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Abstract

The Solid-Electrolyte Interphase (SEI) formed in lithium-ion batteries is a vital
but poorly-understood class of materials, combining organic and inorganic com-
ponents. An SEI allows a battery to function by protecting electrode materials
from unwanted side reactions. We use a combination of classical sampling and a
novel machine learning model to produce the first set of SEI candidate structures
ranked by predicted energy, to be used in future machine learning applications and
compared to experimental results. We hope that this work will be the start of a
more quantitative understanding of lithium-ion battery interphases and an impetus
to development of machine learning models for battery materials.

1 Introduction

The fundamental nature of a battery is that during discharge the anode must be unstable with respect
to the cathode, but stable with respect to the electrolyte. In practice, the best means of stabilizing
anode surfaces has been to allow the formation of a solid-electrolyte interphase (SEI), a complex
passivating layer which separates the metallic lithium from the organic electrolyte. Key questions
about SEIs, such as whether they are amorphous or crystalline and how Li+ moves through them,
remain unanswered [[1, 2] limiting the development of next-generation batteries.

An SEI is a complex chemical structure that forms over large length and time scales, and involves
conductors, insulators, and redox reactions; no existing method is fully applicable to the task of
simulating such a system[3]. Existing pure density functionals work well for metallic systems but
tend to badly underestimate reaction barriers [456]]. Even these fastest of the useful density functional
theory (DFT) methods are much too slow to study the time and length scales of the SEI. Hybrid
functionals such as wB97X that yield improved barrier heights [3]] struggle with metals [7} 8] and
have very poor computational scaling for periodic systems [3]], leaving SEI simulation out of reach.

MLFFs promise to allow atomistic simulation with the accuracy and wide applicability of DFT, but
with the fast sampling of classical force fields. Many MLFF architectures exist, including Nequip
[9], ChgNet [[10]], MACE [11], and QRNN [12]]. More traditional force fields have a fixed functional
form that makes them very difficult to fit for complex systems like the SEI[1]]. Multitask learning
lets us train MLFFs to both pure and hybrid DFT labels simultaneously[[13} [14]. It has already been
demonstrated that MLFFs can predict the properties of Li metal [13]] (density, lattice constant, surface
energy, cohesive energy, bulk modulus, equation of state, phonon spectrum) and of organic liquids
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[15L[13]. In this work, we describe a model and sampling procedure that describes the interaction of
these materials and thus permits the ranking of candidate SEI structures.

2 Methods

2.1 Reference levels of theory

Based on the results of Debnath, Dajnowicz, and Stevenson [, [15, [13]], we selected wB97X-
D3BJ/def2-TZVPD as our reference level of theory for non-periodic systems and PBE-D3 in a
plane wave basis as our reference level of theory for periodic systems. We also labeled a random
subset of non-periodic systems with PBE-D3 to improve the information exchange between output
heads in our multitask learning scheme. Unfortunately, the great expense of hybrid functionals such
as wB97X-D3BJ for periodic systems means that it was not feasible to label our periodic dataset with
this level of theory.

Unlike previous QRNN models, ours did not use either GFN2-xTB atomic partial charge labels or
DFT dipole labels for training the electronegativity-predicting neural networks. Instead, we tested
reference atomic partial charges from GFN1-xTB, GFN2-xTB, and GFNO-xTB [[16-18]], and found
the older GFN1-xTB to be the most suitable for generating charge labels for SEI training sets, because
it achieves the best compromise between accuracy and convergence across isolated and periodic
systems (see Appendix).

2.2 Data sampling

As in previous work on MLFFs [12] [15] [13]] we use multiple rounds of active learning for data
generation to increase accuracy. This data generation is based on using the best available model
to sample new geometries of relevant systems. Unlike these prior works, we have used enhanced
reaction sampling using Artificial Force Induced Reactions (AFIR) [[19,120] and Nudged Elastic Band
(NEB) [21] on the QRNN potential energy surface.

We used the multitask abilities of QRNN [22] |13} [14] to add a totally distinct dataset of general
organic chemistry, SPICE [23]], using the SPICE subset consisting of elements H, Li, C, O, F, and P
and adding our own GFN1-xTB atomic partial charge labels. We observed no increase in PBE-head
validation RMSE on the battery datasets when adding the SPICE data, and only an 8% increase in
hybrid-head RMSE, implying that the greatly increased scope of the data did not impose a heavy
cost on model capacity (unlike the addition of reaction data). This result is significant because it
means that the latent space of these MLFF models contains unused capacity that can be applied
to broadening chemical applicability. We recommend the use of a supplemental dataset of general
organic chemistry to shape the latent space via multitask training as a part of future MLFF works[14].

