
Equitable Access to Justice: Logical LLMs Show
Promise

Manuj Kant∗
kantmanuj@gmail.com

Marzieh Nabi∗
mnabi@paxai.co

Manav Kant∗
mkant@caltech.edu

Preston Carlson
pjames27@stanford.edu

Megan Ma
meganma@law.stanford.edu

Abstract
The costs and complexity of the American judicial system limit access to legal
solutions for many Americans. Large language models (LLMs) hold great potential
to improve access to justice. However, a major challenge in applying AI and
LLMs in legal contexts, where consistency and reliability are crucial, is the need
for System 2 reasoning. In this paper, we explore the integration of LLMs with
logic programming to enhance their ability to reason, bringing their strategic
capabilities closer to that of a skilled lawyer. Our objective is to translate laws and
contracts into logic programs that can be applied to specific legal cases, with a
focus on insurance contracts. We demonstrate that while GPT-4o fails to encode a
simple health insurance contract into logical code, the recently released OpenAI
o1-preview model succeeds, exemplifying how LLMs with advanced System 2
reasoning capabilities can expand access to justice.

1 Introduction
Access to legal solutions has become increasingly limited across the low, middle, and upper-middle
classes, with all facing significant barriers. More than 75% of litigants represent themselves [1],
with California alone reporting over 4.3 million self-represented litigants [2]. This trend is largely
attributed to the high cost of legal services and widespread distrust of attorneys, as indicated by
surveys conducted by the California judicial system [3]. Addressing these challenges requires the
development of reliable and transparent technological solutions to bridge the considerable gaps in the
legal system for consumers.

Recently, legal applications have garnered significant attention as a promising use case for LLMs.
Several scientific studies and business initiatives have highlighted both the potential and limitations
of LLMs in the legal domain [4]. Considerable progress is still required before these technologies
can deliver consistent and transparent solutions. While human lawyers can articulate the reasoning
behind their decisions and strategies, LLMs currently lack this capability to a sufficient degree.
[5, 6, 7, 8, 9, 10].

Before discussing which AI solutions might be appropriate for legal applications, it is crucial to first
consider whether law is inherently deterministic. While laws provide a structured framework that can
seem deterministic, the human element, interpretation, judgment, and discretion introduce a degree
of uncertainty, making the law not entirely deterministic in practice. In summary, the deterministic
aspects of law includes a) legal rules and statutes; and b) case precedents. The non-deterministic
aspects are a) judicial interpretation; b) human judgment; and c) equity and fairness.

Given the multifaceted nature of legal practices, we propose that a combination of probabilistic
and deterministic AI solutions is required to effectively address legal planning and reasoning. This
raises the next logical question: which AI algorithms and relational frameworks are most suitable for
developing reliable legal assistance? In the following sections of this article, we outline our current

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



approach to addressing these challenges, supported by an experiment that illustrate our findings in
the context of contracts. We will then discuss our broader strategy and the future directions we intend
to explore.

2 Our Current Approach
LLMs are great probabilistic solutions with rapid improvements in their capabilities. However,
given their inherent probabilistic nature, there is always a chance of hallucination and inconsistent
answers. On the other hand, we have logic programs with highly consistent responses and explainable
answers. But their main limitation lies in their inherent lack of flexibility and scalability for handling
certain complex tasks, especially in real-world applications as they struggle to model uncertainty,
probabilistic reasoning, or temporal dynamics.

To leverage the strengths of both LLMs and logic programming, we explore various hybrid approaches
that combine these two methodologies. In one such approach, LLMs are employed to automatically
generate logical representations of legal statutes or rules. Once these representations are constructed,
the specific details of a given case can be applied to this logic-based framework. This allows for
a structured reasoning process, where the law’s application to individual cases is derived through
formal logic, thereby enhancing the interpretability and precision of legal decision-making.

The integration of LLMs with logic programming (neuro-symbolic AI) is becoming increasingly
popular. AlphaGeometry [11] is a great example of the new horizons achievable by leveraging the
strengths of each method. In [12], the authors proposed a neuro-symbolic approach, leveraging LLMs
to generate logical representations of problems, with Prolog handling the deductive reasoning.

