Under review as a conference paper at ICLR 2026

CLUE: CONFLICT-GUIDED LOCALIZATION FOR LLLM
UNLEARNING FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The LLM unlearning aims to eliminate the influence of undesirable data without
affecting causally unrelated information. This process typically involves using
a forget set to remove target information, alongside a retain set to maintain
non-target capabilities. While recent localization-based methods demonstrate
promise in identifying important nodes (neurons) to be unlearned, they fail to
disentangle nodes responsible for forgetting undesirable knowledge or retaining
essential skills, often treating them as a single entangled group. As a result,
these methods apply uniform interventions, risking catastrophic over-forgetting
or incomplete erasure of the target knowledge. To address this, we turn to circuit
discovery, a mechanistic interpretability technique, and propose the Conflict-guided
Localization for LLM Unlearning framEwork (CLUE). This framework identifies
the forget and retain circuit composed of important nodes, and then the circuits
are transformed into conjunctive normal forms (CNF). The assignment of each
node in the CNF satisfiability solution reveals whether it should be forgotten or
retained. We then provide targeted fine-tuning strategies for different categories of
nodes. Extensive experiments demonstrate that, compared to existing localization
methods, CLUE achieves superior forget efficacy and retain utility through precise
neural localization. Our code is available at https://anonymous.4open.
science/r/CLUEL

1 INTRODUCTION

Large language model (LLM) unlearning (Liu et al., 2025; |Yao et al., 2024), as a machine learning
method inherited from model unlearning (Cao & Yang] 2015} [Neel et al.|[2021)), aims to have the
LLM avoid or remove certain target information while preserving its other non-target capabilities
as much as possible. Formally, the framework of LLM unlearning typically involves two datasets:
the forget set and the retain set. The optimization objective is to avoid the original responses to the
forget set (which are typically harmful or sensitive) and retain the existing responses to the retain set.

Many categories of methods currently exist for LLM un-

learning (Zhang et al) [2024; Jia et al.l 2023} |Liu et al.| Exstng |oca|£;]non Ou”m%) "
2024). Among these, localization-informed unlearn- 0 OO

ing offers better interpretability by localizing key nodes OO0 o

(neurons or parameters. This also allows for better main-

tenance and targeted updates to these parameters, which) =
aligns well with future modular machine learning devel- irrelevant nodes o (] retain nodes
opments (Menik & Ramaswamy}, 2023)). Recently, various [important nodes <‘> () forgetnodes

localization-informed methods have emerged, including) conflictnodes
those based on gradients (Wu et al, 2023} |Yu et al., 2023),) o
weight attribution (Jia et al., [2024), and causal effect es- Flgure 1A ﬁqe-gralneq egploratlon mn-
timation (Patil et al., 2023} Meng et al.,[2022). spired by existing localization methods.

However, existing localization methods can only identify an entangled set of “important” nodes
resulting from the joint optimization on the forget and retain sets. They cannot pinpoint the specific

'In this paper, the terms “node” and “neuron” represent almost the same concept. They are all used to
represent some kind of trainable parameter matrix in the model (see Sec[2.2]for details). For consistency, and
without loss of generality, we use “nodes” by default.

https://anonymous.4open.science/r/CLUE
https://anonymous.4open.science/r/CLUE

Under review as a conference paper at ICLR 2026

subset of nodes responsible for forgetting, retaining, or a combination of both. As depicted in
Figure|l] these important nodes can be intuitively subdivided into three categories: retain nodes,
which influence only the retain set; forget nodes, which influence only the forget set; and conflict
nodes, which influence both the forget and retain sets.

Clearly separating these three types of nodes is essential for improving unlearning’s forget efficacy
and retain utility. For instance, suppose the forget set contains harmful information, whereas the
retain set includes sentiment recognition samples. A coarse-grained intervention on all “important
nodes” might unintentionally compromise the model’s sentiment recognition capability when re-
moving the harmful information. By disentangling the retain nodes from the “important nodes”, the
sentiment recognition capability is better preserved. However, disentangling these node types from
the coarser set of important nodes is highly challenging. For example, in gradient-based methods, the
gradient from the joint optimization of the forget loss and retain loss is not equivalent to the linear
combination of the gradients from optimizing each loss separately. Therefore, the identified nodes
reflect intertwined signals and cannot distinctly represent forgetting or retaining.

To address this problem, we resort to circuit discovery (Conmy et al.|[2023; |Bhaskar et al.| 2024)), a
mechanistic interpretability method that identifies the important nodes and their activation relation-
ships for a target task or dataset, representing them in a graph-structured circuit. This method enables
explicit tracking of information flows between nodes, allowing us to isolate functional substructures.
Recent circuit discovery techniques (Chen et al., 2025; [Heimersheim & Nandal [2024)) are also capable
of uncovering the logical relationships within a circuit; for example, some subcircuits resemble digital
logic gates like an AND gate, while others are similar to an OR gate. This is particularly appealing in
our setting, since forgetting and retaining are inherently compositional operations: for instance, a
capability could only be preserved if multiple nodes are unchanged (similar to an AND gate), while
another capability might be forgotten when just one of a group of nodes is edited (similar to an OR
gate).

Building on this, we propose the Conflict-guided Localization for LLM Unlearning framEwork
(CLUE), which can distinguish the node categories conceptualized in Figure (1| through the Boolean
satisfiability of circuits. Specifically, CLUE first extracts circuits from the forget set and retain set,
respectively. These circuits are then converted into Conjunctive Normal Form (CNF) using Tseitin’s
transformation (Tseitin, |[1983). A CNF is constructed whose logic ensures that the forget circuit is
modified while the retain circuit is preserved. By solving this CNF as a satisfiability problem (Fleury
& Heisinger,2020), we can determine which nodes belong to the retain node, forget node, and conflict
node categories based on the values of each node in the optimal solution. Finally, we also provide a
fine-tuning paradigm that provides supervision for the forget nodes using the forget loss and for the
conflict nodes using both the forget and retain loss.

CLUE allows for the editing of different node categories based on distinct optimization objectives.
This more fine-grained and precise localization enhances the effectiveness of unlearning. To demon-
strate this, we conducted extensive experiments on three mainstream unlearning datasets: WMDP
Cyber, WMDP Bio, and PKU SafeRLHF. The results not only show that our method significantly
improves forget efficacy and retain utility with fewer modified parameters, but also reveal a more
detailed correlation between the unlearning effect and the underlying circuits and nodes. In summary,
our contributions are threefold:

* We propose conflict-based localization, which identifies more fine-grained node categories
by solving the CNF satisfiability of the forget circuit and the retain circuit.

* We introduce CLUE, an effective framework for LLM unlearning that explicitly leverages
different node categories to achieve more precise unlearning.

* We demonstrate through extensive experiments that CLUE surpasses current localization
methods across multiple dimensions and offers more comprehensive interpretability.

2 PRELIMINARIES

2.1 LLM UNLEARNING

In light of the existing literature on LLM unlearning (Li et al., 2024; Maini et al.| |2024} Ishibashi
& Shimodaira, [2023} [Yao et al.| 2024} Pawelczyk et al., [2024), we define the problem of LLM

Under review as a conference paper at ICLR 2026

unlearning as eliminating the influence of specific “unlearning targets” and removing associated
model capabilities while preserving model performance for non-targets. To facilitate comprehension,
we provide a commonly-used formulation of LLM unlearning problems below.

min By)ep, [L(yslz; 0)] + AE(o pyep, [L(y|x; 0)] 1)

where A > 0 represents the regularization parameter, £(y|x; #) denotes the prediction loss of using
6 given the input x w.r.t. response y, Dy and D,, refer to forget set and retain set. y¢ denotes the
desired model response post-unlearning. The retain set represents the non-target. It indicates that,
during LLM unlearning, the objective is to maintain the utility of the retain set, while simultaneously
ensuring that the model avoids generating the undesired responses associated with the forget set.

