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Abstract

In parallel with the rise of the successful value function factorization approach,
numerous recent studies on Cooperative Multi-Agent Reinforcement Learning
(MARL) have explored the application of Coordination Graphs (CG) to model
the communication requirements among the agent population. These coordination
problems often exhibit structural sparsity, which facilitates accurate joint value
function learning with CGs. Value-based methods necessitate the computation of
argmaxes over the exponentially large joint action space, leading to the adoption of
the max-sum method from the distributed constraint optimization (DCOP) litera-
ture. However, it has been empirically observed that the performance of max-sum
deteriorates with an increase in the number of agents, attributed to the increased
cyclicity of the graph. While previous works have tackled this issue by sparsifying
the graph based on a metric of edge importance, thereby demonstrating improved
performance, we argue that neglecting topological considerations during the sparsi-
fication procedure can adversely affect action selection. Consequently, we advocate
for the explicit consideration of graph cyclicity alongside edge importances. We
demonstrate that this approach results in superior performance across various chal-
lenging coordination problems.

1 Introduction

The ability for autonomous agents to collaborate is crucial, spanning applications from multi-robot
systems (Gautam & Mohan, 2012) to sensor networks (Farinelli et al., 2008; Muldoon et al., 2013;
Lesser et al., 2003). The quest for learning effective control policies with multi-agent reinforcement
learning (MARL) (Oroojlooy & Hajinezhad, 2023) mirrors the strategies employed in single-agent
environments, but presents unique challenges. While learning individual action-value functions (Tan,
1993) is scalable, it suffers from the issue of non-stationarity caused by the inability to predict other
agents’ behaviour. On the other hand, joint action-value learning (Claus & Boutilier, 1998) mitigates
non-stationarity but requires often unavailable global information, and becomes intractable with
the number of agents due to the exponentially large joint action space. Recently, there has been a
strong emphasis on value function factorization (VFF) methods that construct the joint action-value
function as a mixing of individual agent utilities (Sunehag et al., 2017; Rashid et al., 2018; 2020; Son
et al., 2019; Wang et al., 2020). However, lacking mechanisms to explicitly model coordination, VFF
methods are shown to suffer from the relative overgeneralization pathology (Böhmer et al., 2020).

Tackling these problems, the formalism of Coordination Graphs (CG) (Guestrin et al., 2001) has
experienced a recent renaissance. CGs constitute an interpretable graphical model representing the
state-dependent coordination structure and induce a factorization of the joint action-value function
as a sum of single-agent utility functions and payoff functions for agent pairs. Whilst incorporating
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Figure 1: KINGS constructs the sparse coordination graph by iteratively considering the best edge
to prune based on the mutual influence scores and the current graph topology.

pairwise payoffs into the learning process mitigates the non-stationarity issue, the use of max-
sum algorithm (Pearl, 1988) circumvents the scaling problems ailing joint learning by providing an
approximation for the greedy joint action selection. Deep Coordination Graphs (DCG) (Böhmer
et al., 2020) integrate CGs into the MARL framework and show the pairwise payoffs form crucial
mechanism to overcome relative overgeneralization.

While DCG assumes a fixed structure for the coordination graph, Wang et al. (2021b) argue that
in a wide variety of problems the communication requirements are dynamic and sparse in terms of
considering only a subset of pairwise agent relations. They introduce a CG sparsification method
that works by ranking the payoff functions by a measure quantifying the influence between the agents
belonging to the edge. In this work, we reconsider said metric by demonstrating that especially with
high sparsity levels, omitting topological information related to the graph, has a negative impact on
the max-sum quality arising from graph disconnectivity and excessive cyclicity. The latter has been
shown to be especially detrimental to the max-sum algorithm (Montanari et al., 2007; Cerquides
et al., 2021). Towards mitigating these issues, we propose a novel cyclicity aware sparsification metric
for sparse CGs and demonstrate its positive effect on sparse CG-based MARL with an evaluation
on the Multi-Agent Coordination Benchmark (MACO) (Wang et al., 2021b) and the StarCraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019).

