
Published as a conference paper at ICLR 2025

CATVTON: CONCATENATION IS ALL YOU NEED FOR
VIRTUAL TRY-ON WITH DIFFUSION MODELS

Zheng Chong1,4,5, Xiao Dong2, Haoxiang Li3, Shiyue Zhang1, Wenqing Zhang1, Xujie Zhang1,
Hanqing Zhao4,6, Dongmei Jiang4 & Xiaodan Liang1,4,7∗

1Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
2School of Artificial Intelligence, Sun Yat-sen University, Zhuhai Campus, Zhuhai 519082, China
3Pixocial Labs 4Pengcheng Laboratory 5LavieAI
6Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
7Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, 510006, China
{chongzheng98,dx.icandoit}@gmail.com, haoxiang@pixocial.com,
{zhangshy,zhangwq76,zhangxj59}@mail2.sysu.edu.cn,
hq.zhao79@gmail.com, jiangdm@pcl.ac.cn, xdliang328@gmail.com

Person-To-Person Garment TransferGarment-To-Person Try-On

Overall

Upper Lower

DressOverall

Upper Lower

Dress

In-The-Wild Try-On

Overall

Costume Cropped

Animate

Figure 1: CatVTON enables transferring in-shop or worn garments to the target person across var-
ious categories. With a lightweight architecture and efficient training (49.57M parameters, trained
on 73K samples), our model allows inference without additional preprocessing, delivering high-
quality virtual try-ons with fine-grained consistency in challenging scenarios like comics, complex
backgrounds, special garments, and cropped images.

ABSTRACT

Virtual try-on methods based on diffusion models achieve realistic effects but of-
ten require additional encoding modules, a large number of training parameters,
and complex preprocessing, which increases the burden on training and infer-
ence. In this work, we re-evaluate the necessity of additional modules and analyze
how to improve training efficiency and reduce redundant steps in the inference
process. Based on these insights, we propose CatVTON, a simple and efficient
virtual try-on diffusion model that transfers in-shop or worn garments of arbitrary
categories to target individuals by concatenating them along spatial dimensions
as inputs of the diffusion model. The efficiency of CatVTON is reflected in three
aspects: (1) Lightweight network. CatVTON consists only of a VAE and a sim-
plified denoising UNet, removing redundant image and text encoders as well as
cross-attentions, and includes just 899.06M parameters. (2) Parameter-efficient
training. Through experimental analysis, we identify self-attention modules as
crucial for adapting pre-trained diffusion models to the virtual try-on task, en-
abling high-quality results with only 49.57M training parameters. (3) Simplified
inference. CatVTON eliminates unnecessary preprocessing, such as pose estima-
tion, human parsing, and captioning, requiring only person image and garment
reference to guide the virtual try-on process, reducing 49%+ memory usage com-
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pared to other diffusion-based methods. Extensive experiments demonstrate that
CatVTON achieves superior qualitative and quantitative results compared to base-
line methods and demonstrates strong generalization performance in in-the-wild
scenarios, despite being trained solely on public datasets with 73K samples.

1 INTRODUCTION
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Figure 2: (a) Structure comparison of different try-on methods. CatVTON eliminates the need for
garment warping or additional ReferenceNet resulting in a simple structure. (b) Efficiency compar-
ison with diffusion-based try-on methods. Each method is represented by two concentric circles,
where the outer circle denotes the total parameters and the inner circle indicates the trainable pa-
rameters. CatVTON achieves lower FID on the VITON-HD dataset with fewer total parameters,
trainable parameters, and memory usage.

