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ABSTRACT

Does reinforcement learning (RL) teach large language models (LLMs) genuinely
new skills, or does it merely activate existing ones? This question lies at the core
of ongoing debates about the role of RL in LLM post-training. On one side, strong
empirical results can be achieved with RL even without preceding supervised fine-
tuning; on the other, critics argue that RL contributes little beyond reweighting ex-
isting reasoning strategies. This work provides concrete evidence that LLMs can
acquire genuinely new skills during RL by composing existing ones, mirroring one
of the central mechanisms by which humans acquire new cognitive skills (Ander-
son, 1982). To mitigate data contamination and other confounding factors, and
to allow precise control over task complexity, we develop a synthetic framework
for our investigation. Specifically, we define a skill as the ability to infer the out-
put of a string transformation function f(x) given x. When an LLM has already
learned f and g prior to RL, our experiments reveal that RL enables it to learn
unseen compositions of them h(x) = g(f(x)). Further, this compositional abil-
ity generalizes to more difficult problems such as compositions of > 2 functions
unseen during RL training. Our experiments provide surprising evidence that this
compositional ability, acquired on the source task, transfers to a different target
task. This transfer occurs even though the model has never trained on any com-
positional problems in the target task, and the only requirement is that the model
has acquired the target task’s atomic skills before its RL training on the source.
Our qualitative analysis shows that RL fundamentally changes the reasoning be-
haviors of the models. In contrast, none of the findings is observed in next-token
prediction training with the same data. Our systematic experiments provide fresh
insights into the learning behaviors of widely-used post-training approaches for
LLMs. They suggest the value of building base models with the necessary basic
skills, followed by RL with appropriate incentivization to acquire more advanced
skills that generalize better to complex and out-of-domain problems.

1 INTRODUCTION

Reinforcement learning (RL) has achieved broad success in improving large language models
(LLMs) on a variety of tasks especially reasoning (OpenAI, 2024; DeepMind, 2025), even directly
building upon the base model without any preceding supervised fine-tuning (DeepSeek-AI et al.,
2025). Despite the profound success, recent work finds the exploration of RL is impeded by the
entropy collapse phenomenon (Cui et al., 2025b; Liu et al., 2025a; Yu et al., 2025b), and the perfor-
mance gaps between base and RL-trained models diminish as the number of samples (k) increases
in pass@k evaluations (Yue et al., 2025). In addition, some argue that the “aha moments” in RL
training (OpenAI, 2024; DeepSeek-AI et al., 2025) are not emergent but merely the result of am-
plifying existing cognitive behaviors present in base models (Gandhi et al., 2025; Liu et al., 2025c;
Zhao et al., 2025), which casts shadow on whether LLMs learn new skills during RL training (Wu
et al., 2025b). Such observations diverge from established RL findings that predate LLMs, where
models were trained from scratch and learned new skills (Silver et al., 2016; 2017; OpenAI et al.,
2019). The fact that LLMs are pretrained on vast data prior to RL may contribute to these diver-
gences and call for further investigation into the following important research questions: (1) Does
RL teach new skills to LLMs? (2) If so, how to incentivize it? (3) Are the skills generalizable?
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Figure 1: An overview of our research framework and key findings. (Top) We introduce a
clean string transformation testbed to scientifically analyze RL’s capabilities. (Bottom-Left) Our
central RL Compositionality Hypothesis posits that training on simple composites with RL unlocks
generalizable compositional skills. (Bottom-Right) Our experiments validate this, showing that:
(1) compositional data combined with RL is the key ingredient for learning this new skill; (2) the
learned skill transfers across domains; and (3) RL significantly improves difficult problems where
the base model fails, while only reranking on problems it solves well.

Answering these questions will advance our understanding of LLM learning behaviors and inform
the high-stakes trade-off in resource allocation between pretraining and post-training.

We provide concrete evidence that LLMs indeed learn new skills in RL, by composing and general-
izing existing skills to solve more complex problems; For such learning to happen, there should be
proper incentivization in RL. Our investigation is grounded in the cognitive skill acquisition process
by humans, inspired by Anderson (1982), which argues that humans learn new skills by composing
and then internalizing existing ones. Unlike prior works (Gandhi et al., 2025; Yue et al., 2025), we
choose to construct a controlled synthetic framework that facilitates:

• Decontaminated evaluation: We design a string transformation prediction task with unique func-
tions assigned meaningless identifiers (e.g., func 16) to prevent inference from function names.
During RL, function definitions are hidden. The tasks will then be unsolvable without going
through our atomic skills acquisition training. This setup enables us to investigate the RQs con-
trolling for confounders.

• Well-defined atomic and compositional skills: We define atomic skills as single,
non-decomposable transformations, and compositional skills as their nested combinations.
For example, given input string x, func 16(x) represents an atomic skill, while
func 15(func 16(x)) requires compositional reasoning.

• Controllable difficulty: As each skill is instantiated as a Python function, we control difficulty
of composition through the depth of nesting. As shown in Fig. 1, the model must perform de-
ductive reasoning to give the output string after a given transformation, e.g., a Level-1 difficulty
problem func 16(x) and a Level-2 one func 16(func 15(x)). Here the difficulty level is
determined by the number of atomic functions composed.

With our framework and a two-stage training protocol that separates atomic from compositional skill
acquisition, we conduct experiments with Llama-3.1-8B-Instruct (Dubey et al., 2024) and answer
the RQs as follows:

2
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• RL teaches new compositional skills. RL on Level-2 problems, receiving only correctness-
based outcome rewards without reasoning demonstrations, substantially improves generalization
on more difficult problems: performance on unseen Level-3 tasks improves from near-zero to
30%, and Level-4 to 15%. This generalization does not occur in a baseline trained with rejection
fine-tuning (RFT) on the same Level-2 problems. This shows that RL enables the acquisition of
compositional skills.

• Both RL and compositional incentives are essential for skill acquisition. In contrast to the
substantial accuracy improvements from RL on Level-2 compositional problems, RFT on the
same data and RL on Level-1 atomic problems both yield little improvements on problems higher
than Level-2 (e.g., less than 1% improvement at Level-3). This may explain why Sun et al. (2025)
conclude that RL does not promote compositional generalization, as their training includes no
explicit incentive for composition.

• The learning achieved by RL generalizes to held-out evaluation, more difficult problems,
and even a different task. All findings above are based on held-out evaluation of compositional
problems consisting of atomic skills (functions) unseen in RL training. And as aforementioned,
models RL-trained on Level 2 problems show non-trivial gains on problems up to Level 4. For
cross-task transfer, compositional RL on the string task boosts accuracy on the unseen Level-3
Countdown problems to 35% for a model with the prerequisite Countdown atomic skills.

