
Preprint

REPRESENTING PARTIAL PROGRAMS WITH BLENDED
ABSTRACT SEMANTICS

Maxwell Nye∗, Yewen Pu, Matthew Bowers, Jacob Andreas, Josh Tenenbaum, Armando Solar-Lezama
Massachusetts Institute of Technology

ABSTRACT

Synthesizing programs from examples requires searching over a vast, combinato-
rial space of possible programs. In this search process, a key challenge is repre-
senting the behavior of a partially written program before it can be executed, to
judge if it is on the right track and predict where to search next. We introduce a
general technique for representing partially written programs in a program syn-
thesis engine. We take inspiration from the technique of abstract interpretation,
in which an approximate execution model is used to determine if an unfinished
program will eventually satisfy a goal specification. Here we learn an approxi-
mate execution model implemented as a modular neural network. By constructing
compositional program representations that implicitly encode the interpretation
semantics of the underlying programming language, we can represent partial pro-
grams using a flexible combination of concrete execution state and learned neural
representations, using the learned approximate semantics when concrete seman-
tics are not known (in unfinished parts of the program). We show that these hybrid
neuro-symbolic representations enable execution-guided synthesizers to use more
powerful language constructs, such as loops and higher-order functions, and can
be used to synthesize programs more accurately for a given search budget than
pure neural approaches in several domains.

1 INTRODUCTION

Inductive program synthesis – the problem of inferring programs from examples – offers the promise
of building machine learning systems which are interpretable, generalize quickly, and allow us to
solve structured tasks such as planning and interacting with computer systems. In recent years,
neurally-guided program synthesis, which use deep learning to guide search over the space of pos-
sible programs, has emerged as a promising approach (Balog et al., 2016; Devlin et al., 2017). In
this framework, partially-constructed programs are judged to determine if they are on the right track
and to predict where to search next (see Figure 1). A key challenge in neural program synthesis is
representing the behavior of partially written programs, in order to make these judgments. In this
work, we present a novel method for representing the semantic content of partially written code,
which can be used to guide search to solve program synthesis tasks.

Recently, approaches which represent partial programs via their semantic state have been shown
to be particularly effective. In these execution-guided neural synthesis approaches (Chen et al.,
2018; Ellis et al., 2019; Zohar & Wolf, 2018), partial programs are executed and represented with
their return values. However, execution is not always possible for a partial program. In Figure 1,
before the HOLE is filled with an integer value, we cannot meaningfully execute the partially-written
loop in s. This is a common problem for languages containing higher-order functions and control
flow, where execution of partially written code is often ill-defined. Thus, a key question is: How
might we represent the semantics of unfinished code?

A classic method for representing program state, known as abstract interpretation, can be used to
reason about the set of states that a partial program could reach, given the possible instantiations of
the unfinished parts of the program. Using abstract interpretation, an approximate execution model
can determine if an unfinished program will eventually satisfy a goal specification. However, this

∗correspondence to mnye@mit.edu

1

Preprint

Neural
abstract
semantics

CONTEXT

loop(4,
 seq(buildColumn(HOLE),
 HOLE))

loop(4,
 seq(buildColumn(1),
 moveHand(HOLE)))

loop(4,
 seq(buildColumn(1),
 HOLE))

...

...

HOLE
HOLE

HOLE

HOLE

SEARCH
SPACE

GOAL

loop

4

seq
buildColumn1

moveHandHOLE

loop

4

seq

moveHandHOLE

Blended
abstract
semantics

loop 4 seq buildColumn 1 HOLEmoveHand

RNN representation

Value V(s, X) Policy π(a; s, X)

search state representation
EMBED

s
EMBED

EMBED

f
EMBED

EMBED

4

3

EMBED1

EMBED

+
EMBED

HOLE

1

x→3

CONTEXT

HOLEx→3

+

EMBED

EMBED

(a) (b)

(c)

(d)

Figure 1: Schematic overview of the search procedure and representational scheme. We charac-
terize program synthesis as a goal-conditioned search through the space of partial programs (left),
and propose a novel representational scheme (blended abstract semantics) to facilitate this search
process. Left: a particular trajectory through the space of partial programs, where the goal is to find
a program satisfying the target image. Right: three encoding schemes for partial programs, which
can each be used as the basis of a code-writing search policy and code-assessing value function.

technique is often low-precision; hand-designed abstract execution models greatly overapproximate
the set of possible execution states, and contain no notion of what code is likely to be written.