2.1 Limitations of Our Current Approach
In our current approach, we leverage LLMs to generate logical representations from legal texts.
LLMs offer a significant advantage in developing these representations at scale, enabling the efficient
processing of vast and complex legal corpora. However, the accuracy and quality of the logic
produced by LLMs remain a critical concern, as these models can misinterpret legal terms, omit
critical details, generate logical inconsistencies, or overgeneralize legal principles. Additionally,
LLMs may struggle with nuances, ambiguities, and the conditional or temporal relationships inherent
in legal texts, leading to potential errors. Moreover, potential biases in their original training data
can further compromise the validity of the generated logic. Therefore, it is essential to implement
robust mechanisms to prevent these types of errors and mitigate the potential negative impact of
LLMs. Ensuring the integrity of the generated logic is crucial for maintaining the reliability and
trustworthiness of our proposed approach.

Encouragingly, however, we have found that the quality of the logical representations generated by
LLMs is significantly improving as these models become more powerful and sophisticated. In the
Experiment section, we demonstrate the quality differences between two of the most recent OpenAI
models, GPT-4o and OpenAI o1-preview, specifically in generating Prolog representations of certain
legal contracts. Another important mechanism to ensure the accuracy of these logical representations
is incorporating human feedback. To achieve this, we propose having expert attorneys, familiar with
the specific legal domains, review the generated logic to validate and further enhance its quality.

3 Experiment - Hospital Cash Benefit Policy
In our experiments, we focus on legal contracts, particularly the challenges consumers face in under-
standing health insurance coverage. A June 2024 Stanford survey revealed that 83% of participants
used traditional methods to check their insurance policy, with 82% finding the process frustrat-
ing. Computational law experts highlight the importance of "computable contracts" [14] to reduce
confusion and help identify coverage gaps.

Computable Contracts: Ideally, insurance contracts would be represented as interpretable computer
programs (computable contracts), which could be easily audited by regulatory bodies and legal/domain
experts. These programs would allow consumers to check their coverage through a simple command
rather than poring over complex documents. Logic programming languages like Prolog, which exhibit
logical reasoning, offer both interpretability and automation.

However, manually encoding contracts into logic programs is time-consuming and not scalable. We
demonstrate how LLMs can assist in scaling this encoding process. Specifically, the recent OpenAI

2



o1-preview model, with advanced System 2 reasoning capabilities, significantly outperforms its
predecessor, GPT-4o, in encoding policies into logic programs. In essence, we show that advanced
System 2 reasoning in LLMs enables the creation of logic programs with similarly advanced reasoning
abilities.

Approach - We prompted both GPT-4o and OpenAI o1-preview (see Appendix A.2 for the prompt) to
translate a simplified version of the Chubb Hospital Cash Benefit insurance policy [15] (Appendix A.1)
into logical rules in Prolog. The prompt provided no hints or guidelines regarding code structure,
but provided a couple of baseline assumptions and clarified that the code should answer questions
about whether a given claim is covered under the policy. Note that all prompts to both GPT-4o and
OpenAI o1-preview in this paper were made with the default parameters for o1-preview (top_p = 1,
temperature = 1, n = 1, presence_penalty = 0, frequency_penalty = 0).

Graphical representations of the code output generated by each model are shown in Figure 1 and
Figure 2. Both models structured the code with a single root node, claim_covered, determining
whether a claim is covered.

The comparison between the two encodings focuses on the condition in Section 1.3, which requires
that no later than the 7th month anniversary of the policy’s effective date, written confirmation from
the medical provider regarding a wellness visit within 6 months must be supplied. Additionally, for
the policy to remain in effect, the condition in Section 1.3 must either be pending or satisfied in a
timely manner.

This means that, within 7 months of the policy start date, the insuree must provide confirmation of a
wellness visit made within the first 6 months. However, if 7 months have not yet passed, the condition
is considered “pending,” and the policy can remain active without confirmation of the wellness visit.