Our findings challenge the recent view that current RL with verifiable rewards (RLVR) (Lambert
et al., 2024) merely utilizes reasoning patterns in base models rather than learning new reasoning
abilities (Yue et al., 2025; Wu et al., 2025b). This view is based on the observation that the pass@k
performance gap between RL-trained and base models narrows as k increases (Yue et al., 2025).
We conjecture that this observation arises, at least in part, from evaluating and RL training on tasks
where base models already achieve high pass@k, possibly due to pretraining on similar tasks that
is beyond the control of most academic researchers; thus RL has little incentive to learn a skill that
the base model already has. To confirm this conjecture, our experiments show that RL substan-
tially improves pass@k on challenging compositional problems where base model’s pass@k is near
zero (See Fig. 5). This reveals what we term the “reranking illusion,” namely aggregate metrics
on mixed-difficulty benchmarks can mask genuine skill acquisition by conflating capabilities of dif-
ferent types. Our qualitative analysis confirms that models fundamentally change their reasoning
behaviors after RL training. As shown in Fig. 6, compositional errors, i.e., ignoring composi-
tion and misunderstanding function relationships, drop substantially, while failures shift primarily
to atomic prediction errors (55%). This behavioral transformation indicates genuine acquisition of
compositional skills.

Our findings have important implications for LLM development and highlight RL’s critical role in
post-training, particularly its potential for easy-to-hard generalization and cross-task transfer. They
call for closer coordination between base model development and post-training strategy from a skill
acquisition perspective.

2 BACKGROUND

The Recent Pessimistic View on Whether RL Teaches New Skills to LLMs. RL in LLMs builds
on a model pretrained on vast data. While supervised warm-starts are a common technique in tradi-
tional RL (Silver et al., 2016; Vinyals et al., 2019; De La Cruz Jr et al., 2019; Silva & Gombolay,
2021), the large-scale and general-purpose nature of LLM creates a different scenario. On one hand,
this strong prior enables base LLM to sample reasonable rollouts and thus perform RL directly with-
out any preceding supervised fine-tuning (DeepSeek-AI et al., 2025; Pan et al., 2025; Zeng et al.,
2025); on the other hand, it becomes difficult to distinguish genuine skill acquisition from activation
of existing capabilities during RL training.

Recent work tries to investigate this but uses loose definitions of “skill”, often relying on proxies
such as the continually increasing frequency of certain reasoning patterns (Gandhi et al., 2025; Zhao
et al., 2025; Liu et al., 2025c) or the diminishing gaps between the pass@k accuracy of models
before and after RL, as shown in the bottom right chart in Fig. 1 (Yue et al., 2025; Liu et al., 2025b;
Wu et al., 2025b; He et al., 2025; Wen et al., 2025; Zhu et al., 2025). Although these studies show
that RL activates behaviors already present in the base model, they did not directly prove that no
new skill is learned during the process. Moreover, the pass@k results can be misinterpreted for

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

many reasons: (1) The causal relation between performance and each skill remains unclear, thus it
is not guaranteed that everything learned can be translated into improvements in pass@k accuracy
on downstream tasks. (2) The evaluation tasks only provide an obscure overall view, lacking fine-
grained analysis on problems of different difficulty levels or domains. (3) The result is confounded
by the fact that the model may remain limited new skills to learn or lack the incentive to learn new
skills if it already perform decently well before RL, which is possible if models perform RL on the
same or similar data seen in next-token prediction (NTP) training (Wu et al., 2025d; Shao et al.,
2025; Wang et al., 2025; Cui et al., 2025a; Yu et al., 2025b; Liu et al., 2025b; Wu et al., 2025c)
Together, these highlight the urgent need for a deeper analysis of tasks through a clean framework,
in which the skills are clearly defined and contribute to the performance causally, and evaluated in a
finer granularity.

Compositional Learning as a Testbed Grounded in Cognitive Skill Acquisition in Humans.
Although the pessimistic conclusions about RL in LLMs from prior works are debatable, they at
least indicate that the success of RL depends on strong base models. This motivates our study of skill
composition, where RL learns new abilities by leveraging those already acquired by the base model.
Compositional reasoning provides an ideal framework for investigating skill acquisition because it
naturally separates atomic knowledge, which mirrors how humans learn cognitive skills (Anderson,
1982). Notably, it is established in cognitive science that both composed skills and the meta-ability
to learn composition are non-trivial new skills (Anderson, 1982; Lake et al., 2016). For clarity,
we refer to learning new skills as the former throughout this paper. Learning compositional skills
helps the model to generalize to more challenging problems and new domains beyond training data,
which we will show later. In the field of AI, compositional reasoning has been widely studied before
LLMs and has been considered a necessary property of generalization. (Fodor & Pylyshyn, 1988;
Lake et al., 2016; Andreas et al., 2015). More recently, Yin et al. (2025) achieved compositional
improvements through in-context learning rather than RL, while Sun et al. (2025) found that directly
RL in atomic skills fails in compositional generalization. Comparing the two works, we conjecture
that an explicit incentive to composition is necessary.

3 RESEARCH FRAMEWORK

In this work, we define “new skills” as novel reasoning strategies that enable models to solve pre-
viously unsolvable problems through systematic combination of existing capabilities. We address
three critical research questions: (1) Does RL teach new skills to LLMs? (2) If so, how to incen-
tivize it? (3) Are the learned skills generalizable?

Hypothesis 1 (The RL Compositionality Hypothesis). Once a model has acquired the necessary
atomic, non-decomposable skills for a task through NTP training, RL with proper incentivization
can teach the model to learn new skills by composing atomic skills into more complex capabilities.

3.1 TASK DESIGN: DEDUCTIVE REASONING ON STRING TRANSFORMATION PREDICTION

To test our hypothesis while avoiding confounders from data contamination and unclear skill bound-
aries, we design a controlled synthetic task with the following properties: (1) Atomic skills are well
defined so that models can learn the fundamental skills separately before RL. Each string trans-
formation function has clear, deterministic behaviors that can be learned independently. (2) Task
difficulty can be controlled by adjusting the compositional complexity of the atomic skills, allowing
us to test generalization across complexity levels. (3) RL and evaluation tasks do not appear in the
LLM pretraining corpus, ensuring that improvements stem from learning rather than memorization.

Task Definition. Specifically, our task involves deductive reasoning on string transformations.
Given an input string x and a composition of deterministic transformation functions such as f(·)
and g(·), models must predict the output string after applying the specified transformation (e.g.,
y = f(g(x))). We construct 25 unique string transformation functions as atomic skill spanning var-
ious computational patterns including character manipulation, reordering, filtering, and structural
modifications (see Appendix §D for complete specifications). To mitigate potential contamination,
we assign meaningless identifiers to string functions as shown in Fig. 1, so that it is impossible to
infer the functionality with function names only.

4
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Difficulty Level. We control compositional complexity through Difficulty Levels corresponding to
nesting depth, with Level n involving n-function composition. For instance, Level 1 involves single
function application (e.g., func 16(x) as shown in Fig. 1), while Level 2 involves two-function
composition (e.g., func 16(func 15(x))). The controlled difficulty provides a fine-grained
inspection of model performance, rather than a vague overall number as adopted in prior work (Yue
et al., 2025; Liu et al., 2025b; Wu et al., 2025b).

3.2 TRAINING AND EVALUATION PROTOCOL

Training consists of two stages to separate atomic skill acquisition from compositional skill learning,
simulating realistic post-training pipelines.

Stage 1 Training: Atomic Skills Acquisition via RFT. Models learn “atomic skills” in this stage,
i.e., receiving explicit function definitions alongside input strings and training via rejection fine-
tuning Dong et al. (2023) on their own correct reasoning trajectories. This ensures models internalize
each transformation function’s behavior before attempting composition. Crucially, this is the only
stage where models observe function implementations. An example can be found in Fig. 7.

