
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM f (x) AND g(x) TO f (g(x)): LLMS LEARN NEW
SKILLS IN RL BY COMPOSING OLD ONES

Anonymous authors
Paper under double-blind review

ABSTRACT

Does reinforcement learning (RL) teach large language models (LLMs) genuinely
new skills, or does it merely activate existing ones? This question lies at the core
of ongoing debates about the role of RL in LLM post-training. On one side, strong
empirical results can be achieved with RL even without preceding supervised fine-
tuning; on the other, critics argue that RL contributes little beyond reweighting ex-
isting reasoning strategies. This work provides concrete evidence that LLMs can
acquire genuinely new skills during RL by composing existing ones, mirroring one
of the central mechanisms by which humans acquire new cognitive skills (Ander-
son, 1982). To mitigate data contamination and other confounding factors, and
to allow precise control over task complexity, we develop a synthetic framework
for our investigation. Specifically, we define a skill as the ability to infer the out-
put of a string transformation function f(x) given x. When an LLM has already
learned f and g prior to RL, our experiments reveal that RL enables it to learn
unseen compositions of them h(x) = g(f(x)). Further, this compositional abil-
ity generalizes to more difficult problems such as compositions of > 2 functions
unseen during RL training. Our experiments provide surprising evidence that this
compositional ability, acquired on the source task, transfers to a different target
task. This transfer occurs even though the model has never trained on any com-
positional problems in the target task, and the only requirement is that the model
has acquired the target task’s atomic skills before its RL training on the source.
Our qualitative analysis shows that RL fundamentally changes the reasoning be-
haviors of the models. In contrast, none of the findings is observed in next-token
prediction training with the same data. Our systematic experiments provide fresh
insights into the learning behaviors of widely-used post-training approaches for
LLMs. They suggest the value of building base models with the necessary basic
skills, followed by RL with appropriate incentivization to acquire more advanced
skills that generalize better to complex and out-of-domain problems.

1 INTRODUCTION

Reinforcement learning (RL) has achieved broad success in improving large language models
(LLMs) on a variety of tasks especially reasoning (OpenAI, 2024; DeepMind, 2025), even directly
building upon the base model without any preceding supervised fine-tuning (DeepSeek-AI et al.,
2025). Despite the profound success, recent work finds the exploration of RL is impeded by the
entropy collapse phenomenon (Cui et al., 2025b; Liu et al., 2025a; Yu et al., 2025b), and the perfor-
mance gaps between base and RL-trained models diminish as the number of samples (k) increases
in pass@k evaluations (Yue et al., 2025). In addition, some argue that the “aha moments” in RL
training (OpenAI, 2024; DeepSeek-AI et al., 2025) are not emergent but merely the result of am-
plifying existing cognitive behaviors present in base models (Gandhi et al., 2025; Liu et al., 2025c;
Zhao et al., 2025), which casts shadow on whether LLMs learn new skills during RL training (Wu
et al., 2025b). Such observations diverge from established RL findings that predate LLMs, where
models were trained from scratch and learned new skills (Silver et al., 2016; 2017; OpenAI et al.,
2019). The fact that LLMs are pretrained on vast data prior to RL may contribute to these diver-
gences and call for further investigation into the following important research questions: (1) Does
RL teach new skills to LLMs? (2) If so, how to incentivize it? (3) Are the skills generalizable?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pa
ss

@
k

Sample Number k

RL
Base

def func_15(s):
 return ''.join("«" + ch + "»" for ch in s)

def func_16(s):
 if not s:
 return s
 result = [s[0]]
 for ch in s[1:]:
 if ch != result[-1]:
 result.append(ch)
 return ''.join(result)

!

 A Clean Testbed for RL Analysis: String Transformation Prediction

❷ Well-Defined Atomic Skill: y=f(x)

❸ Controllable Task Di!culty
func_16('abc')

Level 1 (Atomic)
func_16(func15('abc'))

Level 2 (Compositional)

func_16(func15(func2('abc')))

Level 3 (Compositional)

❶ Decontamination:
 def compress_repeats(s) -> def func_16(s)

Atomic Skills

Base LLM

Pre-RL LLM

NTP Training

✅

RL on
Atomic Skill

Atomic Skills

#

Compositional Skills

❌

Atomic Skills

#

Generalizable
Compositional Skills

%

RL on Basic
Compositional Skills

&

 The RL Compositionality Hypothesis

(3)

'

 RL does not Merely Rerank

Can you predict the output of
`func_16('abc')` without
writing any code?

Atomic Task

Can you predict the output of
`func_15(func_16('abc'))`
without writing any code?

Compositional TaskString Transformation Functions

Compositional Skills

❌

(1)

(

 RL+Compositional Data is the Key

Atomic

Comp.

Task Method Atomic Skill Compositional Skill
RL

SFT

RLComp.

✅ ❌⚠ ❌✅ ✅

(2)

*

 Skill Transfers across Domains

Atomic Skills

LLM
RL only on Task A's

Composites

Task A

Task B

Task A

Task B
Compositional Skills

Level 1-2

Pa
ss

@
k

Sample Number k

RL
Base

Level 3+

Figure 1: An overview of our research framework and key findings. (Top) We introduce a
clean string transformation testbed to scientifically analyze RL’s capabilities. (Bottom-Left) Our
central RL Compositionality Hypothesis posits that training on simple composites with RL unlocks
generalizable compositional skills. (Bottom-Right) Our experiments validate this, showing that:
(1) compositional data combined with RL is the key ingredient for learning this new skill; (2) the
learned skill transfers across domains; and (3) RL significantly improves difficult problems where
the base model fails, while only reranking on problems it solves well.

Answering these questions will advance our understanding of LLM learning behaviors and inform
the high-stakes trade-off in resource allocation between pretraining and post-training.

We provide concrete evidence that LLMs indeed learn new skills in RL, by composing and general-
izing existing skills to solve more complex problems; For such learning to happen, there should be
proper incentivization in RL. Our investigation is grounded in the cognitive skill acquisition process
by humans, inspired by Anderson (1982), which argues that humans learn new skills by composing
and then internalizing existing ones. Unlike prior works (Gandhi et al., 2025; Yue et al., 2025), we
choose to construct a controlled synthetic framework that facilitates:

• Decontaminated evaluation: We design a string transformation prediction task with unique func-
tions assigned meaningless identifiers (e.g., func 16) to prevent inference from function names.
During RL, function definitions are hidden. The tasks will then be unsolvable without going
through our atomic skills acquisition training. This setup enables us to investigate the RQs con-
trolling for confounders.

• Well-defined atomic and compositional skills: We define atomic skills as single,
non-decomposable transformations, and compositional skills as their nested combinations.
For example, given input string x, func 16(x) represents an atomic skill, while
func 15(func 16(x)) requires compositional reasoning.

• Controllable difficulty: As each skill is instantiated as a Python function, we control difficulty
of composition through the depth of nesting. As shown in Fig. 1, the model must perform de-
ductive reasoning to give the output string after a given transformation, e.g., a Level-1 difficulty
problem func 16(x) and a Level-2 one func 16(func 15(x)). Here the difficulty level is
determined by the number of atomic functions composed.

With our framework and a two-stage training protocol that separates atomic from compositional skill
acquisition, we conduct experiments with Llama-3.1-8B-Instruct (Dubey et al., 2024) and answer
the RQs as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• RL teaches new compositional skills. RL on Level-2 problems, receiving only correctness-
based outcome rewards without reasoning demonstrations, substantially improves generalization
on more difficult problems: performance on unseen Level-3 tasks improves from near-zero to
30%, and Level-4 to 15%. This generalization does not occur in a baseline trained with rejection
fine-tuning (RFT) on the same Level-2 problems. This shows that RL enables the acquisition of
compositional skills.

• Both RL and compositional incentives are essential for skill acquisition. In contrast to the
substantial accuracy improvements from RL on Level-2 compositional problems, RFT on the
same data and RL on Level-1 atomic problems both yield little improvements on problems higher
than Level-2 (e.g., less than 1% improvement at Level-3). This may explain why Sun et al. (2025)
conclude that RL does not promote compositional generalization, as their training includes no
explicit incentive for composition.

• The learning achieved by RL generalizes to held-out evaluation, more difficult problems,
and even a different task. All findings above are based on held-out evaluation of compositional
problems consisting of atomic skills (functions) unseen in RL training. And as aforementioned,
models RL-trained on Level 2 problems show non-trivial gains on problems up to Level 4. For
cross-task transfer, compositional RL on the string task boosts accuracy on the unseen Level-3
Countdown problems to 35% for a model with the prerequisite Countdown atomic skills.