We hypothesize that, by mimicking the compositional structure of abstract interpretation, learned
components can be used to effectively represent ambiguous program state. In this work, we make
two contributions: we introduce neural abstract semantics, in which a compositional, approximate
execution model is used to represent partially written code. We further introduce blended abstract
semantics, which aims to represent the state of unfinished programs as faithfully as possible by con-
cretely executing program components whenever possible, and otherwise, approximating program
state with a learned abstract execution model. This combination of learned execution and concrete
execution allows robust representation of partial programs, which can be used for downstream syn-
thesis tasks. We show that our model can effectively learn to represent partial program states for
languages where previous execution-guided synthesis techniques are not applicable. In summary,

• We introduce blended neural semantics, a novel method for representing the semantic state
of partially written programs inspired by abstract interpretation.

• We describe how to integrate our program representations into existing approaches for
learning search policies and search heuristics.

• We validate our new approach with program synthesis experiments in three domains: tower
construction, list processing, and string editing. We show that our approach outperforms
neural synthesis baselines, solving at least 5% more programs in each domain.

2 BLENDED ABSTRACT SEMANTICS

Consider the problem of synthesizing arithmetic expressions from input–output pairs. Suppose we
have the following context-free grammar for expressions:

G = E→ E * E | E + E | x | 1 | 2 | 3 | 4

and a specification X consisting of the input–output pairs {(x = 3, y = 7), (x = 5, y = 11)}.
Suppose further that we have a candidate program (2 * x) + 1 ∈ G. To check that this program
is consistent with the specification, we can evaluate it on the inputs x in the specification according
to the concrete semantics of the language. The goal of synthesis is to find an expression which
satisfies the input-output examples under concrete semantics. To find such programs, we employ
top-down search: starting with the top-level (incomplete) expression HOLE, we consider all possible
expansions, (HOLE→ HOLE + HOLE, HOLE→ 1, HOLE→ 2, . . .) and select the one we believe
is most likely to succeed (Figure 1 left). The more effectively we can filter the set of incomplete
candidate programs, the faster our synthesis algorithm.

Conventional abstract interpretation solves this problem by defining an alternative semantics for
which even incomplete expressions can be evaluated. However, constructing appropriate abstrac-

2

Preprint

Neural
abstract
semantics

CONTEXT

loop(4,
 seq(buildColumn(HOLE),
 HOLE))

loop(4,
 seq(buildColumn(1),
 moveHand(HOLE)))

loop(4,
 seq(buildColumn(1),
 HOLE))

...

...

HOLE
HOLE

HOLE

HOLE

SEARCH
SPACE

GOAL

loop

4

seq
buildColumn1

moveHandHOLE

loop

4

seq

moveHandHOLE

Blended
abstract
semantics

loop 4 seq buildColumn 1 HOLEmoveHand

RNN representation

Value V(s, X) Policy π(a; s, X)

search state representation
EMBED

s
EMBED

EMBED

f
EMBED

EMBED

4

3

EMBED1

EMBED

+
EMBED

HOLE

1

x = 3

CONTEXT

HOLEx = 3

+

EMBED

EMBED

(a) (b)

(c)

(d)

Figure 2: (a) Example applications of the EMBED function. (b) Neural abstract module for +. (c)
Neural placeholder module encoding a HOLEwith the context {x = 3}. (d) Neural abstract semantic
encoding of the partial program 1 + HOLE with the context {x = 3}.

tions is difficult and requires domain-specific engineering; an ideal procedure would automatically
discover an effective space of abstract interpretations.