We doubled the width of the hidden layers in our neural networks in order to increase our model’s
capacity as we added more disparate data. We used a higher-priority dataset composed only of
the periodic and cluster surface reaction subset of our dataset, such that each batch was sampled
half from this priority data and half from the rest of the dataset (as in rehearsal [24]). We applied
decoupled weight norms[25]] with the norms not included in the optimizer. Otherwise our model
hyperparameters were similar to those in previous work on QRNNS s [[15}[13] (see Appendix).

2.3 Structure Building

The SEI in lithium ion batteries is known to form

over many charge/discharge cycles, so even with a

fast MD method, creating plausible SEI geometries [/O\):D
requires enhanced sampling. We generated initial SEI .
candidate structures using a method newly released

in the Schrodinger suite [26] as the "SEI Simulator” 700 52 52
using OPLS4 molecular dynamics with reaction tem-
plates applied at intervals[27]. Each system starts
with 700 molecules of EC and 52 ions each of Li+
and PFg-, giving a 1 M solution with 7416 total atoms
(Fig[T). Each system runs with a unique random seed

Figure 1: Initial composition of the solution
of 1M LiPF¢ in EC solvent. Each component
is labeled with its frequency in the system.



for packing and for MD, ensuring the sampling of many configurations. Some of the SEI simulator
reaction templates involve adding electrons (see Appendix), which are balanced by inserting Li+ ions,
producing the effect expected during SEI formation as Li+ is reduced to Li0O by electrons moving
from the electrode. We defined four sets of candidates with different levels of added Li: 5, 12, 23,
and 33 added Li+ ions per box (levels which arose from the SEI Simulator after 40 iterations of MD
and reaction templates).

Having produced a series of unique initial geometries, we then annealed them using our reactive
QRNN model with NPT MD at 400 K and 1000 atm for 100 ps each. Remarkably, our QRNN models
gave stable dynamics despite the extreme conditions applied, which is often not the case for MLFFs
[28]. Finally we ranked each set of candidates by calculating the mean potential energy of each
structure over an MD trajectory of 20 ps length at ambient conditions of 300 K and 1 atm. Because
each set of candidates has the same number of atoms of each element, the system energies are directly
comparable.

3 Results

The difficulty of characterizing the SEI system experimentally is a strong motivation for this work,
but also an obstacle to validation. For example, we cannot compare the density, diffusivity, viscosity,
or elastic modulus of our SEI material against experimental values because such experiments do not
exist for any SEI composition. Instead, we validated our model against the best available calculations
for surface reaction energy barriers (see Table|T).

Table 1: Reaction barriers and reaction energies in eV for a single EC molecule on a Li (001) surface
6 layers thick (64 atoms total including EC). Note that the PBE reaction barriers (corresponding to
output head 1) are much lower than the hybrid DFT barriers, as in gas phase.

CO3 forming Ring opening
AE barrier AE rxn AE barrier AE rxn
PBE 0.36 -4.47 0.39 -2.65
HSEO 0.75 -4.44 0.76 -2.51
QRNN-PBE 0.28 -4.39 0.47 -2.44
QRNN-wB97 0.61 -5.03 0.69 -2.97

Assuming that our model is reasonably accurate for thermodynamically relaxed configurations
of SEI-like bonds, we can use it to generate the first plausible ranking of SEI candidate struc-
tures, along with analysis of hypotheses related to SEI composition. The list of SEI candi-
date structures (seed*.pdb) and energies (energies.csv), along with the original 1M LiPF6 in
EC solution (initial_EC_1M_LiPF6.pdb) and plotting scripts (*.py), can be found here: https:
//figshare.com/s/e842ae88023902700e12. We will refer to the lowest-energy SEI candidate
structure out of the most lithiated subgroup (33 added Li atoms) as predicted by wB97X-D3BJ output
head as our "best" candidate.

Figure 2: Our best SEI candidate structure. Green = EC solvent, red = PFg- ions, black = new
chemical compounds (see Fig{3] Note that all lithium atoms have reacted.
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Figure 3: Final composition of our best SEI candidate. Each component is labeled with its frequency
in the system. Formal charges are approximate.

We performed statistical analysis of the bonding in SEI candidate structures by recalculating the Lewis
structure of the entire system based on the atomic positions after reactive MD using Schrodinger
Materials Science Suite[29], then tabulating the counts of various bond types versus the total system
energy (Fig[). P-F and Li-O bonds are associated with more stable structures, while C-O and Li-F
bonds are associated with less stable ones.