GPT-4o Policy Encoding Analysis - A cursory look at the leaves of GPT-4o’s encoding reveals its
lack of understanding of this condition, as there is simply no node checking for whether some action
is taken within 7 months (although there are conditions checking for each of 6 and 12 months).

claim_covered

AND

policy_in_effect

within_policy_term

valid_hospitalization_event

AND

AND

AND

cancellation

NOT

policy_conditions_met

OR

AND

agreement_signedpremium_paid OR

condition_pending_or_satisfied

wellness_visit_met

wellness_visit

OR

NOT

fraud_or_misrepresentation policy_term_expired

AND

date(Day, Month, Year)

OR

Month > 12ANDYear > 0

Month = 12Day > 0

AND

Month =< 6 Day =< 0

excluded_event

NOT

under_age_limit

skydiving military_service fire_fighter_servicepolice_serviceAge < 80

OR

Month < 12AND

Day < 1

Figure 1: Prolog translation of simplified Chubb pol-
icy generated by GPT-4o. Corresponding code in Ap-
pendix A.3.1

Taking a deeper look at the mechanisms by
which GPT-4o attempts to encode the wellness
visit condition, we see (tracing the graph) that
one of condition_pending_or_satisfied and well-
ness_visit_met are required for policy_in_effect.
Then, condition_pending_or_satisfied is satis-
fied exactly when wellness_visit is. This seems
to indicate that a wellness visit is required for
the condition to be satisfied OR pending, which
is odd since if the condition is still pending, then
the wellness visit should not be required. Fur-
thermore, wellness_visit_met can also be satis-
fied by wellness_visit OR if date (which presum-
ably refers to the date of the wellness visit) is at
most 6 months.

One should feel no shame in finding the above
confusing, as the delineated logic is not only
incorrect in several ways, but also muddled and
disorganized. The “pending” part of the condi-
tion is omitted from the encoding in all but name,
the wellness_visit node is redundantly used by
both condition_pending_or_satisfied and well-
ness_visit_met, and the semantic meanings of

some variables and nodes are murky at best. Even on this simplified version of a relatively simple
contract, GPT-4o’s encoding is a far cry from the interpretable and automated ideal of computable
contracts.

OpenAI o1-preview Policy Encoding Analysis - Even at first glance, the policy encoding generated
by OpenAI o1-preview looks much more organized than the one generated by GPT-4o.

3



Focusing again on how the model encodes the condition defined in Section 1.3, we first note that there
are three relevant temporal variables in this encoding: Time, VisitTime, and ConfirmTime. These
correspond with the time of hospitalization (i.e. when the claim is made), the time of the required
wellness visit, and the time at which confirmation of that visit was given to the insurer, respectively.
Then, tracing the graph, we see that Time < 213 or satisfied_condition_1_3 for policy_in_effect,
where this encoding seems to be measuring time in days.

claim_covered

AND

policy_in_effect excluded_reason

NOT

OR

AND OR HospitalizationReason = sickness HospitalizationReason = accidental_injury

Time >= 0 Time < 365 OR

Time < 213 satisfied_condition_1_3

AND

VisitTime >= 0 VisitTime =< 183 ConfirmTime >= VisitTime ConfirmTime =< 213

HospitalizationReason = skydiving HospitalizationReason = military_service HospitalizationReason = firefighting_service HospitalizationReason = police_service Age >= 80

Figure 2: Prolog translation of simplified Chubb policy generated
by OpenAI o1-preview. Corresponding code in Appendix A.3.2

Thus, either the time of hospitaliza-
tion is within the 7 month period in
which the condition defined in Sec-
tion 1.3 is considered pending, or that
condition must be satisfied. For the
condition to be satisfied, it is required
that 0 ≤ VisitTime ≤ 183 and Visit-
Time ≤ ConfirmTime ≤ 213. Thus,
the wellness visit must have occurred
within 6 months and the confirmation
given within 7.

The simple and organized manner in
which OpenAI o1-preview encodes
the above condition is a testament to
its advanced reasoning capabilities.

