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Abstract

Recent advances in multimodal semantic segmentation show that incorporating
auxiliary inputs—such as depth or thermal images—can significantly improve
performance over single-modality (RGB-only) approaches. However, most exist-
ing solutions rely on parallel backbone networks and complex fusion modules,
greatly increasing model size and computational demands. Inspired by prompt
tuning in large language models, we introduce MixPrompt: a prompting-based
framework that integrates auxiliary modalities into a pretrained RGB segmentation
model without modifying its architecture. MixPrompt uses a lightweight prompt-
ing module to extract and fuse information from auxiliary inputs into the main
RGB backbone. This module is initialized using the early layers of a pretrained
RGB feature extractor, ensuring a strong starting point. At each backbone layer,
MixPrompt aligns RGB and auxiliary features in multiple low-rank subspaces,
maximizing information use with minimal parameter overhead. An information
mixing scheme enables cross-subspace interaction for further performance gains.
During training, only the prompting module and segmentation head are updated,
keeping the RGB backbone frozen for parameter efficiency. Experiments across
NYU Depth V2, SUN-RGBD, MFNet, and DELIVER datasets show that Mix-
Prompt achieves improvements of 4.3, 1.1, 0.4, and 1.1 mIoU, respectively, over
two-branch baselines, while using nearly half the parameters. MixPrompt also
outperforms recent prompting-based methods under similar compute budgets.The
code is available at https://github.com/xiaoshideta/MixPrompt.

1 Introduction

Semantic segmentation assigns a label to each pixel in an image and is a core task in computer vision.
Progress in this area has largely been driven by large-scale RGB datasets such as Cityscapes [1] and
ADE20K [2]. However, models trained on RGB data alone often struggle in challenging environments,
such as low-light or poor weather, where visual cues are weak or missing. To address these limitations,
multimodal segmentation approaches integrate data from additional sensors [3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. For example, RGB-D segmentation pairs RGB images with depth information, improving
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Figure 1: Comparison between (a) conventional multimodal semantic segmentation framework, (b)
prompting-based framework, and (c) our mixed prompting framework. Our framework excels by
offering superior parameter efficiency while providing a more effective prompting module design.

object separation and spatial understanding [3, 4, 5, 6, 7, 8, 9]. As a result, multimodal methods have
surpassed RGB-only models in both accuracy and robustness.

Despite these benefits, two main challenges remain for multimodal segmentation. First, model size
increases significantly, adding more modalities usually means extra backbone branches and fusion
modules [14], which raise computational costs and make deployment difficult on resource-limited
platforms. Second, multimodal datasets are often much smaller than RGB ones, as collecting aligned
data from auxiliary sensors is expensive and labor-intensive. For instance, NYU Depth V2 [15]
contains only 1,449 RGB-D pairs, while ADE20K has over 25,000 RGB images. This data scarcity
limits both training and generalization.

Recognizing these challenges, we draw inspiration from the vision-language domain [16, 17, 18],
where prompt tuning allows a pretrained language model to process visual inputs by introducing
visual features as prompts. This method efficiently adapts large models to new tasks or modalities
with minimal data and parameters. We extend this idea to semantic segmentation by using a pretrained
RGB model as the base, and introducing auxiliary modalities as prompts. Prior work sharing the
similar idea [14] simply embeds data from the additional modality directly into the feature space and
integrates it with the RGB features through simple addition, treating the modalities as basic addends
rather than leveraging their complementary strengths. This method may not fully exploit the potential
of the auxiliary modality, potentially leading to suboptimal performance.

To bridge this gap, we propose MixPrompt, a mixed prompting framework for efficient multimodal
semantic segmentation. MixPrompt embeds auxiliary data using the initial layers of a pretrained
RGB extractor, then aligns and fuses features from both modalities at multiple subspaces throughout
the backbone. This approach maximizes information transfer with minimal parameter increase. As
shown in Figure 1, MixPrompt achieves the efficiency of prompting-based methods while delivering
stronger performance. We evaluate MixPrompt on four benchmark datasets: NYU Depth V2 [15],
SUN-RGBD [19], MFNet [10], and DELIVER [8]. MixPrompt consistently outperforms strong
two-branch and prompting-based baselines, achieving higher accuracy with fewer parameters.

The contributions of our paper can be summarized as follows:

• We introduce MixPrompt, an efficient prompting framework that integrates auxiliary modali-
ties into a pretrained RGB segmentation model, ensuring both data and parameter efficiency.

• We show that reusing early layers of a pretrained RGB backbone is an effective embedding
strategy for auxiliary modalities.

• We propose a multi-subspace alignment and prompting strategy that fully leverages auxiliary
information, resulting in improved performance over existing baselines.

2 Related works

2.1 Semantic segmentation

Semantic segmentation faces limitations in complex scenarios when relying solely on RGB images,
such as low-light conditions and occluded objects. To address these challenges, researchers have
introduced multimodal inputs like depth and thermal images. Existing approaches primarily focus on
two directions: cross-modal alignment and fusion strategies at various network levels [3, 6, 20, 8,
21, 22, 10, 11, 13, 23], and developing specialized feature extraction architectures for multimodal
data [24, 5, 4, 25, 26]. However, these methods often suffer from increased model complexity due to
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modality-specific networks and are constrained by the scarcity of large-scale multimodal datasets for
pretraining.

2.2 Multimodal prompting

Multimodal prompting has emerged as an effective technique to enhance cross-modal reasoning
in vision-language models. Visual prompts, complementing textual prompts, enable pixel-level
instructions that help mitigate challenges like visual hallucinations and linguistic biases. Models
like CLIP [27] and LLaVA [16] demonstrate how visual prompts combined with large language
models can achieve strong performance in multimodal tasks. However, early applications in semantic
segmentation, such as Dong et al. [14], often fuse multimodal features through simple operations like
summation without adequately addressing inter-modal differences, which may interfere with RGB
feature distributions and limit visual information capture. The complete literature review, including
extensive analysis of prior research and additional references, can be found in the supplementary
material (Section A.1).

3 Rethinking Multimodal Prompted Segmentation

Problem setup. Prompt tuning is a technique originally designed to improve the performance of a
pretrained language model on a target task without modifying its internal architecture. It involves
providing the model with task-specific context through properly constructed prompts. In the field of
computer vision, similar ideas have emerged to adapt pretrained models to downstream tasks [28, 29].
A general workflow for this procedure can be formulated as follows:

ei = Pi(hi−1, ei−1), hi = Li(hi−1, ei), y = head(hN ), (1)

where i ∈ {1, 2, . . . , N} is the layer index. Pi and Li denote the i-th prompting module and model
layer, respectively. hi represents the output hidden states of layer Li, and h0 is the embedded original
input. ei denotes the prompt for layer Li, while e0 is the initial prompt at the input stage, which
can be either learnable or task-specific parameters. Under this framework, multimodal prompted
segmentation can be achieved by using a pretrained single-modality model to extract hidden states
from an RGB image, where the prompt ei is incorporated into the input space at each layer Li. The
initial prompt e0 is obtained based on the auxiliary modality input, and the intermediate prompt ei is
generated by the prompting module Pi, which takes both the previous hidden state hi−1 and prompt
ei−1 as inputs. Finally, the result of the segmentation y is obtained by processing the hidden state hN

using the prediction head.

