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Abstract

Double Machine Learning (DML) is widely used for causal estimation from obser-
vational data and is often assumed to be doubly robust. While this holds for the
Z-estimator proposed by Chernozhukov et al., many practical implementations rely
on the Robinson estimator, which crucially depends on correct treatment model
specification. This misunderstanding has important implications, as many prac-
titioners incorrectly assume robustness to misspecification. We provide analyses
clarifying when double robustness holds for popular DML estimators. Based on
these insights, we develop a maximum likelihood estimator that achieves double
robustness, providing a likelihood-based alternative to the Z-estimator.

1 Introduction

Treatment effect estimation from observational data is a fundamental challenge in science, with appli-
cations ranging from public health to economics and retail. Double Machine Learning (DML) [Cher
nozhukov et al.,|2018]] has become one standard tool for such causal inference tasks by combining
flexible machine learning methods with classical parametric estimation to enable valid statistical
inference in a semi-parametric setting. Popular software packages like DoubleML [Bach et al., 2022
2024] and EconML [Battocchi et al.,2019] implement DML as one of their default estimators.

Double robustness, which predates DML, was introduced in the context of missing data imputation
by [Scharfstein et al.|[1999]], who showed that certain estimators remain consistent when either the
propensity score or outcome model is correctly specified. Comprehensive overviews of doubly robust
methods in both missing data and causal inference contexts are provided by Bang and Robins|[2005]]
and Tsiatis|[2007]]. Since then, doubly robust principles have been extended to more complex settings,
particularly for continuous treatments Kennedy et al.|[2017], (Colangelo and Lee|[2020].

However, a crucial misunderstanding has emerged in both theory and practice. DML is frequently
described and implemented under the assumption that it possesses double robustness properties,
that is, it converges to the true parameter when either the treatment or outcome model is correctly
specified. This belief is, however, only correct for the original Z-estimator [Chernozhukov et al.
2018]], but not the commonly implemented variant based on maximum likelihood estimation by
Robinson| [[1988]]. The misconception might be due to a misunderstanding of the implications of
Neyman orthogonality (see Appendix [A]for a discussion). This finding has important implications
for practice. As commonly applied, DML is not doubly robust — even when the model predicting the
outcome from the confounders is perfectly specified, the unbiasedness of the causal treatment effect
rests on the correctness of the treatment model.

The remainder of the paper is organized as follows. Section [2] gives an overview of the problem
setting. Section 3} 4] and[5]analyzes standard DML and proves its lack of double robustness in the
case of the likelihood-based estimator, then goes on to show how we can achieve double robustness.
Section [6]discusses implications for theory and practice, as well as future directions for this line of
work.
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Figure 1: Left: Causal diagram for the partially linear model. Right: Sampling distributions of DML
estimates under various model specifications. When the treatment model is misspecified (orange and
red), estimates are biased regardless of outcome model specification. Well-specified treatment models
(green and blue) yield consistent estimation around the true value § = 0.5 (dashed line). Legend
indicates whether nuisance parameter models (/2 and §) is misspecified (x) and or well-specified (v').
See Appendix [B] for details.

2 Problem Setup

We consider estimating the causal treatment effect from observational data, where we assume that
some treatment T € 7 C R affects outcome Y € Y C R, and both are causally affected by
confounding variable X € X from a potentially high-dimensional space.

Let (2;,t;,y:);—, be n independent observations generated according to the following partially linear
structural causal model (see also Figure|[I)):

Y=0T+gX)+Uy, T=m(X)+Ur, 1)
where (1) outcome Y depends on covariates X through the unknown function g and on treatment 7'
through the parameter 6, (2) treatment 7" depends on X through the unknown function m, and where
T can be continuous (T € R) or binary (T" € {0, 1}), (3) error terms Uy and Ur have mean zero
and are independent of each other and of X. Under this model, variables Y and 7" are endogenous
random variables deterministically derived from the exogenous random variables X, Uy, and Ur.

For the special case of binary treatments, 7 := {0, 1}, the parameter of interest, 6, equals the average
treatment effect Imbens and Rubin| [2015]], which can be expressed either through potential outcomes
as E[Y (1) — Y(0)] or using the do-operator as E[Y | do(T = 1)] — E[Y" | do(T" = 0)] Pearl| [2009].
For continuous treatments, § represents the average partial effect |Rothenhiusler and Yu| [2019],
expressed as E[0;Y (t)] or equivalently E[0;Y" | do(T" = t)]. Both capture how the expected outcome
changes in response to a change in the treatment level.