Empirical Comparison of Policy Encoding Correctness - While our graphical representations
indicate that o1-preview’s encoding of the contract is more interpretable than 4o’s, we also conducted
an empirical measurement to compare the models’ respective accuracies. We performed ten trials
comparing o1-preview’s and 4o’s encodings of the simplified Chubb insurance policy. In each trial,
both models generated their own policy encoding (Appendix A.3) from the prompt in Appendix A.2.
Then, both models were prompted (Appendix A.5) to translate nine natural language yes/no questions
(Appendix A.4) into Prolog queries (Appendix A.6) on their respective policy encodings. Using
SWISH [16], the policy code from each model was run on the query encodings generated for that
policy code, and the number of correct answers was recorded.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Mean
o1-preview 8 7 8 8 8 8 6 8 6 8 7.5 ± 0.23

4o 6 0 5 2 0 0 5 5 0 1 2.4 ± 0.81
Table 1: Scores of o1-preview and GPT-4o across trials and their means (Error bars calculated via calculator
represent 1-sigma sample standard error over trial-to-trial variability, assuming normal errors.).

On average, 4o answered 2.4 out of 9 queries correctly, while o1-preview averaged 7.5. In four of the
trials, 4o scored 0 (due to bad syntax in the policy encoding). Even when excluding these runs, 4o
averaged only 4 correct answers, 3.5 fewer than o1-preview. This demonstrates that o1-preview’s
queries on its policy encodings yielded much more accurate results than those of 4o.

4 Our Future Approaches
We are on the cusp of an exciting era where AI can make legal solutions more accessible by applying
human-like thinking, including planning and reasoning. In addition to our approach in this paper–
using LLMs to generate logical representations–we explore several other potential approaches.

One approach within the realm of LLMs and logic programming is to fine-tune language models
using logic-based explanations. In [9], the authors demonstrated how the "Self-Taught Reasoner
(STaR)" method enhances language model reasoning through rationale generation, which provides
step-by-step explanations, and rationalization, which corrects incorrect answers. This iterative process
improves reasoning capabilities without the need for large annotated datasets. Applying a similar
approach with logic generation could enhance the legal reasoning capabilities of language models

Our second proposal focuses on generating knowledge graph representations of legal systems, similar
to the mental models experienced attorneys develop. These models integrate local and federal laws,
case precedents, and relevant facts, as well as more nuanced factors. We propose using LLMs to
create local knowledge graphs that mirror these mental models. Each jurisdiction would have its own
tailored graph, which experts would review and refine, enabling more accurate legal decision-making.

4



Our third proposal suggests a dynamic programming approach to legal planning using LLMs and
logic-based representations of the law. Like experienced attorneys who continuously refine legal
strategies based on new information, this approach involves simulating scenarios, assessing risks, and
adjusting plans iteratively. We propose digitizing this process with LLMs, generating logic-based
representations of laws, statutes, and precedents [13]. Each decision will build on prior steps, allowing
for continuous refinement and optimization of legal strategies in a digital environment.

5



References
[1] Self-Represented Litigation Network. (2021) https://www.srln.org/node/21/about-srln#:~:

text=The%20Need,SRLs?%20(SRLN%202015).

[2] Statewide Action Plan for Serving Self-Represented Litigants. Judicial Council of California, https:
//www.courts.ca.gov/documents/selfreplitsrept.pdf

[3] Judicial Council of California. (2019), Handling Cases Involving Self-Represented Litigants,
https://www.courts.ca.gov/partners/documents/benchguide_self_rep_litigants.pdf.

[4] Dahl, M., Magesh, V., Suzgun, M., & Ho, D. (2024) Large Legal Fictions: Profiling Legal Hallucinations
in Large Language Models. https://arxiv.org/abs/2401.01301.

[5] Li, Z., Liu, H., Zhou D., & Ma, T. (2023) Chain of Thought Empowers Transformers to Solve Inherently
Serial Problems. https://arxiv.org/abs/2402.12875.

[6] Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong, E., Apidianaki, M., & Callison-Burch, C.
(2023) Faithful Chain-of-Thought Reasoning. https://arxiv.org/abs/2301.13379.

[7] Besta, M., Blach, N., Kubicek1, A., Gerstenberger, R., Podstawski, M., Gianinazzi, L., Gajda, J.,
Lehmann, T., Niewiadomski, H., Nyczyk, P., & Hoefler, T. (2024) Graph of Thoughts: Solving Elaborate
Problems with Large Language Models. The Thirty-Eighth AAAI Conference on Artificial Intelligence.

[8] Plaat, A., Wong, A., Verberne, S., Broekens, J., Stein, N., & Back, T. (2024) Reasoning with Large
Language Models, a Survey. https://arxiv.org/abs/2407.11511.