RGB

Depth

Figure 2: Feature maps extracted from the first stage of a pretrained RGB ResNet50 for RGB and
depth inputs, showing that RGB pretrained model can extract meaningful features from depth images.

Rethinking prompt initialization. In the multimodal prompted segmentation framework described
above, the way in which auxiliary modality information is introduced into a pretrained model
significantly impacts segmentation performance, specifically the initial prompt e0, as it serves as
the entry point for incorporating the auxiliary modality into the model. We reconsider the typical
approach to prompt initialization, which often relies on training a new feature extractor specific to the
auxiliary modality or using randomly initialized prompts. This random initialization may negatively
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affect the final performance of the prompted model. In contrast, we hypothesize that early layers of
a pretrained RGB model could provide a more effective initialization.

To validate this, we conducted experiments to explore the viability of using pretrained RGB models
for initializing the prompt e0. Specifically, we analyze the feature maps obtained from the first stage
of a pretrained ResNet50 model, originally trained on RGB data, using both RGB and depth modality
inputs. For this analysis, we use the first sample from the test set of the NYU Depth V2 dataset,
which consists of an RGB-depth image pair.

We begin by comparing the feature maps obtained from the model when fed with both RGB and depth
inputs. Figure 2 presents a subset of the extracted feature maps for both modalities. These maps show
that both RGB and depth inputs exhibit distinct but rich structural patterns, with each modality
focusing on different aspects of the scene. For instance, the feature maps from the RGB input capture
fine edge and texture details, while the depth modality emphasizes depth-related information, such
as surface contours and object shapes. Despite the differences in data characteristics, the pretrained
RGB model is still capable of extracting meaningful features from the depth modality.

4 Method

4.1 MixPrompt framework

We introduce the MixPrompt framework, a method designed to integrate auxiliary modality infor-
mation into a pretrained RGB model through efficient and lightweight prompt tuning. As illustrated
in Figure 3, our framework utilizes a pretrained RGB model as the backbone for processing RGB
images. The auxiliary modality is incorporated via a lightweight prompting module that generates the
initial prompt e0 based on features extracted from the auxiliary input. At each layer i, the backbone
layer Li and the prompting module Pi iteratively fuse and refine features from the hidden state hi−1

and the prompt ei−1. The final output is then passed through a segmentation head—initialized with
a pretrained RGB segmentation model—to generate the segmentation mask. During training, the
backbone remains frozen, as it accounts for the majority of the model parameters. Therefore, only a
small subset of parameters is trainable in the MixPrompt framework, ensuring efficient optimization.

The design of prompt initialization stems from our rethinking of how the initial prompt e0 should be
generated. Instead of training an additional modality-specific feature extractor, we propose leveraging
the early layers of the pretrained RGB model. These layers are effective for initializing e0, as they
capture general, low-level features that can transfer across different modalities. In the following
sections, we will detail the prompting process after obtaining the initial prompt e0.

4.2 Multi-subspace prompting

We delve into the design of the prompting module in this subsection. In our MixPrompt framework,
the prompting module serves as the core, fusing useful information from the auxiliary modality into
the backbone. This integration ensures that the final prediction takes the auxiliary modality into
account, leading to superior results. However, the features of the main modality in the backbone and
those of the auxiliary modality in the prompting branch exist in different feature spaces. Consequently,
the prompting module must first align these mismatched feature spaces. Once aligned, the features
are fused and fed back into the backbone. This alignment and fusion process relies on two key
design principles of our prompting module. The first principle is parameter-efficient feature
alignment, which ensures that the prompting branch remains lightweight. The second principle is
information-exploitation efficiency which ensures that we fully utilize the auxiliary information
available. The designed prompting module, based on these two principles, is presented at the bottom
right of Figure 3.

To achieve parameter-efficient feature alignment, it is essential that the alignment module remains
uncomplicated. Therefore, we employ a straightforward linear projection to align the features between
the RGB and auxiliary modalities within a low-rank subspace. This approach not only simplifies
the alignment process but also enhances computational efficiency by reducing the complexity of the
module. Furthermore, the fusion of these aligned features is implemented by simply adding them
together, which further promotes efficient computation. This process is formulated as follows:

ei = Pi(hi−1, ei−1) = Wup(Wrgbhi−1 +Wxei−1), (2)
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Figure 3: Overall framework of the proposed MixPrompt for multimodal semantic segmentation.
The RGB input is processed by an RGB-pretrained segmentation model, while the auxiliary input is
processed by a lightweight prompting module. In the prompting module, the initial prompt is derived
from the early blocks of the pretrained RGB model (Section 3). At each stage, auxiliary features are
projected into multiple subspaces and subsequently mixed to align with the RGB features by mixed
prompting modules (Section 4.2). The fused features are used as prompt and is fed back into the main
branch. Finally, the segmentation mask is generated by a prediction head based on the output features
of the main branch. During training, only the lightweight prompting module and the prediction head
are trainable, ensuring the parameter efficiency of the proposed framework.

where Wrgb,Wx ∈ Rr×d are down projections and Wup ∈ Rd×r is up projection. Here, d is the
original feature space, and r ≪ d is the dimension of the low-rank alignment subspace. By adopting
a small value for r, the prompting module can be made parameter-efficient.

To enhance information-exploitation efficiency, we propose introducing multiple pairs of down and
up projections. Each pair aligns the RGB and auxiliary modalities within a distinct subspace, thereby
boosting the utilization of useful information. However, this approach increases the number of
parameters significantly. Drawing inspiration from the LoRA finetuning method for LLMs [30], we
observe that employing an extremely low rank can still yield promising performance. This is because
the pretrained LLM operates within a low intrinsic dimension. We make a similar assumption: our
pretrained RGB segmentation model also resides in a low intrinsic dimension. Consequently, we
reduce the rank of each subspace. This reduction ensures that the overall number of parameters
remains unchanged, thereby maintaining parameter efficiency. Taking the RGB features as an
example, the projection into multiple subspaces can be represented as:

[Wrgb,1hi−1,Wrgb,2hi−1, ...,Wrgb,nhi−1] , (3)

where Wrgb,1,Wrgb,2, ...,Wrgb,n ∈ R r
n×d. n indicates the number of adopted subspaces, where the

division of the original rank r by n ensures that the introduction of multiple subspaces does not bring
additional parameters. To keep concise, we denote Wrgb,nhi−1 as hn

i−1. Then, to further improve the
representation ability, we introduce a mixing matrix M ∈ Rn×n to exchange information between
each subspace. The mixed feature ĥi−1 becomes:

ĥi−1 =
[
h1
i−1, h

2
i−1, ..., h

n
i−1

]
M =

[∑n
j=1 Mj,1h

j
i−1, ...,

∑n
j=1 Mj,nh

j
i−1

]
, (4)

where Mi,j indicates value of the according element in the mixing matrix M . Similarly, we obtain
the low-rank representation of the prompt ei−1 as êi−1. The information from the RGB modality is
then injected into the low-rank prompt by addition and back-projected into the original feature space
via the linear projection Wup ∈ Rd×r to yield the new prompt ei. Once the prompt ei is obtained, the
backbone layer Li directly fuses the RGB feature with the prompt via addition. The whole process
can be formulated as:

hi = Li(hi−1 +Wup(ĥi−1 + êi−1)). (5)
The mixed prompting module performs information mixing only between different subspaces of the
RGB modality, based on the rationale that mixing information across subspaces on both modalities
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Table 1: Comparison of various multi-modal fusion methods on RGB-D segmentation datasets.
Results are obtained through multiscale testing. ‘-’ indicates that the corresponding results are not
provided in the original paper. ‘*’ denotes the result from the the single-modal version of the method
using only RGB input.