Neural abstract semantics [[·]]nn As a first step, we implement the abstract interpretation pro-
cedure with a neural network. (This is a natural choice: neural networks excel at representation
learning, and the goal of abstract interpretation is to encode an informative representation of the set
of values that could be returned by a partial program.) For the program 1 + HOLE, we can encode
the expression 1 to a learned representation (Figure 2a, top), likewise encode HOLE (Figure 2c), and
finally employ a learned abstract implementation of the + operation (Figure 2b).

For concrete leaf nodes, such as constants or variables bound to constants, neural semantics are
given using a state embedding function EMBED(·), which maps any concrete state in the program-
ming language into a vector representation: EMBED : (State | Rd) → Rd. If the input to EMBED
is already vector-valued, EMBED performs the identity operation. Neural placeholders provide a
method for computing a vector representation of unwritten code, denoted by the HOLE token. To
compute the representation for HOLE, we define a neural embedding function h which takes a con-
text C and outputs a vector. For each built-in function f , the neural abstract semantics of a function f
are given by a separate neural module (a learned vector-valued function as in Andreas et al. (2016))
[[f]]nn with the same arity as f . Therefore, computing the neural semantics means applying the
neural function [[f]]nn to its arguments, which returns a vector. Since the neural semantics mirrors
the concrete semantics, its implementation does not require changes to the underlying language.

Blended abstract semantics [[·]]blend Notice that for an expression such as (2 * x) + HOLE,
the concrete value of the sub-expression (2 * x) is known, since it contains no holes. The neural
semantics above don’t make use of this knowledge. To improve upon this, we extend neural seman-
tics and introduce blended semantics, which alternates between neural and concrete interpretation
as appropriate for a given expression:

• If the expression is a constant or a variable, use the concrete semantics.

• If the expression is a HOLE, use the neural semantics.

• If the expression is a function call, recursively evaluate the expressions that are the argu-
ments to the function. If all arguments evaluate to concrete values, execute the function
concretely. If any argument evaluates to a vector representation, transform all concrete
values to vectors using EMBED and apply the neural semantics of the function.

Because blended abstract semantics replaces concrete sub-components with their concrete values,
we expect blended semantics to result in more robust representations, especially for long or complex
programs where large portions can be concretely executed. See the appendix for more details.

Synthesis To perform synthesis, we experiment with methods to guide search introduced in Ellis
et al. (2019). In this work, the search over partial programs is formulated as an MDP, in which
each state is a pair (s,X) consisting of a partial-program and a specification, and actions a ∈ G
are expansions of HOLEs under rules under the grammar. We assume a reward of 1 for programs
which satisfy X . In this framework, we learn to search by training a policy π(a|s,X) that proposes
expansions to s, and optionally a value function V (s,X) that predicts the probability that X is
solvable via any expansion of s. Details can be found in the appendix. At test time, we explore
a variety of code-writing search algorithms. Using only a policy, we can employ sample-based
search and best-first search (where the log probability of generating s under π is used as the scoring
function). With the addition of a learned value function, we can perform A*-based search with
− log V (s,X) as a heuristic (see Ellis et al. (2019) for details).

3

Preprint

Figure 3: Synthesis results. Left: Tower building. Middle: List processing. Right: String editing.
Blended abstract semantics outperforms baselines in synthesis tasks in each domain.

3 EXPERIMENTS

We evaluate our model in two domains containing language constructs not handled by concrete
execution-guided synthesis approaches: a tower-building domain with looping constructs, and a
list-processing domain with higher order functions. We additionally test on a string-editing domain
for which execution-guided synthesis is possible, but requires extensive DSL modification; there,
we examine how our approach fares without these modifications (see appendix).