[9] Eric Zelikman, Yuhuai Wu, Jesse Mu, &Goodman, N. (2022). STaR: Bootstrapping Reasoning With
Reasoning. https://arxiv.org/abs/2203.14465.

[10] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., & Narasimhan, K. (2023) Tree of Thoughts:
Deliberate Problem Solving with Large Language Models. 37th Conference on Neural Information
Processing Systems (NeurIPS 2023).

[11] Google Deep Mind. (2024) https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-
system-for-geometry/

[12] Borazjanizadeh, N., & Piantadosi, S. T. (2024) Reliable Reasoning Beyond Natural Language.
https://arxiv.org/abs/2407.11373.

[13] Dagan G., Keller, F., &Lascarides, A. (2023) Dynamic Planning with a LLM.
https://arxiv.org/abs/2308.06391.

[14] Cummins, J., Clack, C. D. (2022). Transforming commercial contracts through com-
putable contracting. Journal of Strategic Contracting and Negotiation 6, 3 - 25.
https://journals.sagepub.com/doi/10.1177/20555636211072560

[15] CodeX Stanford Formation Demo. https://codexstanford.github.io/formation-demo/

[16] SWISH – SWI-Prolog for SHaring. https://swish.swi-prolog.org/

6

https://www.srln.org/node/21/about-srln#:~:text=The%20Need,SRLs?%20(SRLN%202015).
https://www.srln.org/node/21/about-srln#:~:text=The%20Need,SRLs?%20(SRLN%202015).
https://www.courts.ca.gov/documents/selfreplitsrept.pdf
https://www.courts.ca.gov/documents/selfreplitsrept.pdf


A Appendix / supplemental material

A.1 Simplified Chubb Hospital Cash Benefit Policy

Between:
CODEX INSURANCE LIMITED (“us”)
and
________________ (“You”)

This policy is provided on the following terms and conditions:

POLICY IN EFFECT AND CONDITIONS

1.1 The payment of any benefit under this policy is conditioned on the policy being in effect at the
time of the hospitalization for sickness or accidental injury on which the claim for such benefit is
premised. The policy will be in effect if:

(a) This agreement is signed,
(b) The applicable premium for the policy period has been paid, and
(c) The condition set out in Section 1.3 is still pending or has been satisfied in a timely fashion,

and
(d) The policy has not been canceled.

1.2 Cancelation will be deemed to have occurred if there is fraud, or any misrepresentation or
material withholding of any information provided by you to the Company in connection with any
communication or information relating to this policy, or if the condition set out in Section 1.3 has not
been satisfied in a timely fashion. It will also be automatically canceled at midnight, US Eastern time
then in effect, on the last day of the policy term described in Section 5 below.

1.3 No later than the 7th month anniversary of the effective date of this policy, you will supply us
with written confirmation from the medical provider in question of a wellness visit for yourself with
a qualified medical provider occurring no later than the 6th month anniversary of the effective date of
this policy.

GENERAL EXCLUSIONS

2.1 Your policy will not apply to, and no benefit will be paid with respect to, any event causing
sickness or accidental injury arising directly or indirectly out of:

1. Skydiving; or
2. Service in the military; or
3. Service as a fire fighter; or
4. Service in the police; or
5. If your age at the time of the hospitalization is equal to or greater than 80 years of age.

GENERAL CONDITIONS

3.1 Where does Your Policy apply?

3.1.1 Your Policy insures You twenty-four (24) hours a day anywhere in the world.

3.2 Arbitration

3.2.1 If any dispute or disagreement arises regarding any matter pertaining to or concerning this
Policy, the dispute or disagreement must be referred to arbitration in accordance with the provisions
of the Arbitration Act (Cap. 10) and any statutory modification or re-enactment thereof then in force,
such arbitration to be commenced within three (3) months from the day such parties are unable to
settle the dispute or difference. If You fail to commence arbitration in accordance with this clause, it
is agreed that any cause of action and any right to make a claim that You have or may have against Us
shall be extinguished completely. Where there is a dispute or disagreement, the issuance of a valid
arbitration award shall also be a condition precedent to our liability under this Policy. In no case shall

7



You seek to recover on this Policy before the expiration of sixty (60) days after written proof of claim
has been submitted to Us in accordance with the provisions of this Policy.