Model Backbone Params NYU Depth V2 SUN-RGBD

Input size FLOPs mIoU Input size FLOPs mIoU

SegFormer* [34] MiT-B4 62.4M 480×640 74.7G 52.3 530×730 96.3G 49.1
ACNet [3] ResNet50 116.6M 480×640 126.7G 48.3 530×730 163.9G 48.1
SGNet [4] ResNet101 64.7M 480×640 108.5G 51.1 530×730 151.5G 48.6
SA-Gate [5] ResNet101 110.9M 480×640 193.7G 52.4 530×730 250.1G 49.4
GEN [6] ResNet101 118.2M 480×640 118.2G 51.7 530×730 790.3G 50.2
ShapeConv [24] ResNext-101 86.8M 480×640 124.6G 51.3 530×730 161.8G 48.6
ESANet [22] ResNet34 31.2M 480×640 31.2G 50.3 480×640 34.9G 48.2
TokenFusion [21] MiT-B3 45.9M 480×640 94.4G 54.2 - - -
TransD-Fusion [20] Swin-B 84.0M 480×640 - 55.5 530×730 - 51.9
Omnivore [25] Swin-B 95.7M 480×640 95.7G 54.0 - - -
CMX [7] MiT-B2 66.6M 480×640 67.6G 54.4 530×730 86.3G 49.7
CMX [7] MiT-B4 139.9M 480×640 134.3G 56.3 530×730 173.8G 52.1
CMX [7] MiT-B5 181.1M 480×640 167.8G 56.9 530×730 217.6G 52.4
CMNext [8] MiT-B4 119.6M 480×640 131.9G 56.9 - - -
DFormer [26] DFormer-L 39.0M 480×640 65.7G 57.2 530×730 83.3G 52.5
DPLNet [14] MiT-B5 88.58M 480×640 105.0G 59.3 530×730 132.9G 52.8
Ours MiT-B5 87.2M 480×640 109.0G 61.2 530×730 137.9G 53.5

could hinder alignment and lead to suboptimal performance. The overall workflow of is presented in
the supplementary material (Algorithm 1).

Analysis. The proposed prompting method adopts multiple subspaces for feature fusion, which acts
somewhat like the adaptation of a mixture of experts in LLM design [31, 32], where matrix M is the
router to assign different importance to each subspace by mixing them with different weights. When
n = 1 or when all elements in M are equal to 1/n, the prompting module downgrades to the base
architecture in Equation 2. More quantitative analysis in the supplementary material (Section C.5)
further validates this design, showing that moderate numbers of subspaces yield optimal performance
by enhancing inter-subspace diversity. Another impact of the mixed prompting module comes from
reparameterization [33]. While the introduction of multiple subspaces does not involve any non-linear
operations, it allows the model to leverage a multi-branch architecture. This modification of the
gradient flow helps the model achieve better performance by facilitating more effective information
propagation. By aligning features in a low-rank subspace, we adhere to the design principle of
parameter-efficient feature alignment. Additionally, the introduction of multi-subspace prompting and
the information mixing scheme ensures the principle of information-exploitation efficiency, enabling
the final model to achieve effective and efficient multimodal fusion.

5 Experiments

5.1 Experimental Setup

To validate the effectiveness of MixPrompt, we conduct experiments on multiple datasets with RGB
and auxiliary modalities, including RGB-Depth, RGB-Thermal, RGB-Event, and RGB-Lidar. NYU
Depth V2 [15] dataset contains 1,449 RGB-D samples across 40 categories. SUN-RGBD [19]
includes 10,335 RGB-D images with 38 classes. MFNet [10] provides 1,569 RGB-Thermal pairs
from 9 classes. DELIVER [8] comprises 3,983 training and 2,005 testing samples with RGB, Depth,
Event, and Lidar modalities across 25 categories.

We use the mean Intersection over Union (mIoU) metric for evaluation, with multiscale testing
on NYU Depth V2 and SUN-RGBD, and single-scale testing on other datasets, aligning with the
evaluation practices of prior works. For the backbone network, we utilize the Mix Transformer
encoder (MiT) [34] pretrained on the ADE20K dataset [2]. The auxiliary modalities are projected into
the feature space using modules placed before the second stage of a ResNet50 [35] network, which
initializes the prompt information. This prompt is then fused across multiple scales using four mixed
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Table 2: Comparison of RGB-T segmentation performance on MFNet. Results marked with an
underline show the second-best performance in each category, while those in bold indicate the highest
score for that class. UL: Unlabeled, PS: Person, CT: Car top, GD: Guardrail, CC: Color cone.

Method Backbone Params FLOPs UL Car PS Bike Curve CT GD CC Bump mIoU

MFNet [10] - - - 96.9 65.9 58.9 42.9 29.9 9.9 0.0 25.2 27.7 39.7
RTFNet [11] ResNet152 245.7M 185.2G 98.5 87.4 70.3 62.7 45.3 29.8 0.0 29.1 55.7 53.2
PSTNet [12] ResNet18 105.8M 123.4G 97.0 76.8 52.6 55.3 29.6 25.1 15.1 39.4 45.0 48.4
FuseSeg [13] DenseNet161 141.5M 193.4G 97.6 87.9 71.7 64.6 44.8 22.7 6.4 46.9 47.9 54.5
U2Fusion [36] VGG16 - - 97.7 82.8 64.8 61.0 32.3 20.9 - 45.2 50.2 50.8
AFNet [37] ResNet50 - - 98.0 86.0 67.4 62.0 43.0 28.9 4.6 44.9 56.6 54.6
ABMDRNet [38] ResNet50 64.6M 194.3G 98.6 84.8 69.6 60.3 45.1 33.1 5.1 47.4 50.0 54.8
FEANet [39] ResNet152 337.1M 255.2G 98.3 87.8 71.1 61.1 46.5 22.1 6.6 55.3 48.9 55.3
GMNet [40] ResNet50 149.8M 153.0G 97.5 86.5 73.1 61.7 44.0 42.3 14.5 48.7 47.4 57.3
TarDAL [41] - 297M - 97.6 80.7 67.1 60.1 34.9 10.5 - 38.7 45.5 48.6
EAEFNet [42] ResNet152 200.4M 147.3G - 87.6 72.6 63.8 48.6 35.0 14.2 52.4 58.3 58.9
CACFNet [43] ConvNeXt-B 198.6M 101.4G - 89.2 69.5 63.3 46.6 32.4 7.9 54.9 58.3 57.8
PAIF [44] - 260M - 88.1 72.4 48.1 60.8 - - - 56.0 57.2 56.5
CENet [23] ResNet50 - - 98.1 87.8 71.4 63.2 47.5 31.1 - 48.9 50.3 56.1
SegMiF [45] MiT-B3 - - 98.1 87.8 71.4 63.2 47.5 31.1 - 48.9 50.3 56.1
CMX [7] MiT-B2 66.6M 67.6G 98.3 89.4 74.8 64.7 47.3 30.1 8.1 52.4 59.4 58.2
CMX [7] MiT-B4 139.9M 134.3G 98.3 90.1 75.2 64.5 50.2 35.3 8.5 54.2 60.6 59.7
CMNeXt [8] MiT-B4 119.6M 131.9G 98.4 91.5 75.3 67.6 50.5 40.1 9.3 53.4 52.8 59.9
DPLNet [14] MiT-B5 88.58M 105.0G - - - - - - - - - 59.3
Ours MiT-B5 87.2M 109.0G 98.3 90.2 74.5 65.2 50.1 48.3 10.5 51.7 52.0 60.1