Stage 2 Training: Compositional Skill Training via Either RFT or RL. In this stage, models see
only function names and compositions, such as func 2(func 16(x)), with function definitions
hidden. See Fig. 8 for examples. This forces reliance on internalized atomic knowledge while
learning systematic composition. We compare two approaches: (1) Composition via online RL
provides models with binary rewards based on output correctness and updates through Group Rel-
ative Preference Optimization (GRPO) Shao et al. (2024), testing whether RL is necessary for the
acquisition of compositional skills. (2) Composition via offline RFT trains models with NTP on
correct reasoning trajectories for compositional problems, serving as a baseline to examine whether
exposure to compositional examples alone enables composition.

We use Llama-3.1-8B-Instruct, which is identified as a cleaner testbed for RL by recent work (Shao
et al., 2025; Agarwal et al., 2025; Wu et al., 2025c), to further minimize the effect of data contami-
nation besides our string tasks. For more details, please refer to Appendix A.

Held-out, Easy-to-Hard, and Cross-Task Evaluation. We assess generalization using rigorous
held-out evaluation. In Stage 1, models are trained on all 25 atomic functions (Appendix D). In Stage
2, the functions are partitioned into two disjoint sets: the model trains only on compositions from one
set, while the other is held out for constructing evaluation problems. We test model generalization
across various difficulty levels, and adopt Countdown (Gandhi et al., 2024; Pan et al., 2025) as
testbed for task transfer.

4 RL AS A PATHWAY TO GENERALIZABLE SKILL ACQUISITION

4.1 LLMS ACQUIRE NEW COMPOSITIONAL SKILLS DURING RL

Our first experiment directly test our RL Compositionality Hypothesis (Hypothesis 1). To do so, we
start from an identical Stage 1 base model and apply three different Stage 2 training configurations,
allowing us to isolate the impact of incentivizing composition during RL: (1) RL Level 1, trained
only on atomic tasks; (2) RL Level 2, trained only on two-level compositions; and (3) RL Level
1+2, trained on a uniform mix. We then evaluate their ability to generalize to held-out tasks from
Level 1 up to Level 6, testing whether they can solve problems with unseen function compositions
and higher nesting levels than seen in RL training.

As shown in blue curves in Fig. 2, training on Level 1 alone leads to high accuracy on Level 1,
peaking at around 90%, but fails to generalize. Its accuracy on Level 2 task remains below 25%, and
on Level 3 through 6, it is consistently near zero. This demonstrates that learning only the atomic
skills through RL is insufficient for learning effective composition.

In contrast, incorporating compositional tasks into RL training yields transformative results. Both
the RL Level 2 and RL Level 1+2 models demonstrate strong performance to generalize to prob-
lems with nesting depths exceeding their training data. On Level 3, their accuracy improves from
5% to around 30%, and from 1% to 15% on Level 4, which are all significant improvements over
the RL Level 1 model. And this trend continues on even Level 5, indicating both models learn a
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Figure 2: Test Accuracy on held-out tasks vs. RL training steps, each related to one held-out
task difficulty level. The dark blue curve indicates that training on atomic skills alone (RL Level 1)
yields nearly no compositional ability on held-out functions. In contrast, including Level 2 data in
RL unlocks strong generalization to more complex problems (Levels 3-6).

generalizable principle of compositional reasoning rather than merely memorizing solutions. This
validates our hypothesis that RL can teach genuinely new skills, but only when the training objective
explicitly incentivizes their use. These results provide us with evidence to answer RQ1:

TAKEAWAY 1

RL on compositional data teaches new skills that generalize to unseen compositions of
known atomic skills.

4.2 COMPOSITIONAL DATA IS THE INCENTIVE FOR RL TO TEACH COMPOSITIONAL SKILLS

Our previous experiment shows that compositional data is necessary for RL to teach new composi-
tional skills, but can a supervised method, such as RFT, achieve the same results as RL when
given the exact same compositional (Level 2) data? To address this question, we train a model
with iterative RFT on the same Level 2 problems and conduct a head-to-head comparison against
the RL Level 2 model from §4.1, with both having started from the identical Stage 1 base model.

The results in Fig. 3 show a significant difference in performance from Fig. 2. The RFT model’s
accuracy is significantly worse than RL across all compositional levels and has only marginal im-
provement over the first iteration. For example, on Level 3 it never surpasses 2.6%. In contrast,
the RL Level 2 model achieves 64% on Level 2 and 27% on Level 3, significantly outperforming
the RFT model. Surprisingly, the RFT model attains only 15% accuracy on Level-2 problems. This
indicates that RFT fails to generalize even to held-out compositional problems of the same difficulty
as its training data, let alone higher difficulties. These results provide the evidence to answer RQ2:

TAKEAWAY 2

RFT, even with on compositional data, is suboptimal for learning compositional skills; RL, in
addition to compositional training data, is another important factor in learning generalizable
compositional skills.

4.3 COMPOSITIONAL SKILLS LEARNED IN RL ARE TRANSFERABLE, BUT ATOMIC SKILLS
ARE PREREQUISITES

While our experiments demonstrate that RL can teach generalizable compositional skills within a
task, collecting compositional RL data for every new domain is impractical. We therefore test the
transferability of the learned compositional skill. Specifically, we conjecture that RL enables models
to compose atomic skills on Task B after learning composition on Task A, if the model has already
acquired the necessary atomic skills for Task B.
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Figure 3: RL vs. RFT on Compositional Tasks. RL (red dashed line) achieves substantially higher
accuracy across all levels, while iterative RFT fails to learn a generalizable skill.

Table 1: Model configurations for the task transfer experiment.
Stage 1 Stage 2

Model Configuration String Atomic RFT Countdown Atomic RFT String Atomic RL String Comp. RL
String-Base + RL L1+2 ✓ × × ✓
Multi-Base ✓ ✓ × ×
Multi-Base + RL L1 ✓ ✓ ✓ ×
Multi-Base + RL L1+2 ✓ ✓ × ✓

Experimental Setup. We test this conjecture on the Countdown task, where a model must con-
struct a mathematical expression from a given set of integers to reach a target number (see §E for
examples). In Countdown, a Level ℓ task requires the model to construct a mathematical expression
using ℓ given integers to reach a target number. The minimum level for Countdown is Level 2. We
compare four models to test our hypothesis, as detailed in Tab. 1. These configurations allow us to
compare a “atomic-skill-only” baseline (Multi-Base) against models with either transferred atomic
RL (Multi-Base + RL L1) or transferred compositional RL (Multi-Base + RL L1+2), as well as a
control model from §4.1 that has the compositional skill but lacks the necessary atomic knowledge
of Countdown (String-Base + RL L1+2). Note that none of the models are trained on Countdown
with RL in Stage 2, and are only trained on our string task.

We evaluate these models on unseen, more challenging Countdown problems (Levels 3-5). We
report the Avg@32, the average accuracy across 32 responses sampled at temperature 1.0.
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Figure 4: Avg@32 Accuracy on the Count-
down Task. Atomic skills are a prerequi-
site for task transfer, and that compositional
RL (Multi-Base + RL L1+2) on the unrelated
string task offers a significant performance im-
provement on Countdown. Note that none of
the models are trained with RL on Countdown.

