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ABSTRACT

Speculative decoding is a prominent technique to accelerate large language model
inference by leveraging predictions from an auxiliary draft model. While effective,
in application-specific settings, it often involves fine-tuning both draft and target
models to achieve high acceptance rates. As the number of downstream tasks
grows, draft models add significant complexity to inference systems. Recently
several single model architectures viz. Medusa have been proposed to speculate
tokens in non-autoregressive manner, however, their effectiveness is limited due
to lack of dependency between speculated tokens. We introduce a novel specu-
lative decoding method that integrates drafting within the target model by using
Multi-stream attention and incorporates future token planning into supervised fine-
tuning objective. To the best of our knowledge, this is the first parameter-efficient
approach that scales well with an increasing number of downstream tasks while
enhancing downstream metrics and achieving high acceptance rates, attributable to
the interdependence among the speculated tokens. Speculative Streaming speeds
up decoding by 1.9 - 3X in a diverse set of tasks, such as Summarization, Structured
Queries, and Meaning Representation, while improving generation quality and us-
ing ∼10000X fewer extra parameters than alternative architectures, making it ideal
for resource-constrained devices. Our approach can also be effectively deployed in
lossless mode for generic chatbot applications where speculative instruction tuning
is performed while keeping base model frozen. In such setups, we achieve 2.9 -
3.2X speedup while maintaining the integrity of the base model’s output.

1 INTRODUCTION

Large transformers are today’s preeminent tool for language modeling. The quality of these models
improves as they scale (Kaplan et al., 2020), leading to the introduction of the state-of-the-art multi-
billion parameter models (Brown et al., 2020; Thoppilan et al., 2022; Chowdhery et al., 2023; Touvron
et al., 2023a). While these models are effective for token generation, they incur a high inference cost
as the model and its transient states need to be loaded into computing memory for each subsequently
generated token. This poses a challenge to the deployment of large autoregressive transformers,
particularly for user-facing applications with stringent latency requirements.

Given the memory-bound nature of large language model (LLM) inference, recent work (Leviathan
et al., 2023; Chen et al., 2023) proposed Speculative Decoding as an effective technique to accelerate
decoding based on concepts borrowed from speculative computation (Burton, 1985) to exploit the
available extra compute. The core of speculative decoding is the idea of speculating multiple candidate
future tokens first, and then verifying them all in parallel. To achieve this, as shown in Figure 1a.(i), a
two-model paradigm approach is used: a small auxiliary “draft” model for candidate speculation and
a large “target” model for verification (Leviathan et al., 2023; Chen et al., 2023). Although effective
in accelerating LLMs, speculative decoding complicates deployment. Training also becomes more
demanding and complicated, as a separate draft model needs to be trained and aligned with the target
model for each application. It is also not resource-efficient, requiring to host two models in memory
during token prediction.

In this paper, we propose Speculative Streaming, a single-model speculative decoding approach
that unifies speculation and verification, obviating the need for a separate draft model as shown in
Figure 1a.(ii). This is accomplished by incorporating multi-stream attention into the target model to
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Figure 1: Speculative Decoding vs Speculative Streaming

perform n-gram prediction which serves as future candidate speculation. As a result, a forward model
pass can verify the previously generated tokens while simultaneously speculating on the future tokens.
In theory, as token progression per forward pass approaches that of the two-stage decoding paradigm,
our method consistently yields decoding speedups that surpass those achieved by the two-model
approach as depicted in Figure 1b.

Our findings reveal that Speculative Streaming not only simplifies both the training and inference
architectures and enhances resource efficiency, but also improves generation quality across a broad
range of downstream tasks. Furthermore, it outperforms two-model speculative decoding (Leviathan
et al., 2023) and single model approaches such as Medusa (Cai et al., 2023), Lookahead Decoding (Fu
et al., 2023), Hydra (Ankner et al., 2024), and Eagle (Li et al., 2024) in terms of decoding speedup.
The key advantages of Speculative Streaming are as follows:
– Achieves substantial decoding speedups and improves downstream performance metrics through a

single, streamlined fine-tuning process leveraging multi-stream attention.
– Demonstrates resource efficiency with significantly fewer additional parameters compared to

Medusa (Cai et al., 2023), Hydra (Ankner et al., 2024) and Eagle (Li et al., 2024), while still
surpassing them in speedup gains.

– Simplifies deployment by removing the complexity of managing, aligning, and switching between
multiple models during inference, as required by approaches like (Leviathan et al., 2023).

– Supports shared mode for application-specific scenarios, enhancing quality of responses and lossless
mode for general-purpose chatbot-like settings, maintaining model’s original output distribution.

2 RELATED WORKS

The original speculative decoding approach (Chen et al., 2023; Leviathan et al., 2023) utilizes a
smaller draft model to generate a candidate sequence of tokens to be verified by the target model.
Recent SD variants propose parallel computation along the batch axis (Sun et al., 2023b), and tree-
structured batches (Miao et al., 2023; Spector & Re, 2023) to improve the acceptance rates of the
guessed tokens by the target model and to further boost the performance. However, these methods
encounter a common limitation: the necessity of developing an accurate and independent draft model
for each downstream application. First, training such a draft model aligned with the main model is
not trivial (Zhou et al., 2023). Second, hosting two different models increases the system complexity,
and is more computationally and operationally expensive to maintain as number of applications grow.

Recently, single-model speculation has also been considered. In particular, inspired by (Qi et al.,
2020; Stern et al., 2018), Medusa (Cai et al., 2023) extends the main model to predict future tokens in
parallel by training multiple output heads. While it does not require a draft model, each Medusa head
of size (hidden_size × vocab_size) requires significant nonnegotiable additional parameters which
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introduce deployment challenges on resource-constrained devices. Furthermore dependency between
speculated tokens is not guranteed (Ankner et al., 2024) limiting speedups. (Ankner et al., 2024)
improves speculation procedure of (Cai et al., 2023) by using autoregressive draft head to introduce
dependency between speculated tokens, however small size draft head tends to be sub-optimal and
increasing draft head size leads to similar issues as those with (Leviathan et al., 2023; Zhou et al.,
2023). (Li et al., 2024) uses a dedicated layer of target model to generate speculation, however,
speedups are limited due to auto-regressive draft generation. Moreover, using a dedicated layer leads
to significant parameter overhead. Lookahead decoding (Fu et al., 2023) proposes a parallel decoding
method without learning new parameters. While this approach is parameter efficient, speedups are
limited as speculation procedure is not learnable. We discuss further approaches related to inference
efficiency in Appendix J.