2 Background

The cooperative problems we consider in this work fall under the framework of DEC-POMDPs
(Oliehoek et al., 2016). A DEC-POMDP is described via a tuple M := ⟨I, N,S,A, T, R, Ω, O, γ⟩,
where I is the set of N agents, S the state space, A the action space shared by all of the agents, T
the joint transition kernel, R the joint reward function, Ω the observation space, O the observation
function and γ the discount factor. For a given DEC-POMDP, our objective is to find a mutually
independent set of policies π∗ satisfying: π∗ = arg maxa∼π Q∗

jt(s, a), where Q∗
jt(s, a) denotes the

total expected future discounted returns or the optimal joint utility function.

2.1 Coordination Graphs and Max-Sum

The problem of learning the joint utility function scales very poorly in the number of agents belonging
to the task due to the exponential size of the joint action space. Luckily, most meaningful multi-
agent problems can be effectively represented by considering only pairwise interactions. To this end,
Guestrin et al. (2001) introduce the concept of Coordination Graphs. A Coordination Graph (CG)
G := ⟨V, E⟩ specifies the pairwise communication requirements between the agents V via its edges
E . It induces a factorization of the total utility function into

Qjt(τ , a) = 1
N

N∑
i=1

fi(ai|τi) + 1
|E|

∑
(i,j)∈E

fij(ai, aj |τi, τj).

Representing the total utility with CGs enables the use of the max-sum algorithm (Farinelli et al.,
2008) for the greedy action selection that becomes intractable to perform via exhaustive enumeration
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in multi-agent settings. Max-sum is known to converge only for acyclic graphs but has been applied
comprehensively in also problems exhibiting varying levels of cyclicity.

Böhmer et al. (2020) adapt the concept of CGs to Multi-Agent Deep Reinforcement Learning
(MARL), by parameterizing the set of utility and payoff functions fij with neural networks. Their
approach, known as Deep Coordination Graphs (DCG), trains each of the utility and payoff net-
works with temporal difference learning in the style of DQN (Mnih et al., 2013). Whereas DCG
proposes to train the joint utility by considering the full set of pairwise interactions in each state,
Kok & Vlassis (2004) argue that many practical coordination problems exhibit a certain level of
sparsity, meaning that one can instead focus on a sparse subset of pairwise factors, thus improving
learning speed. This concept is first explored in deep MARL by Wang et al. (2021b) who propose
a state-dependent mechanism to selectively filter out a relevant subset of edges for more efficient
message passing in max-sum. Their approach, CASEC, suggests identifying the best edges in terms
of their influence on the task at hand, which can be defined as: ζi→j = maxai

Varaj
fij(ai, aj |τi, τj).

Then, for an undirected edge e = (i, j), we write the undirected mutual influence of the agents as

ζij = max{ζi→j , ζj→i}. (1)

CASEC sparsification requires defining a sparsity coefficient λsp, which takes values in the interval
[0, 1] and determines the proportion of edges in the original fully connected coordination graph to
be pruned. CASEC then ranks the edges according to their ζ-value and retains (1−λsp)(N2−N)/2
top scoring edges to be used by max-sum. While this simple modification demonstrates promising
results in tasks exhibiting sparsity, we argue that ignoring the topological changes caused by the
sparsification have detrimental effects on the max-sum accuracy that in turn hinders learning.

3 Related Works

Max-sum has been studied in the distributed constraint optimization (DCOP) literature, and a
reasonable amount of attention has been given to the algorithm’s lack of convergence guarantees
with cyclic graphs and its practical implications (Cohen & Zivan, 2017). Various methods have been
proposed which either act by modifying either the graph max-sum takes in (Montanari et al., 2007;
Rollon & Larrosa, 2014) or modifying max-sum itself (Cerquides et al., 2021). Such considerations
have been considered also in the context of MARL. In addition to the work of sparsifying CGs with
mutual influence metrics (Wang et al., 2021b), Yang et al. (2022) have proposed limiting the joint
model’s representational capacity to only directed acyclic graphs. In this work, we instead want to
retain the possibility for cycles to exist and ask how to mitigate the negative effects of cyclicity.