2.2 CIRCUIT DISCOVERY AND LOGICAL CIRCUIT

In Transformer decoder-based language models, the forward pass is typically conceptualized as a
computational graph G, where the nodes represent neurons, such as output, MLPs, and query, key,
and value matrices in each head and an edge + — j denotes a connection where the activation of node
1 serves as input to node j. Circuit discovery seeks to identify a subgraph (circuit) C C G for a target
dataset that captures the task-relevant behavior (or mechanism/capability) of this dataset (Elhage
et al.| 20215 |/Conmy et al., 2023} |Rai et al.||2024)), with the following objective:

arg min B, e7[D(pg (y]2)llpe(yl2))], s.t.1-Cl/|G] = s @

where s denotes the requirement of sparsity, 7 represents the target dataset, and D represent the
distance to quantify the difference between the two outputs from G and C. Circuit discovery aims
to retain the minimal C while faithfully reflecting the model’s capability in processing the 7. The
nodes and edges within this circuit are regarded as those exerting the most critical influence on the
T. [Revised: We define the scope of nodes to include: ¢, k, v, 0, M LP,,,, and M L Py, treating
them as the smallest independent units that influence the outcome. Given that the adopted baseline
model is the Zephyr-7B-beta model, we additionally include M LP,,.. Consequently, the entire
computation graph, excluding inputs and outputs, consists of 32 layers, with each layer containing 7
nodes, and each node corresponds to a learnable parameter matrix. The circuit analysis examines the
activation relationships between these nodes. |

Increasing research has demonstrated the existence of various logical structures within circuits.
Heimersheim & Nandal (2024) identified the AND and OR gates in circuits. Considering an AND
gate with node B as output and nodes A1, A, as input, B is activated only when both A; and A,
are activated simultaneously. Conversely, if B, A;, A construct an OR gate, i.e., B = A; or A,
then B is activated as long as at least one of A; or A, is activated. Similar OR gates have also been
observed in (Conmy et al.|(2023) and Wang et al.|(2023). Furthermore, (Chen et al.| (2025) refined the
classification of logical structures, proposing three distinct types: AND, OR, and ADDEREl

3 CONFLICT-GUIDED LOCALIZATION

In this section, we provide a three-step framework of how circuit discovery ultimately enables precise
localization. An overview of our localization procedure is shown in Figure[2] Specifically,

* Step 1 (Section[3.1)). Using the circuit discovery algorithm, we separately capture the forget
circuit and the retain circuit, corresponding to the forget set and the retain set, respectively.
The transformation from model to circuit reveals the nodes and activation connections that
are most critical for the responses to the forget and the retain set.

* Step 2 (Section[3.2). We then transform the forget circuit and the retain circuit into CNF.
The forget CNF ensures satisfiability from the perspective of forgetting, while the retain
CNF ensures satisfiability from the perspective of retaining. These two CNFs provide a
logical basis for assigning nodes to forget nodes, retain nodes, and conflict nodes.

>The ADDER gate, unlike binary gates such as AND and OR, represents a process where the output’s effect
is an accumulation of all input effects (we explain it in Appendix EI) In this work, to define the CNF, we simplify
the ADDER gate in the forget circuit to an OR gate, and the ADDER gate in the retain circuit to an AND gate.
In Appendix we prove that such simplifications do not affect the unlearning functionality of the circuit.

Under review as a conference paper at ICLR 2026

input
- '{TWN&VN“J' (7Nat v 7Naz VN) Safe nodes (value=True)
Forget set :> Nt Nee Nos :> A(7Naz2VNaz V7 Nag) Na3, Nag =
Ne N © -
output” Forget nodes (value=False)
input Nb2, Np3==*
Nt Mo N Nar R Na3ANas A Nos . :
Retain set :> - i,N%(= :> A(Nb1 " Nbs) ANpsANGs Conflict nodes (no valid value)
Nfz Nes - LAY Naa, Neo=**
output
Dataset Logical Circuit CNF Localization

Figure 2: Overview from datasets to localization.

* Step 3 (Section[3.3). Finally, we jointly solve the forget and retain CNF to determine the
assignment of each node. nodes with value = 1 influence only the retain set, whereas nodes
with value = 0 influence only the forget set. nodes without a valid assignment (i.e., those
that produce conflicts) indicate shared influence on both the forget and retain sets.

3.1 LogGICcAL CIRCUIT DISCOVERY

We utilize the Edge-Pruning (Bhaskar et al,[2024) to build an initiative circuit and logical circuit
framework (Chen et al., [2025) to further determine the logical property (AND, OR gates) of edges.

From each dataset, we extract a circuit using

Eq.[2} denoted as C, which attempts to recon- Forget set Retain set
struct the funCtionality Of the Computational Noising-based Denoising-based Noising-based Denoising-based
graph g [ReVised: Speciﬁcally, as Shown in intervention intervention intervention intervention
Figure [3] for the forget set, two distinct basic

cirpgits, Cns gnd C Dn, are first ol?t'flined via CN s CDn CNs CDn
noising-based intervention and denoising-based

intervention, respectively. Then, based on the in-

teraction between C ¢ and Cp,,, all edges within AND OR AND OR

them are classified as either AND or OR types, C c

which are subsequently combined to form a log- f r

ical circuit, designated as the forget circuit (Cy) - Figure 3: The processing from datasets to logical
which contains all nodes and activation connec- ¢jreuits.

tions required for the model to produce original responses that are harmful. The same methodology
is applied to the retain set to derive the retain circuit (C;) which contains all nodes and activation
connections necessary for the model to generate the original responses corresponding to the retain set.
We elaborate on the detailed process of logical circuits in Appendix [C}]

3.2 CIrcuIlTts To CNF

We convert the circuit into conjunctive normal form (CNF) in order to analyze the specific states of
individual nodes during the unlearning task. Specifically, we apply the Tseytin transformation to
convert AND and OR gates into CNF sub-expressions:

{clauses =(-AV-BVC)A(AV-C)A(BV-C)(if C=AAND B)

clauses = (AV BV -C)A (mAVC)A (-BVC) (if C = AOR B))

The above CNF conversion transforms Cr and C, derived in Section@ into the forget CNF ®; and
the retain CNF ®,. Both ®; and ®, are composed of a variable set that includes nodes (acting as A,
B, or C in Eq[3) and an output (output; for & and output, for ®;), in which all variables possess a
binary value. We define the state = 1 (True) as retaining, meaning that these nodes and circuits are
expected to persist in the post-unlearning model. We define state = 0 (False) as forgetting, meaning
that these nodes are expected to forget certain knowledge, and the corresponding circuit is expected
not to persist in the post-unlearning model. The final CNF representation is given by

O = P A P, A (—outputy) A (output,) 4

Under review as a conference paper at ICLR 2026

CNF @ expects the output of Cs (i.e., output,) to be 0 ((False)), indicating that the functionality of Cy
is removed in the post-unlearning model, and it expects the output of C; (i.e., output,) to be 1 ((True)),
indicating that the functionality of the C; is retained in the post-unlearning model.