3 METHOD

3.1 MOTIVATION

Existing speculative decoding techniques often enforce a strict decoupling of the training objectives
between draft and target models (Leviathan et al., 2023), or between draft models and auxiliary
heads (Cai et al., 2023). While this separation has been effective, we propose that these objectives are
not inherently orthogonal. Instead, they can be aligned during training. Specifically, we hypothesize
that, similar to the main residual stream, the model can process “speculative” residual streams which
can be optimized to approximate the residual streams of future tokens, extending beyond immediate
next-token prediction. By conditioning immediate next token prediction on speculative streams
as well as previous context, the model gains the ability to predict upcoming tokens with a richer
contextual scope. As a result, this approach mitigates the risks of overly greedy decoding, providing
a more informed and contextually aware generative process.

Our goal is to develop an end-to-end trainable, single-model framework that integrates future token
planning, enhances generation quality, and scales efficiently across multiple downstream applications.
We propose following modifications to achieve these objectives. (a) Speculative stream design and
initialization as described in Section 3.1.1 (b) Parallel speculation and verification as described
in Section 3.1.2 (c) Parallel tree draft pruning, described in Section 3.1.3 and finally (d) Training
objective as described in Section 3.1.4.

3.1.1 STREAMS DESIGN AND INITIALIZATION

Parameter efficient supervised fine-tuning (Hu et al., 2022) of decoder-only pre-trained language
models involves training low-rank adapters to predict next target token yt given context tokens
(x1....xm) and previous target tokens (y1..y<t) on downstream applications. Although effective,
this objective generates each token greedily and lacks a sense of future token planning (Qi et al.,
2020) which may lead to sub-optimal generation quality (see Section 4.1.2). To inherently embed a
notion of future token planning, we modify the training objective of the target model from next token
prediction to n-gram prediction using multi-stream attention. This objective facilitates proactive
token planning and mitigates over-fitting to local correlations (Yang et al., 2019; Qi et al., 2020).
Furthermore, we extend this framework by sharing the key/value cache across all streams, allowing
each of the γ streams to generate speculative tokens with negligible latency overhead when the model
is memory-bound. Specifically, each added stream predicts p(yt+j |y<t, x), where 1 <= j <= γ,
while main stream predicts p(yt|y<t, x).

In lossless mode, attention mechanism of main stream remains same as the standard multi-head
attention mechanism (Vaswani et al., 2017) while in shared mode, we enable the main stream to
attend to speculative streams, allowing it to plan its residual transformations based on anticipated
future residual states by modifying the attention mechanism as

Mk+1
t = MHA(Mk

t ,M
k
≤t ⊕ Sk

t1...γ ,M
k
≤t ⊕ Sk

t1...γ) (1)

where Mk
t and Sk

t refer to main and speculative streams at time step t and layer k and
MHA(H,H,H) denotes attention between query HWQ, key HWK and value HWV as described
in (Vaswani et al., 2017). On the other hand, each speculative stream j at time step t attends to
previous main stream hidden states and previous speculative stream hidden states as:
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Figure 2: Architecture: We replace top Ns multi-head attention (MHA) layers of the base model with
multi-stream attention (MSA) layers as described in (2). Speculative streams are initialized using
hidden states of layer N −Ns and stream identifier embeddings (SE), as described in (3) and used to
generate speculative draft in the form of a tree. The speculative tree draft from the previous iteration
is batched for verification and pruned before stream insertion. During each forward pass previous
tree draft is verified and a new tree draft is issued using speculative streams as described in 3.1.2

Sk+1
tj = MHA(Sk

tj ,M
k
≤t ⊕ Sk

t(≤j),M
k
≤t ⊕ Sk

t(≤j)) (2)

Hidden state of last transformer layer N , MN
t is used to predict yt, whereas each speculative stream

at last layer, SN
tj predicts yt+j . We refer to layers incorporating the attention mechanism in (Vaswani

et al., 2017) as MHA layers while layers incorporating Equation (1) and Equation (2) are referred
to as MSA layers. It is worth noting that the attention mechanism of speculative streams remains
consistent across both shared and lossless modes. Key/value projections of main stream hidden states
are cached during inference to avoid re-computation, whereas, we design speculative stream attention
to specifically avoid storing additional key/value projections associated with individual streams. This
is because speculative streams are trained to learn contextual features from main stream key/value
context allowing us to not introduce additional caching overhead and operate within memory bounds
of resource-constrained devices during inference. We initialize hidden states of speculative streams at
layer N −Ns instead of initializing them from the embedding layer, where Ns < N . Specifically,
stream j at time t is initialized at layer N −Ns as,

SN−Ns
tj = fη(M

N−Ns
t ) + PN−Ns

j (3)

where Pj is a stream identifier embedding that embeds a sense of relative position into streams and
distinguishes the computation from main stream. fη is a linear transformation of rank η to transform
main stream hidden states into speculative stream hidden states. This initialization helps to reduce
computation per forward pass, since only the main stream needs to be passed through N − Ns

layers, while speculative streams are passed through the last Ns layers, decreasing the speculative
FLOPs contribution by (N − Ns)/N and in turn helping with peak power consumption on the
device. In terms of forward pass latency, FLOPs do not contribute significantly when the model is
memory bound, however, as we describe in Section 3.1.2, we sample additional tokens to make the
model compute-bound, therefore FLOP reduction becomes crucial. We also experimented with value
rotation based stream design which does not require identifier embeddings and incurs no parameter
overhead as described in Appendix C.3.
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3.1.2 PARALLEL SPECULATION AND VERIFICATION

In standard draft-target speculative decoding (Leviathan et al., 2023), speculation and verification
processes happen sequentially. Speculative Streaming makes this process efficient by parallelizing
speculation and verification. In each forward pass, the draft generated in the previous step is verified
and a new draft is generated as shown in Figure 2. For instance, in step s, if draft tokens (ỹ1..ỹδ)
are accepted where 0 < δ ≤ γ, main stream Mδ is used to issue a correction token and logits from
speculative streams Sδ(1...γ) are used to generate draft for step s+ 1.

