).

(b) The small changes in the network caused by Random-pruning, which zeroes large param-
eters with the same probability as small parameters, has let to a very small increase in
sparsity (only 1.99% of the parameters have been pruned) but a large change in the loss
landscape dramatically (ℓ∞ distance between the surfaces of 484.03).

These observations indicate that the loss landscape is heavily determined by the high-value magni-
tude parameters of the network. We call this sensitivity to large parameters brittleness.
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Figure 5: VGG11 BN Test Loss Landscape: (a) L1 pruning to a cosine similarity of 0.99 resulting in a 70.06%
pruned network, (b) Parent network trained to 100 epochs and (c) Random pruning to a cosine similarity of 0.99
resulting in a 1.99% pruned network.

The brittleness of the models we have examined explains why a high functional similarity to the
parent is required for pruning, as without this, the model does not have enough freedom to reduce
the impact of the high-magnitude parameters and thus cannot easily explore other regions of the loss
landscape. This idea is supported in part by Fort et al. (2020), which showed that networks with dif-
ferent parameter initialisations end up with different functional representations. This phenomenon
is well explained by brittleness: since models are disproportionately affected by high-value param-
eters, and since different initialisations are very likely to assign high-values to different parameters,
it is not surprising that they create such drastically different functions.

Given this observation, we suspect that high parametrisation is required early in training unless given
a particularly good initialisation, as it allows for more degrees of freedom, which in turn makes it
easier to transverse the loss landscape as the network is less affected by the initial initialisation of
the network and parameters that would otherwise lead to poor performing model.

7



5.4 OPTIMAL COSINE SIMILARITY FOR MAXIMUM MAGNITUDE PRUNING

When pruning is viewed through the lens of cosine similarity and, by proxy, functional similarity to
their parent model, it can be reframed into a multi-objective optimisation problem, where the goal
is to maximise both the cosine similarity and the percentage of the network pruned. In this framing,
the L1 pruning method is the Pareto frontier, the set of all efficient solutions, and the utopia1 would
be a cosine similarity of 1 to the parent with 100% of the network pruned. The closest point to
the Utopia is the optima point for pruning while maintaining the highest accuracy as it will have
the maximal pruning percentage to cosine similarity ratio, i.e. either side of this point will benefit
the other metric more. The exact value of the optimal point will vary depending on the distribution
of the network’s parameters. In particular, Figure 6 shows that the distance between the optimal
pruning and utopia decreases as the kurtosis of a network’s parameter distribution increases.
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Figure 6: L1-pruned Pareto Front for 100,000 parameters
distributed according to probability laws with decreasing kur-
tosis: Log-normal(1), Laplace, Logistic, Normal, Cosine and
Uniform[0, 1] distributions, when optimising for Cosine Sim-
ilarity to the parent and percentage Pruned. Displaying the
closest point (●) on each front to the Utopia (★ at (100,1)).

This observation makes intuitive sense: a distribution with a higher kurtosis will have more high-
magnitude parameters which will dominate both the numerator and the denominator of (1) in sim-
ilar proportion, allowing for more low-magnitude weights to be L1-pruned whilst maintaining a
high cosine similarity. It also explains why the VGG11 BN network can be pruned more than the
LeNet Small network, which can itself be pruned more than the ResNet18 network: the distribu-
tions of 10 trained networks yield average kurtoses of 8.53 for VGG11 BN, 4.82 for LeNet Small
and 3.79 for ResNet18.

The Pareto front illustrated in Figure 6 determines an optimal L1-pruning methodology. Given a
trained network, the method consists in the following steps (1 and 2 are computationally cheap):
Step 1: Compute the Pareto front of the parameters (i.e. the cosine similarity from 0 to 99% prun-

ing) and find the closest point to utopia. This gives the optimal pruning amount.
Step 2: Prune by this amount (unless the kurtosis of kurtoses is very high, in which case it might

be necessary to prune by less than this amount, see MobileNetV2 example below).
Step 3: Fine-tune (by one epoch in our case).

CIFAR10 models. This pruning procedure is presented graphically in Figure 7 for the LeNet Small,
ResNet18 and VGG11 BN networks. Note that this procedure prunes the LeNet Small network
more aggressively than might be expected from Figure 7b, yet performance remains high after one
epoch of fine-tuning (Figure 7c).
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Figure 7: Optimal magnitude pruning for cosine similarity in LeNet Small, and ResNet18 and VGG11 BN
ImageNet models. We demonstrate that the method described above holds at scale and with an ‘out-
of-sample’ dataset by applying it to the VGG11, ResNet18 and MobileNetV2 models pre-trained on
ImageNet and provided by PyTorch. The results are presented in Figure 8 and show something in-
teresting. Whilst our optimal L1-pruning works well for VGG11 and ResNet18, it performs very

1By definition, the Utopia is the point whose coordinates are the optimal values of each objective. In general
this point is self-contradictory and lays beyond the Pareto frontier.
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poorly for MobileNetV2. The reason was described in 5.3: MobileNetV2 is an example of network
containing very-low-magnitude layers which get pruned away by L1-pruning, dramatically modify-
ing the behaviour of the network. This phenomenon can be detected by computing the parameters’
kurtosis of (layer-wise) kurtoses, reporting values of 1.42 for VGG11, 5.81 for ResNet18 and 64.40
for MobileNet V2.