Results. The results in Fig. 4 provide clear evi-
dence supporting our hypothesis. The String-Base
+ RL L1+2 model fails completely. The Multi-
Base model achieves reasonable accuracy of ap-
proximately 17% at Level 3 but still struggles at
higher levels. Multi-Base + RL L1 shows marginal
improvement over Multi-Base, increasing accu-
racy to around 20% at Level 3, with the advan-
tage diminishing on more complex problems. The
Multi-Base + RL L1+2 model achieves surpris-
ingly strong performance. It achieves a 35% ac-
curacy at Level 3, outperforming the Multi-Base
baseline by more than 18% accuracy. This advan-
tage persists at higher complexities, reaching ap-
proximately 6% at Level 4, where other models
largely fail and achieve near-zero accuracy. The
results show that the compositional skill learned
from string transformation transfers to countdown,
acting as a meta-skill that enhances the use of the
target task’s atomic knowledge. Finally, the comparison between Multi-base + RL and String-Base
+ RL L1+2 confirms our fundamental assumption that task-specific atomic skills are prerequisites
for compositional skills to be effective.
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Figure 5: Pass@k performance across varying difficulty levels. On easy problems (Levels 1-2),
the performance gap shrinks with more samples, consistent with the reranking narrative. On hard
problems (Levels 3-8), the gap widens substantially, suggesting new skill acquisition.

These results may explain recent findings on generalizable RL improvements. For example, Logic-
RL (Xie et al., 2025) reports performance gains on mathematical problems after training on logic
puzzles, and Guru (Cheng et al., 2025) shows that domains with greater pre-training exposure benefit
more from cross-task generalization. We suggest that LLMs have already acquired essential atomic
skills through large-scale pre-training, particularly in mathematics and coding. Thus, incentiviz-
ing compositional skills through RL in one task helps combine task-specific skills more effectively
across domains. In contrast, domains with less pre-training exposure may lack sufficient atomic
skills, limiting compositional skill transfer to downstream tasks. With this finding, we answer RQ3:

TAKEAWAY 3

Compositional skills learned through RL are transferable to a different task where the model
possesses the atomic skills.

4.4 RL EXPANDING PERFORMANCE LIMITS IS NOT A FALSE PROMISE

Our findings strongly suggest that RL can teach compositional skills that are novel to the base
model. This directly challenges recent arguments that RL merely “reranks” model responses, dis-
tilling pass@k performance of the base model into pass@1 (Yue et al., 2025; Wu et al., 2025a). This
conclusion is drawn based on a shrinking pass@k performance gap between base and RL-tuned
models as k increases. However, we argue this conclusion may stem from two issues: (1) evaluating
on mixed-skill benchmarks, therefore an improvement in a specific skill, like composition, can be
masked in pass@k if other required skills remain a bottleneck, and (2) using RL training that does
not properly incentivize the new skill in the first place.

Our controlled framework allows us to dissect both issues. By isolating the compositional skill at
varying difficulty levels, we can reliably assess skill acquisition (addressing issue 1), and by compar-
ing different RL training setups (§4.1), we can test the effect of proper incentivization (addressing
issue 2). We compare pass@1000 performance at each difficulty level of our test set, selecting
k = 1000 as a sufficiently large and practically meaningful budget. Larger budgets would become
impractical, as any reasonable model could theoretically achieve pass@∞ = 1.

The results are presented in Fig. 5. Both RL Level 1 and RL Level 1+2 models are trained from
RFT base model using RL in Stage 2. The RL Level 1 model, which is not incentivized properly
to learn composition, exhibits a similar trend to the RFT base across almost all levels. On easier
problems (Levels 1 and 2) where the RFT base model already shows solving potential evidenced
by high pass@k, the performance gaps between RL Level 1+2 model and the RFT model shrink as
k increases, aligning with the trends observed in Yue et al. (2025); Wu et al. (2025b). However, a
completely different trend is observed on more challenging compositional problems (Levels 3-6).
The RL Level 1+2 model’s performance substantially outperforms the RFT base with an increasing
gap as k grows. For example, at Level 5, the performance gap over the RFT base grows from 4%
at pass@1 to approximately 25% at pass@1024. This divergence is clear evidence of new skill
acquisition. The results suggest that the pessimistic observation of “RL does not push performance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

limits” in prior work may be explained by the lack of incentive for RL to learn new skills, as the
base model already achieves high pass@k performance.

TAKEAWAY 4

The prior conclusion that RLVR only utilizes base models’ reasoning patterns without learn-
ing new abilities is likely an artifact of evaluating and RL training on tasks that base models
already achieve high pass@k; thus RL has little incentive to learn a new skill.

4.5 BEHAVIORAL ANALYSIS: RL TRANSFORMS FAILURE MODES

While our results show that training with compositional data unlocks promising generalization, a
fundamental question remains: do models trained under different setups exhibit different behav-
iors, or do they simply differ in capability while showing similar failure modes? To investigate
this, we analyze the failure modes of different models on Level 3 problems of our string task.

We use Gemini-2.5-Pro to classify responses into five categories: (1) Correct, (2) Ignores Com-
position (e.g., analyzing only a single function), (3) Incomplete Trace (recognizes composition
but terminates early), (4) Incorrect Composition (e.g., misinterprets nesting), and (5) Atomic Er-
ror (errors in atomic functions prediction without the above). Categories 2-4 indicate difficulties
with handling compositional problems. And while still incorrect, category 5 represents appropriate
compositional behavior, as the error is not due to a lack of compositional skill.

Correct
Ignores Composition
Incomplete Traces
Incorrect Composition
Atomic Error

Figure 6: Distribution of failure modes on
Level 3 string tasks.

We compare four models: RFT Base (after Stage 1
training), RFT Level 2 (after Stage 2 training on Level
2 problems with RFT), RL Level 1, and RL Level 2,
all from previous sections. The latter three models are
all trained from the RFT Base.

Fig. 6 reveals substantial similarities in the failure pat-
terns of RFT Base, RFT Level 2, and RL Level 1 mod-
els. Their failures are dominated by ignoring the com-
position entirely (all >50%) and misunderstanding the
compositional structure (all >35%).

In contrast, the RL Level 2 model demonstrates funda-
mentally different behaviors. It completely eliminates
”Ignores Composition” errors and correctly solves
28.1% of the problems. Crucially, its primary fail-
ure mode becomes “Atomic Error.” This shows that
compositional RL not only improves accuracy but
teaches models to parse and execute compositional
plans, shifting failures from high-level misunderstand-
ings to lower-level execution errors. See §F for examples of different model responses.

TAKEAWAY 5

Rather than merely improving accuracy, RL on compositional problems fundamentally trans-
forms the model’s behavior, enabling it to correctly understand and handle compositions.

5 CONCLUSION

The debate over whether RL can teach LLMs new skills has been clouded by experiments on bench-
marks where LLMs already perform well, using coarse-grained metrics that obscure the learning
of new capabilities. By stepping back to a cleaner, more controllable experimental environment,
our findings provide a clear and optimistic answer: RL can teach genuinely new and powerful
skills when the training task properly incentivize composition. Our results show that the compo-
sitional skills are learnable through RL and generalize across difficulty levels and different tasks.
Our findings suggest that the pessimistic conclusion that RL does not learn new skills may stem
from inappropriate evaluation setups rather than fundamental constraints of RL itself.
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Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
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A TRAINING DETAILS

A.1 STAGE 1

All models in our experiments, except for the Multi-Base variants in §4.3, start from the same Stage
1 base model. The process for creating this model is detailed below.