Virtual Try-On (VTON), which transfers specific garments onto user photos, has attracted consider-
able interest due to its potential applications in e-commerce. Early try-on methods (Han et al., 2018;
Wang et al., 2018; Han et al., 2019; Minar et al., 2020; Ge et al., 2021; Xie et al., 2021b) employ
a two-stage process of pose-guided garment warping followed by blending with the target person,
as illustrated in the left of Figure 2 (a). However, these methods often result in unnatural fits and
struggle with complex poses due to the limited warping process.
Benefitting from the success of diffusion models (Rombach et al., 2021), many diffusion-based
try-on methods (Zhu et al., 2023; Kim et al., 2023; Xu et al., 2024; Morelli et al., 2023; Choi et al.,
2024; Wang et al., 2024c; xujie zhang et al., 2023; Sun et al., 2024) have emerged and achieved more
natural try-on results. As shown in the middle of Figure 2 (a), these methods adopt a structure called
Dual-UNet or ReferenceNet for processing garment images. Some methods (Kim et al., 2023; Choi
et al., 2024; Xu et al., 2024; Sun et al., 2024) also integrate image encoders, such as CLIP (Radford
et al., 2021) and DINOv2 (Oquab et al., 2023), to capture additional garment features. However,
these encoders contribute to a more complex and computationally intensive network architecture,
increasing the burdens of both training and inference.
To integrate diffusion models into virtual try-on systems without sacrificing efficiency, it is essen-
tial to discuss the role of extra image encoders and ReferenceNet. Pre-trained image encoders like
DINOv2 and CLIP are not optimized for detail preservation—a crucial factor in virtual try-on appli-
cations. In contrast, ReferenceNet, by replicating the structure and weights of the backbone UNet,
allows for the generation of multi-scale garment features that naturally share latent spaces with the
backbone layers. This feature-sharing facilitates a seamless link between garment and person repre-
sentations, improving the overall accuracy of the virtual try-on process. Based on this shared latent
space mechanism, we realized that the model architecture could be further simplified. If the gar-
ment and person features can be efficiently integrated within the shared latent space, is it possible
to use a single UNet model to process both person and garment images simultaneously? Such an
approach would not only eliminate redundant encoders but also enhance try-on system efficiency by
streamlining the model.
Building on this, we propose CatVTON, a simple and efficient diffusion-based virtual try-on model.
Our CatVTON removes unnecessary encoders, and streamlines the garment and person interaction,
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thereby enabling efficient training and inference. Specifically, as shown in Figure 3, our model com-
prises only a VAE for mapping images to the latent space and a simplified UNet for denoising from
LDM (Rombach et al., 2021). We further remove the text encoder and the cross-attention modules as
text conditions are not essential for try-on, simplifying the architecture to a total of 899.06M param-
eters. To optimize training efficiency, we investigated the effective modules in UNet to interact with
garment and person features. By progressively adjusting the trainable modules in experiments, we
find that self-attention modules with a global receptive field (Dosovitskiy et al., 2021) are the most
critical part for try-on task with diffusion models, and achieve realistic try-on results by training
only 49.57M parameters. Furthermore, we explored a more straightforward and efficient inference
process. Numerous try-on methods (Sun et al., 2024; Zhang et al., 2024b; Wang et al., 2024c;
Choi et al., 2024; Kim et al., 2023) depend on extra preprocessing such as pose estimation, human
parsing, and captioning to guide the try-on process, thereby increasing the computational burden
during inference. Hence, we think that the garment and person images contain sufficient informa-
tion for try-ons, and removing additional conditions can simplify the model while achieving efficient
try-ons without compromising quality. By integrating these enhancements, CatVTON outperforms
other diffusion-based try-on methods in both effectiveness and efficiency, as shown in Figure 2 (b)
and Table 3.
In summary, the contributions of this work include:

• We propose CatVTON, a lightweight virtual try-on diffusion model with only 899.06M
parameters, that achieves high-quality results by simply concatenating garment and person
images as inputs, eliminating the need for extra image encoders, ReferenceNet, and text-
conditioned modules.

• We introduce a parameter-efficient training strategy to transfer pre-trained diffusion models
to virtual try-on tasks while preserving prior knowledge by training necessary modules with
only 49.57M parameters.

• We simplify the inference process by eliminating the need for extra pre-processing of input
images and leverage the robust priors from pre-trained diffusion models to infer all nec-
essary information, reducing memory usage by 49%+ compared to other diffusion-based
baselines.

• Extensive experiments on the VITON-HD and DressCode datasets demonstrate that our
method produces high-quality virtual try-on results with consistent details, outperforming
state-of-the-art baselines in qualitative and quantitative analyses, and performs well in in-
the-wild scenarios.

2 RELATED WORK

2.1 SUBJECT-DRIVEN IMAGE GENERATION

Subject-driven image generation is a hot topic in the field of image generation, focusing on inte-
grating the target subject into new scenes or perspectives while maintaining consistency with the
subject. LoRA (Hu et al., 2021) and DreamBooth (Ruiz et al., 2022) train individual models for
each subject, achieving consistent subject-driven generation, but the frequent training incurs a high
cost. Paint by Example (Yang et al., 2022) and IP-Adapter (Ye et al., 2023) leverage CLIP (Rad-
ford et al., 2021) image encoders to extract subject features and inject them into diffusion models
via cross-attention, enabling convenient subject-driven generation. However, they fall short of pre-
serving details. In contrast, AnyDoor (Chen et al., 2023) employs DINOv2 (Oquab et al., 2023)
and ControlNet (Zhang et al., 2023) to jointly extract subject features to achieve more accurate
subject-driven image generation. PCDMs (Shen et al., 2024) achieve high consistency in transfer-
ring persons to different perspectives through three progressive diffusion models. InstantID (Wang
et al., 2024b) introduces an additional IdentifyNet to encode facial information, achieving high-
fidelity facial stylization. Similarly, MimicBrush (Ju et al., 2024) proposes a dual-branch model that
learns from video data and masked image modeling to accomplish subject-driven generation. While
these methods achieve high-quality subject-driven generation, they also lead to complex network
architectures and a large number of trainable parameters, which limit their applications.