The identification of 6 as the causal effect E[0;Y (¢)] (or E[Y (1) — Y'(0)] Imbens and Rubin|[2015]
for binary treatments) relies on three standard assumptions: (1) exogenous zero-mean noise, (2)
unconfoundedness, and (3) overlap. See Appendix [C] for further details.

3 Double Robustness

A key question in causal inference is whether estimators remain valid when either the treatment or
the outcome model is biased. This property, known as double robustness, provides protection against
model misspecification Tsiatis| [2007]]. For the binary treatment case, augmented inverse propensity
weighting (AIPW) is a classical approach to achieving double robustness (see Appendix D). Here,
we focus on the more general and challenging setting of continuous treatments. We refer to double
robustness as follows:

Definition 3.1 (Double Robustness).

E[(én —0)%] &0, ifeither E[(ri, (z) — m(x))?] = 0, or E[(gn(x) — g(x))?] = 0.
Under assumptions above, an estimator én is doubly robust if its mean squared error converges to
zero when either the treatment model converges in mean square error: E[(1h, (z) — m(z))?] 2 0, or

the outcome model converges in mean square error: E[(g,,(z) — g(2))?] 2 0. This ensures that both,
the bias and variance of the estimator, vanish as n — oo if at least one of the models is well-specified
and converges.
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4 Unpacking Double Machine Learning

Double Machine Learning (DML) |Chernozhukov et al.| [2018]] is a two-stage approach that allows for
flexible machine learning estimation of nuisance functions while maintaining valid inference for the
causal parameter. The two stages are explained in the following.

First Stage: Nuisance Functions Estimation. The first stage estimates two nuisance functions:
m(z) ~m(z) =E[T | X =x] l(z)~{(z):=EY | X =z 2)

In DML, these respective estimators for the nuisance functions are obtained via arbitrary machine
learning methods and subsequently used in a plug-in fashion.

Second Stage: Causal Effect Estimation. The causal effect is estimated by regressing outcome
residuals on treatment residuals. Two different estimators are commonly used, both discussed in the
original work on DML Chernozhukov et al.| [2018]] and implemented in popular software packages,
as mentioned above. We present the the partialing-out estimator [Robinson|[ 1988 and Z-estimator
as below respectively,

b — Lz (¥ — Owa)) (ti = min(x2)) b, — D i (Wi — §(a)) (i — 1io(x:))
Yt —m(z))? Dica(ti — i)ty

where §(z) is an estimate of g(z) in (T), which is typically approximated with ¢(z).

3

4.1 Where Does the Bias Come From?

The choice of approximating g(z) with #(z) is problematic, as £(z) systematically differs from g(z)
in the structural equation model. To see the disconnect, let us enter (I)) in (). Under Assumption [C.T]
we have

l(z) =E[Y | X = 2] = E[0(m(X) + Ur) + g(X) + Uy] = 0m(z) + g(z) # g(x). (4
Function [ captures the fotal effect of the confounders X on the outcome Y, whereas g only explains

the direct effect of X on Y. Hence, setting §(z) := ¢(z) introduces a systematic bias, which has
significant implications for the estimator’s robustness properties.

In practice, these estimators are often used interchangeably or in hybrid forms, creating confusion
about their respective robustness properties. In the following sections, we analyze how first-stage
estimation affects the downstream estimates and clarify the conditions under which each second-stage
estimator achieves consistency. For further explanation from a graphical perspective, see Appendix [E]

5 Robustness Analysis

5.1 Analyzing Or

To analyze the robustness properties of the Robinson estimator as commonly implemented in DML,
we examine its mean squared error (MSE). Consider the expected prediction error:

£(0) = E[(Y - V)7, )
Solving for the estimation error 6—0 gives (see Appendix for derivation):
E[in(X)(m(X) —m(X))] | El(g(X) — (X)) (m(X) — (X))
E[(m(X) —m(X))?] + o7 E[(m(X) —m(X))?] + o
This result reveals two potential sources of bias. The first term represents bias from treatment model

misspecification, while the second term captures the interaction between treatment and outcome
model errors. For the estimator to be consistent, both terms must vanish as the sample size increases.