Our findings challenge the recent view that current RL with verifiable rewards (RLVR) (Lambert
et al., 2024) merely utilizes reasoning patterns in base models rather than learning new reasoning
abilities (Yue et al., 2025; Wu et al., 2025b). This view is based on the observation that the pass@k
performance gap between RL-trained and base models narrows as k increases (Yue et al., 2025).
We conjecture that this observation arises, at least in part, from evaluating and RL training on tasks
where base models already achieve high pass@k, possibly due to pretraining on similar tasks that
is beyond the control of most academic researchers; thus RL has little incentive to learn a skill that
the base model already has. To confirm this conjecture, our experiments show that RL substan-
tially improves pass@k on challenging compositional problems where base model’s pass@k is near
zero (See Fig. 5). This reveals what we term the “reranking illusion,” namely aggregate metrics
on mixed-difficulty benchmarks can mask genuine skill acquisition by conflating capabilities of dif-
ferent types. Our qualitative analysis confirms that models fundamentally change their reasoning
behaviors after RL training. As shown in Fig. 6, compositional errors, i.e., ignoring composi-
tion and misunderstanding function relationships, drop substantially, while failures shift primarily
to atomic prediction errors (55%). This behavioral transformation indicates genuine acquisition of
compositional skills.

Our findings have important implications for LLM development and highlight RL’s critical role in
post-training, particularly its potential for easy-to-hard generalization and cross-task transfer. They
call for closer coordination between base model development and post-training strategy from a skill
acquisition perspective.

2 BACKGROUND

The Recent Pessimistic View on Whether RL Teaches New Skills to LLMs. RL in LLMs builds
on a model pretrained on vast data. While supervised warm-starts are a common technique in tradi-
tional RL (Silver et al., 2016; Vinyals et al., 2019; De La Cruz Jr et al., 2019; Silva & Gombolay,
2021), the large-scale and general-purpose nature of LLM creates a different scenario. On one hand,
this strong prior enables base LLM to sample reasonable rollouts and thus perform RL directly with-
out any preceding supervised fine-tuning (DeepSeek-AI et al., 2025; Pan et al., 2025; Zeng et al.,
2025); on the other hand, it becomes difficult to distinguish genuine skill acquisition from activation
of existing capabilities during RL training.

Recent work tries to investigate this but uses loose definitions of “skill”, often relying on proxies
such as the continually increasing frequency of certain reasoning patterns (Gandhi et al., 2025; Zhao
et al., 2025; Liu et al., 2025c) or the diminishing gaps between the pass@k accuracy of models
before and after RL, as shown in the bottom right chart in Fig. 1 (Yue et al., 2025; Liu et al., 2025b;
Wu et al., 2025b; He et al., 2025; Wen et al., 2025; Zhu et al., 2025). Although these studies show
that RL activates behaviors already present in the base model, they did not directly prove that no
new skill is learned during the process. Moreover, the pass@k results can be misinterpreted for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

many reasons: (1) The causal relation between performance and each skill remains unclear, thus it
is not guaranteed that everything learned can be translated into improvements in pass@k accuracy
on downstream tasks. (2) The evaluation tasks only provide an obscure overall view, lacking fine-
grained analysis on problems of different difficulty levels or domains. (3) The result is confounded
by the fact that the model may remain limited new skills to learn or lack the incentive to learn new
skills if it already perform decently well before RL, which is possible if models perform RL on the
same or similar data seen in next-token prediction (NTP) training (Wu et al., 2025d; Shao et al.,
2025; Wang et al., 2025; Cui et al., 2025a; Yu et al., 2025b; Liu et al., 2025b; Wu et al., 2025c)
Together, these highlight the urgent need for a deeper analysis of tasks through a clean framework,
in which the skills are clearly defined and contribute to the performance causally, and evaluated in a
finer granularity.

Compositional Learning as a Testbed Grounded in Cognitive Skill Acquisition in Humans.
Although the pessimistic conclusions about RL in LLMs from prior works are debatable, they at
least indicate that the success of RL depends on strong base models. This motivates our study of skill
composition, where RL learns new abilities by leveraging those already acquired by the base model.
Compositional reasoning provides an ideal framework for investigating skill acquisition because it
naturally separates atomic knowledge, which mirrors how humans learn cognitive skills (Anderson,
1982). Notably, it is established in cognitive science that both composed skills and the meta-ability
to learn composition are non-trivial new skills (Anderson, 1982; Lake et al., 2016). For clarity,
we refer to learning new skills as the former throughout this paper. Learning compositional skills
helps the model to generalize to more challenging problems and new domains beyond training data,
which we will show later. In the field of AI, compositional reasoning has been widely studied before
LLMs and has been considered a necessary property of generalization. (Fodor & Pylyshyn, 1988;
Lake et al., 2016; Andreas et al., 2015). More recently, Yin et al. (2025) achieved compositional
improvements through in-context learning rather than RL, while Sun et al. (2025) found that directly
RL in atomic skills fails in compositional generalization. Comparing the two works, we conjecture
that an explicit incentive to composition is necessary.

3 RESEARCH FRAMEWORK

In this work, we define “new skills” as novel reasoning strategies that enable models to solve pre-
viously unsolvable problems through systematic combination of existing capabilities. We address
three critical research questions: (1) Does RL teach new skills to LLMs? (2) If so, how to incen-
tivize it? (3) Are the learned skills generalizable?

Hypothesis 1 (The RL Compositionality Hypothesis). Once a model has acquired the necessary
atomic, non-decomposable skills for a task through NTP training, RL with proper incentivization
can teach the model to learn new skills by composing atomic skills into more complex capabilities.

3.1 TASK DESIGN: DEDUCTIVE REASONING ON STRING TRANSFORMATION PREDICTION

To test our hypothesis while avoiding confounders from data contamination and unclear skill bound-
aries, we design a controlled synthetic task with the following properties: (1) Atomic skills are well
defined so that models can learn the fundamental skills separately before RL. Each string trans-
formation function has clear, deterministic behaviors that can be learned independently. (2) Task
difficulty can be controlled by adjusting the compositional complexity of the atomic skills, allowing
us to test generalization across complexity levels. (3) RL and evaluation tasks do not appear in the
LLM pretraining corpus, ensuring that improvements stem from learning rather than memorization.

Task Definition. Specifically, our task involves deductive reasoning on string transformations.
Given an input string x and a composition of deterministic transformation functions such as f(·)
and g(·), models must predict the output string after applying the specified transformation (e.g.,
y = f(g(x))). We construct 25 unique string transformation functions as atomic skill spanning var-
ious computational patterns including character manipulation, reordering, filtering, and structural
modifications (see Appendix §D for complete specifications). To mitigate potential contamination,
we assign meaningless identifiers to string functions as shown in Fig. 1, so that it is impossible to
infer the functionality with function names only.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Difficulty Level. We control compositional complexity through Difficulty Levels corresponding to
nesting depth, with Level n involving n-function composition. For instance, Level 1 involves single
function application (e.g., func 16(x) as shown in Fig. 1), while Level 2 involves two-function
composition (e.g., func 16(func 15(x))). The controlled difficulty provides a fine-grained
inspection of model performance, rather than a vague overall number as adopted in prior work (Yue
et al., 2025; Liu et al., 2025b; Wu et al., 2025b).

3.2 TRAINING AND EVALUATION PROTOCOL

Training consists of two stages to separate atomic skill acquisition from compositional skill learning,
simulating realistic post-training pipelines.

Stage 1 Training: Atomic Skills Acquisition via RFT. Models learn “atomic skills” in this stage,
i.e., receiving explicit function definitions alongside input strings and training via rejection fine-
tuning Dong et al. (2023) on their own correct reasoning trajectories. This ensures models internalize
each transformation function’s behavior before attempting composition. Crucially, this is the only
stage where models observe function implementations. An example can be found in Fig. 7.

Stage 2 Training: Compositional Skill Training via Either RFT or RL. In this stage, models see
only function names and compositions, such as func 2(func 16(x)), with function definitions
hidden. See Fig. 8 for examples. This forces reliance on internalized atomic knowledge while
learning systematic composition. We compare two approaches: (1) Composition via online RL
provides models with binary rewards based on output correctness and updates through Group Rel-
ative Preference Optimization (GRPO) Shao et al. (2024), testing whether RL is necessary for the
acquisition of compositional skills. (2) Composition via offline RFT trains models with NTP on
correct reasoning trajectories for compositional problems, serving as a baseline to examine whether
exposure to compositional examples alone enables composition.

We use Llama-3.1-8B-Instruct, which is identified as a cleaner testbed for RL by recent work (Shao
et al., 2025; Agarwal et al., 2025; Wu et al., 2025c), to further minimize the effect of data contami-
nation besides our string tasks. For more details, please refer to Appendix A.

Held-out, Easy-to-Hard, and Cross-Task Evaluation. We assess generalization using rigorous
held-out evaluation. In Stage 1, models are trained on all 25 atomic functions (Appendix D). In Stage
2, the functions are partitioned into two disjoint sets: the model trains only on compositions from one
set, while the other is held out for constructing evaluation problems. We test model generalization
across various difficulty levels, and adopt Countdown (Gandhi et al., 2024; Pan et al., 2025) as
testbed for task transfer.