The conclusion of this experiment is that for global unstructured L1-pruning, the optimal amount
of pruning given by the Pareto front of Figure 6 might have to be adjusted by a parameter which
decreases as the network’s kurtosis of kurtoses κ(2) increases. From our limited set of experiments, if
the pruning method described above produces poor accuracy, then multiplying the optimal pruning
percentage by 1/lnκ(2) seems like a effective, conservative choice (see Figure 11, Appendix E).
Alternatively, local (layer-wise) cosine similarity pruning might be a better strategy.
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Figure 8: Optimal magnitude pruning for cosine similarity in VGG11, and ResNet18 and MobileNetV2

6 CONCLUSIONS

This paper set out to quantify and explore what makes a good prune and answer the questions set
out in the introduction through the exploration of global magnitude pruning.

Why can different methods prune by different amounts yet achieve similar performance? We
showed in Section 5.1 that cosine similarity with the parent network relates pruning to performance
and can be used to compare pruning methods. Two different methods, pruning by different percent-
ages, can lead to similar cosine similarities, and thus similar performances. L1-pruning was shown
to be the optimal method for maintaining cosine similarity. Moreover, we showed in Section 5.2
that cosine similarity is a good proxy for functional similarity. In particular, two different methods,
pruning by different percentages, can also lead to functionally similar networks.

Why can we not prune at the start of training? Section 5.3 showed that neural networks are
brittle, i.e. their loss landscapes can change dramatically when high-magnitude parameters are per-
turbed. L1-pruning a model before training would result in a model with proportionally more high-
magnitude parameters (since the lower-magnitudes ones will have been pruned) and therefore highly
susceptible to bad initialisation, making it very difficult to train.

Why can some models be pruned more than others? This is answered in Section 5.4, which shows
that the optimal amount of pruning typically increases with the kurtosis of the model’s parameter
distribution. The exception to this rule is provided by models like MobileNetV2 on which pruning
can disconnect entire layers. These situations can be detected by computing the kurtosis of layer-
wise kurtoses. Models with high kurtosis of kurtoses can be pruned less that models with low
kurtosis of kurtoses.

What is the maximum amount a model can be pruned before affecting the performance? This
question is also answered in Section 5.4, which shows that the maximum amount of pruning before
affecting performance is the closet point to the utopia (100% pruned with a cosine similarity of 1)
on the L1 Pareto front corresponding to the parameter distribution. This point, the equal trade-off
between functional similarity with the parent and sparsity of the network, can be computed ex-
actly from the parameter distribution of the trained network, as was illustrated for the VGG11/ BN,
LeNet Small and ResNet18 networks in Figure 7 and 8.

In answering and exploring these questions, we have shown that the optimal global unstructured
pruning for maximal cosine similarity is the L1 pruning method and that the optimal point for max-
imal pruning without dramatically affecting performance is the closet point to the utopia (100%
pruned with a cosine similarity of 1) on the L1 Pareto front which can be computed efficiently.
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A MAXIMAL COSINE SIMILARITY VIA PRUNING PROOF

The proof for Theorem 1 is as follows:

Proof. Assuming that we’re working RN for a fixed number of dimensions N . Let’s write ⟨a, b⟩ for
the usual scalar product in RN , namely

⟨a, b⟩ = ΣN
i=1aibi

Let’s write a(n) for the vector whose components are those of a, apart from the nth, which is set to
zero. Formally

a(n) = (a1, . . . , an−1, 0, an+1, . . . , aN )

We want to show that

max
n

⟨a, a(n)⟩
∥a∥2

∥∥a(n)∥∥
2

is reached for n = argmin
i
∥ai∥. (3)

To see that this is the case, first note that

⟨a, a(n)⟩
∥a∥2

∥∥a(n)∥∥
2

=

∑
i=1 aia

(n)
i

∥a∥2
√∑

i

(
a
(n)
i

)2
=

∑
i̸=n(ai)

2

∥a∥2
√∑

i ̸=n(ai)
2

=

∥∥a(n)∥∥
2

∥a∥2
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Therefore,

max
n

⟨a, a(n)⟩
∥a∥2

∥∥a(n)∥∥
2

= max
n

∥∥a(n)∥∥
2

∥a∥2

Since ∥a∥2 is fixed, the maximum is reached for the n maximizing
∥∥a(n)∥∥

2
. By using a Taylor

expansion, we get that∥∥∥a(n)∥∥∥
2
=

√∑
i ̸=n

(ai)2

=

√∑
i ̸=n

|ai|2

=

√∑
i

|ai|2 − |an|2

=

√∑
i

|ai|2 −
|an|2

2
√∑

i |ai|2
− |an|4

8
(∑

i |ai|2
) 3

2

− |an|6

16
(∑

i |ai|2
) 5

2

− . . .