prompting modules, effectively integrating the auxiliary information into the RGB backbone at various
levels. Additional optimization details are provided in the supplementary material (Section C.1).

5.2 Segmentation results

5.2.1 RGB-D segmentation

We first analyze the performance of the proposed MixPrompt framework for RGB-D (depth) seg-
mentation, comparing it with several state-of-the-art multimodal fusion methods. The results are
summarized in Table 1, which reports the performance on the NYU Depth V2 and SUN-RGBD
datasets.

On the NYU Depth V2 dataset, MixPrompt achieves the highest mIoU score of 61.2 with 87.2M
parameters and 109.0G FLOPs computational cost, demonstrating the efficiency of our approach.
In comparison, the second-best method, DPLNet, achieves an mIoU of 59.3 with slightly more
parameters and lower FLOPs. Methods like ACNet and SGNet, with mIoUs of 48.3 and 51.1,
respectively, perform significantly worse, highlighting the advantages of our MixPrompt.

On the SUN-RGBD dataset, MixPrompt again achieves the highest mIoU of 53.5, surpassing
other methods by a notable margin. DPLNet ranks second with an mIoU of 52.8, while CMX-
MiT-B5 follows closely with 52.4. Other methods, such as ACNet and SGNet, continue to show
lower performance, with mIoUs of 48.1 and 48.6, respectively. The results on SUN-RGBD further
reinforce the strength of MixPrompt. A key advantage of MixPrompt is its computational efficiency.
With 87.2M parameters and 109.0G FLOPs on the NYU Depth V2 dataset, MixPrompt achieves
competitive accuracy while being more lightweight compared to other high-performance models,
such as CMX (MiT-B5). The efficient design of the MixPrompt framework, using a lightweight
prompting module integrated with a pretrained RGB backbone, avoids the need for parallel networks
or complex fusion architectures that typically increase both model size and computational cost.
Another notable method is DFormer [26], which has significantly fewer parameters compared to other
recent approaches. While its design of using a shared branch for both RGB and auxiliary modalities
contributes to a parameter-efficient architecture, this shared parameterization also limits flexibility of
the model. As a result, DFormer significantly underperforms in comparison to our framework.

To ensure the fairness of our experimental setup, we additionally examined the impact of different
backbone pretraining settings. Specifically, we re-trained several representative multi-modal methods
(e.g., CMX and CMNeXt) using the same ADE20K-pretrained weights as ours to provide an equitable
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comparison. The results consistently show that while these models benefit slightly from stronger
initialization, our method still achieves a clear advantage (around 2.9–3.1 mIoU higher on NYUDepth)
with significantly fewer trainable parameters. Detailed experimental results and analysis are provided
in the supplementary material (Section C.3).

5.2.2 RGB-T segmentation

We then analyze the performance of MixPrompt on the RGB-T (Thermal) segmentation dataset
MFNet. The results, shown in Table 2, report both class-wise and overall mIoU.

On the overall mIoU metric, MixPrompt achieves the highest score of 60.1, outperforming all other
models in the comparison. The second-best method, CMNeXt, achieves an mIoU of 59.9. These
top performers are followed by other notable methods such as CMX (MiT-B4), which scored 59.7.
In contrast, models like MFNet and RTFNet achieved significantly lower mIoUs of 39.7 and 53.2,
respectively, showcasing the advantages of the MixPrompt framework. Focusing on the class-wise
performance, our model performs exceptionally well on classes such as “Car” and “Bike”, with scores
of 90.2 and 74.5, respectively. These scores are higher than those achieved by the best-performing
models, such as CMNeXt, which scored 91.5 and 75.3 for the same classes.

Notably, our model excels in the Car Top (CT) class, achieving an outstanding performance of 48.3,
which surpasses all other models in this category.

Despite the competitive performance in many classes, our model continues to demonstrate an overall
advantage, achieving a balance between class-wise accuracy and computational efficiency. With
87.2M parameters and 109.0G FLOPs, MixPrompt outperforms others with comparable or even
fewer parameters, while maintaining strong class performance.

5.2.3 Other auxiliary modalities

Table 3: Comparison of RGB-Event and RGB-
Lidar segmentation performance on the DE-
LIVER dataset. The highest mIoU for each condi-
tion is highlighted in bold, while the second-best
score is underlined.

Method Modal Backbone Params mIoU

HRFuser [46] RGB HRFormer-T 29.9M 48.0
CMNeXt [8] RGB MiT-B2 25.8M 57.2

HRFuser [46] RGB-E HRFormer-T 30.5M 42.2
TokenFus. [21] RGB-E MiT-B2 26.0M 45.6
CMX [7] RGB-E MiT-B2 66.6M 56.5
CMNeXt [8] RGB-E MiT-B2 58.7M 57.5
Ours RGB-E MiT-B2 29.9M 58.0

HRFuser [46] RGB-L HRFormer-T 30.5M 43.1
TokenFus. [21] RGB-L MiT-B2 26.0M 53.0
CMX [7] RGB-L MiT-B2 66.6M 56.4
CMNeXt [8] RGB-L MiT-B2 58.7M 58.0
Ours RGB-L MiT-B2 29.9M 59.1

The results in Table 3 compare different methods
on the RGB-E (Event) and RGB-L (Lidar) seg-
mentation tasks from the DELIVER dataset. For
the RGB-E task, our model achieves a notable
mIoU score of 58.0, surpassing all other RGB-E
models, including the second-best CMNeXt and
CMX, demonstrating the efficiency and effective-
ness of our approach in handling multi-modal
RGB-E data.

In the RGB-L task, our model further establishes
its superiority by achieving the highest mIoU of
59.1. It outperforms the next best method by a
considerable margin. Despite having only 29.9M
parameters, our model delivers top-tier perfor-
mance, demonstrating both efficiency and strong
segmentation capabilities in the RGB-L setting.

Overall, our model consistently performs at the
top across both RGB-E and RGB-L modalities,
showing a robust ability to integrate and process
multimodal data for segmentation tasks. The rela-
tively low number of parameters required further emphasizes the efficiency of our approach compared
to other high-performing models.