4 RL AS A PATHWAY TO GENERALIZABLE SKILL ACQUISITION

4.1 LLMS ACQUIRE NEW COMPOSITIONAL SKILLS DURING RL

Our first experiment directly test our RL Compositionality Hypothesis (Hypothesis 1). To do so, we
start from an identical Stage 1 base model and apply three different Stage 2 training configurations,
allowing us to isolate the impact of incentivizing composition during RL: (1) RL Level 1, trained
only on atomic tasks; (2) RL Level 2, trained only on two-level compositions; and (3) RL Level
1+2, trained on a uniform mix. We then evaluate their ability to generalize to held-out tasks from
Level 1 up to Level 6, testing whether they can solve problems with unseen function compositions
and higher nesting levels than seen in RL training.

As shown in blue curves in Fig. 2, training on Level 1 alone leads to high accuracy on Level 1,
peaking at around 90%, but fails to generalize. Its accuracy on Level 2 task remains below 25%, and
on Level 3 through 6, it is consistently near zero. This demonstrates that learning only the atomic
skills through RL is insufficient for learning effective composition.

In contrast, incorporating compositional tasks into RL training yields transformative results. Both
the RL Level 2 and RL Level 1+2 models demonstrate strong performance to generalize to prob-
lems with nesting depths exceeding their training data. On Level 3, their accuracy improves from
5% to around 30%, and from 1% to 15% on Level 4, which are all significant improvements over
the RL Level 1 model. And this trend continues on even Level 5, indicating both models learn a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Level 1

0.75

0.80

0.85

0.90 RL Level 1
RL Level 2
RL Level 1+2

0 100 200 300 400 500 600
Level 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7 RL Level 1
RL Level 2
RL Level 1+2

0 100 200 300 400 500 600
Level 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30 RL Level 1
RL Level 2
RL Level 1+2

0 100 200 300 400 500 600
Level 4

0.000

0.025

0.050

0.075

0.100

0.125

0.150 RL Level 1
RL Level 2
RL Level 1+2

0 100 200 300 400 500 600
Level 5

0.00

0.01

0.02

0.03

0.04

0.05

0.06
RL Level 1
RL Level 2
RL Level 1+2

0 100 200 300 400 500 600
Level 6

0.000

0.005

0.010

0.015

0.020
RL Level 1
RL Level 2
RL Level 1+2

Training Steps

Ac
cu

ra
cy

Figure 2: Test Accuracy on held-out tasks vs. RL training steps, each related to one held-out
task difficulty level. The dark blue curve indicates that training on atomic skills alone (RL Level 1)
yields nearly no compositional ability on held-out functions. In contrast, including Level 2 data in
RL unlocks strong generalization to more complex problems (Levels 3-6).

generalizable principle of compositional reasoning rather than merely memorizing solutions. This
validates our hypothesis that RL can teach genuinely new skills, but only when the training objective
explicitly incentivizes their use. These results provide us with evidence to answer RQ1:

TAKEAWAY 1

RL on compositional data teaches new skills that generalize to unseen compositions of
known atomic skills.

4.2 COMPOSITIONAL DATA IS THE INCENTIVE FOR RL TO TEACH COMPOSITIONAL SKILLS

Our previous experiment shows that compositional data is necessary for RL to teach new composi-
tional skills, but can a supervised method, such as RFT, achieve the same results as RL when
given the exact same compositional (Level 2) data? To address this question, we train a model
with iterative RFT on the same Level 2 problems and conduct a head-to-head comparison against
the RL Level 2 model from §4.1, with both having started from the identical Stage 1 base model.

The results in Fig. 3 show a significant difference in performance from Fig. 2. The RFT model’s
accuracy is significantly worse than RL across all compositional levels and has only marginal im-
provement over the first iteration. For example, on Level 3 it never surpasses 2.6%. In contrast,
the RL Level 2 model achieves 64% on Level 2 and 27% on Level 3, significantly outperforming
the RFT model. Surprisingly, the RFT model attains only 15% accuracy on Level-2 problems. This
indicates that RFT fails to generalize even to held-out compositional problems of the same difficulty
as its training data, let alone higher difficulties. These results provide the evidence to answer RQ2:

TAKEAWAY 2

RFT, even with on compositional data, is suboptimal for learning compositional skills; RL, in
addition to compositional training data, is another important factor in learning generalizable
compositional skills.

4.3 COMPOSITIONAL SKILLS LEARNED IN RL ARE TRANSFERABLE, BUT ATOMIC SKILLS
ARE PREREQUISITES

While our experiments demonstrate that RL can teach generalizable compositional skills within a
task, collecting compositional RL data for every new domain is impractical. We therefore test the
transferability of the learned compositional skill. Specifically, we conjecture that RL enables models
to compose atomic skills on Task B after learning composition on Task A, if the model has already
acquired the necessary atomic skills for Task B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6
Iteration

0.0

0.2

0.4

0.6

0.8

Av
g@

16

RL Level 2

Level 1

1 2 3 4 5 6
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g@

16

RL Level 2

Level 2

1 2 3 4 5 6
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Av
g@

16

RL Level 2

Level 3

1 2 3 4 5 6
Iteration

0.000

0.025

0.050

0.075

0.100

0.125

Av
g@

16

RL Level 2

Level 4

1 2 3 4 5 6
Iteration

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Av
g@

16

RL Level 2

Level 5

1 2 3 4 5 6
Iteration

0.000

0.001

0.002

0.003

0.004

Av
g@

16

RL Level 2

Level 6

Figure 3: RL vs. RFT on Compositional Tasks. RL (red dashed line) achieves substantially higher
accuracy across all levels, while iterative RFT fails to learn a generalizable skill.

Table 1: Model configurations for the task transfer experiment.
Stage 1 Stage 2

Model Configuration String Atomic RFT Countdown Atomic RFT String Atomic RL String Comp. RL
String-Base + RL L1+2 ✓ × × ✓
Multi-Base ✓ ✓ × ×
Multi-Base + RL L1 ✓ ✓ ✓ ×
Multi-Base + RL L1+2 ✓ ✓ × ✓

Experimental Setup. We test this conjecture on the Countdown task, where a model must con-
struct a mathematical expression from a given set of integers to reach a target number (see §E for
examples). In Countdown, a Level ℓ task requires the model to construct a mathematical expression
using ℓ given integers to reach a target number. The minimum level for Countdown is Level 2. We
compare four models to test our hypothesis, as detailed in Tab. 1. These configurations allow us to
compare a “atomic-skill-only” baseline (Multi-Base) against models with either transferred atomic
RL (Multi-Base + RL L1) or transferred compositional RL (Multi-Base + RL L1+2), as well as a
control model from §4.1 that has the compositional skill but lacks the necessary atomic knowledge
of Countdown (String-Base + RL L1+2). Note that none of the models are trained on Countdown
with RL in Stage 2, and are only trained on our string task.

We evaluate these models on unseen, more challenging Countdown problems (Levels 3-5). We
report the Avg@32, the average accuracy across 32 responses sampled at temperature 1.0.

Countdown Level 3 Countdown Level 4 Countdown Level 5
Evaluation Task

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
g@

32
 A

cc
ur

ac
y

String-Base + RL L1+2
Multi-Base
Multi-Base + RL L1
Multi-Base + RL L1+2

Figure 4: Avg@32 Accuracy on the Count-
down Task. Atomic skills are a prerequi-
site for task transfer, and that compositional
RL (Multi-Base + RL L1+2) on the unrelated
string task offers a significant performance im-
provement on Countdown. Note that none of
the models are trained with RL on Countdown.

Results. The results in Fig. 4 provide clear evi-
dence supporting our hypothesis. The String-Base
+ RL L1+2 model fails completely. The Multi-
Base model achieves reasonable accuracy of ap-
proximately 17% at Level 3 but still struggles at
higher levels. Multi-Base + RL L1 shows marginal
improvement over Multi-Base, increasing accu-
racy to around 20% at Level 3, with the advan-
tage diminishing on more complex problems. The
Multi-Base + RL L1+2 model achieves surpris-
ingly strong performance. It achieves a 35% ac-
curacy at Level 3, outperforming the Multi-Base
baseline by more than 18% accuracy. This advan-
tage persists at higher complexities, reaching ap-
proximately 6% at Level 4, where other models
largely fail and achieve near-zero accuracy. The
results show that the compositional skill learned
from string transformation transfers to countdown,
acting as a meta-skill that enhances the use of the
target task’s atomic knowledge. Finally, the comparison between Multi-base + RL and String-Base
+ RL L1+2 confirms our fundamental assumption that task-specific atomic skills are prerequisites
for compositional skills to be effective.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

21 23 25 27 29

0.7

0.8

0.9

1.0
Level 1

RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29

0.2

0.4

0.6

0.8

1.0
Level 2

RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.0

0.2

0.4

0.6

0.8

Level 3

RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Level 4

RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Level 5

RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.00

0.02

0.04

0.06

0.08

0.10

Level 6
RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.00

0.01

0.02

0.03

Level 7
RFT Base
RL Level 1
RL Level 1+2

21 23 25 27 29
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Level 8
RFT Base
RL Level 1
RL Level 1+2

Number of Samples k

Pa
ss

@
k

Figure 5: Pass@k performance across varying difficulty levels. On easy problems (Levels 1-2),
the performance gap shrinks with more samples, consistent with the reranking narrative. On hard
problems (Levels 3-8), the gap widens substantially, suggesting new skill acquisition.