Looping constructs: Tower construction We begin by investigating how our model performs in
generative programming domains with higher-level control flow such as loops. Looping programs
are an essential part of sophisticated programming languages, and aren’t naturally handled by previ-
ous execution-guided synthesis approaches. Our experiments in the tower-building domain employ
a DSL similar to the language depicted in the introduction to construct towers in a 2D world. As
above, the goal is to construct a program which successfully renders to a target image (examples in
Figure 4). Language details can be found in the appendix. We compared against two baselines (see
Figure 1): (1) Neural abstract semantics (defined in Section 2), which does not apply concrete exe-
cution to concrete subtrees, and (2) RNN encoding, which encodes partial programs using a GRU:
π(a | GRU enc(s),X). To evaluate our model, we constructed a test set of tower-building problems
involving combinations of tower-building motifs seen during training. We evaluate our models by
performing best-first search from the learned policy. We also test using a value function, where we
are doing A* search with the policy as the prior cost and the value function as the heuristic future
cost estimate. Figure 3 left shows our overall synthesis results in the tower-building domain, mea-
suring the percentage of test problems solved as a function of the number of search nodes (partial
programs) considered. The sequence encoding performs poorly and is unable to solve a majority of
test problems. The neural abstract semantics model achieves better performance, solving about half
of the test problems within the allotted search budget. Blended execution outperforms both base-
lines. We additionally observe that adding a value function as a search heuristic further increases
performance of our blended model, which is consistent with the findings in Ellis et al. (2019).

Higher-order functions: functional list processing In our second experimental domain, we seek
to answer two questions: How well does our model perform on input-output synthesis? How ef-
fectively can it synthesize programs containing higher-order functions? Although previous work
(Zohar & Wolf, 2018) has successfully applied execution-guided approaches to list processing (us-
ing the DeepCoder language), the use of higher-order functions was severely limited: only a small,
predefined set of “lambdas,” (such as (*2), is even, (>0)) were used as arguments for higher-
order functions. For example, synthesizing a program which “filters all elements divisible by 3
from a list” is not possible with this DSL. However, in real programming languages, higher-order
functions must be able to accept a combinatorially large set of possible lambda functions as input.
This presents a challenge for execution-guided synthesis approaches such as Zohar & Wolf (2018),
for which the assumption of a small set of lambda functions is key. To this end, we modified the
Deepcoder DSL to allow a richer set of possible programs. We replaced the predefined set of lambda
functions with a grammar allowing for the combinatorial combination of grammar elements (exam-
ples in Figure 5 left in the appendix). The modified grammar is given in the appendix. Figure 3
middle shows the results of synthesis using best-first search from a policy on test problems sampled
the same distribution as the training problems. Our blended model finds the highest overall number
of correct programs, achieving 5-10% higher accuracy given the same search budget compared to
the neural semantics and RNN encoding schemes. The blended model also yielded superior results

4

Preprint

on numerous variations of these tasks (increasing number of higher order functions, varying integer
ranges, varying search method, etc). See the appendix for details.

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2016: Results
and analysis. arXiv preprint arXiv:1611.07627, 2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 39–48, 2016.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. ICLR,
2018.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. arXiv preprint
arXiv:1703.07469, 2017.

Li Dong and Mirella Lapata. Coarse-to-fine decoding for neural semantic parsing. arXiv preprint
arXiv:1805.04793, 2018.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776, 2016.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. In Advances in Neural Information Pro-
cessing Systems, pp. 9165–9174, 2019.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Growing gen-
eralizable, interpretable knowledge with wake-sleep bayesian program learning. arXiv preprint
arXiv:2006.08381, 2020.

Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. Proving unrealiz-
ability for syntax-guided synthesis. In International Conference on Computer Aided Verification,
pp. 335–352. Springer, 2019.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reason-
ing. In Proceedings of the IEEE International Conference on Computer Vision, pp. 2989–2998,
2017.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning
for conditional program generation. arXiv preprint arXiv:1703.05698, 2017.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and Armando Solar-Lezama. Learning to infer
program sketches. arXiv preprint arXiv:1902.06349, 2019.

Augustus Odena and Charles Sutton. Learning to represent programs with property signatures. In
International Conference on Learning Representations, 2019.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. ICLR,
2018.

5

Preprint

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y Ng, and Christopher D Manning. Parsing natural
scenes and natural language with recursive neural networks. In ICML, 2011.

Armando Solar-Lezama. Program synthesis by sketching. PhD thesis, University of California,
Berkeley, 2008.

Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction refinement. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):1–30, 2017.

Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage
collector. In Advances in Neural Information Processing Systems, pp. 2098–2107, 2018.

6

Preprint

A RELATED WORK

Synthesizing programs from examples is a classic AI problem which has seen advances from the Pro-
gramming Languages community (Solar-Lezama, 2008). Recently, much progress has been made
using neural methods to aid search. Such techniques include enumerative approaches (Balog et al.,
2016), translation-based techniques (Devlin et al., 2017), hybrid approaches using sketches such as
Murali et al. (2017), Nye et al. (2019), and Dong & Lapata (2018), among others. The recent work
of Odena & Sutton (2019) also studies program representation, proposing property signatures. Work
has also been done using graph neural networks to encode the syntax of programs (Allamanis et al.,
2018; Brockschmidt et al., 2018) for bug fixing, variable naming, and synthesis.

Recent work has introduced the notion of “execution-guided neural program synthesis” (Ellis et al.,
2019; Chen et al., 2018; Zohar & Wolf, 2018). In this framework, the neural representations used
for search are conditioned on the executed program state instead of the program syntax. These
techniques have been shown to solve difficult search problems outside the scope of enumerate or
syntax-based neural synthesis alone. However, such execution-guided approaches have several lim-
itations. We aim to generalize execution guided synthesis, so that it can be applicable to a wider
range of domains, search techniques, and programming language constructs.

Our work is directly inspired by two techniques: abstract interpretation-based synthesis (Wang et al.,
2017; Hu et al., 2019) and neural module networks (Andreas et al., 2016; Johnson et al., 2017). We
employ module networks to implement blended neural execution, which aims to provide a learned
execution scheme directly inspired by abstract interpretation. This approach is also related to other
tree-structured encoders (Socher et al., 2011; Dyer et al., 2016).

10/2/2020 IO examples

1/1

String Editing

Examples Program

+106 769-858-438 → (769)
+63 099-824-351 → (099)

Const('(') | GetToken(Number, 1)
 | Const(')')

Mariya Sergienko → Dr. Mariya
Andrew Cencici → Dr. Andrew

Const('D') | Const('r')
 | Const('.') | Const(' ')
 | GetToken(Word, 0)

List Processing

Examples Program

[-4,9,4,6] → [18,12]
[15,3,3,-14] → [30,6,6]

map (λx.x*2) (filter
 (λx.(x>0 & x%3==0)) input)

[1,2,3,4] → [5,5,5,5]
[1,2,4,-1] → [0,6,6,0]

zipwith (λx,y.x+y)
 (input) (reverse input)

Tower Building

Examples

Figure 5: Example programs from the list processing (left) and string editing (right) domains.

B PROGRAM SYNTHESIS WITH BLENDED ABSTRACT SEMANTICS

Figure 4: Constructions in the
tower-building domain.

Let X = {(xi, yi)}, where (xi, yi) are input-output pairs. Let
[[s]]blendxi

denote the blended abstract semantic representation of s
with input xi. The representation of a state rep(s,X) is:

rep(s,X) = 1

n

∑
xi,yi∈X

ReLU(W ([[[s]]blendxi
; EMBED(yi)]))

Here, W is a learnable weight matrix, and the representation is av-
eraged across all input-output pairs of X . Given this state represen-
tation, the policy and value function are defined as follows:

π(a | s,X) = softmax(MLP a(rep(s,X)))
V (s,X) = σ(MLP V(rep(s,X)))

Here, MLP is a multi-layer perceptron. Note the value function outputs a value between 0 and 1; this
allows for a probabilistic interpretation.

