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Abstract

Double Machine Learning (DML) is widely used for causal estimation from obser-1

vational data and is often assumed to be doubly robust. While this holds for the2

Z-estimator proposed by Chernozhukov et al., many practical implementations rely3

on the Robinson estimator, which crucially depends on correct treatment model4

specification. This misunderstanding has important implications, as many prac-5

titioners incorrectly assume robustness to misspecification. We provide analyses6

clarifying when double robustness holds for popular DML estimators. Based on7

these insights, we develop a maximum likelihood estimator that achieves double8

robustness, providing a likelihood-based alternative to the Z-estimator.9

1 Introduction10

Treatment effect estimation from observational data is a fundamental challenge in science, with appli-11

cations ranging from public health to economics and retail. Double Machine Learning (DML) [Cher-12

nozhukov et al., 2018] has become one standard tool for such causal inference tasks by combining13

flexible machine learning methods with classical parametric estimation to enable valid statistical14

inference in a semi-parametric setting. Popular software packages like DoubleML [Bach et al., 2022,15

2024] and EconML [Battocchi et al., 2019] implement DML as one of their default estimators.16

Double robustness, which predates DML, was introduced in the context of missing data imputation17

by Scharfstein et al. [1999], who showed that certain estimators remain consistent when either the18

propensity score or outcome model is correctly specified. Comprehensive overviews of doubly robust19

methods in both missing data and causal inference contexts are provided by Bang and Robins [2005]20

and Tsiatis [2007]. Since then, doubly robust principles have been extended to more complex settings,21

particularly for continuous treatments Kennedy et al. [2017], Colangelo and Lee [2020].22

However, a crucial misunderstanding has emerged in both theory and practice. DML is frequently23

described and implemented under the assumption that it possesses double robustness properties,24

that is, it converges to the true parameter when either the treatment or outcome model is correctly25

specified. This belief is, however, only correct for the original Z-estimator [Chernozhukov et al.,26

2018], but not the commonly implemented variant based on maximum likelihood estimation by27

Robinson [1988]. The misconception might be due to a misunderstanding of the implications of28

Neyman orthogonality (see Appendix A for a discussion). This finding has important implications29

for practice. As commonly applied, DML is not doubly robust – even when the model predicting the30

outcome from the confounders is perfectly specified, the unbiasedness of the causal treatment effect31

rests on the correctness of the treatment model.32

The remainder of the paper is organized as follows. Section 2 gives an overview of the problem33

setting. Section 3, 4, and 5 analyzes standard DML and proves its lack of double robustness in the34

case of the likelihood-based estimator, then goes on to show how we can achieve double robustness.35

Section 6 discusses implications for theory and practice, as well as future directions for this line of36

work.37
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Figure 1: Left: Causal diagram for the partially linear model. Right: Sampling distributions of DML
estimates under various model specifications. When the treatment model is misspecified (orange and
red), estimates are biased regardless of outcome model specification. Well-specified treatment models
(green and blue) yield consistent estimation around the true value θ = 0.5 (dashed line). Legend
indicates whether nuisance parameter models (m̂ and ĝ) is misspecified (×) and or well-specified (✓).
See Appendix B for details.

2 Problem Setup38

We consider estimating the causal treatment effect from observational data, where we assume that39

some treatment T ∈ T ⊆ R affects outcome Y ∈ Y ⊆ R, and both are causally affected by40

confounding variable X ∈ X from a potentially high-dimensional space.41

Let (xi, ti, yi)
n
i=1 be n independent observations generated according to the following partially linear42

structural causal model (see also Figure 1):43

Y = θT + g(X) + UY , T = m(X) + UT , (1)
where (1) outcome Y depends on covariates X through the unknown function g and on treatment T44

through the parameter θ, (2) treatment T depends on X through the unknown function m, and where45

T can be continuous (T ∈ R) or binary (T ∈ {0, 1}), (3) error terms UY and UT have mean zero46

and are independent of each other and of X . Under this model, variables Y and T are endogenous47

random variables deterministically derived from the exogenous random variables X , UY , and UT .48