These results may explain recent findings on generalizable RL improvements. For example, Logic-
RL (Xie et al., 2025) reports performance gains on mathematical problems after training on logic
puzzles, and Guru (Cheng et al., 2025) shows that domains with greater pre-training exposure benefit
more from cross-task generalization. We suggest that LLMs have already acquired essential atomic
skills through large-scale pre-training, particularly in mathematics and coding. Thus, incentiviz-
ing compositional skills through RL in one task helps combine task-specific skills more effectively
across domains. In contrast, domains with less pre-training exposure may lack sufficient atomic
skills, limiting compositional skill transfer to downstream tasks. With this finding, we answer RQ3:

TAKEAWAY 3

Compositional skills learned through RL are transferable to a different task where the model
possesses the atomic skills.

4.4 RL EXPANDING PERFORMANCE LIMITS IS NOT A FALSE PROMISE

Our findings strongly suggest that RL can teach compositional skills that are novel to the base
model. This directly challenges recent arguments that RL merely “reranks” model responses, dis-
tilling pass@k performance of the base model into pass@1 (Yue et al., 2025; Wu et al., 2025a). This
conclusion is drawn based on a shrinking pass@k performance gap between base and RL-tuned
models as k increases. However, we argue this conclusion may stem from two issues: (1) evaluating
on mixed-skill benchmarks, therefore an improvement in a specific skill, like composition, can be
masked in pass@k if other required skills remain a bottleneck, and (2) using RL training that does
not properly incentivize the new skill in the first place.

Our controlled framework allows us to dissect both issues. By isolating the compositional skill at
varying difficulty levels, we can reliably assess skill acquisition (addressing issue 1), and by compar-
ing different RL training setups (§4.1), we can test the effect of proper incentivization (addressing
issue 2). We compare pass@1000 performance at each difficulty level of our test set, selecting
k = 1000 as a sufficiently large and practically meaningful budget. Larger budgets would become
impractical, as any reasonable model could theoretically achieve pass@∞ = 1.

The results are presented in Fig. 5. Both RL Level 1 and RL Level 1+2 models are trained from
RFT base model using RL in Stage 2. The RL Level 1 model, which is not incentivized properly
to learn composition, exhibits a similar trend to the RFT base across almost all levels. On easier
problems (Levels 1 and 2) where the RFT base model already shows solving potential evidenced
by high pass@k, the performance gaps between RL Level 1+2 model and the RFT model shrink as
k increases, aligning with the trends observed in Yue et al. (2025); Wu et al. (2025b). However, a
completely different trend is observed on more challenging compositional problems (Levels 3-6).
The RL Level 1+2 model’s performance substantially outperforms the RFT base with an increasing
gap as k grows. For example, at Level 5, the performance gap over the RFT base grows from 4%
at pass@1 to approximately 25% at pass@1024. This divergence is clear evidence of new skill
acquisition. The results suggest that the pessimistic observation of “RL does not push performance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

limits” in prior work may be explained by the lack of incentive for RL to learn new skills, as the
base model already achieves high pass@k performance.

TAKEAWAY 4

The prior conclusion that RLVR only utilizes base models’ reasoning patterns without learn-
ing new abilities is likely an artifact of evaluating and RL training on tasks that base models
already achieve high pass@k; thus RL has little incentive to learn a new skill.

4.5 BEHAVIORAL ANALYSIS: RL TRANSFORMS FAILURE MODES

While our results show that training with compositional data unlocks promising generalization, a
fundamental question remains: do models trained under different setups exhibit different behav-
iors, or do they simply differ in capability while showing similar failure modes? To investigate
this, we analyze the failure modes of different models on Level 3 problems of our string task.

We use Gemini-2.5-Pro to classify responses into five categories: (1) Correct, (2) Ignores Com-
position (e.g., analyzing only a single function), (3) Incomplete Trace (recognizes composition
but terminates early), (4) Incorrect Composition (e.g., misinterprets nesting), and (5) Atomic Er-
ror (errors in atomic functions prediction without the above). Categories 2-4 indicate difficulties
with handling compositional problems. And while still incorrect, category 5 represents appropriate
compositional behavior, as the error is not due to a lack of compositional skill.

Correct
Ignores Composition
Incomplete Traces
Incorrect Composition
Atomic Error

Figure 6: Distribution of failure modes on
Level 3 string tasks.

We compare four models: RFT Base (after Stage 1
training), RFT Level 2 (after Stage 2 training on Level
2 problems with RFT), RL Level 1, and RL Level 2,
all from previous sections. The latter three models are
all trained from the RFT Base.

Fig. 6 reveals substantial similarities in the failure pat-
terns of RFT Base, RFT Level 2, and RL Level 1 mod-
els. Their failures are dominated by ignoring the com-
position entirely (all >50%) and misunderstanding the
compositional structure (all >35%).

In contrast, the RL Level 2 model demonstrates funda-
mentally different behaviors. It completely eliminates
”Ignores Composition” errors and correctly solves
28.1% of the problems. Crucially, its primary fail-
ure mode becomes “Atomic Error.” This shows that
compositional RL not only improves accuracy but
teaches models to parse and execute compositional
plans, shifting failures from high-level misunderstand-
ings to lower-level execution errors. See §F for examples of different model responses.

TAKEAWAY 5

Rather than merely improving accuracy, RL on compositional problems fundamentally trans-
forms the model’s behavior, enabling it to correctly understand and handle compositions.

5 CONCLUSION

The debate over whether RL can teach LLMs new skills has been clouded by experiments on bench-
marks where LLMs already perform well, using coarse-grained metrics that obscure the learning
of new capabilities. By stepping back to a cleaner, more controllable experimental environment,
our findings provide a clear and optimistic answer: RL can teach genuinely new and powerful
skills when the training task properly incentivize composition. Our results show that the compo-
sitional skills are learnable through RL and generalize across difficulty levels and different tasks.
Our findings suggest that the pessimistic conclusion that RL does not learn new skills may stem
from inappropriate evaluation setups rather than fundamental constraints of RL itself.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable ef-
fectiveness of entropy minimization in llm reasoning. ArXiv, abs/2505.15134, 2025. URL
https://api.semanticscholar.org/CorpusID:278782149.

John R. Anderson. Acquisition of cognitive skill. Psychological Review, 89, 1982.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 39–48, 2015.

Zhoujun Cheng, Shibo Hao, Tianyang Liu, Fan Zhou, Yutao Xie, Feng Yao, Yuexin Bian, Yonghao
Zhuang, Nilabjo Dey, Yuheng Zha, Yi Gu, Kun Zhou, Yuqi Wang, Yuan Li, Richard Fan, Jian-
shu She, Chengqian Gao, Abulhair Saparov, Haonan Li, Taylor W. Killian, Mikhail Yurochkin,
Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Revisiting reinforcement learning for LLM rea-
soning from A cross-domain perspective. CoRR, abs/2506.14965, 2025. doi: 10.48550/ARXIV.
2506.14965. URL https://doi.org/10.48550/arXiv.2506.14965.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
language models. CoRR, abs/2505.22617, 2025b. doi: 10.48550/ARXIV.2505.22617. URL
https://doi.org/10.48550/arXiv.2505.22617.

Gabriel V De La Cruz Jr, Yunshu Du, and Matthew E Taylor. Pre-training with non-expert human
demonstration for deep reinforcement learning. The Knowledge Engineering Review, 34:e10,
2019.

Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. ArXiv, abs/2507.06261, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li Wang,
Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei
Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang,
Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua
Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, Ruiqi Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-Kang
Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang, Wangding Xiao, Wei An, Xiaodong Liu, Xi-
aohan Wang, Xi aokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu
Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyu Jin, Xi-Cheng Shen, Xiaosha
Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan,
Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yao-
hui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou,
Yujia He, Yunfan Xiong, Yu-Wei Luo, Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yan-
ping Huang, Yao Li, Yi Zheng, Yuchen Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan,
Zehui Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen
Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei
Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang.