End-to-end training We train our policy π using imitation learning. Starting from the empty
partial program s0 = HOLE, we generate a sequence of partial programs s1, s2, · · · by sampling a
sequence of expansions a0, a1, · · · from the grammar G. Let p = sT be the completed program.
We obtain specifications X = {(xi, yi)} by sampling a set of inputs x1 · · ·xn and obtaining outputs
using concrete semantics yi = JpKcxi

. Thus, from a sequence of expansions a0, a1, · · · , we can

7

Preprint

Figure 6: Comparing the value function to a hand-coded abstract interpretation. Blended abstract
semantics outperforms baselines in synthesis tasks, and obtains higher classification precision than
hand-coded abstract interpretation.

collect a set of triplets {(X , si, ai)} as training data. This process is repeated to generate the training
set D. We can then perform supervised training, maximizing the log likelihood of the following:

L(π) = E(X ,s,a)∼D [log π(a | s,X)]

We train the value function by sampling rollouts of partial programs s0 · · · sT from a fully-trained
π, minimizing the error in a Monte-Carlo estimate of the expected reward R (i.e., the probability of
success under the policy).

LRL(V) = E(R,s0...sT)∼π(·|s0,X)

[∑
t≤T

err(V (st,X), R)
]

For our error function, we use a logistic loss rather than the more common MSE.

C COMPARISON TO ABSTRACT INTERPRETATION

How does the learned value function compare to hand-coded abstract interpretation? Classic ab-
stract interpretation is conservative; it can be thought of as a classifier with perfect recall, but poor
precision, only rejecting the partial programs it knows for sure to be unsuitable. Can our value
function also detect these clearly bad partial programs, but ascribe low value to less obviously bad
candidates? To test this, we performed an experiment in the tower-building domain. We conditioned
the model on tasks from our test corpus, and sampled 15 search trajectories from our blended se-
mantics policy for each task. For each partial program encountered during search, we compute the
model’s value judgment, and recorded whether each rollout was successful. Treating rollout suc-
cess as a noisy label of partial program quality, and using the value function as a classifier, we plot
precision vs recall of the value judgements as we vary the classification threshold. Figure 6 shows
our results for this experiment. As the classification threshold is varied, our learned value maintains
comparable recall compared to the hand-coded abstraction, while achieving better precision. For
high classification thresholds, our model achieves performance comparable to the hand-coded ab-
stract interpretation, and additional precision is gained by lowering the classification threshold. The
RNN value performs worse on this test, achieving lower precision and recall.

D IO PROGRAMMING: STRING EDITING

In an additional experiment, we examine how our model performs on domains for which execution-
guided synthesis is possible, but requires extensive changes to the underlying DSL.

For example, in the RobustFill DSL, a function getSubStr(i,j) slices a string from index i to
index j. This function is not executable until both i and j are known. In order to perform execution-
guided synthesis, Ellis et al. (2019) needed to replace getSubStringwith two separate functions:

8

Preprint

getSubStrStart i and getSubStrEnd j, where each half can be executed in the REPL. This
process must be performed manually for every language construct which takes multiple arguments.

Here we seek to answer the question: can our model be used to successfully synthesize programs us-
ing the language as-is? To this end, we implement the code-writing policy using the DSL presented
in Devlin et al. (2017) without modification (example programs in Figure 5 left). We do not expect
that our approach would outperform the REPL system in Ellis et al. (2019), but we hope that it could
achieve much of the gains. We additionally compare against another relevant baseline: RobustFill
(Devlin et al., 2017). In contrast to the original paper, we train the RobustFill model using the same
”unmodified” version of the DSL as our model, whose syntax has not been modified to aid with
prediction. At test time, we used a sample-based search procedure, because the branching factor is
prohibitively large for breadth-first search procedures explored above.

While the blended encoding does not achieve the accuracy of the execution-guided REPL system, it
outperforms the other baselines, including the RobustFill model, neural abstract semantics and the
RNN baseline.

E SEMANTICS

Here we fully define the semantics for concrete, neural, and blended semantics, covering details that
were omitted in the main paper.