5.3 Ablation study

To comprehensively evaluate our approach, we conduct an ablation study on the NYU Depth V2
dataset using MiT-B5 as the default model. The ablations cover three main aspects: the effectiveness of
each module, the detailed design choices within each module, and the impact of key hyperparameters.
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5.3.1 Effectiveness of each module

In order to evaluate the contributions of the key components in our proposed method, we conduct
an ablation study focusing on two essential modules: the pretrained prompt extractor and the mixed
prompting module. The results are summarized in Table 4.

When both modules are enabled, the best performance, with an mIoU of 60.1%, is achieved. However,
when the pretrained prompt extractor is disabled, where we employ a simple patch embedding layer
to integrate the auxiliary modality, the model achieves an mIoU of 58.8%. Similarly, if the mixed
prompting module is removed, modality fusion is achieved through direct addition of the features
without any alignment, and the mIoU score decreases slightly to 59.5%. From these experiments,
the combination of the pretrained prompt extractor and the mixed prompting module provides the
best results, highlighting that both modules in our proposed framework play an important role in
enhancing performance.

Table 4: Ablation results for the pretrained prompt extractor and the mixed prompting module.
Prompt extractor Mixed Prompting Trainable params FLOPs mIoU (%)

✓ ✓ 5.7M 109.0G 60.1
✗ ✓ 5.5M 104.7G 58.8
✓ ✗ 5.4M 108.7G 59.5

5.3.2 Prompt extractor

Table 5: Impact of initializing
the ResNet50 prompt extractor
with pretrained weights.

Initialization type mIoU (%)

Random 59.5
Pretrained 60.1

We further investigate the design of the pretrained prompt extrac-
tor, beginning with an analysis of whether initializing the extractor
with pretrained weights affects performance. As shown in Table 5,
using a randomly initialized ResNet50 prompt extractor results in
an mIoU of 59.5%, whereas initializing it with pretrained weights
improves performance to 60.1%. This highlights the effective-
ness of leveraging pretrained RGB models for extracting initial
prompts. The pretrained backbone enables the model to extract
more meaningful representations from the auxiliary modality, ultimately leading to better segmenta-
tion results.

Table 6: Impact of different prompt extractor
architectures and the number of layers used. A
shallower convolutional extractor focusing on
early-stage features achieves the best results.

Prompt extractor Layers mIoU (%)

mit-b1 stage {1,2,3,4} 59.2
mit-b1 stage {1,2,3} 59.5
mit-b1 stage {1,2} 59.6
mit-b1 stage {1} 59.7
mit-b2 stage {1} 59.6
mit-b4 stage {1} 59.2
mit-b5 stage {1} 59.3

ResNet50 stage {1,2,3,4} 58.9
ResNet50 stage {1,2,3} 59.5
ResNet50 stage {1,2} 59.9
ResNet50 stage {1} 60.1

Next, we assess the impact of different prompt ex-
tractor architectures, with the results presented in
Table 6. Given that the backbone follows the MiT
architecture, we first evaluate various MiT variants
as the prompt extractor. The results from MiT-B1
show that deeper extractors lead to lower mIoU,
while progressively reducing the depth improves
performance, with the best result achieved using
only the first stage. Notably, ResNet50 outperforms
MiT-B1, highlighting the effectiveness of convolu-
tional models in extracting initial prompts. Addi-
tionally, increasing the size of MiT extractors offers
no further improvements, reinforcing the advantage
of convolutional extractors.

These findings suggest that a pretrained convolu-
tional prompt extractor focusing on early-stage fea-
tures is more beneficial for prompted segmentation.
The first stage of a pretrained ResNet50 provides the best performance. Therefore, we adopt this
configuration as our final design.

5.3.3 Prompt mixing

We further investigate the impact of different prompt mixing configurations, particularly the effect of
multi-subspace prompt mixing when applied to either the RGB or auxiliary modality. The results are
summarized in Table 7.
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Table 7: Ablation study on multi-subspace
prompt mixing. The best result is achieved
when multi-subspace mixing is applied only to
RGB prompts.

RGB mixing Auxiliary mixing mIoU (%)

✗ ✗ 59.3
✓ ✗ 60.1
✗ ✓ 59.7
✓ ✓ 59.8

From the results, the model achieves an mIoU of
59.3% without multi-subspace mixing. When multi-
subspace mixing is introduced to the RGB modal-
ity, performance improves significantly to 60.1%,
demonstrating the benefit of refining RGB prompts
through multi-subspace alignment. Conversely, ap-
plying multi-subspace mixing only to the auxiliary
modality yields a smaller improvement, reaching
59.7%. Interestingly, enabling multi-subspace mix-
ing for both modalities does not lead to further
gains and instead results in a slightly lower mIoU
of 59.8% compared to the RGB-only setting.

These results suggest that enhancing the RGB modality with multi-subspace mixing plays a more
crucial role in improving segmentation performance. In contrast, applying the same strategy to
the auxiliary modality provides more limited benefits, and simultaneous application to both may
introduce redundant or conflicting information. Thus, our final design prioritizes multi-subspace
mixing for RGB prompts to achieve optimal results.

5.3.4 Hyperparameters

We further perform an ablation study on key hyperparameters. First, we analyze the effect of the
rank downscale ratio d

r , which controls the intermediate feature dimension and effectively determines
the rank of the low-rank subspace. A larger ratio corresponds to a smaller rank and fewer trainable
parameters. As shown in Table 8, increasing the downscale ratio from 1 to 4 improves the mIoU from
59.4% to 60.1%, indicating that a moderate reduction in rank enhances feature efficiency. However,
when the ratio is further increased to 8, performance drops slightly to 59.6%, suggesting that an
excessively small rank may lead to information loss and hinder performance. The optimal trade-off is
achieved at a ratio of 4.

Next, we investigate the impact of the number of subspaces n used for prompt mixing. Unlike the
rank downscale ratio, this parameter does not affect parameter efficiency of the model. As reported
in Table 9, increasing the number of subspaces from 1 to 4 progressively enhances performance,
reaching a peak mIoU of 60.1%. However, further increasing the number of subspaces to 8 results in
a performance decline, suggesting that overly complex prompt mixing may introduce unnecessary
redundancy.

Furthermore, we validated our hyperparameter configuration on multiple multimodal datasets, in-
cluding RGB-Thermal, RGB-LiDAR, and RGB-Event. The results indicate that the selected values
strike an effective balance among model capacity, generalization, and computational efficiency. Due
to space limitations, more detailed results are provided in the supplementary material (Section C.7).

Table 8: Ablation study on the rank downscale
ratio.
Rank down scale ratio d

r
1 2 4 8

mIoU (%) 59.4 59.8 60.1 59.6

Table 9: Ablation study on the number of sub-
spaces for prompt mixing.