Instead of using a linear sequence of speculated tokens for verification, we sample a tree of tokens
from main and speculative streams, such that each path in the tree is one possible verification
candidate. Tree drafting enables accepting the longest matching candidate sequence and more tokens
can be advanced during each forward pass. To create a tree draft, instead of sampling 1 token from
logits of speculative streams, (z1...zγ), we sample top k tokens and form a tree of sampled tokens as
shown in Figure 2, such that tokens sampled from stream n are predecessors of tokens sampled from
stream n+1. We process a tree draft of speculative tokens in one forward pass by creating an additive
attention mask (Vaswani et al., 2017) such that each node in the tree attends to its predecessor.
Attention mask between kth token sampled from logits of stream j, ỹjk and the mth token sampled
from logits of stream n, ỹnm is

aỹjkỹnm
=

{
0 if j = n+1,
−∞ otherwise

(4)

Please refer to Figure 12 for more details.

3.1.3 PARALLEL TREE PRUNING

One of the issues with the naive creation of a speculative tree draft is that every permutation between
k tokens sampled from each stream needs to be considered as a viable speculative candidate for the
next verification pass. For instance, sampling k tokens from each of γ streams results in tree draft of
size 1 +

∑γ
g=1 k

g. Furthermore, each of the draft tokens is batched with γ speculative streams in
MSA layers to ensure that the generation of the next draft happens in the same forward pass, resulting
in a batch size of (1 + γ) ∗ (1 +

∑γ
g=1 k

g). As batch size increases, target model inference becomes
compute-bound, obviating the latency benefit of sampling more tokens. We mitigate this problem by
introducing a parallel tree draft pruning layer, which prunes less probable tokens from the input tree
draft based on transition probability between parent and immediate child tokens. To obtain transition
probabilities without using proxy models, we use an early-exiting-based technique. Specifically,
hidden states of the main stream at layer l, M l are passed through a low-rank linear transformation
oθ, where the rank θ is typically set to a small value like 8 to keep parameter overhead minimal.
We use original language modeling head, H to obtain early exit logits, z̃ = H(oθ(M

l). z̃pc is used
to approximate transition probability between parent token p and child token c. The pruning layer
can be inserted at any point in the network, guided by the trade-off between forward pass latency
and pruning accuracy. Early insertion reduces latency but risks pruning potentially valuable tokens.
Conversely, late insertion retains more "good" tokens but comes at the cost of increased forward
pass latency. In all experiments described in Section 4.1, we insert the pruning layer just before
speculative stream insertion. More details can be found in Appendix Figure 11.

3.1.4 TRAINING

Our supervised fine-tuning procedure entails training the base model on both the prediction loss of
the next token and γ future tokens. The overall loss function is defined as follows:

Lss = −α0(

T∑
t=1

log pθ(yt|y<t, x))−
γ∑

j=1

αj(

T−j∑
t=1

log pθ(yt+j |y<t, x)) (5)

where α0 and αj are set empirically to normalize losses of the next token and speculative tokens
prediction using LoRA (Hu et al., 2022). Although training with Speculative Streaming is relatively
cheap (see Appendix E), naive training increases batch dimension along sequence length axis by γ
causing attention computation to hit peak memory with larger batches. We employ a segment based
attention method that helps reduce peak memory consumption and increases training throughput
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significantly by dividing training sample into prompt and multiple completion segments. More
details on segment attention can be found in Appendix D. Finally, Tree-pruning adapter described in
Section 3.1.3 is trained on the next token prediction loss.

3.1.5 SHARED VS. LOSSLESS MODES

We investigate two primary deployment scenarios for mainstream LLMs. In generic chatbot-like
use cases, pre-trained LLMs are instruction-tuned, and it is crucial to maintain the base model’s
output distribution while achieving speedup. For such cases, our approach operates in a lossless
mode, where no trainable parameter sharing occurs between the main and speculative stream residual
transformations (α0 = 0 in Equation (5)), and the main stream’s attention mechanism remains
unchanged, as outlined in Section 3.1.1. Conversely, in application-specific scenarios, adapter
parameters are shared between the main and speculative streams, and the main stream’s attention
mechanism is modified ( Equation (1)) to enhance task-specific response quality.

3.1.6 ACCEPTANCE CRITERIA

We adopt the rejection sampling-based acceptance criterion proposed by (Chen et al., 2023) to mitigate
distributional shift between the draft and target models. Specifically, we apply rejection sampling to
select tokens from each path in the pruned tree (see Section 3.1.3), and the longest accepted path
is used to advance decoding.To adhere to the principles of rejection sampling, we replace the draft
model’s output distribution by introducing a virtual distribution, which leverages "prophet streams".
More concretely, we replace the draft distribution p(x | x1, . . . , xn+t−1) in Algorithm 2 of (Chen
et al., 2023) with an augmented distribution q(x | x1, . . . , xn, sn0, . . . , sn(t−1)), where s represents
the state from the prophet streams. Thus, our acceptance criterion is formulated as follows:

r < min

(
1,

q(x | x1, . . . , xn+t−1)

q(x | x1, . . . , xn, sn0, . . . , sn(t−1))

)
, (6)

where p and q represent the draft and target distributions from (Chen et al., 2023), r ∼ U [0, 1], and
1 ≤ t ≤ γ.
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Figure 3: Mean walltime speedup on Vicuna models
of various sizes to demonstrate scalability and gener-
alizability of our approach on MT-Bench.
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Figure 4: Mean walltime speedup on Llama-2
models of various sizes to demonstrate scala-
bility and generalizability of our approach.

4 EXPERIMENTS

We evaluate our methods on a diverse set of downstream applications as well as generic reasoning
oriented conversational tasks using pre-trained models of various scales.

Datasets. To test our method on user-facing application specific settings that are vital to on-device
AI assistants we use a diverse set of tasks namely Text Summarization, Structured Queries and
Meaning Representation using Dialogsum (Chen et al., 2021) dataset, the sql-create-context dataset
built from WikiSQL (Zhong et al., 2017) and SPIDER (Yu et al., 2018), and e2e-nlg dataset (Dušek
et al., 2020) respectively. Along with application specific settings, to test generalizability of our
method, we evaluate on reasoning oriented chat-bot like setup using the multi-turn dialogue dataset,
MT-bench (Zheng et al., 2023).
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Table 1: Comparison of walltime speedup, tokens/step, and parameter overhead across models of
different scales fine-tuned for downstream tasks. tokens/step indicates accelerator agnostic speedup
metric. Metrics include exact match accuracy for SqlContext and Rouge for Dialogsum and E2E-
NLG. Medusa and Speculative streaming parameters are fine-tuned jointly with the base model, while
the base model is frozen during Eagle fine-tuning to to prevent adverse effects on generation metrics.