Thus
∥∥a(n)∥∥

2
is maximized by subtracting the series in the smallest possible term |an|2, which is

precisely the smallest possible term |an| (since squaring is monotone), in other words, the condition
of equation 3.

B ALGORITHMS

Algorithm 1 Binary Cosine Similarity Search

Require: model, similarity to find, epsilon
low← 0
high← 100
while low ≤ high do

mid← low + high−low
2

pruned model← prune(model, mid)
similarity← cosine similarity(model, pruned model)
if similarity == similarity to find then return mid
else if similarity ≥ similarity to find then

low← mid + epsilon
else

high← mid - epsilon
end if

end while
return mid

C MODEL DETAILS

Model No. Parameters Batch Norm Skip Connections
LetNet Small 343,402 ✗ ✗
ResNet18 11,173,962 ✓ ✓
VGG11 BN 28,149,514 ✓ ✗

Table 1: Model Details
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D THE EFFECT OF ADDITIONAL FINE TUNING

Figure 9 shows the effect of the functional similarity when pruning by cosine similarity, and finetun-
ing for an additional 10 epochs instead of the one epoch regieme explored in the body of the paper.
It shows that after a relatively small prune, 10 epochs of fine tuning results in a network which is
more similar to the original than 1 epoch of fine-tuning. Conversely, after a big prune, 10 epochs of
fine-tuning will lead to a bigger functional change w.r.t. to the parent than 1 epoch of fine-tuning.
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(a) L1 Pruned and Fine-tuned for 10 epochs
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(b) Random Pruned and Fine-tuned for 10 epochs

Figure 9: t-SNE projections of the training dataset predictions for the VGG11 BN model, including initiali-
sation (●) and end of training (★). Figure 9a (resp. 9b) shows the function space of the models when pruned
from 1 to 0.1 cosine similarity using L1 (Blue) Random (Red) pruning followed by 10 epochs of fine-tuning.

Figure 10 shows the effect of additional epochs of training with respect to the loss landscape and the
test accuracy over a range of cosine similarity values, which highlights that ten epochs of fine-tuning
can yield some minor improvements, but the network essentially remains in the same loss region as
one epoch of fine-tuning.
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(a) L1 pruning to a cosine similarity of 0.95
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(b) L1 pruning to a cosine similarity of 0.85
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(c) L1 pruning to a cosine similarity of 0.75
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(d) L1 pruning to a cosine similarity of 0.65
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(e) L1 pruning to a cosine similarity of 0.55
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(f) L1 pruning to a cosine similarity of 0.45
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(g) L1 pruning to a cosine similarity of 0.35

0.5 0.0 0.5 1.0 1.5 2.0

Weight direction 1

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

W
ei

gh
t d

ire
ct

io
n 

2

Test Loss
Origin
Parent Optimum
Fine-tuned Optimum

0.5

2.0

3.5

5.0

6.5

8.0

9.5

11.0

0.5 0.0 0.5 1.0 1.5 2.0

Weight direction 1

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

W
ei

gh
t d

ire
ct

io
n 

2

Test Accuracy
Origin
Parent Optimum
Fine-tuned Optimum

0.04

0.16

0.28

0.40

0.52

0.64

0.76

(h) L1 pruning to a cosine similarity of 0.25

Figure 10: VGG11 BN Parent to Pruned-and-fine-tuned after 10 epochs Radial Landscape slices with respect
to the test data. The left-hand plots of Figures 10a-10h show the loss landscape along the paths of the parent
and the pruned-and-fine-tuned model, the right-hand plots show the same landscape for accuracy.
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E KURTOSIS OF (LAYER-WISE) KURTOSES ADJUSTED PRUNING

In the scenario where a large kurtosis of (layer-wise) kurtoses is observed, it may be beneficial to
adjust the optimal amount of pruning given by the Pareto front of Figure 6 by a parameter which
decreases as the network’s kurtosis of kurtoses κ(2) increases (from our limited set of experiments
1/lnκ(2) looks like a sensible, conservative choice). This is shown in Figure 11 with the conservative
point shown in purple, with ResNet and MobileNetV2 having the conservative estimate of 51% and
21% respectively, given by (optimal prune ∗ 1/lnκ(2)).
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Figure 11: Optimal and conservative magnitude pruning for cosine similarity in VGG11, and ResNet18 and
MobileNetV2
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Figure 12: Layerwise Kurtosis
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