Num. of Subspace n 1 2 4 8

mIoU (%) 59.3 59.8 60.1 59.3

6 Conclusion

In this paper, we introduced MixPrompt, a novel framework for multimodal semantic segmentation
that efficiently integrates auxiliary modalities into pretrained RGB models through prompt tuning. By
leveraging a lightweight prompting module and multi-subspace alignment, MixPrompt successfully
enhances model performance while maintaining parameter efficiency. Our method addresses the
challenges of increased model complexity and data scarcity commonly associated with multimodal
segmentation tasks. Through comprehensive experiments on multiple datasets, including NYU Depth
V2, SUN-RGBD, MFNet, and DELIVER, we demonstrated that MixPrompt outperforms existing
dual-backbone approaches with fewer parameters, establishing it as a highly effective and scalable
solution.
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1. Claims
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paper’s contributions and scope?
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Justification: The abstract and introduction clearly summarize the three main contributions
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will open source the code after the draft is finalized

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have detailed experimental instructions in the experimental section and
supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results meet the requirements

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have relevant explanations in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully complies with the required ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the relevant impacts in the supplementary materials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risk in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper meets the relevant requirements.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs does not affect core methods, scientific rigor, or originality of research
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related works

A.1 Semantic segmentation.

The task of semantic segmentation not only requires identifying objects within an image but also de-
mands precise outlining of their boundaries, rendering them considerably more challenging compared
to image classification tasks. The development of traditional methods can be divided into two major
stages. The first stage revolves around classic approaches based on handcrafted features, ranging
from k-means clustering [47] to Markov Random Fields [48] and Conditional Random Fields [49].
The second stage marks the shift to early deep learning-based methods, such as Fully Convolutional
Networks [50], which laid the foundation for modern segmentation tasks. Building on this foundation,
techniques like multi-scale pyramids [51], attention mechanisms [52], and dilated convolutions [53]
have been introduced, significantly improving segmentation accuracy by capturing richer contextual
information and enhancing feature representation.

Although these methods have achieved commendable performance, they typically rely on RGB
images for predictions. However, RGB images alone often lack sufficient information for precise
semantic segmentation, especially in complex scenarios such as low-light conditions, blurred textures,
or occluded target objects. To address these challenges, researchers are exploring the integration
of other data modalities, such as depth maps [15, 19] and Thermal images [10], leveraging the
complementary advantages of multimodal data to enhance the accuracy and robustness of semantic
segmentation across diverse environments.

Existing methods primarily focus on two aspects. The first aspect emphasizes the alignment and
fusion between different modalities [3, 6, 20, 8, 21, 22, 10, 11, 13, 23]. Researchers explored diverse
strategies for alignment and fusion across multiple levels, encompassing the input, intermediate
feature extraction layers, and output. For instance, Cao et al. [24] incorporates geometric information
from auxiliary modalities into convolutional weights, establishing a link between the weights and
the underlying spatial relationships of corresponding pixels to better capture the spatial structure of
scenes. Similarly, Hu et al. [3] introduces an additional attention-based auxiliary module to fuse
features from different modalities, further balancing feature distributions and enabling the network to
focus more effectively on the most relevant regions of the image. Zhang et al. [7] proposes innovative
cross-modal feature calibration and fusion modules, aligning and calibrating feature differences in
spatial and channel dimensions across modalities at multiple scales of the model.The second aspect
focuses on more effective feature extraction [24, 5, 4, 25, 26]. For example, Girdhar et al. [25]
introduces a novel Transformer architecture that is jointly pre-trained on images, videos, and single-
view 3D data, equipping the model with cross-modal semantic feature extraction capabilities and
making it suitable for downstream tasks across different modalities. Meanwhile, Zhang et al. [26]
constructs a new large-scale RGB-D image dataset for pre-training, enhancing the ability of the model
to encode both RGB and depth images.

Nevertheless, the introduction of additional modality-specific feature extraction networks significantly
increases model complexity, resulting in an overwhelming training overhead. Moreover, the scarcity
of existing multimodal datasets makes it challenging to support large-scale pretraining tasks, which
hinders the model ability to be quickly fine-tuned for various downstream tasks across different
modalities.

A.2 Multimodal Prompting.

Vision-Language Models (VLMs) are deep learning models that integrate both visual and textual
information, with visual capabilities that enable understanding and reasoning across complex mul-
timodal tasks. The introduction of visual prompts, complementing textual prompts, enables more
granular, pixel-level instructions on multimodal inputs, helping to mitigate challenges in traditional
multimodal language models, such as visual hallucinations [54] and linguistic biases [55]. For
instance, CLIP [27] leverages contrastive learning to align shared semantic spaces between images
and text. LLaVA [16], by combining visual prompts with large-scale pretrained language models, has
achieved remarkable results in image-text reasoning and generation tasks. This approach not only
taps into the powerful foundational capabilities of large-scale pretrained models but also allows visual
prompts to adaptively establish connections between different modalities in various forms tailored to
specific tasks. An initial attempt to apply prompt tuning to the multimodal semantic segmentation
task was made by Dong et al. [14]. However, their approach utilizes the same summation operation
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to fuse features from different modalities without considering the differences between the additional
modality and the RGB modality, which may interfere with the feature distribution of the primary
RGB modality and affect ability of the model to capture important visual information.

B Methodology Details

B.1 Details of mixed prompting

The detailed algorithmic procedure for the mixed prompting module is presented in Algorithm 1.

Algorithm 1 Mixed Prompting Module

Require: hidden state hi−1, prompt ei−1, low-rank matrices Wrgb ∈ Rr×d, Wx ∈ Rr×d, Wup ∈
Rd×r, number of subspaces n, mixing matrix M ∈ Rn×n, model layer Li

Ensure: hidden state hi, prompt ei
1: êi−1 ←Wxei−1

2: ĥi−1 ←Wrgbhi−1

3: ĥi−1 ← reshape(ĥi−1, (−1, n))
4: ĥi−1 ← ĥi−1M ▷ Mixing
5: ĥi−1 ← flatten(ĥi−1)

6: ei ←Wup(êi−1 + ĥi−1) ▷ new prompt
7: hi ← Li(hi−1 + ei) ▷ new hidden state

C Additional Experiment Details.

C.1 Optimization and Schedule.

We provide detailed configurations for training on datasets including NYU Depth V2 [15], SUN-
RGBD [19], MFNet [10], and DELIVER [8] datasets. The specific hyperparameters are summarized
in Table 10.

For the NYU Depth V2 dataset, we use SGD [56] with a weight decay of 5 × 10−4 and an initial
learning rate of 0.04. The model is trained for 500 epochs with a batch size of 8. For the SUN-RGBD
dataset, we adopt the AdamW optimizer [57] with 100 epochs and an initial learning rate of 0.005. For
the MFNet dataset, we train for 500 epochs with the AdamW optimizer, a learning rate of 6× 10−4,
and a batch size of 4. For the DELIVER dataset, we train for 200 epochs with a batch size of 2,
using a learning rate of 6× 10−5 and a weight decay factor of 0.01. All experiments are conducted
on NVIDIA GeForce RTX 3090 GPUs. Data augmentation techniques, including random flipping,
random cropping, and multiscale inference with scales {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}, are applied
during training for all datasets.

Table 10: Training configurations for different datasets. LR: Learning Rate, WD: Weight Decay,
Mom: Momentum.