For the special case of binary treatments, T := {0, 1}, the parameter of interest, θ, equals the average49

treatment effect Imbens and Rubin [2015], which can be expressed either through potential outcomes50

as E[Y (1)− Y (0)] or using the do-operator as E[Y | do(T = 1)]− E[Y | do(T = 0)] Pearl [2009].51

For continuous treatments, θ represents the average partial effect Rothenhäusler and Yu [2019],52

expressed as E[∂tY (t)] or equivalently E[∂tY | do(T = t)]. Both capture how the expected outcome53

changes in response to a change in the treatment level.54

The identification of θ as the causal effect E[∂tY (t)] (or E[Y (1)− Y (0)] Imbens and Rubin [2015]55

for binary treatments) relies on three standard assumptions: (1) exogenous zero-mean noise, (2)56

unconfoundedness, and (3) overlap. See Appendix C for further details.57

3 Double Robustness58

A key question in causal inference is whether estimators remain valid when either the treatment or59

the outcome model is biased. This property, known as double robustness, provides protection against60

model misspecification Tsiatis [2007]. For the binary treatment case, augmented inverse propensity61

weighting (AIPW) is a classical approach to achieving double robustness (see Appendix D). Here,62

we focus on the more general and challenging setting of continuous treatments. We refer to double63

robustness as follows:64

Definition 3.1 (Double Robustness).
E[(θ̂n − θ)2]

n−→ 0, if either E[(m̂n(x)−m(x))2]
n−→ 0, or E[(ĝn(x)− g(x))2]

n−→ 0.

Under assumptions above, an estimator θ̂n is doubly robust if its mean squared error converges to65

zero when either the treatment model converges in mean square error: E[(m̂n(x)−m(x))2]
n−→ 0, or66

the outcome model converges in mean square error: E[(ĝn(x)− g(x))2]
n−→ 0. This ensures that both,67

the bias and variance of the estimator, vanish as n→∞ if at least one of the models is well-specified68

and converges.69
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4 Unpacking Double Machine Learning70

Double Machine Learning (DML) Chernozhukov et al. [2018] is a two-stage approach that allows for71

flexible machine learning estimation of nuisance functions while maintaining valid inference for the72

causal parameter. The two stages are explained in the following.73

First Stage: Nuisance Functions Estimation. The first stage estimates two nuisance functions:74

m̂(x) ≈ m(x) = E[T | X = x] ℓ̂(x) ≈ ℓ(x) := E[Y | X = x]. (2)
In DML, these respective estimators for the nuisance functions are obtained via arbitrary machine75

learning methods and subsequently used in a plug-in fashion.76

Second Stage: Causal Effect Estimation. The causal effect is estimated by regressing outcome77

residuals on treatment residuals. Two different estimators are commonly used, both discussed in the78

original work on DML Chernozhukov et al. [2018] and implemented in popular software packages,79

as mentioned above. We present the the partialing-out estimator Robinson [1988] and Z-estimator80

as below respectively,81

θ̂R =

∑n
i=1(yi − ℓ̂(xi))(ti − m̂(xi))∑n

i=1(ti − m̂(xi))2
, θ̂Z =

∑n
i=1(yi − ĝ(xi))(ti − m̂(xi))∑n

i=1(ti − m̂(xi))ti
, (3)

where ĝ(x) is an estimate of g(x) in (1), which is typically approximated with ℓ̂(x).82

4.1 Where Does the Bias Come From?83

The choice of approximating g(x) with ℓ̂(x) is problematic, as ℓ(x) systematically differs from g(x)84

in the structural equation model. To see the disconnect, let us enter (1) in (2). Under Assumption C.1,85

we have86

ℓ(x) = E[Y | X = x] = E[θ(m(X) + UT ) + g(X) + UY ] = θm(x) + g(x) ̸= g(x). (4)
Function l captures the total effect of the confounders X on the outcome Y , whereas g only explains87

the direct effect of X on Y . Hence, setting ĝ(x) := ℓ̂(x) introduces a systematic bias, which has88

significant implications for the estimator’s robustness properties.89

In practice, these estimators are often used interchangeably or in hybrid forms, creating confusion90

about their respective robustness properties. In the following sections, we analyze how first-stage91

estimation affects the downstream estimates and clarify the conditions under which each second-stage92

estimator achieves consistency. For further explanation from a graphical perspective, see Appendix E.93