0r — 0 =

6)

When 772(X) 2 m(X) (correctly specified treatment model), both terms converge to zero regardless
of the outcome model specification. However, when only /(X ) 2 ¢(X), the second term retains the
bias through ¢, since ¢(X) = g(X) 4+ #m(X), even with a perfectly estimated /(X ). This bias does

not vanish unless 772(X) also converges to m(X ), and so the robustness of the estimator depends
solely on the correctness of 772(X). In the following, we show how double robustness can be achieved.
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Figure 2: Estimator comparison under different model specifications. Results from 1,000 simulations
(n = 10, 000) with exponential treatment and cubic outcome equations. True effect § = 0.5 (dashed
red line). Here, DML indicates the standard implementation estimating g as ¢. See Appendix [H]for
details and Appendix [[| for additional experiments

5.2 Analyzing 6y,

Similarly, solving for the estimation errors gives ,

b, 0— E[(T6 + Uy)(T —i(X))] _ E[(T —m(X))T],  E[(m(X) —m(X) + Ur)Uy]

E[(T = m(X))T] E[(T = m(X))T] E[(T = m(X))T]

where, again, the first term equals 6 and the second term vanishes as long as the outcome noise

Uy is uncorrelated with estimation error, 7i(X ) — m(X). Unlike g, estimator 6 achieves double
robustness; though, only if we estimate g(X ) rather than £(X), the direct effect of X on Y.

5.3 Augmented Double Machine Learning

Our analysis shows that DML’s consistency depends critically on correct specification of the treatment
model. We now develop a modified likelihood-based estimator that achieves double robustness.

We introduce the Augmented DML (ADML) estimator that achieves double robustness through a
modified model structure:

Y = (T —1i(X))0 +m(X)d + §(X), )

where qAS is a nuisance parameter that adjusts for potential misspecification in 7i2( X ). When minimizing

the squared error between Y and Y, that is, maximizing the Gaussian likelihood of the model
parameters, this formulation leads to the estimator (see Appendix [G|for details):

Yoy (i — g(aa)) (8 — T (a4)) . Doiey (@)t

OapmL = a . . r= iz . 8
ADML ST (6 — () ST () ®)

The parameter 7 measures the alignment between 71(X) and T, adaptively determining the degree of

treatment residualization. In the special case where 71(X) = m(X), we have 7 - 1 and ADML
reduces to the standard DML estimator. In contrast, when 17:(X) is completely misspecified so that

E[T7(X)] = 0, we have 7 % 0 and the estimator relies only on the outcome model. Thus, ADML
achieves consistency if either the treatment model or the outcome model is correctly specified. We
illustrate this through simulations with non-linear confounding, see Figure [2]

6 Conclusion

Our analysis clarifies a fundamental misconception in DML: contrary to common belief, the widely
implemented Robinson estimator is not doubly robust but critically depends on correctly specifying
the treatment model. This has significant implications for practitioners who may incorrectly assume
protection against model misspecification. We have demonstrated why this bias occurs and introduced
Augmented DML (ADML), which achieves double robustness while maintaining a likelihood-based
estimation framework. Moving forward, implementations should either adopt the Z-estimator, ensure
treatment models are correctly specified via least squares estimation, or implement our proposed
ADML estimator to guarantee consistency when either model is well-specified.
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A Neyman Orthogonality and Convergence Properties

DML’s theoretical properties are often misunderstood as implying double robustness. However, a
careful examination of Neyman orthogonality reveals why correct specification of the treatment
model remains crucial despite DML’s apparent robustness to estimation error.

Neyman orthogonality is a local property concerning how estimation errors in nuisance functions
affect the target parameter. A moment condition ¢(w; 8, 7) is Neyman orthogonal if:

nE[Y(W;6,m)][7 —n] =0 ©
where 7 represents the true nuisance functions m and g. This property ensures that small deviations

from the true nuisance functions have no first-order effect on the estimation of 6.

In our partially linear model, DML’s moment condition takes the form:
E[(Y —4(X)—0T)(T —m(X))] =0 (10)

This condition exhibits Neyman orthogonality, meaning that if both / (z) and () are “close enough”

to their true values, estimation errors have minimal impact on 6,,. However, this local robustness is
fundamentally different from double robustness: Neyman orthogonality only provides protection
against small deviations around the true nuisance functions. If /() is systematically misspecified

and converges to something other than m(x), the resulting bias in 6,, can be substantial.

This explains why DML can handle noisy estimation of correctly specified models but not fundamental
misspecification of the treatment mechanism. The method’s robustness is local rather than global — it
provides protection against estimation error but not model misspecification.

B Empirical Illustration

To demonstrate the importance of correct treatment model specification in DML, we conduct a
simulation study with non-linear confounding. We consider a data generating process where the
treatment equation is exponential and the outcome equation is cubic:
T =mg + myexp (meX) + Ur (11)
Y =goX + 1 X2+ g2 X3+ 0T + Uy (12)
where Up, Uy are independent standard normal errors, # = 0.5, and the confounder X follows a
bimodal distribution combining A/ (—2, 1) and N'(2, 1).