3.3 Laws of New York

3.3.1 Your Policy is governed by the laws of New York.

3.4 US Currency

3.4.1 All payments by You to Us and by Us to You or someone else under your policy must be in
United States currency.

3.5 Premium

3.5.1 The premium described in Section 5 below shall be paid in one lump sum at the signing of the
policy.

3.6 Policy Term The term of this policy will begin on the date accepted by Us as signified by our
signature of the policy (the effective date) and will last for a period of one year from that date, unless
previously canceled pursuant to Section 1 above.

A.2 Prompt for Generating Policy Encodings

- Given the insurance contract below, translate the document into valid Prolog rules so that I can run
a Prolog query on the code regarding whether or not some claim is covered under the policy and
receive the correct answer to the question.

- Please fully define all predicates and DO NOT define any facts, only rules that can be used to answer
queries on this insurance contract.

- Assume that all dates/times in any query to this code (apart from the claimant’s age) will be given
RELATIVE to the effective date of the policy (i.e. there will never be a need to calculate the time
elapsed between two dates). Take dates RELATIVE TO the effective date into account when writing
this encoding.

- Assume that the agreement has been signed and the premium has been paid (on time). There is no
need to encode rules or facts for these conditions.

- Return only Prolog code in your reply. No explanation is necessary.

- Ensure that:

1. The legal text is appropriately translated into correct Prolog rules.

2. The output does not redefine, misuse, or conflict with any built-in Prolog predicates.

3. If dynamic predicates are necessary, they are declared and managed correctly.

4. All predicates used in the generated Prolog code, including those referenced in the query,
are fully defined and error-free to prevent issues like "procedure does not exist."

5. Logical relationships, conditions, and dependencies in the text are faithfully represented in
the Prolog rules to ensure accurate query results.

- Insurance contract: {text_content}

A.3 LLM Policy Encodings

A.3.1 GPT-4o Policy Encoding

% Dynamic predicates to allow for updates if necessary
:- dynamic policy_in_effect /0.
:- dynamic cancellation /0.
:- dynamic wellness_visit /0.

% Policy will be in effect if it has not been canceled and all
conditions are met.

policy_in_effect :-
\+ cancellation ,

8



policy_conditions_met.

% Conditions for the policy to be in effect
policy_conditions_met :-

agreement_signed ,
premium_paid ,
(condition_pending_or_satisfied; wellness_visit_met).

% Policy cancellation conditions
cancellation :-

fraud_or_misrepresentation ,
!.

cancellation :-
\+ wellness_visit_met ,
!.

cancellation :-
policy_term_expired.

% Condition 1.3
condition_pending_or_satisfied :- wellness_visit.

% Policy term expiration check
policy_term_expired :-

date(Day , Month , Year),
(Month > 12; (Month = 12, Day > 0) ; Year > 0).

% Placeholder predicates to simulate conditions
agreement_signed.
premium_paid.
fraud_or_misrepresentation :- fail. % No fraud by default

% Wellness visit check
wellness_visit_met :-

date(Day , Month , _),
Month =< 6,
Day =< 0 ; % Assuming verification by certain day or prior month

with Day <= 0
wellness_visit.

% Check if a claim is covered
claim_covered(Accident , Hospitalization , Age) :-

policy_in_effect ,
within_policy_term ,
valid_hospitalization_event(Accident , Age).

% Validity check for hospitalization event
valid_hospitalization_event(Accident , Age) :-

\+ excluded_event(Accident),
under_age_limit(Age).

% Exclusions based on events
excluded_event(skydiving).
excluded_event(military_service).
excluded_event(fire_fighter_service).
excluded_event(police_service).

% Age check
under_age_limit(Age) :-

Age < 80.

% Check if within policy term
within_policy_term :-

date(Day , Month , _),
(Month < 12 ; (Month = 12, Day < 1)).

9



% Placeholder date predicate
date(0, 0, 0). % Assuming effective date being the 0th day of the 0th

month

% Queries can be structured as:
% ?- claim_covered(Accident , Hospitalization , Age).
% where Accident is one of [skydiving , military_service ,

fire_fighter_service , police_service , other],
% and Age is a valid integer representing the claimant ’s age.