Data Generation. We first generate 50k Level-1 problems by randomly sampling a function
and a string input (length 3 to 10). For each problem, we collect 10 responses from the
Llama-3.1-8B-Instruct model (temperature 1.0, max length 8192). To focus training on
problems the model finds non-trivial, we discard any problems where the base model achieves
100% accuracy. We then collect all remaining correct responses to form the SFT dataset, result-
ing in around 116k training instances.

Rejection Fine-Tuning. We fine-tune the model for 2 epochs with a learning rate of 2× 10−5 and
a global batch size of 128. Other hyperparameters follow the default settings provided by the veRL
framework1.

A.2 STAGE 2

Data Generation. The problems used in Stage 2 are created using a similar process as in Stage
1, with the critical differences being that function definitions are hidden and problems can involve
composition. For Level-2 problems, we randomly select and compose two functions. Example
prompts for Stage 1 vs. Stage 2 can be found in Appendix C. For the Level 1 only and Level 2 only
dataset, we create 50k problems. For the Level 1+2 mixed configuration, we create 25k problems
for each level and combine them.

Reinforcement Learning. For RL experiments, we use DAPO (Yu et al., 2025a) as the optimiza-
tion algorithm. We enforce a strictly on-policy setup by setting both the training batch size and
mini-batch size to 16. For each prompt, we generate 16 rollouts using a sampling temperature of 1.0
and a maximum response length of 8192. During training, we filter out any problems for which all
rollouts are correct or all are incorrect. We use a learning rate of 1 × 10−6 and set the coefficients
for both KL divergence and entropy loss to 0.

Rejection Fine-Tuning. For the iterative RFT baseline, we use a learning rate of 2 × 10−5 and a
batch size of 128. The process is iterative: the model from the previous iteration is used to generate
a new set of rollouts. These rollouts are then filtered for correctness to construct a new SFT dataset,
following the same procedure used in Stage 1. The model is then trained on this new dataset to
produce the model for the next iteration.

B EVALUATION DETAILS

String Transformation Prediction Task. For the string transformation prediction task, the evalu-
ation set consists of 256 randomly generated problems for each level from 1 to 8, resulting in a total
of 2048 test problems. During evaluation, we generate responses using a sampling temperature of
1.0 and a maximum response length of 8192 tokens.

Countdown Task. The evaluation set for the Countdown task consists of 128 problems for each
level. The evaluation setup is the same as evaluating on the string transformation prediction task.

C EXAMPLE PROMPTS FOR STAGE 1 AND STAGE 2

Here we present the example prompts that we use in Stage 1 and Stage 2 (Fig. 7 and Fig. 8). The
biggest difference is that in Stage 2, we do not provide the model with the function definition, and
the model must rely on the atomic skills that are learned during Stage 1 to solve.

1https://github.com/volcengine/verl
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You are given a code:

def func_16(s):
"""Remove adjacent duplicate characters (compress repeats)."""
if not s:

return s
result = [s[0]]
for ch in s[1:]:

if ch != result[-1]:
result.append(ch)

return ’’.join(result)

def main_solution(x):
return func_16(x)

Can you predict the output of ‘main_solution("tihess")‘ without writing any code? Please reason and put
your final answer in the following json format: {"output": <your output>}, where <your output> should
be the final string.

Figure 7: Example prompt for Stage 1 training. Note that here the function definition is given, in
contrast to Stage 2 training and evaluation.

Example prompt for Stage 2 Level 1 training
You are given a code:

def main_solution(x):
return func_16(x)

Can you predict the output of ‘main_solution("tiheass")‘ without writing any code? Please reason and
put your final answer in the following json format: {"output": <your output>}, where <your output>
should be the final string.

Example prompt for Stage 2 Level 2 training
You are given a code:

def main_solution(x):
return func_2(func_16(x), 3)

Can you predict the output of ‘main_solution("tiheass")‘ without writing any code? Please reason and
put your final answer in the following json format: {"output": <your output>}, where <your output>
should be the final string.

Figure 8: Example prompts for evaluation and Stage 2 training.

D A COMPLETE LIST OF STRING TRANSFORMATION FUNCTIONS

Here we provide the full list of string functions we use. Note that we replace the function names
with meaningless identifiers such as func 1 in our experiment.
def deterministic_shuffle(s):

"""Reorder characters using a fixed multiplier permutation."""
L = len(s)
if L == 0:

return s
multiplier = 3
while gcd(multiplier, L) != 1:

multiplier += 2
return ’’.join(s[(i * multiplier) % L] for i in range(L))

def repeat_str(s, n):
"""Repeat the string s exactly n times."""
return s * n

def remove_vowels(s):
"""Remove vowels from the string."""
vowels = ’aeiouAEIOU’
return ’’.join(ch for ch in s if ch not in vowels)

def sort_chars(s):
"""Sort the characters in the string."""
return ’’.join(sorted(s))

def reverse_words(s):
"""Reverse the order of words in the string."""
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words = s.split()
return ’ ’.join(reversed(words))

def add_prefix(s, pre):
"""Add a fixed prefix to the string."""
return pre + s

def add_suffix(s, suf):
"""Add a fixed suffix to the string."""
return s + suf

def interlace_str(s1, s2):
"""Interlace two strings character by character (iterative)."""
result = []
len1, len2 = len(s1), len(s2)
for i in range(max(len1, len2)):

if i < len1:
result.append(s1[i])

if i < len2:
result.append(s2[i])

return ’’.join(result)

def rotate_str(s, n):
"""Rotate the string s by n positions using slicing."""
if not s:

return s
n = n % len(s)
return s[n:] + s[:n]

def mirror_str(s):
"""Append the reversed string to the original."""
return s + s[::-1]

def alternate_case(s):
"""Alternate the case of characters (even-index lower, odd-index
upper)."""
return ’’.join(ch.lower() if i % 2 == 0 else ch.upper() for i, ch in
enumerate(s))

def shift_chars(s, shift):
"""
Shift alphabetical characters by a fixed amount (wrapping around).
Non-letters remain unchanged.
"""

def shift_char(ch):
if ’a’ <= ch <= ’z’:

return chr((ord(ch) - ord(’a’) + shift) % 26 + ord(’a’))
elif ’A’ <= ch <= ’Z’:

return chr((ord(ch) - ord(’A’) + shift) % 26 + ord(’A’))
return ch

return ’’.join(shift_char(ch) for ch in s)

def vowel_to_number(s):
"""Replace vowels with numbers: a/A->1, e/E->2, i/I->3, o/O->4, u/U
->5."""
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mapping = {’a’: ’1’, ’e’: ’2’, ’i’: ’3’, ’o’: ’4’, ’u’: ’5’, ’A’: ’1
’, ’E’: ’2’, ’I’: ’3’, ’O’: ’4’, ’U’: ’5’}
return ’’.join(mapping.get(ch, ch) for ch in s)

def insert_separator(s, sep):
"""Insert a fixed separator between every two characters."""
return sep.join(s)

def duplicate_every_char(s):
"""Duplicate every character in the string."""
return ’’.join(ch * 2 for ch in s)

def fancy_brackets(s):
"""Enclose each character in fancy brackets."""
return ’’.join("<<" + ch + ">>" for ch in s)