Dataset Model Method SpeedUp (↑) Tokens/step (↑) Metric (↑) # Extra Parameters (↓)

SqlContext

Mistral-Instruct-7B

Baseline 1.00 1.00 84.16 −
Medusa-2 2.79 3.18 84.18 5.9E8

Eagle 2.75 3.58 84.16 2.4E8
SS (ours) 2.93 3.67 84.50 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 80.92 −
Medusa-2 2.54 2.81 81.07 4.3E8

Eagle 2.62 3.37 80.92 1.3E8
SS (ours) 2.92 3.65 84.10 6.1E4

Llama2-7b

Baseline 1.00 1.00 85.37 −
Medusa-2 2.52 2.98 85.31 5.9E8

Eagle 2.59 3.31 85.37 2.4E8
SS (ours) 2.81 3.57 85.93 8.2E4

DialogSum

Mistral-Instruct-7B

Baseline 1.00 1.00 44.74/36.76 −
Medusa-2 1.89 2.05 44.78/36.95 5.9E8

Eagle 1.95 2.56 44.74/36.76 2.4E8
SS (ours) 2.04 2.96 44.89/37.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 46.08/38.28 −
Medusa-2 2.15 2.26 45.82/37.78 4.3E8

Eagle 2.05 2.31 46.08/38.28 1.3E8
SS (ours) 2.32 2.85 46.30/38.32 6.1E4

Llama2-7b

Baseline 1.00 1.00 44.90/37.0 −
Medusa-2 1.76 1.95 44.17/37.02 5.9E8

Eagle 1.86 2.57 44.90/37.0 2.4E8
SS (ours) 1.90 3.05 45.0/37.85 8.2E4

E2E-NLG

Mistral-Instruct-7B

Baseline 1.00 1.00 67.82/48.99 −
Medusa-2 2.78 3.19 67.74/48.85 5.9E8

Eagle 2.85 3.52 67.82/48.99 2.4E8
SS (ours) 2.93 3.67 68.37/49.09 8.2E4

PHI-3-Instruct-3.8B

Baseline 1.00 1.00 68.72/49.31 −
Medusa-2 2.39 2.63 68.41/49.08 4.3E8

Eagle 2.42 2.76 68.72/49.31 1.3E8
SS (ours) 2.36 2.72 69.38/50.22 6.1E4

Llama2-7b

Baseline 1.00 1.00 69.47/49.54 −
Medusa-2 2.82 3.19 69.41/49.44 5.9E8

Eagle 2.79 3.26 69.47/49.54 2.4E8
SS (ours) 2.89 3.38 69.52/49.93 8.2E4

Table 2: Walltime latency (per sample) and auto-regressive calls comparison with standard draft-target
(Two-model) speculative decoding approach using OPT-125m as the draft model.

Dataset Target Method Target calls Draft Calls Walltime Latency (ms, ↓) Metric (↑)

SqlContext
OPT-1.3b Two-model SD 6.59 22.35 269.24 84.98

SS (ours) 7.79 0 133.48 87.40

OPT-6.7b Two-model SD 6.60 22.41 301.10 89.13
SS (ours) 6.88 0 157.04 89.34

Dialogsum
OPT-1.3b Two-model SD 11.65 42.59 493.59 43.40/35.60

SS (ours) 13.41 0 248.26 44.07/35.99

OPT-6.7b Two-model SD 12.15 35.76 555.99 44.40/36.60
SS (ours) 14.45 0 444.67 44.42/36.81

E2E-NLG
OPT-1.3b Two-model SD 8.86 31.47 345.72 69.48/50.17

SS (ours) 9.80 0 164.23 69.32/50.51

OPT-6.7b Two-model SD 8.90 31.58 412.02 69.34/49.88
SS (ours) 10.31 0 244.80 69.45/49.78

Model Configuration. We tested four different open source models of various scales, Phi-3-mini-
4k-instruct(3.8B)(Abdin et al., 2024), Llama-2(7B)(Touvron et al., 2023b), Mistral(7B) (Jiang et al.,
2023) and OPT(1.3B, 6.7B) (Zhang et al., 2022) on application specific settings. To test scalability
of our approach we use Vicuna Models (7B, 13B) (Chiang et al., 2023) and Llama-2 chat models
(7B, 13B). We compare our method with the draft-target speculative decoding methods (Leviathan
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et al., 2023; Zhou et al., 2023) and single-model speculative decoding frameworks, Medusa (Cai
et al., 2023), LookAhead decoding (Fu et al., 2023), Hydra (Ankner et al., 2024) and Eagle (Li
et al., 2024). For the standard draft-target approach, we use OPT-125m, the smallest configuration of
available open-source OPT models as the draft model.

Metrics. In application specific settings, we report wall-time speedups and generation quality metrics
on held-out test set. We use Exact Match (EM) accuracy metric for the structured query task and
Rouge1/RougeLSum metrics for the Dialog Summarization and Meaning Representation tasks. For
generic chat-bot like settings, we train speculative stream adapters while keeping base model frozen
as noted in Section 3.1.5 and report speedup and inference overhead.

Inference. Inference is performed using a batch size of 1 on a single Nvidia A100-80G GPU in float16
using greedy sampling and T = 0. Please refer to Appendix G for batching impact, Appendix C.4
for ablations on top-k sampling, T = 1 and Appendix H.1 for more experimental details. We set
Ns = 4, γ = 3 and k = 3 for all experiments. Please refer to Appendix for hyperparameter ablations.

4.1 RESULTS
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Figure 5: Parameter/Memory access overhead of
different SD architectures with Vicuna models.
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Figure 6: FLOP overhead of different SD archi-
tectures with Llama-13B.