3.3 LOCALIZATION VIA CNF SOLUTION

Nodes with the same name must have identical states (1 or 0) in both ®¢ and ®, because they reflect
whether this node should be retained or edited for unlearning. Hence, we directly solve Eq.[]as a
satisfiability problem to determine the specific state of each node.

Specifically, when @ is satisfiable, all nodes with a state of 1 (True) indicate that they are in a
preserved state, so their retention will not affect the removal of the forget circuit or destroy the retain
circuit. They are unlikely to exclusively contain (or even not contain) the information to be forgotten
or they have a significant causal effect on the retain circuit. Consequently, we refer to them as “retain
nodes”. In contrast, all nodes with a state of O (False) represent nodes that must be removed to ensure
the forget circuit is eliminated and the retain circuit remains intact. As a result, they are likely to
exclusively or necessarily contain the information to be forgotten, or they do not make a critical
contribution to the retain circuit; hence, we call them “forget nodes”. However, if ® is found to be
unsatisfiable, besides retain nodes and forget nodes, there will be conflict nodes. These are nodes
that do not have a consistent value across each clause in Eq.[] Regardless of whether these nodes
have a value of 0 or 1, they cannot simultaneously satisfy the conditions of removing the forget circuit
and preserving the retain circuit. Such nodes indicate that both contain necessary information to be
forgotten and have an important causal effect on the retain set’s response (We show the case analysis
of satisfiable or unsatisfiable situation in Appendix [D).

To address that, we utilize a conflict-driven clause learning SAT solver, as proposed inZhu et al.
(2025); [Fleury & Heisinger| (2020), to determine the satisfiability of ®. Additionally, this solver is
used to find the values of all nodes under the condition of a minimum number of, or no, conflict
nodes. Finally, all nodes of models can be divided into one of the following types:

Safe nodes: These include retain nodes (state=1) and nodes that do not appear in ®. Safe nodes are
irrelevant to forget set, and do not require any editing.

Forget nodes: These are nodes with a value of 0 (False) in . Forget nodes do not impact the
response of the retain set and merely have harmful information which needs to be removed to enhance
the forgetting efficacy.

Conflict nodes: These are nodes for which no valid assignment exists that satisfies ¢. On one hand,
conflict nodes must be modified to remove harmful information; on the other hand, modifying these
nodes can lead to a decrease in the retain set’s performance.

4 UNLEARNING VIA CONFLICT-GUIDED LOCALIZATION

Based on the forget and conflict nodes obtained from localization, we adopt a two-stage fine-tuning
approach for unlearning. First, we generate a forget mask (M) and conflict mask (M) with a
parameter scale equal to the language modeﬂ In M, all elements corresponding to the forget node
are set to 1, while all others are set to 0. Similarly, in M, all elements corresponding to the conflict
node are set to 1, while all others are set to 0.

In the first stage, we begin by fine-tuning the forget nodes. Since forget nodes do not significantly
influence the response of the retain set, we only use the forget loss to constrain the fine-tuning. Thus,
the unlearning problem in this stage is defined as:

min B,)en, [L(yslz; Ms© 0+ (1 — My) © 6,)] 5)

where 6 represents the parameters of forget nodes and 6, represents parameters of other nodes.

3Taking the Zephyr-7B-beta model as an example, each layer contains seven parameter matrices: g, k, v, o,
MLPyute, MLP,p, and M LP4o.n. There are 32 layers in total, so there are 224 parameter matrices in the
mask. The size of each parameter matrix is determined by the actual dimensions of the Zephyr-7B-beta model,
such as the ¢ matrix, which has dimensions [4096 x 4096].

Under review as a conference paper at ICLR 2026

In the second stage, we further fine-tune the conflict nodes. Conflict nodes have a significant causal
effect on the responses of both the forget set and the retain set, so fine-tuning requires constraints
from both the forget and retain loss. Therefore, the unlearning problem is formulated as:

minE e, [L(ysl; Mr©0e+ (1= Mp) ©00)|+ ALz e, [L(yla; MO be+ (1= M) ©)]

(6)
where 0, represents the parameters of forget nodes. The retain loss £(y|z; Ms® 0. + (1 — M¢) ©6,)
typically mirrors the training loss over the retain set. However, for the forget loss, there are various
types of implementations, such as GA (Liu et al.| 2022), NPO (Zhang et al.,|2024)), and PO (Maini1
et al.| 2024). In this paper, we adopt PO for main results and show the ablation study about GA and
NPO.

5 EXPERIMENT SETUPS

5.1 UNLEARNING TASKS, DATASETS, MODELS, AND BASELINES

We conduct experiments on three LLM unlearning taskﬂ where each task is assigned four retain
datasets. These three tasks are: WMDP Cyber (Li et al., 2024)), which focuses on malicious use
prevention of LLMs in developing cyberattacks; WMDP Bio (L1 et al., 2024), which assesses the
capability to prevent the hazardous knowledge in biosecurity; PKU-SafeRLHF (Ji et al.| [2023)),
which aims to prevent the toxic content in response to inappropriate prompts from SafeRLHF. For the
retain set, to better observe specific circuits, we selected four datasets with distinct tasks/capabilities
rather than original general corpus: Winogrande (ai2},2019), which involves the task to infer the
correct referent of a pronoun from semantics; SST-2 (Socher et al., 2013)), which includes the task
of inferring sentiment categories from a given text; RTE (Recognizing Textual Entailment) (Dagan
et al.| [2022), which involves a model determining the entailment relationship between two texts; and
Bool (Suzgun et al.||2023)), which includes the task of performing logical operations. Model-wise,
we follow existing practices and use the Zephyr-7B-beta model (Tunstall et al., [2024)) for WMDP
Cyber and WMDP Bio, and LLaMA2-7B (Touvron et al.,|2023)) for PKU-SafeRLHF.

CLUE is a framework that performs both localization and fine-tuning, so we select two categories of
baselines for comparison. The first category includes localization methods for LLM unlearning, such
as WAGLE (Jia et al., [2024), DEPN (Wu et al.,2023), MEMIT (Patil et al,2023), and PCGU (Yu
et al.,[2023)). The second category comprises fine-tuning methods for LLM unlearning, including
GA (Yao et al.} 2024), NPO (Zhang et al., [2024)), and PO (Maini et al., 2024) (Further details ain

Appendix [E).
5.2 TRAINING AND EVALUATION SETUP

To obtain LLMs post-unlearning, we adopt PO as forget loss which performs better than GA and
NPO (Jia et al.,[2024). All fine-tuning processes are conducted over 6 epochs, with 1 epoch for forget
nodes and the rest 5 epochs for conflict nodes. The learning rate is grid-searched at 1 x 10~° for
each dataset. The parameter A = 1, and we adopted AdamW (Loshchilov & Hutter} [2017) as the
optimizer. All experiments were conducted on 16 NVIDIA RTX A100 GPUs.