10

https://api.semanticscholar.org/CorpusID:278782149
https://doi.org/10.48550/arXiv.2506.14965
https://doi.org/10.48550/arXiv.2505.22617

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. Nature, 645,
2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum,
and T. Zhang. Raft: Reward ranked finetuning for generative foundation model alignment. ArXiv,
abs/2304.06767, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S.
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aur’elien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cris tian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan,
Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden
Alwala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591 neth Heafield, Kevin R. Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pa-
supuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Has-
san, Naman Goyal, Narjes Torabi, Niko lay Bashlykov, Nikolay Bogoychev, Niladri S. Chatterji,
Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasić,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sa hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shao-
liang Nie, Sharan Narang, Sharath Chandra Raparthy, Sheng Shen, Shengye Wan, Shruti Bhos-
ale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Vir ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit ney
Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Ben-
jamin Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd, Beto de Paola, Bhargavi Paranjape, Bing
Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichten-
hofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins,
David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang
Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm’an,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Frank J. Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Geor-
gia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory G. Sizov, Guangyi Zhang, Guna
Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb, Har-
rison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan Saxena,
Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan,
Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthias Lennie, Matthias Reso, Maxim Gro-
shev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Mun ish Bansal, Nandhini San-
thanam, Natascha Parks, Natasha White, Navy ata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji,
Pe dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratanchan-
dani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Ro-
han Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Kumar
Gupta, Sung-Bae Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang,
Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Mon-
tanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Andrei Poenaru,
Vlad T. Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xia Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models. ArXiv,
abs/2407.21783, 2024.

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical anal-
ysis. Cognition, 28:3–71, 1988.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D. Goodman. Stream of search (sos): Learning to search in language. ArXiv,
abs/2404.03683, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, nathan lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. COLM,
2025.

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grpo beyond distribution
sharpening. arXiv preprint arXiv:2506.02355, 2025.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. CoRR, abs/1604.00289, 2016.

Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hanna Ha-
jishirzi. Tülu 3: Pushing frontiers in open language model post-training. ArXiv, abs/2411.15124,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
CoRR, abs/2505.24864, 2025a. doi: 10.48550/ARXIV.2505.24864. URL https://doi.org/
10.48550/arXiv.2505.24864.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
NeurIPS, 2025b.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. COLM, 2025c.

OpenAI. Openai o1 system card. ArXiv, 2024.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019. URL
http://arxiv.org/abs/1910.07113.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hanna Hajishirzi, Pang Wei
Koh, and Luke S. Zettlemoyer. Spurious rewards: Rethinking training signals in rlvr. ArXiv,
abs/2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. ArXiv, abs/2402.03300, 2024.

Andrew Silva and Matthew Gombolay. Encoding human domain knowledge to warm start rein-
forcement learning. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 5042–5050, 2021.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/abs/
1712.01815.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hanna Hajishirzi, Nouha Dziri, and Dawn Xi-
aodong Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compo-
sitional, and transformative generalization. ArXiv, abs/2506.18880, 2025.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforce-
ment learning. Nat., 575(7782):350–354, 2019. doi: 10.1038/S41586-019-1724-Z. URL
https://doi.org/10.1038/s41586-019-1724-z.

13

https://doi.org/10.48550/arXiv.2505.24864
https://doi.org/10.48550/arXiv.2505.24864
http://arxiv.org/abs/1910.07113
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1038/s41586-019-1724-z

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025.

Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
incentivizes correct reasoning in base llms. arXiv preprint arXiv:2506.14245, 2025.

Fang Wu, Weihao Xuan, Ximing Lu, Zaı̈d Harchaoui, and Yejin Choi. The invisible leash: Why
RLVR may not escape its origin. CoRR, abs/2507.14843, 2025a. doi: 10.48550/ARXIV.2507.
14843. URL https://doi.org/10.48550/arXiv.2507.14843.

Fang Wu, Weihao Xuan, Ximing Lu, zaid. harchaoui, and Yejin Choi. The invisible leash: Why rlvr
may not escape its origin. ArXiv, abs/2507.14843, 2025b.

Haoze Wu, Cheng Wang, Wenshuo Zhao, and Junxian He. Mirage or method? how
model-task alignment induces divergent rl conclusions. 2025c. URL https://api.
semanticscholar.org/CorpusID:280985268.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Huijie Lv, Ming Zhang, et al. Reasoning or memorization? unreliable results of reinforce-
ment learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025d.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing LLM reasoning with rule-based reinforcement
learning. CoRR, abs/2502.14768, 2025. doi: 10.48550/ARXIV.2502.14768. URL https:
//doi.org/10.48550/arXiv.2502.14768.

Fangcong Yin, Zeyu Leo Liu, Liu Leqi, Xi Ye, and Greg Durrett. Learning composable chains-of-
thought. ArXiv, abs/2505.22635, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an open-
source LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025b. doi: 10.
48550/ARXIV.2503.14476. URL https://doi.org/10.48550/arXiv.2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? ArXiv,
2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild.
CoRR, abs/2503.18892, 2025. doi: 10.48550/ARXIV.2503.18892. URL https://doi.org/
10.48550/arXiv.2503.18892.

Rosie Zhao, Alexandru Meterez, Sham M. Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran
Malach. Echo chamber: RL post-training amplifies behaviors learned in pretraining. CoRR,
abs/2504.07912, 2025. doi: 10.48550/ARXIV.2504.07912. URL https://doi.org/10.
48550/arXiv.2504.07912.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surprising
effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347, 2025.

14

https://doi.org/10.48550/arXiv.2507.14843
https://api.semanticscholar.org/CorpusID:280985268
https://api.semanticscholar.org/CorpusID:280985268
https://doi.org/10.48550/arXiv.2502.14768
https://doi.org/10.48550/arXiv.2502.14768
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2503.18892
https://doi.org/10.48550/arXiv.2503.18892
https://doi.org/10.48550/arXiv.2504.07912
https://doi.org/10.48550/arXiv.2504.07912

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

A.1 STAGE 1

All models in our experiments, except for the Multi-Base variants in §4.3, start from the same Stage
1 base model. The process for creating this model is detailed below.

Data Generation. We first generate 50k Level-1 problems by randomly sampling a function
and a string input (length 3 to 10). For each problem, we collect 10 responses from the
Llama-3.1-8B-Instruct model (temperature 1.0, max length 8192). To focus training on
problems the model finds non-trivial, we discard any problems where the base model achieves
100% accuracy. We then collect all remaining correct responses to form the SFT dataset, result-
ing in around 116k training instances.

Rejection Fine-Tuning. We fine-tune the model for 2 epochs with a learning rate of 2× 10−5 and
a global batch size of 128. Other hyperparameters follow the default settings provided by the veRL
framework1.

A.2 STAGE 2

Data Generation. The problems used in Stage 2 are created using a similar process as in Stage
1, with the critical differences being that function definitions are hidden and problems can involve
composition. For Level-2 problems, we randomly select and compose two functions. Example
prompts for Stage 1 vs. Stage 2 can be found in Appendix C. For the Level 1 only and Level 2 only
dataset, we create 50k problems. For the Level 1+2 mixed configuration, we create 25k problems
for each level and combine them.

Reinforcement Learning. For RL experiments, we use DAPO (Yu et al., 2025a) as the optimiza-
tion algorithm. We enforce a strictly on-policy setup by setting both the training batch size and
mini-batch size to 16. For each prompt, we generate 16 rollouts using a sampling temperature of 1.0
and a maximum response length of 8192. During training, we filter out any problems for which all
rollouts are correct or all are incorrect. We use a learning rate of 1 × 10−6 and set the coefficients
for both KL divergence and entropy loss to 0.

Rejection Fine-Tuning. For the iterative RFT baseline, we use a learning rate of 2 × 10−5 and a
batch size of 128. The process is iterative: the model from the previous iteration is used to generate
a new set of rollouts. These rollouts are then filtered for correctness to construct a new SFT dataset,
following the same procedure used in Stage 1. The model is then trained on this new dataset to
produce the model for the next iteration.

B EVALUATION DETAILS

String Transformation Prediction Task. For the string transformation prediction task, the evalu-
ation set consists of 256 randomly generated problems for each level from 1 to 8, resulting in a total
of 2048 test problems. During evaluation, we generate responses using a sampling temperature of
1.0 and a maximum response length of 8192 tokens.

Countdown Task. The evaluation set for the Countdown task consists of 128 problems for each
level. The evaluation setup is the same as evaluating on the string transformation prediction task.

C EXAMPLE PROMPTS FOR STAGE 1 AND STAGE 2

Here we present the example prompts that we use in Stage 1 and Stage 2 (Fig. 7 and Fig. 8). The
biggest difference is that in Stage 2, we do not provide the model with the function definition, and
the model must rely on the atomic skills that are learned during Stage 1 to solve.