5 Robustness Analysis94

5.1 Analyzing θ̂R95

To analyze the robustness properties of the Robinson estimator as commonly implemented in DML,96

we examine its mean squared error (MSE). Consider the expected prediction error:97

L(θ̂) := E[(Y − Ŷ )2]. (5)

Solving for the estimation error θ̂ − θ gives (see Appendix F for derivation):98

θ̂R − θ =
E[m̂(X)(m(X)− m̂(X))]

E[(m(X)− m̂(X))2] + σ2
T

θ +
E[(g(X)− ℓ̂(X))(m(X)− m̂(X))]

E[(m(X)− m̂(X))2] + σ2
T

. (6)

This result reveals two potential sources of bias. The first term represents bias from treatment model99

misspecification, while the second term captures the interaction between treatment and outcome100

model errors. For the estimator to be consistent, both terms must vanish as the sample size increases.101

When m̂(X)
n−→ m(X) (correctly specified treatment model), both terms converge to zero regardless102

of the outcome model specification. However, when only ℓ̂(X)
n−→ ℓ(X), the second term retains the103

bias through ℓ, since ℓ(X) = g(X) + θm(X), even with a perfectly estimated ℓ̂(X). This bias does104

not vanish unless m̂(X) also converges to m(X), and so the robustness of the estimator depends105

solely on the correctness of m̂(X). In the following, we show how double robustness can be achieved.106
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Figure 2: Estimator comparison under different model specifications. Results from 1,000 simulations
(n = 10, 000) with exponential treatment and cubic outcome equations. True effect θ = 0.5 (dashed
red line). Here, DML indicates the standard implementation estimating g as ℓ. See Appendix H for
details and Appendix I for additional experiments

5.2 Analyzing θ̂Z107

Similarly, solving for the estimation errors gives ,

θ̂Z − θ̂ =
E[(Tθ + UY )(T − m̂(X))]

E[(T − m̂(X))T ]
=

E[(T − m̂(X))T ]

E[(T − m̂(X))T ]
θ +

E[(m(X)− m̂(X) + UT )UY ]

E[(T − m̂(X))T ]

where, again, the first term equals θ and the second term vanishes as long as the outcome noise108

UY is uncorrelated with estimation error, m̂(X)−m(X). Unlike θ̂R, estimator θ̂Z achieves double109

robustness; though, only if we estimate g(X) rather than ℓ(X), the direct effect of X on Y .110

5.3 Augmented Double Machine Learning111

Our analysis shows that DML’s consistency depends critically on correct specification of the treatment112

model. We now develop a modified likelihood-based estimator that achieves double robustness.113

We introduce the Augmented DML (ADML) estimator that achieves double robustness through a114

modified model structure:115

Ŷ = (T − m̂(X))θ̂ + m̂(X)ϕ̂+ ĝ(X), (7)

where ϕ̂ is a nuisance parameter that adjusts for potential misspecification in m̂(X). When minimizing116

the squared error between Y and Ŷ , that is, maximizing the Gaussian likelihood of the model117

parameters, this formulation leads to the estimator (see Appendix G for details):118

θ̂ADML =

∑n
i=1(yi − ĝ(xi))(ti − τm̂(xi))∑n

i=1(ti − τm̂(xi))ti
, τ =

∑n
i=1 m̂(xi)ti∑n
i=1 m̂

2(xi)
. (8)

The parameter τ measures the alignment between m̂(X) and T , adaptively determining the degree of119

treatment residualization. In the special case where m̂(X)
n−→ m(X), we have τ n−→ 1 and ADML120

reduces to the standard DML estimator. In contrast, when m̂(X) is completely misspecified so that121

E[Tm̂(X)] = 0, we have τ n−→ 0 and the estimator relies only on the outcome model. Thus, ADML122

achieves consistency if either the treatment model or the outcome model is correctly specified. We123

illustrate this through simulations with non-linear confounding, see Figure 2.124

6 Conclusion125

Our analysis clarifies a fundamental misconception in DML: contrary to common belief, the widely126

implemented Robinson estimator is not doubly robust but critically depends on correctly specifying127

the treatment model. This has significant implications for practitioners who may incorrectly assume128

protection against model misspecification. We have demonstrated why this bias occurs and introduced129