In parallel to the advances made with CGs, there has been a recent surge of research activity around
value function factorization (VFF) (Wang et al., 2021a). VFF approaches train a centralized value
function, a parametric mixing of the individual agent utilities, to produce an estimate for the joint
utility. When the gradient signal originating from the environmental reward gets backpropagated,
said mixing acts as an implicit mechanism to distribute the credit amongst the population of agents.
Many previous works have focused on finding the most flexible way to parametrize the joint value
function while ensuring decomposability. The choice of the mixing function determines the rep-
resentational capacity of the joint utility model and has large implications on the performance.
Value-Decomposition Networks (VDN) (Sunehag et al., 2017) consider only additive mixing func-
tions, whereas QMIX (Rashid et al., 2018) extends to the whole family of monotonic functions. More
recently, a plethora of other VFF methods have been proposed and methods that cover the entire
Independent-Global-Max (IGM) space have been introduced (Son et al., 2019; Wang et al., 2020).

4 Cyclicity–Regularized Coordination Graphs

In the upcoming section, we present our contribution to the learning of cyclicity-regularized sparse
coordination graphs. Section 4.1 introduces and justifies our proposed method, and Section 4.2 offers
an illustrative demonstration to provide additional motivation.
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4.1 Kirchoff Index Guided Sparsification

While the ζ-metric, defined in Eq. (1) is appealing in that it ties the edge importance to the variation
in the payoff functions, we argue that such sparsification criterion can be problematic for two reasons.
First, it has been observed that the performance of max-sum deteriorates when increasing the number
of agents due to increased overall cyclicity of the graph (Montanari et al., 2007; Rollon & Larrosa,
2014; Cerquides et al., 2021), which is overlooked by ζ-sparsification. Secondly, when the sparsity
level is set high, many nodes can become disconnected from the rest of the coordination graph
impairing communication. This can be especially catastrophic in situations where all agents need to
have knowledge of others’ intentions to make a decision for themselves. Motivated by these issues, we
propose that one should instead search for sparse graphs that, in addition to valuing edges with high
mutual influence, 1) retain connectedness ensuring proper flow of information between all agents
and 2) are minimally cyclic. Towards these objectives, we propose to iteratively sparsify the graph
edges according to a modified mutual influence metric

ξij = ζij

Aij − Ωij
, (2)

where Aij is the adjacency matrix of the CG and Ωij is called the effective resistance matrix (Klein,
2002). The effective resistance is a quantity that describes the commute time of a random walk
between two nodes i and j in a resistor network whose topology is given by A and each edge is
replaced with a unit resistor. Let us denote the graph Laplacian as L and a full ones matrix of shape
N ×N as Φ. With these definitions we can compute the entries of Ω as

Ωij = Γii − Γjj − 2Γij where Γ =
(

L + 1
N

Φ
)−1

. (3)

When the effective resistance Ωij is compared to the nominal resistance given by Aij as in the
denominator of Eq. (2), one obtains a quantity called the resistance deficit which has been used in
graph theory to assess an edge’s contribution to the total cyclicity of a graph (Klein & Ivanciuc,
2001; Yang, 2014). Thus, resistance deficit penalization weights down the edge scores proportional
to how much they increase the total cyclicity of the graph. As Γ changes every time an edge is
pruned, computing the final sparse graph must be done by computing current ξij , dropping the edge
with the lowest ξ-value, repeating until target sparsity is reached. Such iterative procedure aims to
maximize the Kirchhoff Index (Lukovits et al., 1999) of the final graph. The following proposition,
whose proof is in Appendix B, establishes a theoretical justification for the proposed approach.
Proposition 1. CG sparsification with the ξ-metric is guaranteed to keep the graph connected for
λsp ∈ [0, 1−2/N ]. When λsp ∈ [1−2/N, 1], the final graph be a forest enabling max-sum to converge
to a fixed point in finite number of iterations.