4 Conclusions

In this work, we have demonstrated
that multitask training with a QRNN
model, combined with sampling of
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Figure 4: Bond counts with respect to total system energy & structure more or less energetlcallly
(zero = most stable) for the most lithiated SEI candidate set Stable- However, the full power of this

(33 added Li+) using the wB97X-D3BJ model output. technique will come from comparing
multiple formulations. Given the most

stable SEI candidate for each formu-
lation, it will be possible to calculate properties such as Li+ diffusivity and mechanical properties as
a function of the starting formulation, allowing detailed optimization of SEI chemistry.

Future work should include the application of other model architectures, including Nequip and MACE
[9,[L1]] as well as architectures which allow the use of atomic partial charges such as CHGNet [10].
Another useful technical extension of this work would be to test models trained with only subsets of
the dataset used here, rather than the full dataset, to help determine which parts are most critical to



accuracy and stability of the model. Using this information, the dataset can be efficiently extended
with a wider variety of reaction data.

MLFFs offer a powerful opportunity to understand SEI materials, but only if we are willing to tolerate
working in an environment where theoretical and experimental references are currently limited and
the probability of being proven wrong by future events is high. We hope that our contribution will be
the first of many in this difficult and crucial part of materials science.
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A Appendix

A.1 Training

Our loss function is the same as that used in previous QRNN works [13}[14]], consisting of energy and
atomic force mean squared error for each level of theory in each training batch, along with charge
mean squared error in each training batch (charges are not separated into different output heads in
our model, with all levels of theory using consistent charge labels).

Because of the addition of the SPICE dataset, we had four output levels of theory in total for multitask
training: GFN1-xTB, PBE-D3, wB97X-D3BJ/def2-TZVPD, and finally the SPICE level of theory
wB97X-D3BJ/def2-TZVPPD. Of these, the first and last output heads were only used to shape the
latent space of the model during training, not for prediction on SEI system:s.

As in our previous work, we used the Adamax optimizer with decoupled weight decay, which we
have found to be highly stable and effective at a wide range of learning rates. For our final model we
used a learning rate of 2e-3. We found little effect of early stopping validation for this dataset (likely
because the model does not have enough capacity to overfit), so we used only 1% of the data (selected
uniformly at random) as our validation set. We used hidden layers of size 256, 224, and 192 for all
elements. Our batch size was 64. We found that a high level of weight decay, 3e-3 per batch, was
helpful in producing smoother energy surfaces with faster convergence during geometry optimization,
particularly the difficult geometry optimizations required for NEB, but this higher weight decay also
reduced the height of our reaction barriers relative to the reference barriers, so for our final model we
used a more conventional weight decay of le-3. Our final model was an exponential moving average
of the training parameters, averaging every 10 batches with alpha = 0.001.
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A.2 Data

We constructed our initial geometries for liquid systems, such as liquid EC, using Disordered System
Builder [26] and equilibrated using NPT ensemble for 1 ns to obtain equilibrated density. For
simulations of solid-liquid interface geometries, we started from a BCC lattice of lithium with the
lattice constant optimized using the model to be used in MD (either the PBE-D3 or the wB97X-D3BJ
head), placed next to the equilibrated liquid EC slab with an initial spacing of 2 A. No constraints
were applied to the lithium slab; the lithium was allowed to participate fully in the dynamics.

Because the SEI is suspected to include various lithium salts [Harrison], we have also added lithium
oxide, lithium carbonate, lithium fluoride and lithium hydroxide to the training set, both in periodic
and cluster geometries. In addition to the experimentally observed crystal geometries for the crys-
talline materials in the training set, we sampled non-equilibrium geometries by adding Gaussian
noise to the Cartesian coordinates of the original geometries. A previous work [30] has shown
good results from sampling from fully amorphous structures, an approach we pursued for SEI-like
sampling using Schrodinger Disordered System Builder for ethylene carbonate (EC) with lithium
hexafluorophosphate (LiPFg). By setting the Van der Waals radius factor to 0.5, we were able to
produce steric clashes that overcame reaction barriers and resulted in chemical reactions. We relaxed
the candidate structures by annealing them using QRNN MD, and extracted finite-sized clusters for
evaluation with gas-phase DFT.

We have not used DFT-generated MD, AFIR, or NEB geometries as training inputs, considering these
expensive reference-level calculations to be too close to training on the test set. Instead, we have only
used single-point DFT calculations on input geometries generated by non-DFT means.