4.1.1 EFFECTIVENESS

Table 1 compares the performance of our method against several baselines, including standard
auto-regressive decoding, Medusa, and Eagle, in terms of speedup, tokens generated per step, and
additional parameter overhead. Across a wide range of downstream tasks, Speculative Streaming con-
sistently demonstrates superior wall-time speedups and tokens per step while incurring significantly
lower parameter overhead compared to alternative approaches. As outlined in Table 2, our method
also achieves lower wall-time latencies than conventional draft-target speculative decoding. This
improvement arises because the marginal difference in target calls between the two approaches is
insufficient to counterbalance the overhead introduced by auto-regressive drafting. For a deeper anal-
ysis, please refer to Appendix H. Furthermore, it is important to highlight that the generation quality
of Speculative Streaming consistently outperforms that of next-token prediction-based fine-tuning,
positioning it as a compelling alternative to LoRA-based fine-tuning approaches. The speedup gains
of our approach remain consistent across multi-turn conversational tasks evaluated on MT-Bench. In
lossless settings, our method consistently achieves better speedup than alternative approaches across
Vicuna and Llama models of various scales (see Figure 3 and Figure 4), while incurring significantly
lower memory access and computational overhead (see Figure 5 and Figure 6), demonstrating the
generalizability and scalability of our approach.

4.1.2 WHY DOES IT WORK?

Generation Metrics: To investigate the improvements in generation quality achieved by our approach,
we designed an experiment where the model predicts the next token while attending to a set of future
γ ground truth tokens beyond the next token. Our hypothesis was that by granting the model access
to these future tokens, the attention mechanism would enhance its ability to anticipate and plan for
the next token, thus improving generation quality. Specifically, we postulated that:
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p(yt = gt|y<t, yt+1..t+γ , x) > p(yt = gt|y<t, x) (7)

Here, gt represents the ideal ground truth token that maximizes the generation quality metrics. To
validate this hypothesis, we modified the attention mask, allowing the model’s residual states to
"peek" into future residuals. As shown in Figure 8, this modification led to significant improvements
in generation metrics.

While such access to future tokens is not feasible during inference, where future states are unavailable,
our approach enables the model to approximate future residual states using speculative streams. As
demonstrated in Figure 7, these speculative streams, Stj , progressively align with the true residual
states of the next tokens as they propagate through the model layers. Crucially, our method allows the
primary stream, Mt, to attend not only to the current context up to token yt but also to the speculative
streams Stj . This multi-stream attention mechanism refines the transformations within Mt, aligning
them more closely with the context of the upcoming γ tokens. As a result, the model effectively
"plans" for future tokens, leading to measurable improvements in generation quality.

Speedup: Medusa attempts to generate the hidden states of speculative tokens y(t+1...t+γ) by
applying a simple context independent transformation to the last hidden state of the current token
yt. However, this method has significant limitations. The absence of attention mechanisms results
in lower similarity metrics between the speculative hidden states generated by Medusa and the true
hidden states, which are obtained by feeding the actual next token into the model (see Figure 7). In
contrast, our proposed technique leverages multi-stream attention, wherein speculative streams are
allowed to attend to each other as well as to the main stream. As these streams propagate through the
model layers, they more closely approximate the true hidden states of the actual next tokens, resulting
in higher similarity, thereby increasing the acceptance rate of the speculated tokens.

Figure 7: Cosine similarity between spec-
ulative residual states and residual state of
ground truth tokens with Speculative Stream-
ing and Medusa. As the streams propagate
through the model, their representations be-
come increasingly aligned with the ground-
truth tokens in contrast to Medusa.

Figure 8: Generation performance of the Phi-
3 model when trained to attend to γ ground
truth tokens beyond the immediate next to-
ken during prediction. Incorporating future
ground truth tokens into the attention mech-
anism leads to substantial improvements in
generation performance.

5 CONCLUSION

In this paper, we proposed Speculative Streaming, a method to accelerate decoding of large language
models. Compared to the standard speculative decoding approaches, Speculative Streaming removes
the need for an auxiliary “draft” model. Instead, it unifies speculation and verification by efficiently
fusing multiple speculative streams into a single “target” model. Speculative Streaming simplifies
the fine-tuning process and achieves better generation quality and speedup compared to previous
approaches. It is also parameter efficient and removes the need for loading two models into the
memory, making it a suitable approach for resource-constrained scenarios.

9
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A ABLATIONS

We conducted extensive ablation studies to identify the optimal draft size and to evaluate the impact of
tree pruning, as illustrated in Figure 9. Tree pruning enhances speedup by eliminating less probable
speculative paths, thereby preventing the model from entering a compute-bound phase. Further
details are provided in Appendix C. Additional ablations were performed to determine the ideal
number of Multi-stream Attention (MSA) layers and their influence on fine-tuning performance, as
well as the effects of value projection rotation and Top-k sampling. An increase in the number of
MSA layers consistently improves generation metrics across all downstream tasks, supporting the
hypothesis that Multi-Stream Attention facilitates effective planning. Our method also demonstrates
robustness to non-greedy Top-k sampling, which is critical for maintaining diversity and quality
control in generated text. Please refer to Appendix C for comprehensive results.

B IMPLEMENTATION DETAILS

B.1 TREE DRAFT MANAGEMENT

In this section, we go into more detail of tree draft sampling, flattening, and pruning. As shown in
the main paper, when processing prompt (x1...xt), we insert speculative streams along with the last
token to generate logits, zt corresponding to main stream and (zt1...ztγ) corresponding to speculative
streams. Tree draft is sampled following the procedure described in Section 3.1.2. The sampled
draft is then flattened along the sequence length dimension and the attention mask is composed such
that child nodes attend to their predecessors starting with root as shown in Figure 11 and Figure 12.
The root token of the tree draft is the correction issued by main stream. Each iteration after prompt
processing involves verifying the previous tree draft and sampling a new one. After passing the tree
draft through N −Ns layers, we use contextual features learned by middle layers to approximate
transition probability between parent and child tokens. As shown in Figure 11, since the transition
probability between token “parameter′′ and “compare′′ is less than a set threshold, we prune the
sub-tree starting from “compare” in the feature domain , and m2,m5,m6 are pruned. Please note
that the key value cache of layers 0..(N −Ns − 1) before the pruning layer is not trimmed at this
point to keep pruning latency overhead minimal. Key value cache backtracking is done lazily after
each generation step. Speculative streams are inserted alongside each node in the pruned draft.
Layers (N −Ns..N) use Multi-stream attention as described in Equation (1) and Equation (2). The
verification procedure finds the longest matching path in the pruned tree that main stream can accept.
As shown in Figure 11, path (“parameter′′, “efficient′′, “speculative′′) is accepted. Correction
token sampled from logits of main stream corresponding to last accepted token, m1 becomes new
root while tokens sampled from logits of streams (s10, s11) form the sub-tree.
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Figure 9: As more tokens (k) are sampled for tree
drafting, speedup initially increases. This trend
reverses as k continues to increase as the model
transits to the compute-bound phase. Pruning
less probable paths helps reduce compute, offer-
ing more speedup.
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Figure 11: Parallel tree draft speculation and verification: Tree draft from the previous iteration
is flattened for verification. After N − Ns MHA layers, the tree pruning procedure obviates less
probable tokens based on transition probability between parent and child tokens. In this illustration
Zi denotes normalized early exit logits corresponding to main stream at index i, mi, while Zij