Concrete semantics In this work, we consider domains where the underlying programming lan-
guage is functional. Let λx.E be a lambda expression of one argument, and let x = v be an
assignment of the variable x to the value v. Lambda application is defined as follows:

(λx.E)(v) = JEK{x=v}

That is, we evaluate the function body E, replacing all instances of the function variable x with the
value v. For example, J(λx.x+ x)(5)K{} = Jx+ xK{x=5} = 5+̂5 = 10. Where +̂ denotes the
execution semantics of the built-in function +. The concrete semantics J·K is defined:

JEKC =


JkKC = k a constant k
JxKC|=x=v = v x = v

Jf(E1 · · ·)KC = f̂(JE1KC · · ·) executing built-in f
J(λx1 · · ·xn.E)(E1, · · · , En)KC = JEKC∪{x1=JE1KC,··· ,xn=JEnKC} lambda application

Neural semantics For built-in functions f , we use fnn, a neural module function of k vector
inputs, where k is the arity of f .

In our domains, lambda expressions are only used as arguments to higher-order functions. Therefore,
since we will never apply a lambda expression directly under neural semantics, we only require vec-
tor representation of lambdas. However, we still require a mechanism to represent arbitrary lambda
expressions built combinatorially from primitive functions. This representation is constructed in a
modular fashion by encoding the body E of the lambda expression.

[[E]]nnC =



[[k]]nnC = EMBED(k) a constant k is embedded
[[x]]nnC|=x=v = EMBED(v) embed the value v of the variable x
[[HOLE]]nnC = h(C) a neural placeholder for a hole based on context
[[f(E1 · · ·)]]nnC = fnn([[E1]]

nn
C · · ·) using neural module

[[λx.E]]nnC = [[E]]nnC∪{x=null} encode the body of a lambda

Note that in representing a lambda expression, we used the context with the assignment x = null.
This is used to account for the fact that, in the time of the lambda function’s definition (as an
argument to a higher-order function), its argument is still unknown under neural execution.

The definition for blended semantics proceeds in an analogous fashion, with concrete subtrees exe-
cuted concretely.

9

Preprint

F EXPERIMENTAL DETAILS

All models are trained with the AMSGrad (Reddi et al., 2018) variant of the Adam optimizer with
a learning rate of 0.001. All RNNs are 1-layer and bidirectional GRUs, where the final hidden state
is used as the output representation. Unless otherwise stated, holes are encoded by applying the
EMBED function to the context, and then applying a type-specific neural module to the resulting
vector.

F.1 TOWERS

We employ the tower-building domain and DSL introduced in Ellis et al. (2020), which consists of
the basic commands: PlaceHorizontalBlock, PlaceVerticalBlock, MoveHand(n),
ReverseHand(), Embed, Loop and integers n from 1 to 8. (The higher-order Embed function
takes an expression as input, executes it, and then returns the hand to its initial location.) In order to
test the compatibility of our approach with library-learning techniques, we additionally use library
functions learned by the DreamCoder system by combining the above functions. Following Ellis
et al. (2020), the grammar is implemented in continuation-passing style. Our training data consisted
of tower programs randomly sampled from a PCFG generative model (Ellis et al., 2020).

We trained policy networks on 480000 programs. We trained value functions on 240000 rollouts
from the policy. We perform search for up to 300 seconds per problem.

All neural modules consist of a single linear layer (input dimension 512 ∗ nargs and output dimen-
sion 512) followed by ReLU activation. Tower images are embedded with a simple CNN-ReLU-
MaxPool architecture, as in Ellis et al. (2020).

Hand-coded abstract interpretation We implemented an abstract domain which tracked, a) the
range of possible locations of the “hand” and b) for each horizontal location, the minimum height
which must be achieved by the partially constructed tower. This representation allows us to elim-
inate invalid partial programs because once a block is dropped, it cannot be removed through any
subsequent commands.

F.2 LIST PROCESSING

Data for this domain was generated by modifying the DeepCoder dataset (Balog et al., 2016). Specif-
ically, DeepCoder training programs of size 2 (containing 2-3 higher order functions, such as map
f (filter g input) or zipwith f (map g input) (map h input)) were mod-
ified by changing the lambdas in the program (f, g, and h in the above examples) from a small
set of constant lambdas such as (*2) to depth-3 lambdas sampled from our modified grammar
(see below). For example: (λx.max(x+2,x/2)). For each program, 5 example input lists were
sampled, each with length 10 and values in the range [-64, 64]. The program was then executed to
yield the corresponding outputs. Programs with output or intermediate values outside of the range
[-64, 64] were discarded. Programs producing the identity function or constant functions were also
discarded. We trained and tested only on functions of type [int] → [int]. At test time when
running search, we similarly reject programs with intermediate values outside of the desired integer
range.