We performed periodic DFT using Quantum Espresso[31] as implemented in Schrodinger Materials
Science Suite[26] version 2022-3 with the same settings as in Stevenson et al [[13]. The exchange-
correlation energy was determined using generalized gradient approximation (GGA) Perdew-Burke-
Ernzerhof (PBE) functional[32]] with D3 dispersion correction[33]] and a plane wave energy cutoff of
40 Ry. The Brillouin zone integration was performed using a 3x3x3 k-point mesh for bulk supercells
and a 3x3x1 k-point mesh for the surface supercells.

We performed gas-phase wB97X-D3BJ/def2-TZVPD DFT using Psi4 v1.6 with the same settings as
in Stevenson et al [34} [13]]:

scf_type’: ’MEM_DF’, ’dft_basis_tolerance’: 1le-10,
’ints_tolerance’: 1le-10, ’maxiter’: 200, ’dft_pruning_scheme’: ’robust’,
’s_orthogonalization’: ’partialcholesky’, ’s_cholesky_tolerance’: le-6

For NEB with periodic systems, we used lithium surfaces with 54 atoms (6 layers of 9 atoms each)
topped with a single EC molecule. We focused on a relatively small part of reactive chemical
space, the known decomposition reactions of EC, as the most important for the early phases of SEI
formation. Likewise we did not sample these reactions on other surfaces, such as lithium oxide
or lithium carbonate, which might potentially be relevant (though the barriers would be expected
to be much higher). To create non-periodic systems out of this reactive data, for labeling with
wB97X-D3BJ, we extracted clusters including the atoms from the reacting EC molecule and the Li
surface within 3-6 Angstroms from any of these atoms.

Since the SEI structures are metalorganic solids with a network of covalent bonds, there is no unique
way to determine the boundaries of each cluster as we did for small-molecule liquids by following
the molecular boundaries. Therefore, we extracted the clusters by choosing a radius around each
central atom from a uniform distribution from 3.0 to 5.2 A extracting all the atoms within this radius
plus a 1.2 A buffer for hydrogen atoms only, and capping any cut bonds with hydrogen atoms.

An important avenue for future work in SEI active learning is to generate data via MD on amorphous
metalorganic systems small enough to be directly labeled with DFT (fewer than 200 atoms). While
not large enough to capture SEI properties, such systems might contain structural motifs not sampled
by cluster-based methods, and would also provide an additional source of validation against DFT for
more complex structures. We do not regard our current model as final, since its scope is still small
compared to what is required.

Energy and gradient RMSEs from the final validation of training are shown below, in kcal/mol for
energies and kcal/mol/A for gradients. The GFN1-xTB head encompasses all the data, periodic and



non-periodic, including the SPICE supplemental dataset. The PBE-D3 head contains periodic data.
The lithium and electrolyte cluster data is under the wB97X-D3BJ/def2-TZVPD head, while the
final wB97M-D3BJ/def2-TZVPPD head is the SPICE data. RMSE and EMA_RMSE refer to the
parameters with and without exponential smoothing (it is evident that the exponential smoothing is
beneficial).

GFN1-xTB RMSE: 22.85 EMA_RMSE: 16.95 at validation 999

GFN1-xTB Gradient RMSE: 4.64 EMA_RMSE: 4.50 at validation 999

PBE-D3 RMSE: 22.59 EMA_RMSE: 15.09 at validation 999

PBE-D3 Gradient RMSE: 2.65 EMA_RMSE: 2.59 at validation 999
wB97X-D3BJ/def2-TZVPD RMSE: 10.92 EMA_RMSE: 9.74 at validation 999
wB97X-D3BJ/def2-TZVPD Gradient RMSE: 6.08 EMA_RMSE: 5.88 at validation 999
wB97M-D3BJ/def2-TZVPPD RMSE: 3.34 EMA_RMSE: 2.12 at validation 999
wB97M-D3BJ/def2-TZVPPD Gradient RMSE: 3.85 EMA_RMSE: 3.77 at validation 999

A.3 Grimme GFN*-xTB methods for labeling of periodic reactive systems

— best fit
y=x

0.6 1

0.4 4

0.2 4

0.0 4

GFNO-XTB g (Har/A)

—0.2 1

—0.4 1

—0.6 4

T T T T
—=0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
PBE g (Har/A)

Figure 5: GFNO-xTB gradient parity plot for copper catalyst dataset. Accuracy is poor, which makes
sense since this application is outside the normal scope of GFNO-xTB.
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Figure 6: GFN1-xTB gradient parity plot for copper catalyst dataset. Accuracy is improved over
GFNO-xTB.
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Figure 7: GFN2-xTB gradient parity plot for copper catalyst dataset. The convergence rate is very
poor, such that few points are available to be plotted.