Augmented DML (ADML), which achieves double robustness while maintaining a likelihood-based130

estimation framework. Moving forward, implementations should either adopt the Z-estimator, ensure131

treatment models are correctly specified via least squares estimation, or implement our proposed132

ADML estimator to guarantee consistency when either model is well-specified.133
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A Neyman Orthogonality and Convergence Properties169

DML’s theoretical properties are often misunderstood as implying double robustness. However, a170

careful examination of Neyman orthogonality reveals why correct specification of the treatment171

model remains crucial despite DML’s apparent robustness to estimation error.172

Neyman orthogonality is a local property concerning how estimation errors in nuisance functions173

affect the target parameter. A moment condition ψ(w; θ, η) is Neyman orthogonal if:174

∂ηE[ψ(W ; θ, η)][η̂ − η] = 0 (9)

where η represents the true nuisance functions m and g. This property ensures that small deviations175

from the true nuisance functions have no first-order effect on the estimation of θ.176

In our partially linear model, DML’s moment condition takes the form:177

E[(Y − ℓ(X)− θT )(T −m(X))] = 0 (10)

This condition exhibits Neyman orthogonality, meaning that if both ℓ̂(x) and m̂(x) are “close enough”178

to their true values, estimation errors have minimal impact on θ̂n. However, this local robustness is179

fundamentally different from double robustness: Neyman orthogonality only provides protection180

against small deviations around the true nuisance functions. If m̂(x) is systematically misspecified181

and converges to something other than m(x), the resulting bias in θ̂n can be substantial.182

This explains why DML can handle noisy estimation of correctly specified models but not fundamental183

misspecification of the treatment mechanism. The method’s robustness is local rather than global – it184

provides protection against estimation error but not model misspecification.185

B Empirical Illustration186

To demonstrate the importance of correct treatment model specification in DML, we conduct a187

simulation study with non-linear confounding. We consider a data generating process where the188

treatment equation is exponential and the outcome equation is cubic:189

T = m0 +m1 exp (m2X) + UT (11)

Y = g0X + g1X
2 + g2X

3 + θT + UY (12)

where UT , UY are independent standard normal errors, θ = 0.5, and the confounder X follows a190

bimodal distribution combining N (−2, 1) and N (2, 1).191

We implement DML with four specifications varying in model correctness. Results are obtained192

across 1,000 simulation runs (n = 10, 000). When m(x) is misspecified, the estimator exhibits193

substantial bias regardless of g(x) specification. With correct m(x), the estimator centers on θ = 0.5,194

achieving better precision when g(x) is also correct.195

C Assumptions196

We make the following standard assumptions, where g andm are nuisance functions whose estimation197

is not of direct interest but is necessary for identifying the causal effect θ:198

Assumption C.1 (Exogenous zero-mean noise). The error terms satisfy:199

E[UT |X] = 0 and E[UY |X,T ] = 0 (13)

Assumption C.2 (Unconfoundedness). Potential outcomes are independent of treatment assignment200

conditional on covariates:201

Y (t) ⊥ T | X for all t ∈ T (14)

Assumption C.3 (Overlap). For all x ∈ X and all t ∈ T :202

pT |X(t|x) > 0 (15)
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D Augmented Inverse Probability Weighting203

To understand how to achieve double robustness, it is instructive to examine the Augmented Inverse204

Probability Weighting (AIPW) estimator for binary treatments. Let t ∈ T := {0, 1} denote treatment205

values and m̂(x) = pT |X(1|x) denote the propensity score. The function ĥ(t, x) used in the AIPW206

estimator estimates the conditional expectation E[Y |T = t,X = x]. Under our partially linear model,207

this equals θt + g(x). The AIPW estimator combines outcome modeling with inverse probability208

weighting:209

θ̂AIPW =
1

n

n∑
i=1

[
ĥ(1, xi)− ĥ(0, xi) +

ti(yi − ĥ(1, xi))
m̂(xi)

− (1− ti)(yi − ĥ(0, xi))
1− m̂(xi)

]
(16)

The expected estimation error, E[θ − θ̂AIPW], can be written as210

E

[
(m̂(X)−m(X))(ĥ(1, X)− h(1, X))

m(X)