Algorithm 1 KINGS
Input: N , fij , λsp, budget I, adjacency Aij

ζij ← mutual_influence(fij) # Eq. (1)
Mij ← 1N×N

C ← λsp
N2−N

2·I
if C > 1 then

M ← NOT(max_spanning_tree(ζij))
for i ∈ [0, . . . , I] do

Ωij ← eff_resistance(Aij) # Eq. (3)
ξij ← ζij/((Aij − Ωij)⊙M)
# Prune C worst scoring edges
e− ← topk(−ξij , k = C)
Aij ← remove(Aij , e−)

return Aij

Importantly, this result shows that ξ-sparsification
leads to desirable graphs – ones that are connected
when sparsity level allows, or ones that are optimal
from the perspective of max-sum. While the conver-
gence guarantees can be given when λsp > 1− 2/N ,
we also expect that simply reducing the amount of
cyclicity in the graph can be helpful for max-sum
based on the results of Cerquides et al. (2021). We
verify this supposition in the subsequent subsection
by examining the max-sum accuracy as a function of
the sparsity coefficient. Finally, by incorporating ζ in
the construction, ξ-graphs also aim to select graphs
that are maximally influential.

While modulating the original ζ-scores with struc-
tural information is beneficial, we acknowledge that
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this procedure can become costly when graph sizes grow. This is because we are required to recom-
pute Γ at each iteration, which involves inverting the N × N graph Laplacian. In order to scale
the cyclicity minimizing sparsification to deep MARL, we instead sparsify the original coordination
graph in chunks of edges: instead of pruning the graph one edge at a time, we fix the sparsification
iteration budget I, and at each iteration prune as many edges are needed to reach the target sparsity
within the required number of iterations. This way we are trading off the accuracy of assessing the
graph cyclicity for computation speed. To ensure final graph connectedness, we require that the final
graph contains the edges that belong to the maximum spanning tree (MaxST) of edge weights ζij ,
which we expect to be an important path in terms of utility estimate communication carried out by
max-sum. For further discussion on the sparsification budget, we refer the reader to Appendix E. We
call this final version of the iterative sparsification procedure Kirchhoff Index Guided Sparsification
(KINGS). Pseudocode 1 summarizes the algorithm.

4.2 Motivating Example

Figure 2: Max-sum greedy action selec-
tion accuracy on random CGs sparsified
with either ζ- or ξ-metrics

To illustrate the effect of the modified sparsification met-
ric, we randomly generate 1000 fully connected coordina-
tion graphs. The exact generation process is described
in detail in Appendix A. Each graph features 11 agents,
all of which can take 3 distinct actions. We then heavily
sparsify all of the graphs by sliding λsp over the interval
[0.7, 1] using both ζ- and ξ-metrics. We will refer to the
graphs sparsified with ξ and ζ as ξ-graphs and ζ-graphs,
respectively. To measure the impact of sparsification on
max-sum, we exhaustively search for the maximum Q-
value and the corresponding optimal action for each of
the sparsified graphs. Then, we compare the result to the
action selected by running max-sum on the corresponding
graph for 100 iterations to compute the max-sum accu-
racy. Figure 2 shows that ξ-graphs enjoy a markable edge
in max-sum accuracy compared to ζ-graphs, hinting at the benefit of integrating topological infor-
mation into the pruning procedure. As expected from previous discussion, the accuracy for ξ-graphs
reaches 1 at λsp = 9/11 ≈ 0.82, which is also when the sparsified graph is a spanning tree for the 11
nodes, in contrast with ζ-graphs that still sustain over 5% error for the same level of sparsity.

5 Experiments

To understand the effectiveness of the our method, we evaluate KINGS in two cooperative multi-
agent task suites, Multi-Agent Coordination Benchmark (MACO) (Wang et al., 2021b) and Starcraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019). The key questions we aim to answer
are: (I) How does KINGS fare against the state-of-the-art cooperative MARL methods in difficult
coordination tasks? (II) Fixing communication bandwidth, does cyclicity-awareness improve sparse
CG learning? (III) What qualitative insights can we gain regarding the scenarios in which pruning
with topological information proves advantageous? For all of the results in this paper, we plot the
mean performance along with the standard error bounds computed over 5 random seeds.