2.2 IMAGE-BASED VIRTUAL TRY-ON

In image-based virtual try-on, the goal is to create a composite image of a person wearing a spec-
ified garment while maintaining identity and consistency. Warping-based methods typically de-
compose the task into two stages: garment warping and fusion based on warped garments. Some
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Figure 3: Overview of CatVTON. Our method achieves high-quality try-ons by simply concatenat-
ing the conditional image (garment or reference person) with the target person image in the spatial
dimension, ensuring they remain in the same feature space during denoising. Only self-attention pa-
rameters, which provide global interaction, are learnable, while cross-attention for text interaction
is omitted. No additional conditions (pose, parsing) are needed, resulting in a lightweight network
with minimal trainable parameters and simplified inference.

warping-based methods (Wang et al., 2018; Han et al., 2018; Choi et al., 2021) utilize geometric
deformation like TPS (Bookstein, 1989) to warp the garment, while others (Han et al., 2019; Ge
et al., 2021; Xie et al., 2021b; 2023; Gou et al., 2023) estimate an appearance flow map to model
non-rigid deformation for more complex garment warping. Besides, PASTA-GANs (Xie et al., 2022;
2021a) propose a patch-routed disentanglement module for pose-guided garment warping. However,
warping-based methods often struggle with alignment issues caused by inaccurate TPS or flow es-
timation. Diffusion-based methods leverage the generation capacity of pre-trained diffusion models
to avoid the limitations of garment warping. LaDI-VTON (Morelli et al., 2023) and StableVITON
(Kim et al., 2023) employ a ControlNet-like structure to encode additional information. TryOnDif-
fusion (Zhu et al., 2023) designs two UNets for feature extraction of garment and person images,
respectively, and achieves impressive results. BoowVTON (Zhang et al., 2024a) utilizes generated
pseudo data to train the diffusion model and employs a clothing encoder to provide garment infor-
mation, achieving mask-free virtual try-on. OOTDiffusion (Xu et al., 2024), StableGarment (Wang
et al., 2024c), IDM-VTON (Choi et al., 2024), and OutfitAnyone (Sun et al., 2024) utilize a Ref-
erenceNet structure, similar to the denoising UNet from pre-trained models, to process garment
images, with slight structural variations. However, these methods often require complex network
structures, numerous trainable parameters, and various conditions to assist inference, which inspires
our exploration towards efficient virtual try-on diffusion models.

3 METHODS

CatVTON aims to streamline diffusion-based virtual try-on methods by eliminating redundant com-
ponents, focusing on key modules, and simplifying preprocessing requirements.

3.1 LIGHTWEIGHT NETWORK

Our lightweight structure arises from the consideration of image representations for garments and
persons and their effective interaction. Recent studies (Ye et al., 2023; Chen et al., 2023) have
demonstrated that existing pre-trained encoders, such as DINOv2 (Oquab et al., 2023) and CLIP
(Radford et al., 2021), struggle to preserve fine details for subject-driven image generation. This
indicates that using these encoders to encode garment images for try-on purposes is insufficient,
hence we remove all additional image encoders in our method. Methods with ReferenceNet en-
hance detailed alignment in diffusion-based try-on by replicating weights from a denoising UNet
and performing fine-tuning. However, this approach introduces additional trainable modules and
increases the computational load. To address this, we concatenate person and garment images along
the spatial dimension as inputs to the original denoising UNet to avoid importing any new modules.
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Figure 4: Overview of the mask-free training pipeline. We first use the trained mask-based model
to generate synthetic person image from randomly sampled person-garment pairs. These synthetic
person images, along with their corresponding original person and garment images, form the training
data for the mask-free model.

As shown in Figure 3, CatVTON features a lightweight network structure comprising only two es-
sential modules: (1) VAE. The VAE encoder encodes the person and garment images into the latent
space, optimizing computational efficiency during diffusion. Once encoded, the latent garment and
person are concatenated in the spatial dimension as inputs to the denoising UNet. Then, the VAE
decoder reconstructs the output latent into the original pixel space after denoising. (2) Simplified
Denoising UNet. As the text condition is not necessary for image-based try-on tasks and our exper-
iment reveals that training with text conditions leads to a detrimental impact on try-on performance
(demonstrated in experiments section), we remove the text encoder and cross-attention modules in
the UNet to further simplify the network and reduce 167.02M parameters. The simplified denoising
UNet accepts concatenated garments and persons as conditions, along with noise and masks, and
generates the predicted try-on latent. Integrating these two modules, the proposed lightweight try-on
diffusion model has only 899.06M parameters, representing a reduction of over 44% compared to
other diffusion-based methods.