We evaluate the performance of unlearned LLMs from forgetting efficacy and retaining utility.
Forgetting efficacy adopts accuracy of LLMs post-unlearning on the forget set as the main metric.
For aligned tendency, we use 1-accuracy to measure forgetting efficacy. Thus, a higher 1-accuracy
indicates better unlearning. Moreover, we also provide the efficacy results about other prevalent
metrics, such as Membership inference attack (MIA) and Rouge-L, with detailed results shown
in Appendix [G] Next, we measure retaining utility with accuracy in both retain set and other
non-target tasks. Specifically, for each retain dataset (one of Winogrande, SST-2, RTE, and
Bool), we first measure the accuracy on its corresponding test set (retain utility). Subsequently,
we measure the average accuracy on a series of unrelated tasks (general utility). These unrelated
tasks were evaluated using the Language Model Evaluation Harness toolkit (Gao et al., [2021) and

“We do not evaluate on the TOFU (Maini et al.,|2024) and Who’s Harry Potter (Eldan & Russinovich} 2023))
datasets. This is because these datasets require a self-fine-tuned model as the baseline, and such fine-tuning
affects the circuits of non-target tasks, which leads to a lack of credibility in the results.

Under review as a conference paper at ICLR 2026

include: ARC-Challenge (Chollet, 2019), ARC-Easy (Chollet, 2019), BoolQ (Clark et al.,|2019),
HellaSwag (Zellers et al.,|2019), OpenBookQA (Mihaylov et al.,[2018)), Piga (Bisk et al., [2020)),
and TruthfulQA (Lin et al.l 2021). Details about evaluation datasets are shown in Appendix [E]

6 EXPERIMENT RESULTS

6.1 CAN CLUE IMPROVE LLM UNLEARNING THROUGH LOCALIZATION?

Table 1: Performance overview of LLM unlearning. “Unlearned Parameter” refers to the percentage
of parameters modified, calculated by averaging the percentage of changes in each parameter matrix.
“FE” (Forget efficacy) is measured as 1-accuracy and “RU” (Retain utility) is measured as accuracy
on the test set of the retain set. “GU” (General utility) is average accuracy on a series of non-target
tasks, and specific results can be found in Appendix [F

Retain Set

Method | Unlearned Winogrande SST-2 RTE Bool

Parameter | FET RUT GUT [FET RUT GUf | FET RUT GUf [FET RUT GUT

WMDP Cyber

Origin - 0445 0.729 0.624 | 0445 0.727 0.624 | 0445 0.703 0.624 | 0445 0.555 0.624
GA 100% 0.658 0.254 0.332 | 0.665 0.151 0.312 | 0.647 0.067 0.367 | 0.652 0.124 0.325
NPO 100% 0.663 0.342 0.329 | 0.654 0247 0.336 | 0.697 0.264 0.339 | 0.654 0.237 0.365
PO 100% 0.685 0.567 0.368 | 0.672 0.632 0.352 | 0.685 0.471 0.374 | 0.682 0.317 0.384

MEMIT | 76.27% 0.669 0.662 0.384 | 0.673 0.567 0.359 | 0.675 0.524 0.386 | 0.690 0.335 0.386
PCGU 86.77% 0.672 0.654 0.382 | 0.672 0.692 0.362 | 0.669 0.546 0.375 | 0.695 0.314 0.376
DEPN 78.82% 0.695 0.817 0431 | 0.702 0.731 0.379 | 0.712 0457 0.416 | 0.715 0.429 0.396
WAGLE | 90.01% 0.702 0.86 0442 | 0.708 0.771 0.384 | 0.685 0.498 0413 | 0.721 0.434 0.387
CLUE 58.16% 0.697 0992 0.458 | 0.733 091 0.388 | 0.744 0.786 0.436 | 0.724 0.505 0.434

WMDP Bio
Origin - 0355 0.729 0.624 | 0.355 0.727 0.624 | 0.355 0.703 0.624 | 0.355 0.555 0.624
GA 100% 0.564 0.064 0.375 | 0.675 0.124 0.379 | 0.564 0.125 0.385 | 0.568 0.214 0.354
NPO 100% 0571 0.241 0.372 | 0.671 0234 0.385 | 0.574 0.269 0.374 | 0.572 0.315 0.384
PO 100% 0.605 0.421 0.385 | 0.685 0446 0.382 | 0.589 0.321 0.385 | 0.585 0.385 0.381

MEMIT | 74.29% 0.591 0.672 0.429 | 0.695 0.619 0.399 | 0.547 0.395 0.421 | 0.605 0.421 0.395
PCGU 85.12% 0.601 0.662 0.415 | 0.684 0.627 0.402 | 0.539 0402 0419 | 0.596 0.413 0.396
DEPN 77.24% 0.605 0.739 0.469 | 0.701 0.761 0.424 | 0.546 0443 0471 | 0.599 0.429 0.441
WAGLE | 90.02% 0.599 0.885 0.480 | 0.698 0.785 0.426 | 0.549 0466 0472 | 0.601 0.412 0.441
CLUE 56.19% 0.617 0995 0.499 | 0.713 0.893 0.457 | 0.586 0.528 0.491 | 0.612 0.501 0.456

origin - 0294 0.841 0.664 | 0.294 0.764 0.664 | 0.294 0.795 0.664 | 0294 0.514 0.664
GA 100% 0.615 0.124 0.394 | 0.605 0.095 0.385 | 0.625 0.147 0.360 | 0.601 0.054 0.385
NPO 100% 0.605 0.195 0.385 | 0.612 0.154 0.395 | 0.614 0.196 0.327 | 0.616 0.214 0.396
PO 100% 0.625 0361 0.395 | 0.623 0.225 0.396 | 0.623 0.314 0395 | 0.625 0.387 0.402

MEMIT | 77.62% 0.645 0.545 0402 | 0.649 0395 0402 | 0.625 0436 0.409 | 0.647 0359 0412
PCGU 86.29% 0.639 0.625 0.400 | 0.633 0.399 0.404 | 0.639 0.397 0417 | 0.639 0.402 0.406
DEPN 74.36% 0.661 0.794 0412 | 0.657 0.741 0429 | 0.634 0421 0415 | 0.642 0422 0429
WAGLE | 90.01% 0.655 0.751 0.429 | 0.663 0.761 0.434 | 0.641 0496 0421 | 0.635 0.422 0411
CLUE 54.88% 0.724 0956 0.462 | 0.681 0.883 0.455 | 0.656 0.682 0.429 | 0.659 0.536 0.438

To investigate the performance of CLUE compared to existing methods, we test the performance of
existing methods and CLUE on four different retain sets across the WMDP Cyber, WMDP Bio, and
PKU-SafeRLHF datasets. Table[I|reports the results of these performances. All experiments were
repeated five times, and the standard deviation was omitted as it was consistently less than 0.01.

It is clear that localization-based methods (MEMIT, PCGU, DEPN, WAGLE, CLUE) significantly
outperform finetuning-based methods (GA, NPO, PO) in terms of both retain utility and general
utility. We attribute this to the fact that localization can, to some extent, filter out important nodes,
thereby preventing the capabilities for non-target tasks from being affected. Furthermore, CLUE
generally outperforms existing methods in forget efficacy, retain and general utility. The advantage
in forget efficacy and utility comes from our more precise localization of forget nodes and conflict
nodes, which prevents a large number of irrelevant nodes from being fine-tuned.