A.3.2 OpenAI o1-preview Policy Encoding

policy_in_effect(Time , VisitTime , ConfirmTime) :-
Time >= 0,
Time < 365,
(Time < 213 ; satisfied_condition_1_3(VisitTime , ConfirmTime)).

satisfied_condition_1_3(VisitTime , ConfirmTime) :-
VisitTime >= 0,
VisitTime =< 183,
ConfirmTime >= VisitTime ,
ConfirmTime =< 213.

claim_covered(Time , VisitTime , ConfirmTime , HospitalizationReason , Age
) :-
policy_in_effect(Time , VisitTime , ConfirmTime),
(HospitalizationReason = sickness ; HospitalizationReason =

accidental_injury),
\+ excluded_reason(HospitalizationReason , Age).

excluded_reason(HospitalizationReason , Age) :-
HospitalizationReason = skydiving ;
HospitalizationReason = military_service ;
HospitalizationReason = firefighting_service ;
HospitalizationReason = police_service ;
Age >= 80.

A.4 Queries and Answers for Empirical Evaluation

All queries are preceded by the disclaimer: “Assuming all other conditions are met and no other
exclusions apply (where by ’other,’ I mean anything not referenced in the query that follows),. . . ”

Query: “will the claim be covered under the policy if I was hospitalized by burns suffered while
doing my duty as a firefighter?” Answer: “No.”

Query: “will the claim be covered under the policy if I am 78 years old at the time of hospitalization?”
Answer: “Yes.”

Query: “will the claim be covered under the policy if I was hospitalized for pneumonia 5 months
after the policy’s effective date, and my age at the time of hospitalization is 65?” Answer: “Yes.”

Query: “will the claim be covered under the policy if I was hospitalized due to a fall while traveling
abroad and I had given confirmation of my wellness visit 8 months after the policy’s effective date?”
Answer: “No.”

Query: “will the claim be covered under the policy if I was hospitalized for punching my own face
to show off for my friends and I did not commit fraud or misrepresentation?” Answer: “No.”

Query: “will the claim be covered under the policy if I was hospitalized due to an injury sustained
while skydiving, my age at the time of hospitalization was 79, and proof of my wellness visit was
provided 6.5 months after the policy’s effective date?” Answer: “No.”

10



Query: “will the claim be covered under the policy if I was hospitalized for a heart attack, proof of
the wellness visit was submitted 2 months after the policy’s effective date, and my age at the time of
hospitalization was 75?” Answer: “Yes.”

Query: “will the claim be covered under the policy if I was hospitalized after being injured in a
military training exercise, the hospitalization occurred within the policy term, and I did not commit
fraud?” Answer: “No.”

Query: “will the claim be covered under the policy if I was hospitalized due to my son biting me
in the ankle, proof of my wellness visit was provided 6 months after the effective date, and I was
serving as a police officer at the time of hospitalization?” Answer: “Yes.”

A.5 Prompt for Generating Query Encodings

- I have given below:

1. A question about whether or not the policy defined in a given insurance contract applies in a
particular situation

2. The text of the insurance contract

3. A Prolog encoding of the insurance contract

- Encode the question into a Prolog query such that it can be run on the Prolog encoding of the
insurance contract, returning the correct answer to the question.

- Assume that the agreement has been signed and the premium has been paid (on time). There is no
need to encode rules or facts for these conditions.

- Return only Prolog code in your reply. No explanation is necessary.

- Ensure that:

1. The output does not redefine, misuse, or conflict with any built-in Prolog predicates.

2. If dynamic predicates are necessary, they are declared and managed correctly.

3. All predicates used in the generated Prolog code, including those referenced in the query,
are fully defined and error-free to prevent issues like "procedure does not exist."

4. Logical relationships, conditions, and dependencies in the text are faithfully represented in
the Prolog rules to ensure accurate query results.

5. No absolute dates/times (apart from the claimant’s age) are encoded in your query. Only
include dates/times RELATIVE to the effective date of the policy (again, except for age).

6. Set any facts/rules/parameters in the code such that ALL conditions (for the policy to apply)
which are UNRELATED to the above query are satisfied.