denotes transition probability between token at index i and j in flattened tree draft. The verification
procedure is subsequently run on the pruned tree and speculative tokens are sampled from streams
corresponding to the latest accepted token. In above illustration, “speculative′′, “fine, decoding′′
and “looking, tuning′′ are sampled from streams m1, s10 and s11.

C ABLATION:

C.1 SPECULATIVE DRAFT SIZE.

To improve the acceptance rate of the tree draft, we try various settings of γ, the number of speculative
positions, and k, the number of sampled tokens per speculative position. Figure 9 shows walltime
speedup for γ = 3. As we sample more tokens from each speculative position, advancement per
forward pass, β increases since more candidates are available for verification, leading to more speedup.
However, as we continue to increase k, forward pass latency overhead becomes more prevalent as the
model transitions into compute-bound phase and the speedup reverses the course. This is because
naively forming a tree draft leads to an exponential increase in batch size with k as described in 3.1.3.
We insert a tree pruning layer to remove less probable paths and reduce the size of the tree draft.
Pruning tree draft reduces forward pass latency, and a well calibrated threshold ensures that only
noisy paths in the tree get pruned. Tree pruning tends to help with walltime speedup as k continues
to increase as shown in Figure 9.

C.2 NUMBER OF MSA LAYERS

There are trade-offs involved in deciding the number of MSA layers to incorporate in terms of
downstream generation metric, training time, and FLOPs increase. As we increase the number
of MSA layers, the generation metric improves and this trend remains the same across different
downstream tasks. Typically incorporating MSA in the top 2 - 8 layers offers a good trade-off
between metric, FLOPs increase and training time. Figure 10 shows the generation performance of
the OPT-1.3b model on Structured Query and Summarization tasks.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Parameter

efficient

compare

early

exiting

early

exiting
P
ar
am
et
er

ef
fic
ie
nt

co
m
pa
re

ea
rl
y

ex
it
in
g

ea
rl
y

ex
it
in
g

Figure 12: Attention mask for tree draft is composed in such a way that child tokens can attend to
all predecessors starting from root, root being correction issued by main stream. In this illustration,
“early“ attends to “parameter“ and “efficient“ and itself since “parameter−efficient−early“
forms one path in tree. “early“ is also replicated to form another path “parameter − compare−
early“. This attention mask allows batching multiple paths and increasing acceptance rate as number
of candidates increase.

C.3 VALUE ROTATION

We analyzed more ways of differing computation of main stream from speculative streams. Apart from
using dedicated stream embeddings, one way to differentiate the computation while incorporating
a sense of relative position is simply rotating streams relative to each other. In this ablation, we
initialize each stream with the main stream hidden state and rotate the value projection during
attention computation in the proportion of the relative distance from main stream as :

V k
tn = V k

t eiϵn (8)

Where 1 <= n <= γ is stream index, V k
t denotes value projection of main stream at time step t and

layer k, while V k
tn denotes value projection of stream n, 0 ≤ ϵ ≤ π

2N denotes an arbitrary rotation
step and N denotes the sum of maximum sequence length and number of streams. Figure 13 (a)
shows the effect of using value rotation on Rouge scores on the Dialog Summarization task with
the Phi-1.3b model. Downstream metric for value rotation-based approach tends to be lower than
using dedicated stream embeddings across different settings of MSA layers, however, the trend of
increasing metric with added MSA layers remains the same. It is worth noting that for Ns = 16,
simply rotating value projections achieve better metrics than using Ns = 4 with dedicated stream
embeddings.

C.4 TOP-K SAMPLING

In the main paper, we reported speedup results using greedy sampling and T=0. To further analyze
speedups in the Top-k sampling regime, we try various values of k and T = 1 for both Medusa style
and Speculative Streaming approaches. Figure 13 (b) shows the effect of increasing k on the walltime
speedups and call reduction ratios1. Although increasing k leads to lower wall-time speedups for
both baseline and target methods due to stochastic rejection of tokens, our approach retains its lead
achieving better call reduction ratios and walltime speedups across different values of k.

1The call reduction ratio represents the ratio of the number of ‘model.forward()‘ calls required for autore-
gressive decoding to those required for speculative streaming. It is equivalent to the average number of tokens
generated per ‘model.forward()‘ call during target speculative streaming.
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(a) (b)

Figure 13: (a) We analyze the effect of value projection rotation on RougeLSum scores of the Dialog
summarization task using PHI-1.3b as the base model for different numbers of MSA layers. Each
stream is rotated in proportion to the distance from the main stream. (b) We study the effect of
top-k sampling on wall-time speedups and call reduction ratios (mean tokens genearted per step) for
Speculative Streaming (SS) and Medusa-style approaches using OPT-1.3b as a base model on the
Meaning Representation task.

Prompt

Prompt

Prompt

Completion Stream0 Stream1 Stream2

S00 S10 S20C0

C0 C1 S01 S11 S21

Figure 14: Streams corresponding to prompt are not required while training. Completion is divided
into multiple segments and streams of each segment only attend to previous streams from same
segment and main stream of previous segments. Uncolored portion indicates those tokens/streams
are not required to be kept in memory.