To further validate the roles of the forget mask (M) and the conflict mask (M), we conduct ablation
studies on the WMDP Cyber dataset using CLUE. We choose SST-2 as the retain set. The specific
ablation measures are: “-M;”: The fine-tuning process for the forget mask is removed, and only the
conflict mask is used for fine-tuning. “-M.”: The conflict mask is replaced with a full-true mask

Under review as a conference paper at ICLR 2026

—&— CLUE+Multiple tasks

WAGLE+MMLU: 06959
CLUE+MMLU: 0.7153 o085 06
N 5 os)
- H °

045
—&— CLUE+Multiple tasks 045
WAGLE+MMLU: 0.5530
04 CLUE+MMLU: 05516

068 04
o 1 2 3 4 5 6 7 8 9 10 11 o 1 2 3 4 5 6 7 8 9 10 1 o 1 2 3 4 5 6 7 8 9 10 11

retain task # retain task # retain task

(a) Forget Efficacy (b) Utility of MMLU (c) General Utility

o o o

forget efficacy
s o o
mmlu utility
general utility

°

—&— CLUE+Multiple tasks
WAGLE+MMLU: 0.6053
CLUE+MMLU: 06122

°

Figure 4: Performance of CLUE when retain set is MMLU dataset and multiple specific tasks.

matrix (in this mask, all values=1). “M. to M¢”: Fine-tuning is performed first on the conflict mask
and then on the forget mask. Additionally, we investigat the impact of different fine-tuning methods
on CLUE. The default fine-tuning is “PO+PO”, where both the first and second stages use PO for
fine-tuning. We then test various combinations where each stage is replaced with “GA” or “NPO”.

Table E] shows that when the forget mask is removed, the

forget efficacy decreases the most. This supports the im-

portance of forget nodes for information forgetting. Sim- Table 2: Ablation with WMDP Cyber as

ilarly, replacing the conflict mask also leads to the largest forget set and SST-2 as retain set.

drop in utility, which indicates that the conflict mask is forget retain general
. .. . Method - o

effective at preventing irrelevant nodes from being fine- efficacy utility utility

tuned. Moreover, the GA method results in a significant C/\I;lUE 34330345 369(1)07 3033?1
performance decrease, especially in utility. This is con M. 10005 10264 10,053

sistent with the conclusion in [Zhang et al| (2024) that % v 10024 10.192 10,019
GA leads to catastrophic forgetting by causing large-scale G A°+G A 10021 J0.529 0.026
modifications to node parameters. GA+PO 10.012]0.067 10.003

" . . PO+GA 0.005 0.191 0.012
Additionally, in Appendix [G| we present the results for the \poLNPO i0.009 JLO.O% i0.007

experiments in Table[T|on the MIA and Rouge-L metrics, ~ NPO+PO 10.002 10.041 10.006
which also demonstrate that our method consistently out- ~ PO+NPO 10.004 10.081 |0.008
performs existing approaches. In Appendix [H] we show

the performance of LLM unlearning varying different for-

get ratios, which indicates that the conflict-guided localization is beneficial for the unlearning task
across different forget ratios.

6.2 How CLUE PERFORMS WHEN A GENERAL CORPUS SERVES AS THE RETAIN SET?

Another question worth exploring is how CLUE performs where the retain set is a general corpus. To
investigate this, we conduct two types of experiments on WMDP Cyber: 1. CLUE paired with the
MMLU dataset (Hendrycks et al.,[2020) (a general corpus as the default retain set for the WMDP)
as the retain set. 2. CLUE paired with multiple datasets from specific tasks as the retain set.

We select 12 specific tasks in total (for option 2): Winogrande, SST-2, RTE, Bool, Induction (Conmy;
et al., [2023), IOI (Wang et al., 2023)), Gender Bias (Vig et al., [2020), Docstring (Heimersheim &
Janiakl, |2023), Great Than (Hanna et al.| 2023)), SA (Yu et al., |2024), arithmetic (Ghazal et al., [2013)),
Reverse (Conmy et al., [2023)). We then evaluate CLUE’s performance when 1 to 10 of these specific
tasks are used as the retain set. Each time, we randomly sample 20 times from the 12 specific tasks
based on the predetermined number of tasks. For comparison, we also provide the performance
of WAGLE when MMLU is used as the retain set. Figure []reports both experiments. The x-axis
indicates the number of retained tasks we select from the 12 specific tasks. As its number increases,
we plot the forget efficacy, utility of MMLU and general utility with blue lines. While the dotted lines
evaluates these three metrics when MMLU serves as the retain set.

Upon examining Figure 4] we can see that even when using a general corpus like MMLU as the
retain set, CLUE still demonstrates a higher forget efficacy and nearly equal utility than WAGLE.
When this is combined with the conclusions from Section[6.1] we can infer that although MMLU may
not provide sufficiently specific task circuits (because it is a multi-task dataset), it can still identify

Under review as a conference paper at ICLR 2026

08 o 1

0s 06 07 o 05 o6 07
Sparsity (C1/1G]) sl sity (\C\ \q Sparsity ([C1/IG1)

(a) WMDP Cyber (b) WMDP Bio (¢) PKU-safeRLHF

Figure 5: Circuit Sparsity vs. Circuit Faithfulness and Forget Efficacy.

enough “forget nodes” via the forget set. Figure] (a) shows that when a specific task is used as the
retain set, the forget efficacy is higher than with MMLU, but it decreases as the number of specific
tasks increases. This makes sense: more specific tasks lead to more “conflict nodes,” which makes
unlearning critical information more difficult. Figure E| (b) and (c) both indicate that as the number of
specific tasks increases, utility shows an upward trend. Because the more specific tasks there are, the
more skills or capabilities need to be retained. Although the utility on MMLU is not as high as when
MMLU provides direct supervision, at 7 number of specific tasks, the general utility can finally reach
and surpass the performance when MMLU is the retain set. This also suggests that when a sufficient
number of specific tasks are used as the retain set, the model’s utility is better preserved.

6.3 UNLEARNING PERFORMANCE VS. CIRCUIT SPARSITY AND FAITHFULNESS

In this section, we investigate the relationship between unlearning performance and circuit quality,
especially circuit sparsity and faithfulness. Sparsity is calculated by &, where & & closer to 0 indicates
fewer edges in the circuit, so more sparse. Faithfulness refers to the glscrepancy between the circuit
output and the computational graph output. We quantify this discrepancy using the Kullback—Leibler
(KL) divergence of the output logits, where a smaller KL divergence indicates that the circuit’s output
is closer to the original model’s output, thus demonstrating higher faithfulness.

Furthermore, a trade-off inherently exists: a more sparse circuit generally leads to lower faithfulness.
Therefore, we analyze the forget efficacy of different circuits by controlling sparsity from 0.2 to 0.95.
We use SST-2 as the retain set and evaluate the A forget efficacy (i.e., forget efficacy — original
efficacy) on WMDP Cyber, WMDP Bio, and PKU-SafeRLHF datasets. Figure 5] confirms that as
the sparsity decreases, the KL divergence between the circuit and the computational graph gradually
decreases, while the A forget efficacy progressively increases. It shows that the denser the circuit, the
smaller the functional gap with the computational graph, and the higher the forget efficacy. [Revised:
Empirically and from the results, the performance of unlearning generally reaches the optimal range
when sparsity attains a level of 0.7. Therefore, all remaining experiments in this paper utilize circuits
with a sparsity of 0.7.]

6.4 HoOw DOES NODE LOCALIZATION CHANGE AFTER UNLEARNING?

Table 3: The number of forget nodes and conflict nodes before and after the unlearning.