def compress_repeats(s):
"""Remove adjacent duplicate characters (compress repeats)."""
if not s:

return s
result = [s[0]]
for ch in s[1:]:

if ch != result[-1]:
result.append(ch)

return ’’.join(result)

def recursive_reverse(s):
"""Recursively reverse the string."""
if s == "":

return s
return recursive_reverse(s[1:]) + s[0]

def loop_concat(s, n):
"""Concatenate s with itself n times using a loop."""
result = ""
for _ in range(n):

result += s
return result

def while_rotate(s, n):
"""Rotate the string using a while loop (n times)."""
count = 0
while count < n and s:

s = s[1:] + s[0]
count += 1

return s

def recursive_interlace(s1, s2):
"""Recursively interlace two strings character by character."""
if not s1 or not s2:

return s1 + s2
return s1[0] + s2[0] + recursive_interlace(s1[1:], s2[1:])

def loop_filter_nonalpha(s):
"""Remove non-alphabetic characters using an explicit loop."""
result = ""
for ch in s:
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if ch.isalpha():
result += ch

return result

def verify_even_length(s):
"""
Verification operator: if the length of s is even, return s;
otherwise remove the last character.
"""
return s if len(s) % 2 == 0 else s[:-1]

def backchain_add_digit(s, depth):
"""
Backtracking operator: deterministically transform s so it contains
a digit.
Applies a fixed sequence of transformations recursively.
"""

def has_digit(t):
return any(ch.isdigit() for ch in t)

transformations = [
lambda t: t + "1",
lambda t: "2" + t,
lambda t: t.replace("a", "3"),
lambda t: t[::-1],

]

def helper(t, d):
if has_digit(t):

return t
if d == 0:

return None
for trans in transformations:

new_t = trans(t)
res = helper(new_t, d - 1)
if res is not None:

return res
return None

result = helper(s, depth)
return result if result is not None else s

def backchain_palindrome(s, depth):
"""
Back chaining: try to transform s into a palindrome.
If s is not already a palindrome and depth permits, append its
reverse and try again.
"""
if s == s[::-1]:

return s
if depth <= 0:

return s
new_s = s + s[::-1]
return backchain_palindrome(new_s, depth - 1)

# [note: the string concatenation, i.e., ’+’ is also considered as a
function]

Listing 1: All functions
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E EXAMPLE FOR COUNTDOWN TASK

Level 2 Example
Using the numbers [32, 42], create an equation that equals 74. You can use basic arithmetic operations
(+, -, *, /) and each number can only be used once. Show your work in <think> </think> tags. And return
the final answer in <answer> </answer> tags, for example <answer> (1 + 2) / 3 * 4 </answer>.

Level 3 Example
Using the numbers [95, 14, 18], create an equation that equals 99. You can use basic arithmetic
operations (+, -, *, /) and each number can only be used once. Show your work in <think> </think> tags.
And return the final answer in <answer> </answer> tags, for example <answer> (1 + 2) / 3 * 4 </answer
>.

Figure 9: Example prompts for Countdown task.

F MODEL RESPONSE EXAMPLES

The following sections contain the complete, unfolded responses from each model for the case
studies.

F.1 FULL RESPONSES TO THE LEVEL 2 PROBLEM

RFT Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand how the function
‘func 7‘ interlaces two input strings. [Authors’ Note: It’s not wrong, but it misses another
function func 2.]

Here’s a step-by-step breakdown:

1. ‘func 7(s1, s2)‘ is called with ‘’vptqj’‘ as the first string ‘s1‘ and ‘”nar”‘ as the second
string ‘s2‘.
2. The function iterates over the maximum length between the two input strings. In this
case, the maximum length is 4, which is the length of ‘”nar”‘.
3. The function appends characters from both strings at each index ‘i‘ to the ‘result‘ list. If
an index is out of range for a particular string, it simply skips appending a character from
that string.
4. So, the ‘result‘ list will contain characters from both strings, interleaved.

Here’s the interleaved sequence:

- Index 0: ‘’v’‘ (from ‘’vptqj’‘) and ‘’n’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’]‘
- Index 1: ‘’p’‘ (from ‘’vptqj’‘) and ‘’a’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’]‘
- Index 2: ‘’t’‘ (from ‘’vptqj’‘) and ‘’r’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’, ’t’, ’r’]‘
- Index 3: ‘’q’‘ (from ‘’vptqj’‘) and ‘’ ’‘ (from ‘”nar”‘), so ‘result = [’v’, ’n’, ’p’, ’a’, ’t’, ’r’,
’q’,”]

Finally, we pass this ‘result‘ list to the ‘join()‘ function to form the final interleaved string.

The final output of ‘main solution(”nar”)‘ will be: ‘”vnpartqj”‘. [Authors’ Note: End too
early, there’s still one function that hasn’t been analyzed.]

So, the JSON output should be:
{"output": "vnpartqj"}
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RL Level 1 Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand how the function
‘func 7‘ interlaces two strings character by character.

Here’s a step-by-step breakdown:

1. ‘func 7‘ takes two strings ‘s1‘ and ‘s2‘ as input.
2. It creates an empty list ‘result‘ to store the interlaced characters.
3. It calculates the lengths of ‘s1‘ and ‘s2‘ and stores them in ‘len1‘ and ‘len2‘, respectively.
4. It loops from ‘0‘ to the maximum of ‘len1‘ and ‘len2‘ using a ‘for‘ loop.
5. Inside the loop, for each iteration ‘i‘, it checks if ‘i‘ is less than ‘len1‘ and ‘len2‘. If it is,
it appends the ‘i-th‘ character of ‘s1‘ and ‘s2‘ to the ‘result‘ list, if it exists.
6. After the loop, it returns the ‘result‘ list as a string by joining all its elements using
‘”.join(result)‘.

Now, let’s analyze the ‘main solution‘ function:

‘def main solution(x): return (func 7(’vptqj’, x) + func 2(’xbh’))‘

Here, ‘s1‘ is ‘’vptqj’‘ and ‘s2‘ is ‘x‘, which is ‘”nar”‘ in this case.

Now, let’s interlace the two strings character by character:

‘i |s1 |s2 |result‘
–|—-|—-|——–
0 |’v’ |’n’ |[’v’, ’n’]
1 |’p’ |’a’ |[’v’, ’n’, ’p’, ’a’]
2 |’t’ |’r’ |[’v’, ’n’, ’p’, ’a’, ’t’, ’r’]
3 |’q’ ||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’]
4 |’j’ ||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]
5 |||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]
6 |||[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]

The loop iterates up to the maximum of the lengths of ‘s1‘ and ‘s2‘, which is 5 in this case.
After the loop, ‘func 7‘ returns the ‘result‘ list as a string by joining all its elements.

The ‘result‘ list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

The ‘func 2‘ function is used to remove vowels from a string. It takes a string ‘s‘ as input
and returns a new string with all vowels removed.

In the ‘main solution‘ function, ‘func 2‘ is used to remove vowels from the string ‘’xbh’‘,
but the output of ‘func 7‘ is used as the input for ‘func 2‘ [Authors’ Note: the model
mistakes the relationship between the two functions]. However, in the ‘main solution‘
function, ‘func 2‘ is not actually used with the interlaced string but with the string ‘’xbh’‘.

The ‘main solution‘ function returns the result of ‘func 7(’vptqj’, ’nar’) + func 2(’xbh’)‘.