D SEGMENT ATTENTION

Naive training with speculative streaming increases the batch dimension along the sequence length
axis by a factor of γ, resulting in attention computation reaching peak memory usage with larger
batches. To address this issue, we propose a segment-based attention method that significantly reduces
peak memory consumption while enhancing training throughput. We divide each training sample into
a prompt and multiple segments of completion. Since each stream corresponding to each token must
attend to the previous streams of the same token as well as to the prompt tokens, we can eliminate the
need for prompt streams in our design. Furthermore, by segmenting the completion, we retain only
the streams associated with the required segments in memory, as illustrated in Figure 14. This design
significantly reduces peak memory consumption and ensures the scalability of our approach when
training with larger batch sizes, ultimately yielding improved throughput.

E TRAINING COST

Since speculative streaming is parameter efficient, training involves fine-tuning only LoRA parameters
of MSA layers and it’s comparable to training Medusa heads. We finetuned Vicuna-7B model on
the ShareGPT dataset in ∼ 5 hours using segment attention, comparable to the 3-4 hours required
for training Medusa heads. We also managed to train 33B Vicuna models on a single 80-GB GPU
by loading the base model in nf-4 precision and keeping only the adapters of 4 MSA layers in full
precision.
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F COMPUTE AND MEMORY PROFILING

The draft overhead associated with the standard draft-target speculative decoding approach tends to be
non-trivial especially when the latency ratio between target and draft models ctarget/cdraft <= 10.
This is because speculation and verification procedures are run in serial manner. Figure 15 shows
the kernel utilization timeline when OPT-125m is used as a draft while OPT-1.3b model is used
as the target. Auto-regressive draft generation decreases overall kernel utilization in draft-target
approach, while additional computation involved in MSA layers increase kernel utilization in case of
Speculative Streaming (see Figure 17) thereby efficiently utilizing the accelerator and speeding up
the decoding process. Negligible cost draft models may offer a better choice to keep kernel utilization
at higher levels in case of draft-target approach, however, acceptance rates tend to drop as draft model
size decreases.

MSA Layers MSA LayersMHA Layers MHA Layers

Target call k Target call k+1

Target call k Target call k+1Draft call 0 Draft call 1 Draft call 2 Draft call 3

(a) Speculative Streaming

(b) Two Stage Speculative Decoding

Figure 15: Kernel utilization timeline for speculative streaming and the standard draft-target spec-
ulative decoding. Draft-target approach runs speculation and verification in serial manner while
it is parallelized in Speculative Streaming. Auto-regressive draft generation often has low kernel
utilization as shown leading to decreased overall kernel utilization while MSA layers in Speculative
Streaming increase kernel utilization by generating a non-autoregressive draft and speeding up decod-
ing significantly.

G BATCHING

All the results presented in Section 4 are with batch size of 1 for on-device setup. We also experiment
with batching for server setup where queries from multiple users are batched to increase throughput
and accelerator utilization. To achieve maximum throughput with batching, we disable tree decoding
and tree pruning and use only best speculated path for each decoding step for every sequence in a
batch. Since our method primarily relies on utilizing flops to accelerate decoding, with batching we
do see some degradation in speedup per sample as depicted in Figure 16, however we consistently
achieve >2X speedups while keeping throughput same as batched autoregressive decoding.

2 2.2 2.4 2.6 2.8 3 3.2 3.4

1

2

4

Walltime Speedup with Batching

Vicuna 13b Vicuna 7B

Figure 16: Walltime speedup for different
batch sizes with Vicuna Models.

0% 20% 40% 60% 80% 100%

2-stage SD

Medusa SD

Speculative
Streaming

Kernel Memory

Figure 17: Kernel and Memory utilization
comparison on Nvidia A-100.

H ANALYSIS OF 2-MODEL SPECULATIVE DECODING

Speculative Streaming consistently achieves significantly lower walltime latency than standard draft-
target speculative decoding as depicted in Table 2. It is worth noting that, target model calls of
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draft-target speculative decoding are slightly lower than Speculative Streaming, however, it comes at
the cost of auto-regressively running draft model γ times to generate speculative draft. On the other
hand, draft generation with Speculative Streaming incurs almost no additional latency overhead, as
target model decoding tends to be memory-bound even with increased tree draft size. This translates
to increased kernel utilization and arithmetic intensity as shown in Figure 17.

An argument could be made that a smaller draft model may perform better since drafting should cost
less, but acceptance rates may drop as well as the draft model size is decreased. To formalize the
comparison with standard draft-target speculative decoding, we do the following analysis, let’s say,
Cdraft is the latency cost associated with forward pass through the draft model, Ctarget is the cost
associated with forward pass through target model, while Css is cost associated with speculative
streaming forward pass. ζ is the number of decoding tokens advanced during the verification step for
the draft-target approach while β is the number of tokens advanced in Speculative Streaming. We
equate latency cost associated with single token advancement to compare both approaches.

(γ ∗ Cdraft + Ctarget)/ζ = Css/β (9)
(γ+Ctarget/Cdraft)/ζ = (Css/Cdraft)/β

Assuming γ = 4, Ctarget/Cdraft = 10, and Css ≈ Ctarget, ζ = 1.4β, meaning that advancements
per verification step in standard draft-target approach have to be 1.4X of Speculative Streaming to
achieve wall time latency parity. Note that, this analysis ignores cache adjustment overhead and
prompt processing overhead, but provides valuable intuition to guide the choice between draft-target
vs Speculative Streaming approaches. We also analyze under which settings speculative streaming
is likely to offer more benefits as compared to the standard draft-target approach. Fig. 1b shows
theoretical speedups of Speculative Streaming over draft-target based approach for different Target to
draft latency ratios. As the latency ratio increases, the draft-target approach is likely to offer more
speedup benefits when ζ/β > 1, meaning that when the draft model is accurate enough to achieve
more token advancements per target model verification step than Speculative Streaming and also
small enough to yield higher latency ratios, it is likely to benefit more. Finding/creating such a
model usually requires significant engineering efforts. In downstream application settings, finding
ideal draft models becomes even more challenging since ζ tends to vary based on application. If
applications share the draft model and only train adapters, the draft model may not remain small
enough to meet target-to-draft latency ratios, making it challenging to achieve more speedups than
Speculative Streaming.