Status of Winogrande SST-2 RTE Bool
Forget Set of forget conflict forget conflict forget conflict forget conflict
Unlearning | node(%) node(%) node(%) node(%) node(%) node(%) node(%) node(%)
WMDP Cyber before 15.6640.24 32294172 3.T44016 44214138 4984005 43.09+1.71 3904007 44.0941.55
after 19471007 29474131 8.614007 28.014156 11944039 34711139 18944074 16.3341.72
WMDP Bio before 15624023 32314171 3.8540.15 44.08 4141 5.0240.05 43.06+11.71 3.9540.07 44.1241 59
after 18494002 25944141 6.5740.13 31.0941.42 9.5640.29 35194135 16911953 20.5541.67
PKU-SafeRLHF before 13464052 30.6311.05 23.034066 21.061053 0.734000 43361130 0424000 39.8541.37
after 18.7710.67 22574120 28.67T+079 15494044 5.6940.00 31.2d41924 3954003 26.39+1.11

In this section, we investigate whether forget nodes and conflict nodes change post-unlearning.
Table [3] presents the percentages of forget and conflict nodes for different pairings of forget and
retain sets, and it tracks their post-unlearning results. We observe that the proportion of forget
nodes significantly increases after unlearning, while the proportion of conflict nodes decreases. This

Under review as a conference paper at ICLR 2026

suggests that the conflict nodes, which is supervised by both a forget loss and a retain loss, shift the
forget and retain circuit to less overlapping locations. This implies that CLUE’s learning on conflict
nodes is effective at decoupling the forget circuit from those of other capabilities or mechanisms.

Finally, we explore the specific distribution of the forget and conflict nodes to further analyze the
response of CLUE to different nodes. Detailed results can be found in Appendix |l} In simple terms,
nearly all MLPs are conflict nodes, which aligns with the finding that MLPs typically store a large
amount of information. Furthermore, compared to other methods, MEMIT appears to lack the forget
nodes, while WAGLE does not differentiate between forget nodes and conflict nodes.

7 CONCLUSION AND LIMITATION

In this paper, we introduce CLUE, a localization framework that uses circuit discovery to identify
the circuits for the forget and retain sets and converts them into a CNF. By employing a satisfiability
solver, we determine the role of each node in the unlearning task, classifying them as forget nodes,
retain nodes, or conflict nodes. We then provide targeted fine-tuning strategies for each type of
nodes. Compared to other localization methods, CLUE offers more precise node localization and
significantly outperforms existing methods in both forget efficacy and retain utility.

However, CLUE still has some limitations that can be explored further. First, the circuit is static and
cannot dynamically reflect changes in key nodes during the fine-tuning process. Therefore, exploring
the dynamics of circuits during parameter fine-tuning is a direction for future work. Additionally,
when dealing with multiple retain sets, although CLUE can identify which nodes are associated with
specific combinations of retain sets, the fine-tuning stage cannot provide targeted fine-tuning solutions
for every possible conflict combination. Consequently, developing editing methods other than fine-
tuning is another key focus of our future research. [Revised: Moreover, we must acknowledge that
there may exist potential forget datasets from which a clear circuit cannot be extracted (possibly due
to multi-domain mixing or excessive bias). Fortunately, this issue has not been observed in current
mainstream forget datasets; however, this remains a potential risk. Lastly, the inherent scalability
problems of circuit discovery also pose a significant challenge, making CLUE difficult to apply
to very large-scale language models. Nevertheless, current research (Syed et al} 2024} [Cieberum
is attempting to establish the feasibility of circuit discovery methods on these larger
models. Thus, the potential to resolve the scalability issues for CLUE remains a promising area of
investigation.]

10

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our code is publicly available in an anonymized repository linked in the abstract, which contains
the complete implementation of CLUE and related instructions (see README). Furthermore, each
theoretical step presented in the paper is supported by citations to relevant research (Chen et al.,
2025; Zhu et al., |2025). For clarification, we provide illustrative examples in Appendices and@
All datasets required for our experiments are available on Hugging Face and are described in detail
within the manuscript (see Section[3).

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning. Advances in Neural Information Processing Systems, 37:18506—18534, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463—480. IEEE, 2015.

Hang Chen, Jiaying Zhu, Xinyu Yang, and Wenya Wang. Rethinking circuit completeness in language
models: And, or, and adder gates, 2025. URL https://arxiv.org/abs/2505.10039.

Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924-2936,
2019.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318—-16352, 2023.

Ido Dagan, Dan Roth, Fabio Zanzotto, and Mark Sammons. Recognizing textual entailment: Models
and applications. Springer Nature, 2022.

R Eldan and M Russinovich. Who’s harry potter? approximate unlearning in llms, arxiv. arXiv
preprint arXiv:2310.02238, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. Sar Competition, 2020:50, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Shawn Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jasmine Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8-9, 2021.

Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and
Hans-Arno Jacobsen. Bigbench: Towards an industry standard benchmark for big data analytics.
In Proceedings of the 2013 ACM SIGMOD international conference on Management of data, pp.
1197-1208, 2013.

11

https://arxiv.org/abs/2505.10039

Under review as a conference paper at ICLR 2026

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36:76033-76060, 2023.

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only
transformer. In Alignment Forum, 2023.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. arXiv
preprint arXiv:2309.11852, 2023.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36:24678-24704,
2023.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and
Sijia Liu. Model sparsification can simplify machine unlearning. arXiv preprint arXiv:2304.04934,
1(2):3,2023.

Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wa-
gle: Strategic weight attribution for effective and modular unlearning in large language models.
Advances in Neural Information Processing Systems, 37:55620-55646, 2024.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D
Li, Ann-Kathrin Dombrowski, Shashwat Goel, Gabriel Mukobi, et al. The wmdp benchmark:
Measuring and reducing malicious use with unlearning. In International Conference on Machine
Learning, pp. 28525-28550. PMLR, 2024.

Tom Lieberum, Matthew Rahtz, Janos Kramér, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice
capabilities in chinchilla. arXiv preprint arXiv:2307.09458, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods, 2021.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on
Lifelong Learning Agents, pp. 243-254. PMLR, 2022.

Chris Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
embedding-corrupted prompts. Advances in Neural Information Processing Systems, 37:118198—
118266, 2024.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large language
models. Nature Machine Intelligence, pp. 1-14, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. Tofu: A
task of fictitious unlearning for llms. In First Conference on Language Modeling, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359-17372, 2022.

Samiyuru Menik and Lakshmish Ramaswamy. Towards modular machine learning solution develop-
ment: Benefits and trade-offs. arXiv preprint arXiv:2301.09753, 2023.

12

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931-962. PMLR, 2021.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from 1lms?
objectives for defending against extraction attacks. In The Twelfth International Conference on
Learning Representations, 2023.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models as
few-shot unlearners. In International Conference on Machine Learning, pp. 40034-40050. PMLR,
2024.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic
interpretability for transformer-based language models. arXiv preprint arXiv:2407.02646, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631-1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URLhttps://www.aclweb.org/anthology/D13-1170.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13003-13051, 2023.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural
Networks for NLP, pp. 407-416, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. In Automation of
reasoning: 2: Classical papers on computational logic 1967-1970, pp. 466—483. Springer, 1983.

Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr:
Direct distillation of Im alignment. In First Conference on Language Modeling, 2024.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388-12401, 2020.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
Depn: Detecting and editing privacy neurons in pretrained language models. In The 2023 Confer-
ence on Empirical Methods in Natural Language Processing, 2023.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in Neural
Information Processing Systems, 37:105425-105475, 2024.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language

models by partitioning gradients. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 6032-6043, 2023.