5.1 Performance Evaluation

5.1.1 MACO

We begin the performance evaluation with a focus on the Multi-Agent Coordination Benchmark
(MACO) (Wang et al., 2021b), which consists of temporally extended versions of 6 classical coor-
dination games compiled in Castellini et al. (2019). The reward structure in each environment is
either factored or non-factored, depending on whether an explicit decomposition of global rewards is
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Figure 3: Performance evaluation of KINGS in the MACO benchmark against the baseline methods.

present. Crucially, MACO tasks test the algorithms’ ability to overcome the relative overgeneraliza-
tion pathology (Böhmer et al., 2020) and sustain cooperation that extends over multiple timesteps.
As relevant baselines, we demonstrate the results of VDN (Sunehag et al., 2017) and QMIX (Rashid
et al., 2018) for value function factorization methods and DCG (Böhmer et al., 2020) and CASEC
(Wang et al., 2021b) for coordination graph-based approaches.

Table 1 summarizes the sparsity coefficients as percentages for CASEC and KINGS in each envi-
ronment of MACO. For CASEC, we used the λsp values provided in the original paper, whereas for
KINGS we find the best sparsity coefficient that is greater or equal to the one of CASEC. However,
as we want to retain connectedness, we stop at 1 − 2/15 ≈ 0.867 in Sensor. The sparsification
budgets are chosen from the range [0, 3] ensuring that the computation times stay within reasonable
limits. The exact values used are provided in Table 2. The results for the MACO environments are
shown in Figure 3. Both QMIX and VDN perform very badly due to their inability to overcome the
relative overgeneralization pathology. In contrast, all the CG-based approaches provide much better
results in these environments. Second point to note is that in most of the environments enforcing
sparse inputs to max-sum seems beneficial as demonstrated by both KINGS and CASEC in relation
to DCG. Convincingly, there is a noticeable difference between the performances of KINGS and
CASEC, supporting our claim on the importance of topological information in sparsification. While
the results of CASEC and KINGS are rather similar on the Gather environment, it is crucial to
consider that CASEC is able to achieve such solution only when it is allowed to retain 70% of the
original graph edges. In contrast we achieve similar final performance with only 40% of the original
edges, hinting that KINGS enables the population to learn more effective patterns of communication.

Aloha Pursuit Hallway Sensor Gather Disperse
80% 70% 50% 87%|90% 60%|30% 60%

Table 1: Sparsity coefficients used on MACO. Blue for KINGS, Red for CASEC, Black for both.

5.1.2 SMAC

To get a more thorough understanding of the utility of integrating topological information to the
sparsification on learning as well as the scalability to very complex multi-agent problems, we test
KINGS against the same baselines on 2 SMAC maps: 1c3s5z and 10m_vs_11m. As observed by
Böhmer et al. (2020); Wang et al. (2021b); Yang et al. (2022), learning the payoff functions fij is
difficult due to the quadratic number of output heads in the output layer. Performing Q-learning
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Figure 4: Performance on SMAC. The sparsity coefficients for KINGS and CASEC are 0.65 and
0.75 for 10m_vs_11m and 1c3s5z, respectively.

style training with such networks can cause many of the output connections to remain unchanged
for long periods which causes inaccuracies in the Qjt-estimation. This problem is exacerbated by
the fact that ζ-metric used both by KINGS and CASEC relies on the accuracy of the learned payoff
functions. To circumvent this problem, we apply action representation learning (Wang et al., 2021b)
when training KINGS, CASEC and DCG. We employ λsp = 0.65 in 10m_vs_11m and λsp = 0.75 in
1c3s5z for both KINGS and CASEC. These were the highest values of sparsity for which either of the
sparse CG methods worked reasonably well in our tests. The sparsification budget for KINGS is set
to 2 in both of the SMAC environments. Figure 4 presents the results on the tested environments. In
contrast to MACO environments, fully decomposed methods VDN and QMIX demonstrate strong
performance on each of the tasks. Despite the apparent lack of performance enhancement due
to sparsity enforcement, a notable distinction emerges in the sparsity tolerance of KINGS when
compared to CASEC. KINGS maintains higher performance under a fixed sparsity level, implying
a more effective communication capability in these environments.