1https://github.com/volcengine/verl

15

https://github.com/volcengine/verl

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You are given a code:

def func_16(s):
"""Remove adjacent duplicate characters (compress repeats)."""
if not s:

return s
result = [s[0]]
for ch in s[1:]:

if ch != result[-1]:
result.append(ch)

return ’’.join(result)

def main_solution(x):
return func_16(x)

Can you predict the output of ‘main_solution("tihess")‘ without writing any code? Please reason and put
your final answer in the following json format: {"output": <your output>}, where <your output> should
be the final string.

Figure 7: Example prompt for Stage 1 training. Note that here the function definition is given, in
contrast to Stage 2 training and evaluation.

Example prompt for Stage 2 Level 1 training
You are given a code:

def main_solution(x):
return func_16(x)

Can you predict the output of ‘main_solution("tiheass")‘ without writing any code? Please reason and
put your final answer in the following json format: {"output": <your output>}, where <your output>
should be the final string.

Example prompt for Stage 2 Level 2 training
You are given a code:

def main_solution(x):
return func_2(func_16(x), 3)

Can you predict the output of ‘main_solution("tiheass")‘ without writing any code? Please reason and
put your final answer in the following json format: {"output": <your output>}, where <your output>
should be the final string.

Figure 8: Example prompts for evaluation and Stage 2 training.

D A COMPLETE LIST OF STRING TRANSFORMATION FUNCTIONS

Here we provide the full list of string functions we use. Note that we replace the function names
with meaningless identifiers such as func 1 in our experiment.
def deterministic_shuffle(s):

"""Reorder characters using a fixed multiplier permutation."""
L = len(s)
if L == 0:

return s
multiplier = 3
while gcd(multiplier, L) != 1:

multiplier += 2
return ’’.join(s[(i * multiplier) % L] for i in range(L))

def repeat_str(s, n):
"""Repeat the string s exactly n times."""
return s * n

def remove_vowels(s):
"""Remove vowels from the string."""
vowels = ’aeiouAEIOU’
return ’’.join(ch for ch in s if ch not in vowels)

def sort_chars(s):
"""Sort the characters in the string."""
return ’’.join(sorted(s))

def reverse_words(s):
"""Reverse the order of words in the string."""

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

words = s.split()
return ’ ’.join(reversed(words))

def add_prefix(s, pre):
"""Add a fixed prefix to the string."""
return pre + s

def add_suffix(s, suf):
"""Add a fixed suffix to the string."""
return s + suf

def interlace_str(s1, s2):
"""Interlace two strings character by character (iterative)."""
result = []
len1, len2 = len(s1), len(s2)
for i in range(max(len1, len2)):

if i < len1:
result.append(s1[i])

if i < len2:
result.append(s2[i])

return ’’.join(result)

def rotate_str(s, n):
"""Rotate the string s by n positions using slicing."""
if not s:

return s
n = n % len(s)
return s[n:] + s[:n]

def mirror_str(s):
"""Append the reversed string to the original."""
return s + s[::-1]

def alternate_case(s):
"""Alternate the case of characters (even-index lower, odd-index
upper)."""
return ’’.join(ch.lower() if i % 2 == 0 else ch.upper() for i, ch in
enumerate(s))

def shift_chars(s, shift):
"""
Shift alphabetical characters by a fixed amount (wrapping around).
Non-letters remain unchanged.
"""

def shift_char(ch):
if ’a’ <= ch <= ’z’:

return chr((ord(ch) - ord(’a’) + shift) % 26 + ord(’a’))
elif ’A’ <= ch <= ’Z’:

return chr((ord(ch) - ord(’A’) + shift) % 26 + ord(’A’))
return ch

return ’’.join(shift_char(ch) for ch in s)

def vowel_to_number(s):
"""Replace vowels with numbers: a/A->1, e/E->2, i/I->3, o/O->4, u/U
->5."""

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

mapping = {’a’: ’1’, ’e’: ’2’, ’i’: ’3’, ’o’: ’4’, ’u’: ’5’, ’A’: ’1
’, ’E’: ’2’, ’I’: ’3’, ’O’: ’4’, ’U’: ’5’}
return ’’.join(mapping.get(ch, ch) for ch in s)

def insert_separator(s, sep):
"""Insert a fixed separator between every two characters."""
return sep.join(s)

def duplicate_every_char(s):
"""Duplicate every character in the string."""
return ’’.join(ch * 2 for ch in s)

def fancy_brackets(s):
"""Enclose each character in fancy brackets."""
return ’’.join("<<" + ch + ">>" for ch in s)

def compress_repeats(s):
"""Remove adjacent duplicate characters (compress repeats)."""
if not s:

return s
result = [s[0]]
for ch in s[1:]:

if ch != result[-1]:
result.append(ch)

return ’’.join(result)

def recursive_reverse(s):
"""Recursively reverse the string."""
if s == "":

return s
return recursive_reverse(s[1:]) + s[0]

def loop_concat(s, n):
"""Concatenate s with itself n times using a loop."""
result = ""
for _ in range(n):

result += s
return result

def while_rotate(s, n):
"""Rotate the string using a while loop (n times)."""
count = 0
while count < n and s:

s = s[1:] + s[0]
count += 1

return s

def recursive_interlace(s1, s2):
"""Recursively interlace two strings character by character."""
if not s1 or not s2:

return s1 + s2
return s1[0] + s2[0] + recursive_interlace(s1[1:], s2[1:])

def loop_filter_nonalpha(s):
"""Remove non-alphabetic characters using an explicit loop."""
result = ""
for ch in s:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

if ch.isalpha():
result += ch

return result

def verify_even_length(s):
"""
Verification operator: if the length of s is even, return s;
otherwise remove the last character.
"""
return s if len(s) % 2 == 0 else s[:-1]

def backchain_add_digit(s, depth):
"""
Backtracking operator: deterministically transform s so it contains
a digit.
Applies a fixed sequence of transformations recursively.
"""

def has_digit(t):
return any(ch.isdigit() for ch in t)

transformations = [
lambda t: t + "1",
lambda t: "2" + t,
lambda t: t.replace("a", "3"),
lambda t: t[::-1],

]

def helper(t, d):
if has_digit(t):

return t
if d == 0:

return None
for trans in transformations:

new_t = trans(t)
res = helper(new_t, d - 1)
if res is not None:

return res
return None

result = helper(s, depth)
return result if result is not None else s

def backchain_palindrome(s, depth):
"""
Back chaining: try to transform s into a palindrome.
If s is not already a palindrome and depth permits, append its
reverse and try again.
"""
if s == s[::-1]:

return s
if depth <= 0:

return s
new_s = s + s[::-1]
return backchain_palindrome(new_s, depth - 1)

[note: the string concatenation, i.e., ’+’ is also considered as a
function]

Listing 1: All functions

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E EXAMPLE FOR COUNTDOWN TASK

Level 2 Example
Using the numbers [32, 42], create an equation that equals 74. You can use basic arithmetic operations
(+, -, *, /) and each number can only be used once. Show your work in <think> </think> tags. And return
the final answer in <answer> </answer> tags, for example <answer> (1 + 2) / 3 * 4 </answer>.

Level 3 Example
Using the numbers [95, 14, 18], create an equation that equals 99. You can use basic arithmetic
operations (+, -, *, /) and each number can only be used once. Show your work in <think> </think> tags.
And return the final answer in <answer> </answer> tags, for example <answer> (1 + 2) / 3 * 4 </answer
>.

Figure 9: Example prompts for Countdown task.

F MODEL RESPONSE EXAMPLES

The following sections contain the complete, unfolded responses from each model for the case
studies.

F.1 FULL RESPONSES TO THE LEVEL 2 PROBLEM

RFT Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand how the function
‘func 7‘ interlaces two input strings. [Authors’ Note: It’s not wrong, but it misses another
function func 2.]

Here’s a step-by-step breakdown:

1. ‘func 7(s1, s2)‘ is called with ‘’vptqj’‘ as the first string ‘s1‘ and ‘”nar”‘ as the second
string ‘s2‘.
2. The function iterates over the maximum length between the two input strings. In this
case, the maximum length is 4, which is the length of ‘”nar”‘.
3. The function appends characters from both strings at each index ‘i‘ to the ‘result‘ list. If
an index is out of range for a particular string, it simply skips appending a character from
that string.
4. So, the ‘result‘ list will contain characters from both strings, interleaved.

Here’s the interleaved sequence:

- Index 0: ‘’v’‘ (from ‘’vptqj’‘) and ‘’n’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’]‘
- Index 1: ‘’p’‘ (from ‘’vptqj’‘) and ‘’a’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’]‘
- Index 2: ‘’t’‘ (from ‘’vptqj’‘) and ‘’r’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’, ’t’, ’r’]‘
- Index 3: ‘’q’‘ (from ‘’vptqj’‘) and ‘’ ’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’, ’t’, ’r’,
’q’,”]

Finally, we pass this ‘result‘ list to the ‘join()‘ function to form the final interleaved string.