]
+ E

[
(m̂(X)−m(X))(ĥ(0, X)− h(0, X))

1−m(X)

]
. (17)

As the individual estimation errors appear as products, it is easy to see that both terms vanish if either211

of the estimators, ĥ and m̂, converges to the true function. We refer to Murphy [2025] (Section212

36.4.2.3) for a more detailed discussion. However, the AIPW estimator is designed for binary213

treatments. For continuous treatments, inverse probability weights become ill-defined as we cannot214

simply divide by the probability of observing an exact treatment value.215

E A Graphical Perspective216

Consider the causal diagram in Figure 1. The challenge in identifying the causal effect θ arises from217

confounding: X affects both treatment and outcome, creating spurious correlation between T and Y .218

Any observed association between T and Y combines both the causal effect we want to estimate219

(T → Y ) and the spurious correlation through X , (T ← X → Y ).220

DML addresses this through two residualization steps. The treatment residual (t − m̂(x)) aims221

to remove the arrow X → T , while the outcome residual (y − ℓ̂(x)) removes the influence of X222

on Y . When m̂(x) converges to m(x), the treatment residual achieves two crucial properties: it223

becomes independent of the confounder (T −m(X)) ⊥⊥ X and preserves the variation necessary for224

identifying θ. However, when the treatment model is misspecified, the residual retains dependence225

on x, preventing identification.226

A crucial insight concerns the outcome model. While g(x) in (1) represents only the direct effect227

X → Y , estimand ℓ(x) captures the total effect of X on Y :228

ℓ(x) := E[Y |X = x] = θm(x)︸ ︷︷ ︸
indirect effect

+ g(x)︸︷︷︸
direct effect

. (18)

This means, the outcome residual primarily serves to improve estimation efficiency by reducing229

the variance of Y that is predictable from X . When the treatment model is correctly specified,230

identification holds regardless of how well we estimate ℓ(x).231

This asymmetric role of treatment and outcome models mirrors the classical Frisch-Waugh-Lovell232

(FWL) theorem from linear regression [Davidson et al., 1993]. Just as FWL requires correct specifi-233

cation of linear projections on controls, this version of DML requires correct specification of m(x)234

for identification.235

F Derivation of DML Robustness236

Let us define the expected squared error as a function of θ̂, given plugin estimators of m and g237

denoted by m̂ and ĝ, respectively:238

L(θ̂) := E[(Y − Ŷ )2],

with239

Y = (m(X) + UT )θ + g(X) + UY and Ŷ = (m(X) + UT − m̂(X))θ̂ + ℓ̂(X) + UY ,

7



where the true outcome follows the partially linear model in Equation 1, and the predicted outcome240

uses the partialing-out approach. This gives241

L(θ̂) = E
[(
(m(X) + UT )θ + g(X)− (m(X) + UT − m̂(X))θ̂ − ℓ̂(X)

)2]
,

where the expectation is over exogenous random variables X and UT . Setting the derivative of L242

with respect to θ̂ to zero gives,243

0 = E
[
((m(X) + UT )θ + g(X)− (m(X) + UT − m̂(X))θ̂ − ℓ̂(X)

)
(m(X) + UT − m̂(X))

]
= E

[
(m(X)θ + (g(X)− ℓ̂(X))− (m(X)− m̂(X))θ̂

)
(m(X)− m̂(X)) + U2

T (θ − θ̂)
]

= E[(m(X)− m̂(X))2](θ − θ̂) + E[(g(X)− ℓ̂(X))(m(X)− m̂(X))]

+ E[m̂(X)(m(X)− m̂(X))]θ + E[U2
T ](θ − θ̂)

and, consequently,

θ̂R − θ =
E[m̂(X)(m(X)− m̂(X))]

E[(m(X)− m̂(X))2] + σ2
T

θ +
E[(g(X)− ℓ̂(X))(m(X)− m̂(X))]

E[(m(X)− m̂(X))2] + σ2
T

where the expectations are over X and σ2
T = E[U2

T ] denotes the variance of the treatment noise.244

G Derivation of the ADML Estimator245

Let us consider the limiting case n→∞, where246

θ̂ADML
n−→ θ̂ =

E[(Y − ĝ(X))(T − τm̂(X))]