5.2 Tolerance to Sparsity

As demonstrated in earlier sections, KINGS consistently outperforms CASEC when the sparsity is
fixed. Here, we reinforce this observation with additional results, selecting Hallway and Gather as
illustrative examples of factored and non-factored MACO environments. For both, we study the
final performances of KINGS and CASEC in the range of sparsity coefficients [λlo

sp, λhi
sp], where λlo

sp
are optimal values for CASEC and λhi

sp are the values after which CG can’t be kept connected.
We discretize these ranges into 4 values and plot the results for each one. Figures 5 demonstrate
that KINGS is able to better withstand sparsity, especially in Gather where performance gradually
increases with λsp, giving support to the idea that reducing cyclicity can help learning in max-sum
based approaches. While KINGS remains unaffected by sparsity up to λsp = 0.7 in Hallway, Figure
6 reveals that both methods suffer from increased sparsity in their learning speeds to a similar extent.

Figure 5: The effect of λsp on KINGS and CASEC in Gather and Hallway environments. In most
cases, KINGS achieves a higher performance for a given level of sparsity.



RLJ | RLC 2024

Figure 6: Performance for two sparsity levels for KINGS and CASEC in Hallway and Gather. The
advantage of KINGS is clear in Gather, where the CG connectedness is integral to solving the task.

5.3 Qualitative Analysis on Gather

To conclude the experiments, we emphasize the significance of topological information through a
specific case in Gather, where 5 agents collaborate to reach a goal known only to a subset of them.
Detailed in Appendix C, maintaining CG connectedness in this task is crucial as all agents must reach
their designated goal together to avoid penalties for the entire population. As shown in left of Figure
6, CASEC with λsp = 0.6 fails to achieve learn the task properly. We load the best seed of CASEC
with λsp = 0.6 and investigate what happens when it fails to solve the task. A typical failure case
is visualized in the left side of Figure 7, that shows a partial slice of the Gather environment’s map.
Agents 1 and 2 need to join the rest of the group at g1 to obtain the maximum reward of 10. In this
scenario, CASEC fails to make such a transition. As a diagnostic, we visualize the agents overlain
with the state-specific coordination graph and see that in this scenario the population indeed suffers
from disconnectedness of the communication. Agent 1 cannot know what the rest of the agents are
planning to do and thus it tries to achieve another goal by going to g2 which causes the failure.
When we manually force the sparsification to be done with ξ-metric as in KINGS, we observe that
agent 1 is able to take the right action leading to the highest reward of 10, as shown on the right
side of Figure 7 highlighting the core idea of our topologically informed sparsification.

Figure 7: A visual example showing the importance of keeping the CG connected. (Left) CASEC
disconnects agent 1 from the rest of the group, failing to obtain the optimal solution. (Right)
ξ-sparsification employed by KINGS ensures that the group stays connected and arrives at g1.

6 Conclusion

Our work enhances the mutual influence metric for deep Coordination Graph (CG) sparsification by
incorporating cyclicity regularization. The method removes edges iteratively based on their mutual
influence score while considering their significance for the entire graph’s information flow. Inte-
grating this metric into CG-based methods proves advantageous compared to topology-oblivious
sparsification in many difficult coordination tasks. A notable limitation in current sparse coordina-
tion methods is the assumption of a static sparsity coefficient. Dynamically adjusting the number of
active CG edges based on the state could offer a balanced solution, addressing max-sum constraints
and optimizing the representational capacity of the joint utility model. Further research could
explore more suitable distributed constraint optimization algorithms for CGs with high cyclicity.
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A Motivating Example Description

For the motivating example discussed in Section 4.2, we choose the number of agents to be 11 and
the action space to be of size 3. Then we take 1000 random seeds and for each one a fully connected
CG induces a random joint utility function. We set individual utilities fi to 0 and generate the
payoff matrices fij by sampling values uniformly for each action pair (ai, aj) from the set {−1, 0, 1}.
Finally we add noise to these sampled values from the standard normal distribution.