We implement DML with four specifications varying in model correctness. Results are obtained
across 1,000 simulation runs (n = 10,000). When m(x) is misspecified, the estimator exhibits
substantial bias regardless of g(x) specification. With correct m(x), the estimator centers on § = 0.5,
achieving better precision when g(x) is also correct.

C Assumptions

We make the following standard assumptions, where g and m are nuisance functions whose estimation
is not of direct interest but is necessary for identifying the causal effect 6:

Assumption C.1 (Exogenous zero-mean noise). The error terms satisfy:
E[Ur|X] =0and E[Uy|X,T] =0 (13)

Assumption C.2 (Unconfoundedness). Potential outcomes are independent of treatment assignment
conditional on covariates:

Y(t) LT| X forallt € T (14)
Assumption C.3 (Overlap). Forall z € X and allt € T
prix(tfz) >0 (15)
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D Augmented Inverse Probability Weighting

To understand how to achieve double robustness, it is instructive to examine the Augmented Inverse
Probability Weighting (AIPW) estimator for binary treatments. Let ¢ € T := {0, 1} denote treatment
values and 1 (z) = pr|x (1) denote the propensity score. The function h(t, ) used in the AIPW
estimator estimates the conditional expectation E[Y |T" = ¢, X = z]. Under our partially linear model,
this equals 6t + g(x). The AIPW estimator combines outcome modeling with inverse probability
weighting:

1 ¢ (yi —h(1,2:)) (1 —t)(ys — h(0,2:))

b = 2 [0, 0,2 4 PO - GBI )
i=1 ’ !

The expected estimation error, E[f — éA[pw], can be written as

((X) — m(X))(h(1, X) — h(1, X))
m(X)

((X) — m(X))(h(0, X) — h(0, X))

E 1—m(X)

+E

] . (7

As the individual estimation errors appear as products, it is easy to see that both terms vanish if either
of the estimators, / and 77, converges to the true function. We refer to Murphy| [2025] (Section
36.4.2.3) for a more detailed discussion. However, the AIPW estimator is designed for binary
treatments. For continuous treatments, inverse probability weights become ill-defined as we cannot
simply divide by the probability of observing an exact treatment value.

E A Graphical Perspective

Consider the causal diagram in Figure[I] The challenge in identifying the causal effect 6 arises from
confounding: X affects both treatment and outcome, creating spurious correlation between 7" and Y.
Any observed association between 7" and Y combines both the causal effect we want to estimate
(T'— YY) and the spurious correlation through X, (T + X — Y)).

DML addresses this through two residualization steps. The treatment residual (¢t — 7 (z)) aims

to remove the arrow X — T, while the outcome residual (y — ¢(x)) removes the influence of X
on Y. When /mi(x) converges to m(z), the treatment residual achieves two crucial properties: it
becomes independent of the confounder (7" — m (X)) L X and preserves the variation necessary for
identifying 6. However, when the treatment model is misspecified, the residual retains dependence
on x, preventing identification.

A crucial insight concerns the outcome model. While g(z) in (I represents only the direct effect
X — Y, estimand ¢(x) captures the total effect of X on Y
L) :=E[Y|X =2]= Om(z) + g(x) . (18)
~—— —~—

indirect effect  direct effect
This means, the outcome residual primarily serves to improve estimation efficiency by reducing
the variance of Y that is predictable from X. When the treatment model is correctly specified,
identification holds regardless of how well we estimate £(z).

This asymmetric role of treatment and outcome models mirrors the classical Frisch-Waugh-Lovell
(FWL) theorem from linear regression [Davidson et al., | 1993]]. Just as FWL requires correct specifi-
cation of linear projections on controls, this version of DML requires correct specification of m(z)
for identification.