3.2 PARAMETER-EFFICIENT TRAINING

CatVTON aims to optimize the interaction between garment and person features with the fewest
trainable modules in LDMs (Rombach et al., 2021) for parameter-efficient training. Diffusion-based
methods typically train the entire U-Net to adapt pre-trained models to the virtual try-on task. How-
ever, since LDMs have undergone extensive pre-training on large-scale datasets, they already possess
robust prior knowledge. When transferring LDMs to the try-on task, it is only necessary to fine-tune
the parameters related to the interaction between person and garment features.
As shown in Figure 3, the denoising UNet comprises alternating ResNet (He et al., 2015) and trans-
former (Vaswani et al., 2023) blocks. The transformer blocks, equipped with self-attention layers
for global interaction, complement the ResNet’s local feature capture, which stems from its convo-
lutional architecture. We conduct experiments to gradually find the most relevant modules. We set
the trainable components to 1) the entire U-Net, 2) the transformer blocks, and 3) the self-attention
layers. The results indicate that despite a significant disparity in the number of trainable parame-
ters (815.45M, 267.24M, and 49.57M, respectively), all three variants produced satisfactory virtual
try-on results, and no substantial differences are observed in visual quality and metrics among them
(detailed in experiments section).
Consequently, we adopted a parameter-efficient training strategy by finetuning only the self-attention
layers with 49.57M parameters. For the training of the mask-free try-on model, we first leverage the
already trained mask-based model to infer generated person images from randomly sampled person-
garment pairs in the same datasets. These generated person images, along with their corresponding
original person and garment images, form the training data for the mask-free model, as shown in
Figure 4. For both the mask-based and mask-free try-on models, we employ Mean Squared Error
(MSE) loss for training. Additionally, we adopt a 10% conditional dropout to support classifier-free
guidance (CFG) (Ho & Salimans, 2022) and employ the DREAM (Zhou et al., 2024) strategy during
training. The ablation studies of CFG and DREAM are illustrated in the experiments section.

3.3 SIMPLIFIED INFERENCE

Besides training, we also explored a more straightforward and more efficient inference process for
image-based try-on. We simplified the inference by eliminating the need for any preprocessing
or conditional information. The whole process can be completed with only the person image and
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Figure 5: Qualitative comparison on the VITON-HD and DressCode dataset. CatVTON demon-
strates a distinct advantage in handling complex patterns and text. Please zoom in for more details.

garment reference for the mask-free model and an additional binary mask for the mask-based model.
Specifically, given a target person image Ip ∈ R3×H×W and a binary cloth-agnostic mask M ∈
RH×W , an input person image Ii is obtained by:

Ii =

{
Ip if mask-free
Ip ⊗M else

, (1)

where ⊗ represents the element-wise (Hadamard) product. Then input person image Ii ∈ R3×H×W

and the garment reference (either in-shop garment or worn person image) Ig ∈ R3×H×W is encoded
into the latent space by the VAE encoder ε:

Xi = ε(Ii©Ig), (2)

where © denotes the concatenation operation along the spatial dimension and Xi ∈ R4×H
8 ×W

4 .
For mask-based model, M is also concatenated with all-zero masks and then interpolated to match
the size of latent space, resulting in mi ∈ RH

8 ×W
4 :

Mi = Interpolate(M©O), (3)

where O represents the all-zero mask with the same size as M. At the beginning of the denoising,
the input conditions and a random noise zT ∼ N (0, 1) ∈ R4×H

8 ×W
4 of the same size as Xi are

concatenated along the channel dimension and input to the denoising UNet to get predicted zT−1,
and this process is repeated for T times to predict the final latent z0. For denoising step t, this
process can be written as:

zt−1 =

{
UNet(zt ⊙Xi) if mask-free
UNet(zt ⊙Mi ⊙Xi) else

, (4)

where ⊙ denotes the concatenation operation along the channel dimension, finally, z0 ∈ R4×H
8 ×W

4

is then split across the spatial dimension to extract the person part zp0 ∈ R4×H
8 ×W

8 , we use the VAE
decoder D to transform the denoised latent representation zp0 back into the image space, producing
the final output image Ĩp ∈ R3×H×W :

Ĩp = D (Split (z0,W )) , (5)

where Split(·,W ) means split across the spatial dimension in width.

4 EXPERIMENTS

4.1 DATASETS

Our experiments are conducted on three public datasets: VITON-HD (Choi et al., 2021), Dress-
Code (Morelli et al., 2022), and DeepFashion (Ge et al., 2019). VITON-HD comprises 13,679
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Figure 6: Qualitative results and comparisons in in-the-wild scenarios. OutfitAnyone (Sun et al.,
2024) only supports inference on its provided person images. Our method combines background,
person, and garment more naturally in complex scenarios. Please zoom in for more details.

image pairs of upper, 11,647/2,032 training/testing pairs. DressCode is composed of 48,392/5,400
training/testing pairs with full-body person images and in-shop upper, lower, and dresses. Besides,
we select 13,098/1,896 training/testing image pairs for the garment transfer task from the in-shop
clothes retrieval benchmark of the DeepFashion dataset, which includes 52,712 high-resolution per-
son images. For DressCode and DeepFashion datasets, we process clothing-agnostic masks using
human parsing results from DensePose (Güler et al., 2018) and SCHP (Li et al., 2020) of LIP (Gong
et al., 2017) and ATR (Liang et al., 2015) versions.