B Proof of Proposition 1

Proof. Assume input graph G := ⟨V, E⟩. When the final graph sparsity is λsp ∈
[
0, 1− 2

N

]
, the

graph is guaranteed to be connected. To see this, we analyze the graph topology at iteration t of
the iterative sparsification procedure. Let us divide the nodes in two sets: the ones with only 1 edge
connected to them and the ones that have more than 1 edge connected and mark the sets V− and V+,
respectively. For edge (i, j), i ∈ V−, j ∈ V−∪V+, we have that Aij−Ωij = 0 =⇒ ξij →∞. In words,
when an edge describes the only possible path between two nodes, the corresponding resistance deficit
for that edge is 0, leading to an unbounded ξ-value. As a result, only edges connected exclusively
to V+, will have bounded ξ-values. As also the lowest scoring edge is sparsified, V− will still remain
connected to the rest of the graph.

A direct consequence of the connectedness is that when λsp = 1 − 2
N the final sparse graph will

be a spanning tree for G. Even further increasing sparsity thus leads into a spanning forest for G.
Using the results from Pearl (1988), we can also note that max-sum on graphs with λsp ≥ 1− 2/N
is guaranteed to converge.

C Experiment Settings and Hyperparameters

The overall hyperparameters are as in the previous work (Sunehag et al., 2017; Rashid et al., 2018;
Böhmer et al., 2020; Wang et al., 2021b). All tasks employ a discount factor γ = 0.99. Each network
is trained using an RMSProp optimizer with a learning rate of 5× 10−3. A first-in-first-out (FIFO)
replay buffer stores the experiences of at most 5000 episodes, and a batch of 32 episodes are sampled
from the buffer during the training phase. The target network undergoes periodic updates every 200
episodes. We implement ϵ-greedy exploration, with ϵ linearly annealing from 1.0 to 0.05 over 50K
time-steps. To ensure a fair comparison, our method and all the baselines presented in this paper
are implemented using the open-sourced codebase PyMARL (Samvelyan et al., 2019). All the CG
based methods perform 5 iterations for max-sum.

A part of the evaluation is done on SMAC benchmark (Samvelyan et al., 2019) which is based
on the real time strategy game StarCraft II. As the results are not directly comparable across
different versions of StarCraft, we use the version 2.4.6.2.69232 specified in the original SMAC
paper. The sparsity coefficients we found by performing the following rough sweeps over the values
{0.3, 0.4, 0.5, 0.65, 0.75} for both maps 10m_vs_11m and 1c3s5z. The results shown in Figure 4 are
shown for highest value of λsp for which either of the sparsification methods KINGS or CASEC
achieved reasonable results – 0.65 for 10m_vs_11m and 0.75 for 1c3s5z, respectively.

Table 2 presents the choices for the sparsification budgets used in the MACO results. Appendix E
discusses these choices further.

Aloha Pursuit Hallway Sensor Gather Disperse
0 2 3 0 6 2

Table 2: Sparsification budgets used in the MACO evaluation.
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The qualitative analysis of the experimental section focuses on the Gather environment of MACO.
To help understanding the analysis, we provide the explanation for the environment here. Gather
is based on Climb Game (Wei & Luke, 2016) where agents have three actions: a0 yields a high
reward only if all choose it, while a1 and a2 offer sub-optimal rewards without requiring precise
coordination. Gather extends Climb Game by introducing temporal complexity and stochasticity,
requiring agents to learn cooperative policies instead of atomic actions. The map for the environment
is a 3 × 5 grid, where agents spawn randomly. In each episode, a target goal for the population is
randomly selected among three goal states: g1, g2 and g3. These three states are all placed on the
2nd row, at 1st, 3rd and 5th columns, respectively. Agents near the target goal are the only ones
aware of its optimality and thus need to communicate this knowledge to the others. The episode
ends either after 8 steps or when all agents have gathered to a single goal state. To earn a reward,
all agents must simultaneously be located at some goal state. Achieving the target goal results in
a high reward of 10, gathering at other goals yields 5, and a minimum reward of −5 is assigned if
only some agents gather at the optimal goal, increasing the difficulty.