F Derivation of DML Robustness

Let us define the expected squared error as a function of 6, given plugin estimators of m and g
denoted by m and g, respectively:

L(6) :=E[(Y - Y)?,
with
Y = (m(X)+Ur)0+g(X)+Uy and Y = (m(X)+Up —m(X))0+0(X)+ Uy,
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where the true outcome follows the partially linear model in Equation[I} and the predicted outcome
uses the partialing-out approach. This gives

5 . i 2
L(0) = E[((m(X) + Ur)8 + g(X) — (m(X) + Ur —1m(X))0 — £(X))"],
where the expectation is over exogenous random variables X and Ur. Setting the derivative of £
with respect to 6 to zero gives,

0 =E[((m(X) + Ur)8 + g(X) — (m(X) + Ur — m(X))8 — £(X)) (m(X) + Ur — 1in(X))]
=E[(m(X)0 + (9(X) — £(X)) — (m(X) — 11(X))B) (m(X) — (X)) + UZ(0 — 0)]
= E[(m(X) — 11(X))2)(0 — 0) + E[(9(X) — /(X)) (m(X) — (X))
+E[in(X) (m(X) — m(X))]0 + E[UF](6 — 6)

and, consequently,

g = Eln(X)(m(X) —m(X))] ) El(g (X) — £(X)) (m(X) — rin(X))]
E[(m(X) —m(X))?] + o E[(m(X) —m(X))?] + o

where the expectations are over X and 0% = E[U2] denotes the variance of the treatment noise.

§>

Or —

G Derivation of the ADML Estimator

Let us consider the limiting case n — oo, where

i _ ElY = g(X))(T — mi(X))]

S , Efri(X)T
OapmrL — 60 = with 7= [m( ) ]

E[(T = rn(X))T] E[?(X)]

When 712 (X) S om(X ), we have 7 = 1, so that OADML equals 6, which yields a consistent estimator

of 6 (cf. Section |5.2). Now, let us consider §(X) < g(X), which gives

E[(TO + Uy )(T — 7 (X))] _ E[(T - T’I’h(X))T]H n E[(m(X) — m(X) + Ur)Uy]
E[(T — mm(X))T) E[(T — m(X))T] E[(T — mm(X))T]

where the first term equals 6 and the second term vanishes as long as the outcome noise Uy is

uncorrelated with m(X).

(19)

é:

Let us define the expected squared error as a function of 6 and gZA) given plugin estimators of m and g
denoted by m and g, respectively:

£0.0) = E[Y ~ V) =E[Y ~ (T = (X))f ~ m(X) — §(X))
93L(0,0) = =2E[(Y — (T = m(X))d —1m(X)¢ — §(X))rm(X)]
05L(0,9) = —2E[(Y — (T —i(X))0 —m(X)¢ — §(X))(T — 1i(X))]
When setting the partial derivative w.r.t. qS to zero and rearranging terms, we obtain
E[m? (X))(0 - §) = E[i(X)T]0 + E[(9(X) — Y )in(X)]. (20)
Similarly, when setting the sum of both partial derivatives to zero and rearranging terms, we obtain
E[i(X)T](0 — §) = E[T*]0 + E[(3(X) — Y)T). 21)
Let us define
__ Em(0)T)
E[m?(X)]

so that (20) reduces to

0 —¢) =70+ =
Entering this expression in (21)) gives
TE[(X)T)0 + rE[(§(X) — Y )i(X)] = E[T?]0 + E[(3(X) — Y)T),
and when solving for é, we obtain
_ E[Y — 9(X)(T" — mi(X))]
E[(T — mim(X))T]

>

(22)
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H Experiment Details

To evaluate our theoretical findings and compare estimator performance, we conduct extensive
simulation studies. Our main scenario features an exponential treatment equation and cubic outcome
equation, providing a clear setting where linear specifications are misspecified:
X; ~N(=2,1) fori <n/2, X;~N(2,1)fori>n/2
T, =m(X;) +Ur,; = —exp(X;) + Ur, (23)
Y; = g(Xi) + 0T, + Uy, = (—=Xi + X7 + X)) + 0.5T; + Uy,
id . .
where Ut ;, Uy, ES (0,1) and the true treatment effect is § = 0.5. The confounder X is drawn
from a mixture of two normal distributions to ensure sufficient variation across its support. The exact

parameters used are mg = 0, m; = —1, mo = 1 for the treatment equation and g9 = —1, g1 = 1,
g2 = 1 for the outcome equation.

I Additional Empirical Results

m misspecified, g misspecified 1 well-specified, § misspecified M misspecified, § well-specified 1 well-specified, § well-specified
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Figure 3: Performance of estimators across different sample sizes (n = 50, 500, 5000) and model spec-
ifications. Each row represents a different sample size, with columns showing different combinations
of model specification. The data generating process features an exponential treatment equation and
cubic outcome equation, with true causal effect § = 0.5 (dashed red line). Notably, misspecification
of the treatment model m leads to bias regardless of sample size, while correct specification of m
yields consistent estimation with variance decreasing in sample size.

Experimental results of models with different functional forms are presented in Figure 3]
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