4.2 IMPLEMENTATION DETAILS

We utilize the inpainting and InstructPix2Pix (Brooks et al., 2023) version of StableDiffusion
v1.5 (Rombach et al., 2021) as the base models for the mask-based and mask-free try-on mod-
els, respectively. We train two models for each version on the VITON-HD (Choi et al., 2021) and
DressCode (Morelli et al., 2022) datasets separately for fair quantitative comparisons with previous
methods. The AdamW (Loshchilov & Hutter, 2019) optimizer is employed with a batch size of
128 and a constant learning rate of 1e − 5 for 16, 000 steps training under 512×384 resolution and
DREAM λ = 10. Additionally, multi-task models are trained on the three datasets (∼ 73K image
pairs) under 1024×768 resolution for 48,000 steps with an identical setup but a batch size of 32. All
experiments are conducted on 8 NVIDIA A800 GPUs, which takes approximately 10 hours for 16K
training steps.

4.3 METRICS

For paired try-on settings with ground truth in test datasets, we employ four widely used metrics
to evaluate the similarity between synthesized images and authentic images: Structural Similar-
ity Index (SSIM) (Wang et al., 2004), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang
et al., 2018), Frechet Inception Distance (FID) (Seitzer, 2020), and Kernel Inception Distance
(KID) (Bińkowski et al., 2021). For unpaired settings, we use FID and KID to measure the dis-
tribution of the synthesized and real samples.

4.4 QUALITATIVE COMPARISON

Figure 5 (a) presents the try-on results of garments with complex patterns from the VITON-HD
(Choi et al., 2021) dataset. While other methods often exhibit artifacts, loss of detail, and blurry
text logos, CatVTON demonstrates its superiority by effectively handling texture positioning and
occlusions and producing more photo-realistic results. Figure 5 (b) illustrates the comparison for
different garment types (upper, lower, and dress) on full-body person images from the DressCode
(Morelli et al., 2022) dataset. Our approach can generate results that are more consistent with
the garment textures, length, and semi-transparent materials. We provided additional qualitative
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Table 1: Quantitative comparison with other methods. We compare the metrics under paired and
unpaired settings on the VITON-HD and DressCode datasets. The best and second-best results are
demonstrated in bold and underlined, respectively.

Methods
VITON-HD DressCode

Paired Unpaired Paired Unpaired
SSIM ↑ FID ↓ KID ↓ LPIPS ↓ FID ↓ KID ↓ SSIM ↑ FID ↓ KID ↓ LPIPS ↓ FID ↓ KID ↓

DCI-VTON (Gou et al., 2023) 0.8620 9.408 4.547 0.0606 12.531 5.251 - - - - - -
StableVTON (Kim et al., 2023) 0.8543 6.439 0.942 0.0905 11.054 3.914 - - - - - -
StableGarment (Wang et al., 2024c) 0.8029 15.567 8.519 0.1042 17.115 8.851 - - - - - -
MV-VTON (Wang et al., 2024a) 0.8083 15.442 7.501 0.1171 17.900 8.861 - - - - - -
GP-VTON (Xie et al., 2023) 0.8701 8.726 3.944 0.0585 11.844 4.310 0.7711 9.927 4.610 0.1801 12.791 6.627
LaDI-VTON (Morelli et al., 2023) 0.8603 11.386 7.248 0.0733 14.648 8.754 0.7656 9.555 4.683 0.2366 10.676 5.787
IDM-VTON (Choi et al., 2024) 0.8499 5.762 0.732 0.0603 9.842 1.123 0.8797 6.821 2.924 0.0563 9.546 4.320
OOTDiffusion (Xu et al., 2024) 0.8187 9.305 4.086 0.0876 12.408 4.689 0.8854 4.610 0.955 0.0533 12.567 6.627

CatVTON (Mask-Free) 0.8701 5.888 0.513 0.0613 9.287 1.168 0.9016 4.779 1.297 0.0452 7.400 2.619
CatVTON (Inpainting) 0.8704 5.425 0.411 0.0565 9.015 1.091 0.8922 3.992 0.818 0.0455 6.137 1.403

Table 2: Comparison of GFLOPs, inference time, and memory usage across different methods.

Methods GFLOPs Inference Time(s) Memory Usage
Etext Eimage ReferenceNet UNet 512×384 1024×768 512×384 1024×768

OOTDiffusion (Xu et al., 2024) 13.08 155.62 509.12 547.34 4.76 36.23 6854 M 8892 M
IDM-VTON (Choi et al., 2024) 110.04 155.62 1340.15 1163.98 12.96 17.32 17112 M 18916 M
StableVTON (Kim et al., 2023) - 155.62 173.80 545.27 12.17 36.10 9828 M 14176 M
CatVTON(Ours) - - - 973.59 2.58 9.25 3276 M 5940 M

results and comparisons in various in-the-wild scenes, as shown in Figure 6. Our method performs
exceptionally well on fine patterns of garments, without altering or distorting the text and patterns on
the garments. It can also accurately reproduce special clothing designs, producing realistic effects
such as wrinkles, lighting, and shadows.