The final output of ‘main solution(”nar”)‘ will be: ‘”vnpartqj”‘. [Authors’ Note: End too
early, there’s still one function that hasn’t been analyzed.]

So, the JSON output should be:
{"output": "vnpartqj"}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

RL Level 1 Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand how the function
‘func 7‘ interlaces two strings character by character.

Here’s a step-by-step breakdown:

1. ‘func 7‘ takes two strings ‘s1‘ and ‘s2‘ as input.
2. It creates an empty list ‘result‘ to store the interlaced characters.
3. It calculates the lengths of ‘s1‘ and ‘s2‘ and stores them in ‘len1‘ and ‘len2‘, respectively.
4. It loops from ‘0‘ to the maximum of ‘len1‘ and ‘len2‘ using a ‘for‘ loop.
5. Inside the loop, for each iteration ‘i‘, it checks if ‘i‘ is less than ‘len1‘ and ‘len2‘. If it is,
it appends the ‘i-th‘ character of ‘s1‘ and ‘s2‘ to the ‘result‘ list, if it exists.
6. After the loop, it returns the ‘result‘ list as a string by joining all its elements using
‘”.join(result)‘.

Now, let’s analyze the ‘main solution‘ function:

‘def main solution(x): return (func 7(’vptqj’, x) + func 2(’xbh’))‘

Here, ‘s1‘ is ‘’vptqj’‘ and ‘s2‘ is ‘x‘, which is ‘”nar”‘ in this case.

Now, let’s interlace the two strings character by character:

‘i |s1 |s2 |result‘
–|—-|—-|——–
0 |’v’ |’n’ |[’v’, ’n’]
1 |’p’ |’a’ |[’v’, ’n’, ’p’, ’a’]
2 |’t’ |’r’ |[’v’, ’n’, ’p’, ’a’, ’t’, ’r’]
3 |’q’ ||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’]
4 |’j’ ||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]
5 |||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]
6 |||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]

The loop iterates up to the maximum of the lengths of ‘s1‘ and ‘s2‘, which is 5 in this case.
After the loop, ‘func 7‘ returns the ‘result‘ list as a string by joining all its elements.

The ‘result‘ list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

The ‘func 2‘ function is used to remove vowels from a string. It takes a string ‘s‘ as input
and returns a new string with all vowels removed.

In the ‘main solution‘ function, ‘func 2‘ is used to remove vowels from the string ‘’xbh’‘,
but the output of ‘func 7‘ is used as the input for ‘func 2‘ [Authors’ Note: the model
mistakes the relationship between the two functions]. However, in the ‘main solution‘
function, ‘func 2‘ is not actually used with the interlaced string but with the string ‘’xbh’‘.

The ‘main solution‘ function returns the result of ‘func 7(’vptqj’, ’nar’) + func 2(’xbh’)‘.

Since ‘func 2‘ is not used with the interlaced string, the output of ‘main solution(”nar”)‘
will be the interlaced string ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘ as a string, which is:

‘vnpatrqj‘

So, the output of ‘main solution(”nar”)‘ is:
{"output": "vnpatrqj"}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

RL Level 2 Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand what the function
‘func 7‘ does and how it is used in ‘main solution‘.

‘func 7‘ interlaces two strings character by character. It takes two strings ‘s1‘ and
‘s2‘ as input and returns a new string where characters from ‘s1‘ and ‘s2‘ are alternately
appended.

In ‘main solution‘, ‘func 7‘ is called with ‘’vptqj’‘ as the first string and the input ‘x‘
as the second string. The result of ‘func 7‘ is then concatenated with the result of
‘func 2(’xbh’)‘.

Now, let’s consider what happens when ‘main solution‘ is called with ‘”nar”‘ as the
input.

First, we need to call ‘func 7‘ with ‘’vptqj’‘ and ‘”nar”‘ as the two strings.

The characters in ‘’vptqj’‘ are ‘’v’, ’p’, ’t’, ’q’, ’j’‘.

The characters in ‘”nar”‘ are ‘’n’, ’a’, ’r’‘.

Now, let’s interlace these characters using ‘func 7‘.

The maximum length of the two strings is 5. So, ‘func 7‘ will iterate up to 5 times.

Here’s what happens during each iteration:

1. ‘i = 0‘: ‘s1[i] = ’v’‘ and ‘s2[i] = ’n’‘. The result list is ‘[’v’, ’n’]‘.
2. ‘i = 1‘: ‘s1[i] = ’p’‘ and ‘s2[i] = ’a’‘. The result list is ‘[’v’, ’n’, ’p’, ’a’]‘.
3. ‘i = 2‘: ‘s1[i] = ’t’‘ and ‘s2[i] = ’r’‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’]‘.
4. ‘i = 3‘: ‘s1[i] = ’q’‘ and ‘s2[i] = ”‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’]‘.
5. ‘i = 4‘: ‘s1[i] = ’j’‘ and ‘s2[i] = ”‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

The final result list after iterating over all characters from both strings is ‘[’v’, ’n’,
’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

Now, we need to find the characters in ‘’xbh’‘ and remove them from ‘func 2‘. The
characters in ‘’xbh’‘ are ‘’x’, ’b’, ’h’‘.

Now, let’s consider what ‘func 2‘ does. This function removes all vowels from a
string.

The input string to ‘func 2‘ is ‘’xbh’‘. The vowels in ‘’xbh’‘ are ‘”‘ (there are no
vowels in ‘’xbh’‘).

However, we need to remove all vowels from ‘’xbh’‘. Since there are no vowels in
‘’xbh’‘, the string remains the same.

The function ‘func 2‘ will return ‘’xbh’‘ as is.

Now, let’s consider what happens when we concatenate the result from ‘func 7(’vptqj’,
”nar”)‘ with ‘func 2(’xbh’)‘. As explained earlier, ‘func 7(’vptqj’, ”nar”)‘ will return
‘’vnpatrqj’‘.

Now, since ‘func 2(’xbh’)‘ just returns ‘’xbh’‘, the final output of ‘main solution(”nar”)‘
will be the concatenation of ‘’vnpatrqj’‘ and ‘’xbh’‘.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The concatenation of ‘’vnpatrqj’‘ and ‘’xbh’‘ is ‘’vnpatrqjxbh’‘.

So, the final output of ‘main solution(”nar”)‘ is ‘’vnpatrqjxbh’‘.

Here’s the JSON output:
{"output": "vnpatrqjxbh"}

F.2 FULL RESPONSES TO THE LEVEL 3 PROBLEM

RFT Model Response

To predict the output of ‘main solution(”htoek”)‘, let’s analyze the code.

1. The ‘main solution‘ function calls ‘func 14‘ with the input string ‘x‘.
2. ‘func 14‘ takes a string ‘s‘ and returns a new string where each character’s case is
alternated based on its index.
- Even-index characters (i.e., those at 0, 2, 4, etc. indices) are converted to lowercase.
- Odd-index characters (i.e., those at 1, 3, 5, etc. indices) are converted to uppercase.
3. The input string ‘x‘ to ‘main solution‘ is ‘”htoek”‘.

Now, let’s apply the logic of ‘func 14‘ to the input string ‘”htoek”‘:

- Index 0 is even, so ’h’ is converted to lowercase: ’h’.
- Index 1 is odd, so ’t’ is converted to uppercase: ’T’.
- Index 2 is even, so ’o’ is converted to lowercase: ’o’.
- Index 3 is odd, so ’e’ is converted to uppercase: ’E’.
- Index 4 is even, so ’k’ is converted to lowercase: ’k’.

The resulting string is ‘’hToEk’‘.

Therefore, the output of ‘main solution(”htoek”)‘ is: [Authors’ Note: Ends too early,
there’s still one function that hasn’t been analyzed]

{"output": "hToEk"}

RL Level 1 Model Response

To predict the output of ‘main solution(”htoek”)‘, we need to understand what the ‘func 10‘
function does and how it is used in ‘main solution‘.

‘func 10‘ takes a string ‘s‘ and returns a new string where:

* Even-indexed characters are converted to lowercase
* Odd-indexed characters are converted to uppercase

‘main solution‘ calls ‘func 10‘ with the string ‘x‘ after applying the ‘func 2‘ func-
tion, which removes all vowels from ‘x‘. [Authors’ Note: the model fails to correctly
understand and parse the nesting function]

Now, let’s apply these steps:

1. ‘func 2‘ removes vowels from ‘”htoek”‘, resulting in ‘”htk”‘.
2. ‘func 10‘ is applied to ‘”htk”‘.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

- ‘h‘ is at index 0 (even), so it becomes ‘h‘ (lowercase).
- ‘t‘ is at index 1 (odd), so it becomes ‘T‘ (uppercase).
- ‘o‘ is at index 2 (even), so it becomes ‘o‘ (lowercase).
- ‘e‘ is at index 3 (odd), so it becomes ‘E‘ (uppercase).
- ‘k‘ is at index 4 (even), so it becomes ‘k‘ (lowercase).