Since ‘func 2‘ is not used with the interlaced string, the output of ‘main solution(”nar”)‘
will be the interlaced string ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘ as a string, which is:

‘vnpatrqj‘

So, the output of ‘main solution(”nar”)‘ is:
{"output": "vnpatrqj"}
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RL Level 2 Model Response

To predict the output of ‘main solution(”nar”)‘, we need to understand what the function
‘func 7‘ does and how it is used in ‘main solution‘.

‘func 7‘ interlaces two strings character by character. It takes two strings ‘s1‘ and
‘s2‘ as input and returns a new string where characters from ‘s1‘ and ‘s2‘ are alternately
appended.

In ‘main solution‘, ‘func 7‘ is called with ‘’vptqj’‘ as the first string and the input ‘x‘
as the second string. The result of ‘func 7‘ is then concatenated with the result of
‘func 2(’xbh’)‘.

Now, let’s consider what happens when ‘main solution‘ is called with ‘”nar”‘ as the
input.

First, we need to call ‘func 7‘ with ‘’vptqj’‘ and ‘”nar”‘ as the two strings.

The characters in ‘’vptqj’‘ are ‘’v’, ’p’, ’t’, ’q’, ’j’‘.

The characters in ‘”nar”‘ are ‘’n’, ’a’, ’r’‘.

Now, let’s interlace these characters using ‘func 7‘.

The maximum length of the two strings is 5. So, ‘func 7‘ will iterate up to 5 times.

Here’s what happens during each iteration:

1. ‘i = 0‘: ‘s1[i] = ’v’‘ and ‘s2[i] = ’n’‘. The result list is ‘[’v’, ’n’]‘.
2. ‘i = 1‘: ‘s1[i] = ’p’‘ and ‘s2[i] = ’a’‘. The result list is ‘[’v’, ’n’, ’p’, ’a’]‘.
3. ‘i = 2‘: ‘s1[i] = ’t’‘ and ‘s2[i] = ’r’‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’]‘.
4. ‘i = 3‘: ‘s1[i] = ’q’‘ and ‘s2[i] = ”‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’]‘.
5. ‘i = 4‘: ‘s1[i] = ’j’‘ and ‘s2[i] = ”‘. The result list is ‘[’v’, ’n’, ’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

The final result list after iterating over all characters from both strings is ‘[’v’, ’n’,
’p’, ’a’, ’t’, ’r’, ’q’, ’j’]‘.

Now, we need to find the characters in ‘’xbh’‘ and remove them from ‘func 2‘. The
characters in ‘’xbh’‘ are ‘’x’, ’b’, ’h’‘.

Now, let’s consider what ‘func 2‘ does. This function removes all vowels from a
string.

The input string to ‘func 2‘ is ‘’xbh’‘. The vowels in ‘’xbh’‘ are ‘”‘ (there are no
vowels in ‘’xbh’‘).

However, we need to remove all vowels from ‘’xbh’‘. Since there are no vowels in
‘’xbh’‘, the string remains the same.

The function ‘func 2‘ will return ‘’xbh’‘ as is.

Now, let’s consider what happens when we concatenate the result from ‘func 7(’vptqj’,
”nar”)‘ with ‘func 2(’xbh’)‘. As explained earlier, ‘func 7(’vptqj’, ”nar”)‘ will return
‘’vnpatrqj’‘.

Now, since ‘func 2(’xbh’)‘ just returns ‘’xbh’‘, the final output of ‘main solution(”nar”)‘
will be the concatenation of ‘’vnpatrqj’‘ and ‘’xbh’‘.
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The concatenation of ‘’vnpatrqj’‘ and ‘’xbh’‘ is ‘’vnpatrqjxbh’‘.

So, the final output of ‘main solution(”nar”)‘ is ‘’vnpatrqjxbh’‘.

Here’s the JSON output:
{"output": "vnpatrqjxbh"}

F.2 FULL RESPONSES TO THE LEVEL 3 PROBLEM

RFT Model Response

To predict the output of ‘main solution(”htoek”)‘, let’s analyze the code.

1. The ‘main solution‘ function calls ‘func 14‘ with the input string ‘x‘.
2. ‘func 14‘ takes a string ‘s‘ and returns a new string where each character’s case is
alternated based on its index.
- Even-index characters (i.e., those at 0, 2, 4, etc. indices) are converted to lowercase.
- Odd-index characters (i.e., those at 1, 3, 5, etc. indices) are converted to uppercase.
3. The input string ‘x‘ to ‘main solution‘ is ‘”htoek”‘.

Now, let’s apply the logic of ‘func 14‘ to the input string ‘”htoek”‘:

- Index 0 is even, so ’h’ is converted to lowercase: ’h’.
- Index 1 is odd, so ’t’ is converted to uppercase: ’T’.
- Index 2 is even, so ’o’ is converted to lowercase: ’o’.
- Index 3 is odd, so ’e’ is converted to uppercase: ’E’.
- Index 4 is even, so ’k’ is converted to lowercase: ’k’.

The resulting string is ‘’hToEk’‘.

Therefore, the output of ‘main solution(”htoek”)‘ is: [Authors’ Note: Ends too early,
there’s still one function that hasn’t been analyzed]

{"output": "hToEk"}

RL Level 1 Model Response

To predict the output of ‘main solution(”htoek”)‘, we need to understand what the ‘func 10‘
function does and how it is used in ‘main solution‘.

‘func 10‘ takes a string ‘s‘ and returns a new string where:

* Even-indexed characters are converted to lowercase
* Odd-indexed characters are converted to uppercase

‘main solution‘ calls ‘func 10‘ with the string ‘x‘ after applying the ‘func 2‘ func-
tion, which removes all vowels from ‘x‘. [Authors’ Note: the model fails to correctly
understand and parse the nesting function]

Now, let’s apply these steps:

1. ‘func 2‘ removes vowels from ‘”htoek”‘, resulting in ‘”htk”‘.
2. ‘func 10‘ is applied to ‘”htk”‘.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

- ‘h‘ is at index 0 (even), so it becomes ‘h‘ (lowercase).
- ‘t‘ is at index 1 (odd), so it becomes ‘T‘ (uppercase).
- ‘o‘ is at index 2 (even), so it becomes ‘o‘ (lowercase).
- ‘e‘ is at index 3 (odd), so it becomes ‘E‘ (uppercase).
- ‘k‘ is at index 4 (even), so it becomes ‘k‘ (lowercase).

The resulting string is ‘”hToEk”‘.

However, the question asks us to predict the output without writing any code, so we
might have mistakenly included the characters from the original string ‘”htoek”‘ instead of
the output of ‘func 2‘.

To correctly predict the output, we should first apply ‘func 2‘ to ‘”htoek”‘. The vow-
els in ‘”htoek”‘ are ”o” and ”e”. Removing these vowels leaves us with ‘”htk”‘.

Now, applying ‘func 10‘ to ‘”htk”‘:
- ‘h‘ is at index 0 (even), so it becomes ‘h‘ (lowercase).
- ‘t‘ is at index 1 (odd), so it becomes ‘T‘ (uppercase).
- ‘k‘ is at index 2 (even), so it becomes ‘k‘ (lowercase).

The resulting string is ‘”hTk”‘.