All policy networks were trained on 500000 programs. We perform search for 180 seconds per
problem.

All neural modules consist of a single linear layer (input dimension 64∗nargs and output dimension
64) followed by ReLU activation. Integers are encoded digit-wise via a GRU. Lists are encoded via
a GRU encoding over the representations of the integers they contain.

Unbound variables within a lambda function are embedded via a learned representation parameter-
ized by the variable name (one vector representing x and one representing y). When encoding holes
within lambda functions, we ignore context, and instead embed holes only as a function of the hole
type.

Modified lambda grammar Below is the grammar used for lambda functions:
L → (λx,y.S) | (λx.S)

10

Preprint

S → I | B
I → I+I | I*I | I/I | min(I,I) | max(I,I) | A
B → I > I | or(B,B) | and(B,B) | I%I==0
A → x | y | N
N → -2 | -1| 0 | 1 | 2

Variations on training and testing conditions Many variations on the training and testing condi-
tions achieve similar results to those shown in the main paper (i.e., blended semantics consistently
achieves the highest performance). Several of these variations are shown in Figure 7.

F.3 STRING EDITING

For the string editing tasks, we use the DSL from Devlin et al. (2017). We train on randomly sampled
programs, sampling I/O pairs and propagating constraints from programs to inputs to ensure that
input strings are relevant for the target program (see Devlin et al. (2017)). We condition on 4 I/O
examples for each program. We used string editing problems from the SyGuS (Alur et al., 2016)
program synthesis competition as our test corpus.

We trained all models on 2 million training programs. At test time, we sample programs from the
model for a maximum timeout of 30 seconds.

Input and output strings are encoded by embedding each character via a 20-dimensional character
embedding and concatenating the resulting vectors to form a representation for each string. Repre-
sentations of “expressions” e (as defined in the RobustFill DSL) are concatenated together using an
“append” module. Following Ellis et al. (2019), neural modules consist of a single dense block with
5 layers and a growth rate of 128 (input dimension 256 ∗ nargs and output dimension 256).

0 5000 10000 15000 20000 25000
Number of partial programs considered

0

20

40

60

80

100

Pe
rc
en
t c
or
re
ct

List Processing Variation: Values in Range [-32,32]
Blended semantics (ours)
Neural semantics
RNN

0 500 1000 1500 2000 2500 3000 3500
Number of partial programs considered

0

20

40

60

80

100

Pe
rc
en

t c
or
re
ct

List Processing Variation: Sample-Based Search
Blended semantics (ours)
Neural semantics
RNN

0 5000 10000 15000 20000 25000
Number of partial programs considered

0

20

40

60

80

100

Pe
rc
en

t c
or
re
ct

List Processing Variation: Integer Return Values
Blended semantics (ours)
Neural semantics
RNN

0 5000 10000 15000 20000 25000 30000
Number of partial programs considered

0

20

40

60

80

100

Pe
rc
en
t c
or
re
ct

List Processing Variation: More Higher Order Functions
Blended semantics (ours)
Neural semantics
RNN

Figure 7: Variations on the list processing task. Top Left: using integer values in the range [-32, 32]
instead of [-64, 64]. Top Right: Using sample-based search instead of best-first search. Bottom Left:
extending the training and testing data to allow for [int] → int functions. Bottom Right: the
original model tested on deeper DeepCoder programs with 3-6 higher-order functions. Notably, in
all test conditions, the blended semantics consistently outperforms the RNN and neural semantics.

11

	Introduction
	Blended Abstract Semantics
	Experiments
	Related work
	Program Synthesis with Blended Abstract Semantics
	Comparison to abstract interpretation
	IO programming: String Editing
	Semantics
	Experimental Details
	Towers
	List processing
	String Editing