4.5 QUANTITATIVE COMPARISON

Comparison of Effect. We conducted the quantitative comparison of effect with several open-
source try-on methods on the VITON-HD and DressCode datasets under both paired and unpaired
settings as presented in Table 1. Our method outperformed all others across the metrics. GP-VTON
(Xie et al., 2023), IDM-VTON (Choi et al., 2024), and OOTDiffusion (Xu et al., 2024) also showed
good performance. GP-VTON, as a warping-based method, had advantages in SSIM and LPIPS
but performed weaker in KID and FID. This result suggests that warping-based methods may focus
more on ensuring structural and perceptual similarity but lack realism and detailed naturalness.
Comparison of Efficiency. Table 3 and Figure 2 (b) demonstrate the quantitative comparison of
efficiency, including parameters, memory usage, and extra conditions for inference. Our method
contains only two modules, VAE and UNet, with 899.06M parameters. Moreover, our trainable
parameters are reduced by 10+ times compared to other methods. During inference, our method has
a significant advantage in memory usage and does not require extra conditions such as pose or text,
alleviating the burden of inference.
Table 2 presents the inference efficiency comparison of GFLOPs, inference speed, and memory
usage across different methods at 512×384 and 1024×768 resolutions on a single NVIDIA A100
GPU. Inference was performed with a batch size of 1. For inference time, we averaged the results
of 10 runs with the same input to ensure accuracy. GFLOPs were calculated using the calflops
(xiaoju ye, 2023) library. These comparison results demonstrate that our model can be deployed on
resource-constrained devices, such as consumer-level GPUs with less than 8 GB of VRAM, while
maintaining significantly better inference speed compared to other models. However, deploying
high-resolution image generation models on terminal devices, such as smartphones, remains an area
that requires further exploration.

4.6 ABLATION STUDIES

Trainable Module. We evaluated three modules for training: (1) UNet, (2) transformer blocks, and
(3) self-attention. As shown in Table 4, more training weights do not bring significant improvements
in performance but increase the memory requirement and decrease the training speed. Slight advan-
tages brought by additional training weights may be due to the increased trainable components,
which allow the model to fit the data distribution more quickly. Besides, we trained a self-attention
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Table 3: Detailed comparison of model efficiency. UNetref , Etext, and Eimage represent the Refer-
enceNet, text encoder, and image encoder, respectively. Compared to other diffusion-based methods,
CatVTON uses fewer modules, reducing total parameters by about 2× and trainable parameters by
10×+. CatVTON requires significantly less memory during inference and does not need additional
conditions such as pose or text.

Methods Params (M) Memory Conditions
VAE UNet UNetref Etext Eimage Total Trainable Usage(G) Pose Text

OOTDiffusion (Xu et al., 2024) 83.61 859.53 859.52 85.06 303.70 2191.42 1719.05 10.20 - ✓
IDM-VTON (Choi et al., 2024) 83.61 2567.39 2567.39 716.38 303.70 6238.47 2871.09 26.04 ✓ ✓
StableVTON (Kim et al., 2023) 83.61 859.41 361.25 - 303.70 1607.97 500.73 7.87 ✓ -
StableGarment (Wang et al., 2024c) 83.61 859.53 1220.77 85.06 - 2248.97 1253.49 11.60 ✓ ✓
MV-VTON (Wang et al., 2024a) 83.61 859.53 361.25 - 316.32 1620.71 884.66 7.92 ✓ -
CatVTON (Ours) 83.61 815.45 - - - 899.06 49.57 4.00 - -

Table 4: Ablation results of different trainable modules. More trainable modules slightly impact
performance but increase memory usage and slow training. Extra text conditions harm performance.
IPS (items per second) indicates training speed.

Trainable Module Paired Unpaired Trainable Training Training
SSIM ↑ FID ↓ KID ↓ LPIPS ↓ FID ↓ KID ↓ Params (M) IPS ↑ Memory (M)

UNet 0.8692 5.2496 0.4017 0.0550 8.8131 0.9559 815.45 3.21 14289
Transformers 0.8558 5.4496 0.4434 0.0558 8.8423 1.0082 267.24 4.10 9981

Self Attention + Text 0.8517 6.5744 1.0690 0.0772 9.6998 1.6683 49.57 4.50 8805
Self Attention 0.8704 5.4252 0.4112 0.0565 9.0151 1.0914 49.57 4.75 8451

version with text conditions in the same setting, and the results show a decrease in performance,
indicating that text conditions are redundant in image-based try-ons. Training only the self-attention
modules and removing unnecessary text conditions achieves a balance between model performance
and efficiency. The IPS and memory statistics are calculated in a setting with a batch size of 1 to
avoid the impact of other environmental factors.
Classifier-Free Guidance. To evaluate the effect of classifier-free guidance (CFG), we run infer-
ences with CFG strengths of 0.0, 1.5, 2.5, 3.5, 5.0, and 7.5 while keeping all other parameters
constant. Figure 7 (b) shows that increasing CFG strength enhances image detail and fidelity. How-
ever, beyond a strength of 3.5, the results developed severe color distortions and high-frequency
noise, degrading visual quality. We found that a CFG strength between 2.5 and 3.5 produces the
most realistic and natural results. A CFG strength of 2.5 is used for all the other experiments.