H.1 EXPERIMENTAL SETUP DETAILS

For experiments described in 4, our recipe involves training LoRA adapters for 5 epochs on the
downstream datasets in BFloat16, using the AdamQ optimizer, a learning rate of 5e-4, and a linear
scheduler. For tree pruning (see Section 3.1.3), we use a low-rank linear transformation of rank 8 to
keep parameter overhead minimal. We set α0 = 1 and αj = 0.1 for j = 1...γ to weigh speculative
loss relative to next token prediction loss. We experimented with linear transformations of different
ranks to initialize speculative streams from main stream as described in Equation (3), however we
find that simply using identity transformation achieves similar performance with much less parameter
overhead. We use identity transformation for all the experiments described in Section 4. We report
best results for Medusa and our approach over different γ and k values. For speculative tree draft
generation, we used the optimal settings for both Medusa and Speculative Streaming, specifically
γ = 3 and k = 4. We pass 32 nodes as a tree draft for speculative streaming after the pruning
layer while in case of Medusa we pass 64 nodes, as these configurations yield the best wall-time
speedups for respective approaches. We also report accelerator agnostic speedups (mean tokens
generated per step) assuming negligible verification and draft composition overhead as latency of
forward pass, verification and draft composition procedures vary greatly depending on accelerator
(e.g. a mobile device neural engine vs. Nvidia A100), while tokens/step metric tends to serve as roof-
line for achievable speedup. Lastly, we use “hard“ matching criteria for verification of speculative
draft. Relaxing this criteria to “soft“ matching may yield higher speedups (Cai et al., 2023). To
compare with Medusa (Cai et al., 2023) style approach, we use pre-trained base models with LoRA
adapters (Hu et al., 2022) of rank 32 and Medusa heads as the baseline, and Speculative Streaming
with the same base models, stream embeddings and LoRA adapters as target. Medusa heads are
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trained following the recipe described in (Cai et al., 2023). Both Medusa heads and the number
of maximum streams are fixed to 4 and the residual blocks per head used in Medusa are set to 1.
For comparison with standard draft-target speculative decoding (Leviathan et al., 2023), we use
OPT models since they come with different configurations and sizes. OPT-125m is deployed as a
draft model while OPT-1.3b and OPT-6.7b are used as target models since a ratio of 10-100X is
typically considered to be optimal. We compare our approach with LookAhead decoding using best
configuration reported in (Fu et al., 2023).

I PARAMETER OVERHEAD

In terms of parameters, each Medusa head adds about h2 + hv parameters, where h is the hidden size
and v is the vocabulary size. The number of Medusa heads also scales linearly w.r.t. γ, the length of
the speculative window, which in turn increases parameter overhead linearly with γ. On the other
hand, Speculative Streaming uses speculative adapters which do not scale with γ. Although, Stream
identifier embeddings scale with γ, the parameter overhead associated with each embedding is linear
to h. Furthermore, in fine-tuning settings “speculative adapter" parameters are shared with base
model adapters, therefore, parameter overhead associated with our approach is just γh.

J ADDITIONAL RELATED WORKS

The inference speed of large language models (LLMs) is often constrained by the sequential nature
of auto-regressive decoding, which requires a complete forward pass of the network for each token
generated. To mitigate the high inference latency, various strategies have been proposed to reduce the
memory footprint of LLMs. Techniques such as model quantization (Frantar et al., 2022; Yao et al.,
2022; Dettmers et al., 2023), knowledge distillation to smaller models (Gu et al., 2023; Agarwal
et al., 2023), and pruning (Frantar & Alistarh, 2023; Sun et al., 2023a) have emerged as effective
solutions. More recently, Confident Adaptive Language Modeling (CALM) (Schuster et al., 2022) has
introduced a method to dynamically adjust computational resources per token through early exiting
in decoder layers. While CALM shows promise, it is hindered by issues related to key-value (KV)
mismatch (Corro et al., 2023). To address the KV mismatch problem, skip decoding (Corro et al.,
2023) allows for the bypassing of an increasing number of layers based on the position in the decoded
sequence. While this approach eliminates KV mismatch, the predefined restrictions on the number of
layers bypassed can lead to suboptimal generation quality. In contrast, speculative decoding methods
provide a significant advantage over dynamic computing approaches, as they maintain generation
quality while enhancing inference efficiency.

K LONG CONTEXT EXPERIMENTS

To evaluate performance on long sequences, we trained speculative adapters on the Arxiv-
summarization dataset (Cohan et al., 2018) and tested it on the Summarization task from the
LongBench dataset (Bai et al., 2023). Since the KV cache is shared between the main and speculative
streams, there is no additional runtime memory overhead. While compute in attention layers increases
due to longer context, the compute in MLP layers remains the same, and decoding is still memory
bandwidth bound. We achieved a 2.64X speedup on the Summarization test set using gamma = 3 and
k = 4. We will include these LongBench experiments in the Appendix of the final revision.

k Speedup
1 2.21
2 2.35
3 2.52
4 2.64
5 2.58

Table 3: Speedups for long-context summarization tasks with varying top-k tokens sampled during
drafting.
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Figure 18: Speculative streaming on SQL generation task for γ = 4 and k = 1, each pass verifies
the previous draft and generates a maximum of 5 tokens. For instance in pass 4, “credit” and “_”
(shown in red) are rejected and “hour”, “_”, “fall”, “_”, “_” are speculated.
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Figure 19: Speculative streaming on Dialog Summarization task for γ = 4 and k = 1, each
pass verifies the previous draft and generates a maximum of 5 tokens. For instance, in pass 3,
“is”, “a”, “character” are rejected and “was”, “a”, “character”, “and”, “he” are speculated.

L QUALITATIVE EXAMPLES

In this section, we present qualitative examples to illustrate the effectiveness of Speculative Streaming.
By examining specific instances, we aim to highlight how this approach enhances the overall
performance of the decoding process. An example of the SQL query generation task is shown in
Figure 18, while a dialog summarization example is shown in Figure 19. Each row indicates the
previous sequence of accepted draft tokens (in black) and the new sequence of generated tokens
in green/red. We use γ = 4 and k = 1 to illustrate the decoding process. Green tokens in each
row indicate tokens accepted in the next forward pass, while red tokens indicate tokens rejected
in the next forward pass. Speculative Streaming appears to generate meaningful drafts with high
acceptance rates by capturing dependencies between tokens quite effectively, despite generating them
in a non-auto-regressive manner.
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