D Further Results on Changing Sparsity Coefficient

Figure 8: The effect of sparsity coefficient λsp on KINGS and CASEC. KINGS is in most cases able
to achieve a higher performance for a fixed λsp.

As suggested originally by Wang et al. (2021b), Aloha and Sensor environments of the MACO
benchmark are learned with very high levels of sparsity as shown in Table 1. In this part, we
additionally test how the discussed sparsification methods behave with smaller values of λsp on
these tasks. For Aloha, we plot the distribution of final performances for λsp ∈ {0.5, 0.6, 0.7}. For
Sensor the corresponding set is {0.7, 0.75, 0.8}. The used sparsification budgets are 2 and 3 for
Aloha and Sensor, respectively. Figure 8 presents the results. Generally, the final performance
exhibits lower variance with KINGS, and especially in Sensor, it retains higher performance. The
denser the graphs become, the less pronounced the difference between CASEC and KINGS is.

E Effect of Sparsification Budget

We provide an additional analysis of the effect of the sparsification budget assumed by KINGS.
Algorithmically, increasing the budget means that one has more iterations to reach the target sparsity
λsp, which enables pruning the graph in a more fine-grained manner. Contrarily, decreasing the
budget means that in order to reach the target sparsity, one needs to sparsify more edges at once. As
mentioned, Table 2 shows the choices of the sparsification budgets in different MACO environments.
In Aloha and Sensor, we are sparsifying the fully connected graph down to a spanning tree, which
can be seen from their corresponding λsp, and thus we directly take the maximum spanning tree –
this is equivalent to running KINGS with sparsification budget 0. In Gather we afford to apply the
procedure edge by edge due to the small size of the fully connected graph, which has (52−5)/2 = 10
edges, thus 6 sparsification iterations. For Pursuit and Disperse we tested both budgets 2 and 3
observing little difference between them two choices.
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DCG CASEC KINGS, budget=1 KINGS, budget=2 KINGS, budget=3
2.2 2.5 2.9 3.1 3.4

Table 3: Time taken in seconds for 1000 action selections with DCG, CASEC and KINGS with
different sparsification budgets in Hallway and λsp = 0.5.

Figure 9: The effect of the sparsification bud-
get on Hallway.

The only environment, where we observed the cho-
sen budget to have a more noticeable impact was
Hallway, with λsp = 0.5. The chosen sparsity coeffi-
cient translates to pruning 33 edges from the original
fully connected CG. In this setting, we tested KINGS
with budgets 1, 2 and 3. This corresponds to sparsi-
fying the original graph in chunks of sizes 33, 16/17
or 11, respectively. The results are shown in Figure 9.
While the distribution of final performances is about
the same for all of the tested budgets, we see that
the learning speed is slightly affected as we make the
pruning coarser. Conversely, tightening the budget
from 1 to 2 translates to about 20% speedup in the total run time while retaining. Additionally,
Table 3 presents the comparisons for the speeds between CG-based methods over 1000 action se-
lections. This observation provides support for the supposed trade-off between the sparsification
accuracy and computational requirements for this environment. An interesting avenue for future
work would be to study formally the changes different sparsification budgets have on the final graph
cyclicity.

F Effect of ρ-formulation in MACO

Figure 10: The effect of ρ-formulation.

Following Wang et al. (2021b), we formulate the pay-
off functions as a sum of a residual term ρij and the
individual utilities: fij = fi+fj +ρij . In this setting,
we are learning individual utilities and the residual
term ρij instead of directly learning payoff functions
fij . While being a minor detail that is not discussed
in the work that presents this architectural choice,
it seems to have quite a strong effect on learning in
MACO environments. Figure 10 presents illustrative
results on this issue. The box plot demonstrates the
final performance in Sensor for two different spar-
sity coefficients 0.7 and 0.75 when learning fij or via the residual formulation. Similar behaviour is
observable for other MACO environments as well but we did not perform an extensive check on this.
For fair comparison all the CG based approaches are implemented with this modification. Finally,
due to computational constraints, we do not evaluate the significance of this choice on SMAC but
instead adopt the choice learning fij directly as done by Wang et al. (2021b).