This is the output of ‘func 10(”htk”)‘, which is what ‘main solution‘ returns.

Therefore, the output of ‘main solution(”htoek”)‘ is ‘”hTk”‘.

The final answer is:
{"output": "hTk"}

RL Level 2 Model Response

To predict the output of ‘main solution(”htoek”)‘, let’s analyze the code.

1. The ‘func 2‘ function removes all vowels from a given string ‘s‘.
2. The ‘func 14‘ function takes a string ‘s‘ and returns a new string where every character
in ‘s‘ is duplicated.
3. The ‘func 10‘ function iterates over the characters in the input string ‘s‘. It makes the
characters at even indices lower case and the characters at odd indices upper case.

Now, let’s see what happens when we call ‘main solution(”htoek”)‘.

First, we need to find the output of ‘func 2(”htoek”)‘.

The string ”htoek” contains the characters ”h”, ”t”, ”o”, ”e”, ”k”. All characters that
are vowels (i.e., ”o” and ”e”) will be removed from the string.

After removing vowels, the string ‘func 2(”htoek”)‘ will contain only the characters
”h”, ”t”, ”k”.

Now, we need to find the output of ‘func 14(”htoek”)‘.

The characters in ”htoek” are ”h”, ”t”, ”o”, ”e”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”
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- ”t” becomes ”tt”
- ”o” becomes ”oo”
- ”e” becomes ”ee”
- ”k” becomes ”kk”

The string ‘func 14(”htoek”)‘ will be ”hhttooeekk”.

Now, we need to find the output of ‘func 10(”hhttooeekk”)‘.

We will iterate over the characters in ”hhttooeekk” along with their indices.

The characters in ”hhttooeekk” and their indices are:
- ”h” at index 0
- ”h” at index 1
- ”t” at index 2
- ”t” at index 3
- ”o” at index 4
- ”o” at index 5
- ”e” at index 6
- ”e” at index 7
- ”k” at index 8
- ”k” at index 9

Now, let’s apply the function ‘func 10‘ to ”hhttooeekk”.

- The character at index 0 (”h”) will become lower case because the index is even.
So, ”h” becomes ”h”.
- The character at index 1 (”h”) will become upper case because the index is odd. So, ”h”
becomes ”H”.
- The character at index 2 (”t”) will become lower case because the index is even. So, ”t”
becomes ”t”.
- The character at index 3 (”t”) will become upper case because the index is odd. So, ”t”
becomes ”T”.
- The character at index 4 (”o”) will become lower case because the index is even. So, ”o”
becomes ”o”.
- The character at index 5 (”o”) will become upper case because the index is odd. So, ”o”
becomes ”O”.
- The character at index 6 (”e”) will become lower case because the index is even. So, ”e”
becomes ”e”.
- The character at index 7 (”e”) will become upper case because the index is odd. So, ”e”
becomes ”E”.
- The character at index 8 (”k”) will become lower case because the index is even. So, ”k”
becomes ”k”.
- The character at index 9 (”k”) will become upper case because the index is odd. So, ”k”
becomes ”K”.

The final string ‘func 10(”hhttooeekk”)‘ will be ”hHtToOeEkK”.

Now, let’s call ‘main solution(”htoek”)‘.

Since ‘main solution(x)‘ calls ‘func 10(func 14(func 2(x)))‘, we need to find the out-
put of ‘func 14(func 2(”htoek”))‘ first.

We already found that ‘func 2(”htoek”)‘ will contain only the characters ”h”, ”t”,
”k”.

Now, let’s apply ‘func 14‘ to ”htk”.
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The characters in ”htk” are ”h”, ”t”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”
- ”t” becomes ”tt”
- ”k” becomes ”kk”

The string ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, we need to find the output of ‘func 10(”hhttkk”)‘.

The characters in ”hhttkk” and their indices are:
- ”h” at index 0
- ”h” at index 1
- ”t” at index 2
- ”t” at index 3
- ”k” at index 4
- ”k” at index 5

Now, let’s apply the function ‘func 10‘ to ”hhttkk”.

- The character at index 0 (”h”) will become lower case because the index is even.
So, ”h” becomes ”h”.
- The character at index 1 (”h”) will become upper case because the index is odd. So, ”h”
becomes ”H”.
- The character at index 2 (”t”) will become lower case because the index is even. So, ”t”
becomes ”t”.
- The character at index 3 (”t”) will become upper case because the index is odd. So, ”t”
becomes ”T”.
- The character at index 4 (”k”) will become lower case because the index is even. So, ”k”
becomes ”k”.
- The character at index 5 (”k”) will become upper case because the index is odd. So, ”k”
becomes ”K”.

The string ‘func 10(”hhttkk”)‘ will be ”hHtTkK”.

Now, we need to call ‘main solution(”htoek”)‘.

As ‘main solution(x)‘ calls ‘func 10(func 14(func 2(x)))‘, the output of
‘main solution(”htoek”)‘ will be the output of ‘func 10(func 14(func 2(”htoek”)))‘.

We already found that ‘func 14(”hhttooeekk”)‘ will be ”hHtToOeEkK”.

Now, we need to find the output of ‘func 10(”hHtToOeEkK”)‘.

We already calculated this in the previous step. The output of ‘func 10(”hHtToOeEkK”)‘
will be ”hHtToOeEkK”.

However, we need to recall that ‘func 2‘ removes vowels from the string. So, to find
the output of ‘func 10(func 14(func 2(”htoek”)])‘, we need to first find the output of
‘func 14(func 2(”htoek”))‘.

We already calculated this earlier. The output of ‘func 14(func 2(”htoek”))‘ will be
”hhttkk”.

Now, we need to find the output of ‘func 10(”hhttkk”)‘.
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We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

The ‘main solution‘ function calls ‘func 10(func 14(func 2(x)))‘. To find the final output of
‘main solution(”htoek”)‘, we need to find the output of ‘func 14(func 2(”htoek”))‘.

The string ”htoek” has characters ”h”, ”t”, ”o”, ”e”, ”k”. The vowels in this string
are ”o” and ”e”.

If we remove these vowels from ”htoek”, we are left with ”htk”.

Now, let’s apply ‘func 14‘ to ”htk”.

The characters in ”htk” are ”h”, ”t”, ”k”.

Applying ‘func 14‘ to each character:
- ”h” becomes ”hh”
- ”t” becomes ”tt”
- ”k” becomes ”kk”

The string ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, let’s apply ‘func 10‘ to ”hhttkk”.

We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

The ‘main solution‘ function calls ‘func 10(func 14(func 2(x)))‘. To find the final output of
‘main solution(”htoek”)‘, we need to find the output of ‘func 14(func 2(”htoek”))‘.

The characters in ”htoek” are ”h”, ”t”, ”o”, ”e”, ”k”. The vowels in this string are
”o” and ”e”.

If we remove these vowels from ”htoek”, we are left with ”htk”.

Now, let’s apply ‘func 14‘ to ”htk”.

We already calculated this earlier. The output of ‘func 14(”htk”)‘ will be ”hhttkk”.

Now, we can apply ‘func 10‘ to ”hhttkk”.

We already calculated this earlier. The output of ‘func 10(”hhttkk”)‘ will be ”hHt-
TkK”.

So, the output of ‘main solution(”htoek”)‘ will be ”hHtTkK”.

The final answer is:
{"output": "hHtTkK"}
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