13

https://www.aclweb.org/anthology/D13-1170

Under review as a conference paper at ICLR 2026

Lei Yu, Jingcheng Niu, Zining Zhu, and Gerald Penn. Functional faithfulness in the wild: Circuit
discovery with differentiable computation graph pruning. arXiv preprint arXiv:2407.03779, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791-4800, 2019.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. In First Conference on Language Modeling, 2024.

Jiaying Zhu, Ziyang Zheng, Zhengyuan Shi, Yalun Cai, and Qiang Xu. Circuit-aware sat solving:

Guiding cdcl via conditional probabilities, 2025. URL https://arxiv.org/abs/2508,
04235,

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we utilized a large language model (LLM) as an assistive tool
toenhance the quality of our writing and presentation. The LLM’s role was strictly confined to
refining the manuscript’s writing and formatting, without generating any core scientific content or
data.

B EXAMPLE FROM CIRCUIT TO CNF

Following the notion of logical circuits introduced

in (Chen et al.| 2025), we construct a toy circuit as il- Input

lustrated in Figure 6} The semantics of the three gates are

defined as follows: Al | A2 A3 1 A4 A5 | A6
AND gate. The receiver node is activated if and only if v v Vg
the activation states of all sender nodes equal 1; otherwise, Bl o Bz B3
the receiver node remains inactive. \&4/\(3:5/

OR gate. The receiver node is inactive if and only if the Qﬁyz
activation states of all sender nodes equal 0; otherwise, the Output

receiver node is activated.

ADDER gate. Unlike the previous two gates, the receiver Figure 6: The toy circuit with AND, OR,
node in this case admits multiple intermediate activation and ADDER gate.

states rather than a binary activated/inactivated outcome.

Each intermediate state corresponds to the contribution of

a sender node, with all sender nodes treated as equally weighted and independent. For example, if
only one sender node has activation state equal to 1, then the receiver node has activation state 1; if
two sender nodes are active, then the receiver node has activation state 2, and so on. In general, the
logical relation is expressed as receiver node = sender node; + sender nodes + - - - .

We use an activation state of 1 to indicate that a given node should be retained and state of O to
indicate that it should be unlearned. To preserve the maximal capability of the retain set, the gates are
governed by the following rules:

* AND gate: all sender nodes must be retained.
* OR gate: at least one sender node must be retained.
* ADDER gate: all sender nodes must be retained; otherwise, the receiver node fails to reach

its optimal activation value, thereby impairing the model’s capability on the retain set.

Consequently, we define both the AND gate and the ADDER gate as conjunctions (denoted by the
symbol A), while the OR gate is defined as a disjunction (denoted by the symbol V). In this definition,
the ADDER gate only has two states (0/1). For the toy circuit in Figure[6] this leads to the following
conjunctive normal form (CNF):

14

https://arxiv.org/abs/2508.04235
https://arxiv.org/abs/2508.04235

Under review as a conference paper at ICLR 2026

Ol]tpl]t = Cl AN CQ A\ Bl A\ BQ AN (Bg V Bg) A\ (Al \Y AQ) A\ Ag A\ A4 (7)

Analogously, for the forget set, we represent the state of each gate using a negation operator (—),
since the capability of the forget set is ideally satisfied when all nodes in the circuit have activation
state equal to 0. In this setting, the AND gate is expressed as a disjunction. The reason is that, to
unlearn the capability associated with the forget set, it suffices to unlearn any one of the incoming
edges of an AND gate. For example, in Figure[6} we have -C, = =B V —~Bs .

By contrast, both the OR gate and the ADDER gate are expressed as conjunctions. This is because
all of their sender nodes must be unlearned to ensure that the capability of the entire gate is forgotten.
For instance, - B3 = = A5 A —Ag .

Therefore, if Figure [6] corresponds to the forget set, the resulting conjunctive normal form (CNF) can
be written as

output ==Cy A =Cy A (—=B1 V = Bs) A =Bs—B3A ®

(ﬂAl V —A3 Vv ﬂA4) A\ (ﬂAg V —A3 Vv ﬂA4) A\ (ﬂAg V —\A4) A —As A —Ag
Evidently, the CNF corresponding to the retain set is always satisfiable when all sender nodes satisfy
state=1, and the CNF corresponding to the forget set is always satisfiable when all sender nodes
satisfy state=0.

The above analysis proves that in the forget circuit, the propositional logic of the ADDER gate is the
same as that of the OR gate, while in the retain circuit, the propositional logic of the ADDER gate is
the same as that of the AND gate. Therefore, in the actual implementation, we convert the ADDER
gate in the forget circuit into an OR gate and the ADDER gate in the retain circuit into an AND gate.
Then, we use the logically complete Tseytin transformation to convert them into CNF.

C DETAILS OF LOGICAL CIRCUIT FRAMEWORK

At first, we systematically introduce three fundamental circuit logic types: the AND gate, OR gate,
and ADDER gate (Chen et al.| 2025).

Definition 1. We assume a common paradigm in which a receiver node B, which is connected by
more than 1 sender node A1, As, For any edge A; — B, we use binary values ‘0’ and ‘1’ to
represent the activation state of a node. Specifically, A; = 0 indicates that node A; is removed,
ablated, or deactivated, whereas A; = 1 indicates that node A; is retained and active. When the
sender nodes are ablated, the effect of node B on the output exhibits three distinct patterns, which
are as follows:

AND: All sender nodes satisfy an AND logical relationship with the receiver node, i.e., B =
Ay N Ag A ... Inthis case, node B exerts a significant effect on the output only if all of its sender
nodes are retained. If even a single sender node is ablated, the effect of B on the output is nearly
eliminated.

OR gate: All sender nodes satisfy an OR logical relationship with the receiver node, i.e., B =
A1V As V... In this case, node B always exerts a significant effect on the output if one or more of
its sender nodes are retained. Only if all sender nodes are ablated, the effect of B on the output is
nearly eliminated.

ADDER gate: all sender nodes satisfy an ADDER logical relationship with the receiver node, i.e.,
B = Ay + Ay + ... In this case, node B exhibits its maximal effect on the output only when all
of its sender nodes are retained. If any single sender node is ablated, the effect of B on the output
is substantially diminished; when all sender nodes are ablated, B’s effect on the output is reduced
to zero. Accordingly, we define the state of B as taking values 0,1,2,. .., where the total number of
distinct states equals the number of sender nodes.

Theoretical analyses support the view that noising-based intervention is capable of recovering a

complete AND gate but fails to recover a complete OR gate, whereas denoising-based intervention
demonstrates the opposite pattern (Heimersheim & Nanda, 2024)). This asymmetry is straightforward

15

Under review as a conference paper at ICLR 2026

to interpret. The noising-based intervention procedure corresponds to the transition from a clean
activation state (state = 1) to a corrupted activation state (state = 0). Since all gates can be
regarded as being initialized with activation states equal to 1, any transition to state = 0 induces a
significant change in the effect of AND and ADDER gates on the output. Consequently, noising-based
intervention can reliably identify AND and ADDER gates.

The denoising-based intervention first performs the corrupted run in the computational graph, and
then replaces the corrupted activations with the clean activations. Those activations that lead to
significant changes in the output (y) consist of the circuits. denoising-based intervention thus has the
following objective:

argmin B, z)e7[D(pg (917)l[pe (912, %)), s.t.1—[Cl/|G] = s ®)

Conversely, the denoising-based intervention procedure corresponds to initialization with activation
states equal to 0. In this case, any transition to state = 1 produces a significant change in the effect of
OR and ADDER gates on the output.