E[(T − τm̂(X))T ]
with τ =

E[m̂(X)T ]

E[m̂2(X)]
. (19)

When m̂(X)
n−→ m(X), we have τ = 1, so that θ̂ADML equals θ̂Z, which yields a consistent estimator

of θ (cf. Section 5.2). Now, let us consider ĝ(X)
n−→ g(X), which gives

θ̂ =
E[(Tθ + UY )(T − τm̂(X))]

E[(T − τm̂(X))T ]
=

E[(T − τm̂(X))T ]

E[(T − τm̂(X))T ]
θ +

E[(m(X)− τm̂(X) + UT )UY ]

E[(T − τm̂(X))T ]

where the first term equals θ and the second term vanishes as long as the outcome noise UY is247

uncorrelated with m̂(X).248

Let us define the expected squared error as a function of θ̂ and ϕ̂, given plugin estimators of m and g249

denoted by m̂ and ĝ, respectively:250

L(θ̂, ϕ̂) := E[(Y − Ŷ )2] = E[(Y − (T − m̂(X))θ̂ − m̂(X)ϕ̂− ĝ(X))2]

∂ϕ̂L(θ̂, ϕ̂) = −2E[(Y − (T − m̂(X))θ̂ − m̂(X)ϕ̂− ĝ(X))m̂(X)]

∂θ̂L(θ̂, ϕ̂) = −2E[(Y − (T − m̂(X))θ̂ − m̂(X)ϕ̂− ĝ(X))(T − m̂(X))]

When setting the partial derivative w.r.t. ϕ̂ to zero and rearranging terms, we obtain251

E[m̂2(X)](θ̂ − ϕ̂) = E[m̂(X)T ]θ̂ + E[(ĝ(X)− Y )m̂(X)]. (20)
Similarly, when setting the sum of both partial derivatives to zero and rearranging terms, we obtain252

E[m̂(X)T ](θ̂ − ϕ̂) = E[T 2]θ̂ + E[(ĝ(X)− Y )T ]. (21)

Let us define

τ =
E[m̂(X)T ]

E[m̂2(X)]
.

so that (20) reduces to

(θ̂ − ϕ̂) = τ θ̂ +
E[(ĝ(X)− Y )m̂(X)]

E[m̂2(X)]
.

Entering this expression in (21) gives

τE[m̂(X)T ]θ̂ + τE[(ĝ(X)− Y )m̂(X)] = E[T 2]θ̂ + E[(ĝ(X)− Y )T ],

and when solving for θ̂, we obtain253

θ̂ =
E[(Y − ĝ(X))(T − τm̂(X))]

E[(T − τm̂(X))T ]
. (22)
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H Experiment Details254

To evaluate our theoretical findings and compare estimator performance, we conduct extensive255

simulation studies. Our main scenario features an exponential treatment equation and cubic outcome256

equation, providing a clear setting where linear specifications are misspecified:257

Xi ∼ N (−2, 1) for i ≤ n/2, Xi ∼ N (2, 1) for i > n/2

Ti = m(Xi) + UT,i = − exp(Xi) + UT,i

Yi = g(Xi) + θTi + UY,i = (−Xi +X2
i +X3

i ) + 0.5Ti + UY,i

(23)

where UT,i, UY,i
iid∼ N (0, 1) and the true treatment effect is θ = 0.5. The confounder X is drawn258

from a mixture of two normal distributions to ensure sufficient variation across its support. The exact259

parameters used are m0 = 0, m1 = −1, m2 = 1 for the treatment equation and g0 = −1, g1 = 1,260

g2 = 1 for the outcome equation.261

I Additional Empirical Results262
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Figure 3: Performance of estimators across different sample sizes (n = 50, 500, 5000) and model spec-
ifications. Each row represents a different sample size, with columns showing different combinations
of model specification. The data generating process features an exponential treatment equation and
cubic outcome equation, with true causal effect θ = 0.5 (dashed red line). Notably, misspecification
of the treatment model m leads to bias regardless of sample size, while correct specification of m
yields consistent estimation with variance decreasing in sample size.

Experimental results of models with different functional forms are presented in Figure 3.263
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