Table 5: Ablation results of different λ in
DREAM on VITON-HD dataset. λ=∞ means no
DREAM. Increasing λ improves perceptual qual-
ity (lower LPIPS, KID, and FID) but increases dis-
tortion (lower SSIM) in an empirical range.

λ
Paired Unpaired

SSIM ↑ FID ↓ KID ↓ LPIPS ↓ FID ↓ KID ↓
0 0.8740 10.4534 3.8866 0.0692 14.1045 5.2824
1 0.8716 8.0983 2.1977 0.0646 11.7652 3.2942

10 0.8704 5.4252 0.4112 0.0565 9.0151 1.0914
20 0.8633 5.5861 0.4005 0.0620 9.0877 1.0416
∞ 0.8614 5.5561 0.3657 0.0631 8.9114 1.0049

DREAM. λ is a hyperparameter that controls
the strength of DREAM. Specifically, λ = ∞
means DREAM is disabled. As shown in Fig-
ure 7 (a), a small λ causes overly smooth im-
ages, while a large λ introduces excessive high-
frequency noise, reducing naturalness. Table 5
shows resutls trained with different λ values on
the VITON-HD dataset. SSIM increases with
λ, while FID and LPIPS first improve and then
degrade, highlighting a trade-off between re-
duced distortion and perceptual quality. We
find that λ = 10 best balances naturalness with
detail fidelity in our training.

5 CONCLUSION

In this work, we present CatVTON, a virtual try-on diffusion model with lightweight architec-
ture, efficient training, and streamlined inference. CatVTON achieves a compact structure with
899.06M parameters by removing unnecessary text-related modules, reducing model complexity
significantly. CatVTON proposes a parameter-efficient training strategy to focus on the most essen-
tial components, specifically the self-attention layers, preserving high-quality virtual try-on perfor-
mance while minimizing training costs with only 49.57M trainable parameters. During inference,
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(a) Comparisons for λ in DREAM (b) Comparisons for CFG Strengths

Figure 7: Visual comparisons for different λ in DREAM and different CFG strengths. When λ is
too small, results are overly smooth and lack detail; when λ is too large, results have excessive high-
frequency details and appear unnatural. As the CFG strength increases, the details in the generated
images increase, but beyond 3.5, it leads to severe color distortion and high-frequency noise.

CatVTON eliminates the need for additional information such as pose estimation, human parsing,
and text-based inputs, reducing memory requirements and enhancing inference speed. Extensive
experiments demonstrate that CatVTON delivers superior qualitative and quantitative results, out-
performing state-of-the-art methods while maintaining a compact and efficient architecture. These
findings underscore CatVTON’s potential for practical applications and open new research direc-
tions in virtual try-on technology.
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A APPENDIX

A.1 PRELIMINARY

Latent Diffusion Models. The core idea of Latent Diffusion Models (LDMs) (Rombach et al.,
2021) is to map image inputs into a lower-dimensional latent space defined by a pre-trained Varia-
tional Autoencoder (VAE) (Kingma & Welling, 2022). In this way, Diffusion Models can be trained
and inferred at a reduced computational cost while retaining the capability to generate high-quality
images. The components of LDMs are primarily a denoising UNet Eθ(◦, t) and a VAE which con-
sists of an encoder ε and a decoder D. Given an input x, the training of LDM is carried out by
minimizing the following loss function:

LLDM := Eε(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
, (6)

where t ∈ {1, ..., T} denotes the timestep of the forward diffusion process. In the training phase,
the latent representation zt is readily derived from ε with the added Gaussian noise ϵ ∼ N (0, 1).
Subsequently, the latent samples, drawn from the distribution p(z), are translated back into the image
domain with just one traversal of D.

Diffusion Rectification and Estimation-Adaptive Models (DREAM). DREAM (Zhou et al.,
2024) is a training strategy designed to skillfully navigate the trade-off between minimizing dis-
tortion and preserving high image quality in image super-resolution tasks. Specifically, during train-
ing, the diffusion model is used to predict the added noise as ϵθ. This ϵθ is then combined with the
original added noise ϵ to obtain ϵ̂, which is used to compute ẑt:

ẑt =
√
αtz0 +

√
1− αt(ϵ+ λϵθ), (7)

where λ is a parameter to adjust the strength of ϵθ and αt =
∏t

i=1 1−βi with the variance scheduler
{βt ∈ (0, 1)}Tt=1 . The training objective for DREAM can be expressed as:

LDREAM := Eε(x), ϵ, ϵθ ∼ N (0, 1), t
[
|(ϵ+ λϵθ)− ϵθ(ẑt, t)|22

]
. (8)

DREAM enhances training efficiency and accuracy, although it requires an additional forward pass
before the training prediction process, slightly slowing down the training process.