The resulting string is ‘”hToEk”‘.

However, the question asks us to predict the output without writing any code, so we
might have mistakenly included the characters from the original string ‘”htoek”‘ instead of
the output of ‘func 2‘.

To correctly predict the output, we should first apply ‘func 2‘ to ‘”htoek”‘. The vow-
els in ‘”htoek”‘ are ”o” and ”e”. Removing these vowels leaves us with ‘”htk”‘.

Now, applying ‘func 10‘ to ‘”htk”‘:
- ‘h‘ is at index 0 (even), so it becomes ‘h‘ (lowercase).
- ‘t‘ is at index 1 (odd), so it becomes ‘T‘ (uppercase).
- ‘k‘ is at index 2 (even), so it becomes ‘k‘ (lowercase).

The resulting string is ‘”hTk”‘.

This is the output of ‘func 10(”htk”)‘, which is what ‘main solution‘ returns.

Therefore, the output of ‘main solution(”htoek”)‘ is ‘”hTk”‘.

The final answer is:
{"output": "hTk"}

RL Level 2 Model Response

To predict the output of ‘main solution(”htoek”)‘, let’s analyze the code.

1. The ‘func 2‘ function removes all vowels from a given string ‘s‘.
2. The ‘func 14‘ function takes a string ‘s‘ and returns a new string where every character
in ‘s‘ is duplicated.
3. The ‘func 10‘ function iterates over the characters in the input string ‘s‘. It makes the
characters at even indices lower case and the characters at odd indices upper case.

Now, let’s see what happens when we call ‘main solution(”htoek”)‘.

First, we need to find the output of ‘func 2(”htoek”)‘.

The string ”htoek” contains the characters ”h”, ”t”, ”o”, ”e”, ”k”. All characters that
are vowels (i.e., ”o” and ”e”) will be removed from the string.

After removing vowels, the string ‘func 2(”htoek”)‘ will contain only the characters
”h”, ”t”, ”k”.

Now, we need to find the output of ‘func 14(”htoek”)‘.

The characters in ”htoek” are ”h”, ”t”, ”o”, ”e”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

- ”t” becomes ”tt”
- ”o” becomes ”oo”
- ”e” becomes ”ee”
- ”k” becomes ”kk”

The string ‘func 14(”htoek”)‘ will be ”hhttooeekk”.

Now, we need to find the output of ‘func 10(”hhttooeekk”)‘.

We will iterate over the characters in ”hhttooeekk” along with their indices.

The characters in ”hhttooeekk” and their indices are:
- ”h” at index 0
- ”h” at index 1
- ”t” at index 2
- ”t” at index 3
- ”o” at index 4
- ”o” at index 5
- ”e” at index 6
- ”e” at index 7
- ”k” at index 8
- ”k” at index 9

Now, let’s apply the function ‘func 10‘ to ”hhttooeekk”.

- The character at index 0 (”h”) will become lower case because the index is even.
So, ”h” becomes ”h”.
- The character at index 1 (”h”) will become upper case because the index is odd. So, ”h”
becomes ”H”.
- The character at index 2 (”t”) will become lower case because the index is even. So, ”t”
becomes ”t”.
- The character at index 3 (”t”) will become upper case because the index is odd. So, ”t”
becomes ”T”.
- The character at index 4 (”o”) will become lower case because the index is even. So, ”o”
becomes ”o”.
- The character at index 5 (”o”) will become upper case because the index is odd. So, ”o”
becomes ”O”.
- The character at index 6 (”e”) will become lower case because the index is even. So, ”e”
becomes ”e”.
- The character at index 7 (”e”) will become upper case because the index is odd. So, ”e”
becomes ”E”.
- The character at index 8 (”k”) will become lower case because the index is even. So, ”k”
becomes ”k”.
- The character at index 9 (”k”) will become upper case because the index is odd. So, ”k”
becomes ”K”.

The final string ‘func 10(”hhttooeekk”)‘ will be ”hHtToOeEkK”.

Now, let’s call ‘main solution(”htoek”)‘.

Since ‘main solution(x)‘ calls ‘func 10(func 14(func 2(x)))‘, we need to find the out-
put of ‘func 14(func 2(”htoek”))‘ first.

We already found that ‘func 2(”htoek”)‘ will contain only the characters ”h”, ”t”,
”k”.

Now, let’s apply ‘func 14‘ to ”htk”.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The characters in ”htk” are ”h”, ”t”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”
- ”t” becomes ”tt”
- ”k” becomes ”kk”

The string ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, we need to find the output of ‘func 10(”hhttkk”)‘.

The characters in ”hhttkk” and their indices are:
- ”h” at index 0
- ”h” at index 1
- ”t” at index 2
- ”t” at index 3
- ”k” at index 4
- ”k” at index 5

Now, let’s apply the function ‘func 10‘ to ”hhttkk”.

- The character at index 0 (”h”) will become lower case because the index is even.
So, ”h” becomes ”h”.
- The character at index 1 (”h”) will become upper case because the index is odd. So, ”h”
becomes ”H”.
- The character at index 2 (”t”) will become lower case because the index is even. So, ”t”
becomes ”t”.
- The character at index 3 (”t”) will become upper case because the index is odd. So, ”t”
becomes ”T”.
- The character at index 4 (”k”) will become lower case because the index is even. So, ”k”
becomes ”k”.
- The character at index 5 (”k”) will become upper case because the index is odd. So, ”k”
becomes ”K”.

The string ‘func 10(”hhttkk”)‘ will be ”hHtTkK”.

Now, we need to call ‘main solution(”htoek”)‘.

As ‘main solution(x)‘ calls ‘func 10(func 14(func 2(x)))‘, the output of
‘main solution(”htoek”)‘ will be the output of ‘func 10(func 14(func 2(”htoek”)))‘.

We already found that ‘func 14(”hhttooeekk”)‘ will be ”hHtToOeEkK”.

Now, we need to find the output of ‘func 10(”hHtToOeEkK”)‘.

We already calculated this in the previous step. The output of ‘func 10(”hHtToOeEkK”)‘
will be ”hHtToOeEkK”.

However, we need to recall that ‘func 2‘ removes vowels from the string. So, to find
the output of ‘func 10(func 14(func 2(”htoek”)])‘, we need to first find the output of
‘func 14(func 2(”htoek”))‘.

We already calculated this earlier. The output of ‘func 14(func 2(”htoek”))‘ will be
”hhttkk”.

Now, we need to find the output of ‘func 10(”hhttkk”)‘.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

The ‘main solution‘ function calls ‘func 10(func 14(func 2(x)))‘. To find the final output of
‘main solution(”htoek”)‘, we need to find the output of ‘func 14(func 2(”htoek”))‘.

The string ”htoek” has characters ”h”, ”t”, ”o”, ”e”, ”k”. The vowels in this string
are ”o” and ”e”.

If we remove these vowels from ”htoek”, we are left with ”htk”.

Now, let’s apply ‘func 14‘ to ”htk”.

The characters in ”htk” are ”h”, ”t”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”
- ”t” becomes ”tt”
- ”k” becomes ”kk”

The string ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, let’s apply ‘func 10‘ to ”hhttkk”.

We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

The ‘main solution‘ function calls ‘func 10(func 14(func 2(x)))‘. To find the final output of
‘main solution(”htoek”)‘, we need to find the output of ‘func 14(func 2(”htoek”))‘.

The characters in ”htoek” are ”h”, ”t”, ”o”, ”e”, ”k”. The vowels in this string are
”o” and ”e”.

If we remove these vowels from ”htoek”, we are left with ”htk”.

Now, let’s apply ‘func 14‘ to ”htk”.

We already calculated this earlier. The output of ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, we can apply ‘func 10‘ to ”hhttkk”.

We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

So, the output of ‘main solution(”htoek”)‘ will be ”hHtTkK”.

The final answer is:
{"output": "hHtTkK"}

27

	Introduction
	Background
	Research Framework
	Task Design: Deductive Reasoning on String Transformation Prediction
	Training and Evaluation Protocol

	RL as a Pathway to Generalizable Skill Acquisition
	LLMs Acquire New Compositional Skills during RL
	Compositional Data is the Incentive for RL to Teach Compositional Skills
	Compositional Skills Learned in RL are Transferable, but Atomic Skills are Prerequisites
	RL Expanding Performance Limits is Not a False Promise
	Behavioral Analysis: RL Transforms Failure Modes

	Conclusion
	Training Details
	Stage 1
	Stage 2

	Evaluation Details
	Example Prompts for Stage 1 and Stage 2
	A Complete List of String Transformation Functions
	Example for Countdown Task
	Model Response Examples
	Full Responses to the Level 2 Problem
	Full Responses to the Level 3 Problem