Dataset Input Size Batch Size Epochs Optimizer LR WD Mom
NYUD-v2 480×640 8 500 SGD 4e-2 0.0005 0.9
SUN-RGBD 530×730 4 100 AdamW 5e-3 0.01 (0.9, 0.999)
MFNet 480×640 4 500 AdamW 6e-4 0.01 (0.9, 0.999)
DELIVER 1024×1024 2 200 AdamW 6e-5 0.01 (0.9, 0.999)
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Figure 4: t-SNE visualization of feature embeddings for RGB and depth inputs, indicating that the
feature from depth images results in similar clustering levels to those from RGB images.

C.2 Analysis for Prompt Initialization

To further validate the feasibility of using pre-trained RGB models for prompt initialization, we
conduct a t-SNE analysis to visualize the distribution of features extracted from both modalities.

In this analysis, each pixel is treated as a data point, and the corresponding ground truth serves as
the label. The results, presented in Figure 4, demonstrate that the feature representations for both
RGB and depth inputs form clusters at a similar level in the lower-dimensional space. For
the RGB modality, the points are spread out with multiple clusters, reflecting the rich variety of
information captured from the RGB image. Similarly, in the depth modality, the points also form well-
defined clusters. This suggests that the features extracted from the depth modality, although distinct
from RGB features in some aspects, are sufficiently informative, indicating that pretrained RGB
models allows MixPrompt to efficiently integrate auxiliary modalities without requiring additional,
modality-specific pretrained extractors.

C.3 Analysis for Different Backbone Pretraining Settings

This note addresses the concerns raised regarding the fairness of the experimental setup. To ensure a
equitable comparison, we have conducted additional experiments where we initialized several prior
multi-modal approaches (e.g., CMX and CMNeXt) with ADE20K-pretrained weights, followed by
training on the NYUDepth dataset. The results are summarized below.

Table 11: Comparison of different method with different backbone pretraining settings.
Method Backbone Pretraining Trainable Params mIoU (%)
Segformer MiT-B5 (ADE20K) 82.7M 54.7
CMX MiT-B5 (ImageNet) 181.1M 56.9
CMX MiT-B5 (ADE20K) 181.1M 58.1
CMNeXt MiT-B4 (ImageNet) 119.6M 56.9
CMNeXt MiT-B4 (ADE20K) 119.6M 58.3
Ours MiT-B5 (ADE20K) 5.7M 61.2

As shown in Table 11, we observe that CMX and CMNeXt do benefit from using the same strong
baseline as ours, resulting in limited performance gains. However, the gap between their results
and ours remains substantial (e.g., a 2.9–3.1 mIoU difference on the NYUDepth dataset). This
comparison under the same pretrained setting demonstrates the effectiveness of our method over
other multi-modal fusion approaches. Notably, our model achieves this with only 5.7M trainable
parameters—significantly fewer than the alternatives.

Additionally, we conducted experiments where the single-modality RGB backbone (SegFormer) was
also initialized with ADE20K-pretrained weights. The results further indicate that the performance
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gains achieved by our method go well beyond what can be attributed to pretraining alone, highlighting
the strength of our fusion strategy.

Overall, these experiments provide meaningful evidence for our fairness of the experimental setup.

C.4 Experiments on the Effectiveness of the Encoding Strategy

To evaluate the contribution of reusing the early layers of a pretrained RGB backbone as an embedding
strategy for auxiliary modalities, we conducted additional experiments by replacing our pretrained
RGB backbone with the convolution-based encoder proposed in [58]. Experiments were performed
on both RGB-D and RGB-T datasets, and the results are summarized in Table 12.

Table 12: Comparison of different encoding methods in the Mixed Prompting Module.
Encoder Method NYUDepth (RGB-D) MFNet (RGB-T)
Convolution-Based Encoding [58] 58.7 56.8
Ours 61.2 60.1

As shown in Table 12, the previous convolution-based depth encoder does not adapt well to the
prompting framework. It likely provides suboptimal prompt initialization, leading to an approximate
performance drop of 2.5% mIoU compared to our trainable backbone on RGB-D datasets. Moreover,
results on the RGB-T dataset reveal that it fails to generalize effectively to arbitrary modality encoders,
limiting its scalability.

C.5 Quantitative Analysis of multi-subspace distributions.

To quantitatively characterize the diversity among the learned subspaces, we conducted additional
analysis. Following the hierarchical encoder architecture of SegFormer, our backbone extracts four-
stage multi-scale features with progressively lower spatial resolutions, denoted as d1-d4 (from highest
to lowest resolution). For each stage, we compute the average pairwise cosine similarity between
projected RGB subspace features, where values range from -1 (completely dissimilar) to 1 (identical).
Lower (more negative) similarity values indicate greater diversity across subspaces. The "Avg.Sim
(overall)" column summarizes the mean similarity across all four stages, providing an overall measure
of inter-subspace diversity.

Table 13: Average pairwise cosine similarity (Sim) between RGB subspace features across different
numbers of subspaces (n) and corresponding segmentation performance.

n Sim (d1) Sim (d2) Sim (d3) Sim (d4) Sim (overall) mIoU (%)
1 N/A N/A N/A N/A N/A 59.3
2 -0.0338 -0.0355 -0.0508 -0.0853 -0.0514 59.8
4 -0.1434 -0.1715 -0.2031 -0.2506 -0.1922 60.1
8 -0.0135 -0.0046 -0.0175 -0.0321 -0.0169 59.6

As reported in Table 13, we evaluated how varying the number of subspaces (n) affects feature
diversity using RGB-D inputs from the NYU Depth V2 test set. Our analysis reveals that within the
same n, similarity values become increasingly negative from high-resolution (d1) to low-resolution
(d4) features. This occurs because high-resolution features predominantly capture modality-agnostic
local patterns (e.g., edges and textures) that remain relatively consistent across subspaces, whereas
lower-resolution features encode more abstract, global, and cross-modal semantics. Consequently,
our multi-subspace prompt mixing more effectively disentangles these higher-level representations,
resulting in greater divergence at coarser scales.

Furthermore, increasing n from 1 to 4 substantially reduces overall similarity (from -0.0514 to
-0.1922), reflecting enhanced structural diversity that correlates with optimal segmentation perfor-
mance (mIoU of 60.1%). However, further increasing n to 8 causes similarity magnitude to decrease
(from -0.1922 to -0.0169), indicating over-fragmentation that diminishes subspace diversity and
aligns with the observed performance degradation.
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These quantitative results validate the core motivation behind our multi-subspace design: by introduc-
ing structural diversity and encouraging disentangled prompt composition, it effectively improves
segmentation outcomes. While comprehensive visualizations of subspace distributions would provide
additional intuitive insights, we believe this detailed statistical characterization offers compelling
evidence for the effectiveness of our approach.

C.6 Analysis for Merging Strategy in the Mixed Prompting Module

We adopt a simple summation of the two prompt embeddings (hi−1 and ei−1), primarily due to
its parameter-efficiency and empirical effectiveness in our preliminary experiments. While our
current approach is effective, we fully recognize the potential of alternative fusion strategies—such as
concatenation followed by a projection layer, learnable weighted summation via gating, or attention-
based fusion—to enable more expressive cross-modal interactions, as the reviewer rightly pointed
out. However, these methods typically introduce additional parameters and computational overhead,
potentially undermining the objective of preserving a compact and efficient prompting module, while
also increasing the complexity of training.