A.2 IMPLEMENTATION DETAILS

A.2.1 MASK-FREE DATASET

The construction of the mask-free dataset is based on the VITON-HD (Choi et al., 2021), DressCode
(Morelli et al., 2022), and DeepFashion (Ge et al., 2019) datasets. We use the mask-based model to
randomly generate pseudo-data for constructing mask-free paired data in the same garment category
(uppers, lowers, and dresses). To ensure the accuracy of the masks, we employ multiple human
parsing models (ATR(Liang et al., 2015), LIP(Gong et al., 2017)) and body part information from
DensePose (Güler et al., 2018) to cross-validate the required mask regions. Additionally, convex
hull and pooling operations are applied to ensure no information leakage in areas outside the mask.
This comprehensive approach guarantees the quality of the generated data required for training the
mask-free model, thereby enabling it to focus on the try-on regions.

A.2.2 HARDWARE ENVIRONMENT

We conducted our experiments on a Linux server with an x86 architecture. It is equipped with an
Intel Xeon CPU and 8 NVIDIA A800 GPUs, each with 80GB of VRAM.

A.2.3 SOFTWARE ENVIRONMENT

Our work is implemented based on the PyTorch deep learning framework, with the version being
2.1.2. The code for the diffusion model is modified and implemented based on HuggingFace’s
Diffusers library.

A.2.4 CONCATENATION ALONG X/Y-AXIS

During training, we experimented with the direction of spatial concatenation (along the x-axis or
y-axis). Theoretically, for convolutional neural networks and Transformers without positional em-
beddings, the direction of spatial concatenation—whether along the x-axis or y-axis—should make
no difference. Our experimental results are consistent with this theory; training with either x-axis or
y-axis concatenation can produce normal results. Moreover, a model trained with x-axis concatena-
tion can also yield normal results when using y-axis concatenation during inference.
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Figure 8: More visual comparisons on the VITON-HD dataset with baseline methods. Please zoom
in for more details.

A.3 MORE VISUAL COMPARISONS

A.3.1 VTION-HD DATASET

Figure 8 presents additional virtual try-on results on the VITON-HD (Choi et al., 2021) test dataset,
where our method demonstrates an advantage in preserving the details of text, patterns, and logos,
and can adaptively fuse with the target person while maintaining a reasonable scale. In addition,
CatVTON exhibits a more natural representation of garment designs such as sleeves and collars.

A.3.2 DRESSCODE DATASET
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Methods Paired Unpaired
SSIM ↑ FID ↓ KID ↓ LPIPS ↓ FID ↓ KID ↓

StableGarment Wang et al. (2024c) 0.8029 15.567 8.519 0.1042 17.115 8.851
MV-VTON Wang et al. (2024a) 0.8083 15.442 7.501 0.1171 17.900 8.861
LaDI-VTON Morelli et al. (2023) 0.8603 11.386 7.248 0.0733 14.648 8.754
DCI-VTON Gou et al. (2023) 0.8620 9.408 4.547 0.0606 12.531 5.251
OOTDiffusion Xu et al. (2024) 0.8187 9.305 4.086 0.0876 12.408 4.689
GP-VTON Xie et al. (2023) 0.8701 8.726 3.944 0.0585 11.844 4.310
StableVITON Kim et al. (2023) 0.8543 6.439 0.942 0.0905 11.054 3.914
CatVTON (DiT) 0.9118 5.786 0.939 0.0393 10.019 1.864

Table 6: Quantitative comparison of DiT version with other methods on VITON-HD Choi et al.
(2021) dataset. The best and second-best results are demonstrated in bold and underlined, respec-
tively.

IDM-VTON OursGP-VTON OOTDiffusion

Figure 9: More visual comparisons on the Dress-
Code dataset with other baselines. Please zoom in
for more details.

The visual comparisons on the DressCode
(Morelli et al., 2022) test dataset are further dis-
played in Figure 9, where our method can bet-
ter recognize and match the lengths of different
types of clothing and can generate more coher-
ent patterns for situations such as arm occlu-
sion.

A.4 TRANSFERABILITY

To extend the transferability of our proposed
method, we conducted experiments using Hun-
yuanDiT (Li et al., 2024) as the pre-trained
model on the VITON-HD (Choi et al., 2021)
dataset. Table 6 presents the comparative re-
sults of our approach within the HunyuanDiT
framework on the VITON-HD dataset. Al-
though DiT converges more slowly compared
to UNet and has not fully fitted the data, the re-
sults of our DiT-based version still outperform
most existing methods.

A.5 LIMITATIONS & SOCIAL IMPACTS

While leveraging LDM (Rombach et al., 2021)
as the backbone for generation, our model faces
certain limitations. Images decoded by VAE
may exhibit detail loss and color discrepancies,
particularly at a 512×384 resolution. Addition-
ally, the effectiveness of the try-on process is
contingent upon the accuracy of the provided
mask; an inaccurate mask can significantly de-
grade the results. Based on Stable Diffusion
v1.5, our pre-trained model was trained on
large-scale datasets that include not-safe-for-
work (NSFW) content. Consequently, retaining
most of the original weights means our model
may inherit biases from the pre-trained model,
potentially generating overly explicit images of
people.
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