7. Set any facts/rules/parameters in the code such that NO exclusions (which would prevent
the policy from applying) which are UNRELATED to the above query are satisfied.

- Question: {query}

- Insurance contract: {text_content}

- Insurance contract Prolog encoding: {policy_encoding}

A.6 LLM Query Encodings

A.6.1 GPT-4o Query Encodings

Query 1 Prolog:
?- claim_covered(fire_fighter_service , hospitalization , Age).

Query 2 Prolog:
?- claim_covered(other , hospitalization , 78).

11



Query 3 Prolog:
?- claim_covered(other , true , 65).

Query 4 Prolog:
% Updating the current conditions for the query
:- retractall(date(_, _, _)).
:- assert(date(0, 8, 0)). % 8 months after policy effective date

% Mark health visit as complete , despite late confirmation
:- retractall(wellness_visit).
:- assert(wellness_visit).

% Formatting the query based on the claim details
?- claim_covered(other , hospitalization , 40). % Fall during travel ,

hospitalized , age is 40

Query 5 Prolog:
% Define the incident with its characteristics
incident_details(punching_own_face , hospitalized , 25). % Example age ,

assuming it’s 25

% Prolog query to determine if the claim is covered
?- incident_details(Accident , Hospitalization , Age),

claim_covered(Accident , Hospitalization , Age).

Query 6 Prolog:
% Set up the situation to reflect the claim question
date(7, 0, 0). % Assume the date for checking purposes

% Query to check if the claim is covered
?- claim_covered(skydiving , true , 79).

Query 7 Prolog:
% Prolog query for the given scenario
?- assert(date(0, 2, 0)), % Setting date to 2 months after policy

effective date
claim_covered(other , heart_attack , 75).

Query 8 Prolog:
?- claim_covered(military_service , Hospitalization , Age).

Query 9 Prolog:
?- claim_covered(other , hospitalization , 30).

A.6.2 OpenAI o1-preview Query Encodings

Query 1 Prolog:
policy_in_effect(Time , VisitTime , ConfirmTime) :-

Time >= 0,
Time < 365,
(Time < 213 ; satisfied_condition_1_3(VisitTime , ConfirmTime)).

satisfied_condition_1_3(VisitTime , ConfirmTime) :-
VisitTime >= 0,
VisitTime =< 183,
ConfirmTime >= VisitTime ,
ConfirmTime =< 213.

excluded_reason(Cause , Age) :-
Cause = skydiving ;
Cause = military_service ;
Cause = firefighting_service ;
Cause = police_service ;

12



Age >= 80.

claim_covered(Time , VisitTime , ConfirmTime , HospitalizationReason ,
Cause , Age) :-
policy_in_effect(Time , VisitTime , ConfirmTime),
(HospitalizationReason = sickness ; HospitalizationReason =

accidental_injury),
\+ excluded_reason(Cause , Age).

?- claim_covered (100, 150, 160, accidental_injury ,
firefighting_service , 40).

Query 2 Prolog:
claim_covered (200, 150, 160, sickness , 78).

Query 3 Prolog:
?- claim_covered (150, 0, 0, sickness , 65).

Query 4 Prolog:
claim_covered (240, 180, 244, accidental_injury , 30).

Query 5 Prolog:
?- claim_covered (100, 0, 0, intentional_injury , 30).

Query 6 Prolog:
?- claim_covered (200, 180, 198, skydiving , 79).

Query 7 Prolog:
?- claim_covered (100, 30, 60, sickness , 75).

Query 8 Prolog:
?- claim_covered (100, 0, 0, military_service , 40).

Query 9 Prolog:
?- claim_covered (200, 180, 183, accidental_injury , 40).

13


	Introduction
	Our Current Approach
	 Limitations of Our Current Approach

	Experiment - Hospital Cash Benefit Policy
	Our Future Approaches
	Appendix / supplemental material
	Simplified Chubb Hospital Cash Benefit Policy
	Prompt for Generating Policy Encodings
	LLM Policy Encodings
	GPT-4o Policy Encoding
	OpenAI o1-preview Policy Encoding

	Queries and Answers for Empirical Evaluation
	Prompt for Generating Query Encodings
	LLM Query Encodings
	GPT-4o Query Encodings
	OpenAI o1-preview Query Encodings