To futher investigate the effectiveness of these fusion methods, we conducted ablation studies on
different prompt fusion strategies using the NYUDepth dataset. The quantitative results are shown in
the table below, and the implementation details of each variant are described as Table 14.

Concatenation. Concatenate hi−1 and ei−1 along the module dimension, and apply a linear transfor-
mation to fuse the combined representation back into the original embedding space.

Learnable Weighted Summation. Introduce a learnable gating vector g ∈ RC and compute the
fused prompt as σ(g) · hi−1 + (1− σ(g)) · ei−1, where σ denotes the sigmoid activation function.
The gate g is initialized as a trainable parameter and applied channel-wise to adaptively modulate the
contribution of each modality.

Attention Fusion. The fused prompt is obtained by computing cross-modal attention between ei−1

and hi−1 : Attn(Q,K, V ) = softmax
(

QK⊺
√
d

)
V .

Overall, our results on NYUDepth indicate that simple summation achieves the best performance
among the evaluated strategies, highlighting its effectiveness as a lightweight and robust fusion mech-
anism. Although concatenation and learnable weighted summation offer more flexible interactions
between the two prompt streams, they do not yield noticeable performance improvements in our
setting. One possible explanation is that the two prompts already provide sufficiently complementary
information, and more complex merging may introduce redundancy or disrupt this balance.In contrast,
attention fusion not only degrades performance, but also incurs substantial memory overhead. This is
primarily due to the pairwise similarity computation between all token positions, which generates a
large N ×N attention map, where N corresponds to the number of spatial positions in the feature
map. For high-resolution inputs, N can be large, making this step particularly memory-intensive.

These findings collectively support our use of simple summation as a practical and efficient fusion
strategy in the mixed prompting module. We believe these findings provide a useful reference for
future work exploring more adaptive fusion mechanisms in multimodal prompting.

Table 14: Comparison of different prompt fusion strategies in the Mixed Prompting Module.
Fusion Method Trainable params FLOPs mIoU (%)

Summation 5.74M 109.01G 60.1
Concatenation 5.83M 109.09G 59.4

Learnable Weighted Sum 5.74M 109.01G 59.5
Attention Fusion 5.84M 109.09G 57.0

C.7 Further Validation of Hyperparameter Selection Generalizability

To evaluate the generalizability of our selected settings (e.g., a rank downscale ratio of 4 and 4
subspaces), we conducted additional ablation studies on multiple datasets beyond the NYU Depth
v2 dataset originally reported. Specifically, we evaluated the effect of these parameters on MFNet
and DELIVER datasets, which encompass RGB-Thermal, RGB-LiDAR, and RGB-Event modalities.
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These datasets represent diverse sensing conditions and semantic distributions, offering a broader
testing ground for robustness.

Across the diverse datasets evaluated, our selected parameter configuration consistently demonstrated
competitive performance and stable optimization behavior. These results indicate that our chosen
values strike a favorable balance among model capacity, generalization, and computational efficiency,
making them a practical default for a wide range of multimodal segmentation scenarios.

While slight tuning may still benefit extremely domain-shifted settings, our results demonstrate that
the chosen configuration is robust and transferable, reducing the burden of per-dataset hyperparameter
adjustment in practice.

Table 15: Ablation study on the Ratio (rank downscale ratio).
Dataset Modal Ratio=1 Ratio=2 Ratio=4 Ratio=8

NYU Depth v2 RGB-D 59.4 59.8 60.1 59.6
MFNet RGB-T 58.8 59.2 60.1 59.7

DELIVER RGB-L 57.6 58.0 59.1 58.4
DELIVER RGB-E 57.2 57.8 58.0 57.8

Table 16: Ablation study on the Num (number of subspaces for prompt mixing)
Dataset Modal Num=1 Num=2 Num=4 Num=8

NYU Depth v2 RGB-D 59.3 59.8 60.1 59.3
MFNet RGB-T 58.4 58.9 60.1 59.5

DELIVER RGB-L 58.3 58.5 59.1 58.8
DELIVER RGB-E 57.1 57.6 58.0 57.5

C.8 Experiments for Different Illumination Conditions

To validate the robustness of our method under varying illumination conditions, we report the
performance on the RGB-T MFNet dataset under both daytime and nighttime conditions in Table 17.

On the daytime mIoU, our method achieves an mIoU score of 51.8, ranking second after the
best-performing model, CMX (MiT-B4), which scores 52.5. In the nighttime mIoU, a standout
performance is achieved, where our model achieves the highest score of 61.0, surpassing all other
methods. This demonstrates superior ability of our method to segment objects under nighttime
conditions, where challenges such as poor lighting and low visibility are most pronounced.

Table 17: Comparison of RGB-T segmentation performance on the MFNet dataset across daytime
and nighttime conditions. The highest mIoU for each condition is highlighted in bold, while the
second-best score is underlined.

Method Modal Day Night

FRRN [59] RGB 40.0 37.3
DFN [60] RGB 38.0 42.3
BiSeNet [61] RGB 44.8 47.7
SegFormer-B2 [34] RGB 48.6 49.2
SegFormer-B4 [34] RGB 49.4 52.4

MFNet [10] RGB-T 36.1 36.8
FuseNet [62] RGB-T 41.0 43.9
RTFNet [11] RGB-T 45.8 54.8
FuseSeg [13] RGB-T 47.8 54.6
GMNet [40] RGB-T 49.0 57.7
CMX(MiT-B2) [7] RGB-T 51.3 57.8
CMX(MiT-B4) [7] RGB-T 52.5 59.4
CMNeXt [8] RGB-T 50.5 59.8
Ours RGB-T 51.8 61.0
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Figure 5: Visualization of results on the DELIVER dataset under depth, thermal, Event, and Lidar
auxiliary modalities. DPLNet is not implemented for RGB-Event and RGB-Lidar data in the original
paper.

C.9 Visualization

To provide a qualitative comparison between our MixPrompt method and existing approaches, we
present visualizations of segmentation results from a sample image in each dataset used above. These
visualizations are shown in Figure 5.

The comparison illustrates the ability of our model to produce more accurate and refined segmentation
boundaries across a variety of auxiliary modalities, including depth, thermal, Event, and Lidar.
Overall, the visual comparisons demonstrate the effectiveness of our multimodal fusion framework in
generating high-quality segmentation outputs.

D Others

D.1 Social Impact Analysis

Our proposed multimodal fusion method can deploy artificial intelligence more widely in resource
constrained environments such as agricultural robots or low-power edge devices, potentially reducing
computational costs. However, the dependence on the pre training RGB backbone may inherit the
deviation of training data, and the simplified architecture needs strict security verification before
being deployed to key applications such as autonomous vehicle. We encourage responsible use and
conduct additional fairness and robustness testing.

D.2 Limitation

Our current work is confined to the image multimodal domain and requires strictly aligned RGB-
auxiliary data pairs. The exploration into other multimodal scenarios, such as weakly supervised or
unpaired learning tasks is still limited. Addressing these limitations will become the basis of our
future research.
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