We performed GFNO-xTB, GFN1-xTB, and GFN2-xTB semiempirical calculations using the xTB
python API xtb-python[35] with the default settings (accuracy 1.0, max iterations 250), except for
periodic systems with GFN1 and GFN2 for which we used the tblite[36] Python API with its default
settings (as of our tests, xtb-python did not support periodic boundary conditions for GFN1-xTB
or GFN2-xTB). We discarded systems that did not converge, as well as any systems with NaN or
infinite energies or gradients, or with very implausible partial charges (as defined by an absolute
partial charge above 4 electrons/atom).

We investigated the performance of the GFN family of methods for periodic metallic surfaces using
the OpenCatalyst copper surface reaction dataset [37]. We found that for this highly-challenging test
set, GFN1-xTB achieved the best performance. The atomic forces from GFNO-xTB showed only a
weak correlation with those of DFT, while GFN2-xTB simply did not iterate to convergence for the
vast majority of the copper surface systems.

Grimme’s more advanced PTB method [38]] unfortunately is not yet implemented for periodic systems,
so we could not use it in this comparison.

A.4 SEI Generation

X

Final composition SMILES and counts for best SEI structure from wB97X-D3BJ output head with
33 added Li atoms (formal charges are estimates):

’0=C10CC01°: 632
> [Li+]0C10CCo1’: 42
'F[P-](F) (F) (F) (F)F’: 40
»[Li]F’: 16

YFP(F) (F) (F)F’: 10

’0=C’: 8

> [LiloC10CCcol’: 6
»[Liloc([0-1)=0": 3

» [0-]C(=0)0CCCCOC([0-1)=0": 2
>[LiJocco[Lil?: 1

'[c-J#[0+]7: 1

’[Li+] [0]1CCOC10’: 1
’0C10CC01°: 1

> [Li]oc(=0)0cC’: 1

> [Li]OC([0-][Li+])OC[CH2+]’: 1
>[Li]JoCc(=0)0[Li]’: 1
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Reactions Freq (ps)| Prob
1 |Li* + EC — Li*(EC) 80 0.16
2 |Li*(EC) + e — o-LiEC 40 0.4
3 |2(o-LiEC) — Li,EDC + C,H, 10 1.0
4 | 2(o-LiIEC) — Li,BDC 10 1.0
5 |o-LIEC + e — LiCO; + C,H, 80 0.5
6 |LiCO; +Li* — Li,CO, 10 1.0
7 |LiCO; + Li"(EC) — Li,EDC 10 1.0
8 |Li*+PF; +e — LiF + PF5 40 1.0
9 |Li*+PF; +e — LiF + PF, 10 1.0
10 | Li* + PF, — LiF + PF, 10 1.0

Figure 8: SEI Simulator reaction templates applied between stages of OPLS MD when applicable
geometries arise and the probability criterion is satisfied.[27]

»[0-]1c([0-1)=0": 1
»[Li]Joc(=0)0cceecoc(=0)0[Lil: 1

»[Li+] [0-]Cc(O([Li+])0ccoc([0-] [Li+])0’: 1
>[Li] [0] ([Li+])cC([0-1)0°: 1

> [Li+] [0-] ([Li+])C(D)0’: 1

Y[Li]P(F)F’: 1

'FP(F) (F)F’: 1

Bonding is calculated using the functions connect_atoms and assign_bond_orders_w_mmlewis in the
Schrodinger module schrodinger.application.matsci.nano.xtal [29].

A good avenue for future research is to include entropic contributions so as to rank the structures
based on free energy. Another important next step is to run enhanced sampling for a longer time, and
at higher temperatures and pressures, so as to produce more chemical reactions and a broader range
of output structures. Although the energy differences between boxes are in the hundreds of kcal/mol,
this is small on the scale of the thousands of atoms in each box. For example, the wB97X-D3BJ
head MD with 33 added Li atoms had an energy standard deviation of 0.01 kcal/mol/atom between
the candidate structures. The equivalent PBE-head MD showed a larger standard deviation of 0.02
kcal/mol/atom, which is expected considering that its lower reaction barriers should lead to broader
sampling of chemical space.
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Figure 9: Our best SEI candidate structure, in Van der Waals view with atoms colored by element.
7449 atoms are present in total. Pink = lithium, red = oxygen, grey = carbon, white = hydrogen, teal
= fluorine, purple = phosphorous.
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Figure 10: Radial Distribution Function (RDF) for Li and carbonate within the most stable SEI
structure using the wB97X-D3BJ model output.
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