Therefore, we denote the circuit constructed under the noising-based intervention strategy as Cnj,
and the one constructed under the denoising-based intervention strategy as Cp,. Based on the above
set-theoretic relationships between Cys and Cp,, we extract subsets of edges corresponding to AND,
OR, and ADDER gates as follows:

* AND gate (Canp): edges that are present in Cy; but absent from Cp,,.
* OR gate (Cor): edges that are present in Cp, but absent from Cyg.
* ADDER gate (Cappgr): edges that are shared between Cyg and Cpy,.

Therefore, we propose a combined Ns+Dn approach to recover logically complete gates. This method
is compatible with a wide range of circuit discovery algorithms, introduces minimal additional
computational overhead, and enables clear and effective separation of the three types of logic gates.
Ns+Dn has the following objective:

argmin B, 5)e7[D(pg (yl2)llpe (yle, 7)) + D(pg (§12)[lpe (917, 2))], st.1—|C|/|G| = s (10)

Finally, we simplify the ADDER gate in the forget circuit to an OR gate, and the ADDER gate in the
retain circuit to an AND gate, as shown in Appendix B}

D CASE ANALYSIS OF CNF-SATISFIABILITY PROBLEM

D.1 SATISFIABLE SITUATION
For example, similar to Eq.[3} let C; : output; = A AND B and C; : output, = A OR B. Then,

® =(-AV =BV output;) A (A V —outputy) A (B V —output;) A (A V BV —output,)A

11
(mA V output,) A (B V output,) A (—output;) A (output,) an

® being satisfiable would require the value assignment for [A, B, output;, output,] to be either
[0,1,0,1] or [1, 0,0, 1]. Both of these outcomes ensure that C is corrupted while C; is preserved. In
this case, one of A and B must be changed while the other is preserved. For instance, if A = 1 and
B = 0, preserving A has no impact on violating Cr or maintaining C,. Therefore, A is a retain node,
and correspondingly, B is a forget node. Conversely, if A = 0 and B = 1, then A becomes the forget
node and B the retain node. This is intuitive: in C¢, A and B are related by AN D logic, so neither A
nor B exclusively or independently contains the information to be forgotten. Similarly, in C;, A and
B are related by OR logic, which means that both A and B individually have a significant influence
on output,.

16

Under review as a conference paper at ICLR 2026

D.2 UNSATISFIABLE SITUATION

For example, let Cr : output; = A OR B and C; : output, = B AND C. Then,

® =(AV BV —outputy) A (mA V output;) A (=B V outputy) A (mB V —~C'V output,) A

12
(B V —output,) A (C'V —output,) A (—output;) A (output,) 12)

® being satisfiable would require the output; = 0, and thus A= 0, B= 0. However, ® would also
require the output, = 1, and thus B= 1, C= 1. In this instance, A must be 0, which categorizes it
as a forget node. This is because the state of A alone is sufficient to determine the outcome of Cy,
meaning A exclusively and independently contains the information to be forgotten. Analogously, C'
must be 1, identifying it as a retain node, as it is independent of C; and thus requires no modification.
B, however, is a conflict node: to remove Cy, it must be changed (value=0), yet to preserve C;, it must
be maintained (value=1).

E DETAILS ABOUT EXPERIMENT SETUPS

E.1 MODEL CONFIGURATIONS

For the WMDP task, we select the original Zephyr-7B-beta as the pretrained model. For the PKU-
SafeRLHF task, we selected LLaMA2-7B as the foundational model for our study. All experiments
were conducted on 16 NVIDIA RTX A100 GPUs. Each experiment takes approximately 5 minutes
per 100 steps. We adopt the same rejection-based answers designed by Jia et al.|(2024).

E.2 UNLEARNING CONFIGURATIONS

All fine-tuning are conducted over 6 epochs, with 1 epoch for forget nodes and the rest 5 epochs
for conflict nodes. The learning rate is grid-searched at 1 x 10~° for each task and datasets. The
parameter A\ is set to 1 for each method across all tasks, and we adopted AdamW (Loshchilov &
Hutter, 2017) as the optimizer.

E.3 BASELINES

DEPN (Wu et al.,[2023)) (Detect and Edit Privacy Neurons) is a framework designed to safeguard

against privacy leakage in pretrained language models by localizing and editing specific neurons. The
method’s core localization component is a novel privacy neuron detector that uses a gradient-based
attribution technique. This detector computes a privacy attribution score for each neuron to quantify
its contribution to the model’s leakage of private information. This is achieved by calculating the
cumulative gradient of the output probability with respect to the neuron’s activation value, as the
activation is gradually changed from zero to its original value.

WAGLE (Jia et al.| 2024)) (Weight Attribution-guided LLM Unlearning Framework) is a framework
that pinpoints the most influential weights for unlearning through a strategic weight attribution
method. The method frames the weight attribution problem as a bi-level optimization (BLO) problem,
which allows it to balance unlearning efficacy with utility preservation. The core of the localization
process is the derivation of a closed-form attribution score for each weight, calculated using the
implicit gradient from the BLO problem. This score’s value is determined by combining the gradients
from both the forget loss and the retain loss.

PCGU (Yu et al.| [2023)) (Partitioned Contrastive Gradient Unlearning) is a gray-box method for
unlearning social biases by localizing the specific weights responsible for encoding them. The
method’s localization strategy is based on comparing gradients from “contrastive sentence pairs,’
which are sentences that are minimally different in a specific domain, such as gender. PCGU first
partitions the model’s parameter set into discrete weight vectors or blocks. It then computes the
gradients for each sentence in a pair with respect to these weight blocks. By measuring the cosine
similarity between the gradients of the two sentences, it identifies the weight blocks that are most
relevant to the targeted bias (i.e., those with the lowest cosine similarity between their gradients).

MEMIT (Patil et al.l 2023) ((Mass-Editing Memory in a Transformer)) addresses the deletion of
factual information by causal tracing, a denoising-based intervention method. This approach relies

17

Under review as a conference paper at ICLR 2026

on the assumption that knowledge is stored in specific, localized components of the network, and can
be identified via causal mediation.

GA (Yao et al.| 2024)) (Gradient Ascent) encourages the response of the LLM post-unlearning to
deviate from its original response within the training set.

NPO (Zhang et al., 2024)) (Negative Preference Optimization) specifies the forget loss as the loss of
direct preference optimization by treating the forgotten data exclusively as negative examples. The
NPO loss outperforms the GA loss due to its improved stability, avoiding catastrophic collapse in
forgetting and utility preservation during optimization.

PO (Mainti et al.||2024)) (Preference Optimization) is also inspired by DPO but introduces targeted
unlearning responses such as ’I don’t know’ or responses stripped of sensitive information, treating
these exclusively as positive examples for preference alignment.

E.4 RETAIN SET
We select a series of specific tasks as retain set: Winogrande, SST-2, RTE, Bool, Induction, IOI,

Gender Bias, Docstring, Great Than, SA, arithmetic, Reverse. We show the examples of each task in
the Table[d]

Table 4: An overview of the datasets of specific tasks.

Task Example Label

Winograde John moved the couch from the garage to the backyard to create space. The _is small. garage

SST-2 hide new secretions from the parental units negative

RTE No Weapons of Mass Destruction Found in Iraq Yet. ot entailment
Weapons of Mass Destruction Found in Iraq.

Bool (True AND True) OR False True

Induction Vernon Dursley and Petunia Durs ley

101 When John and Mary went to the store, Mary gave a bottle of milk to John

Gender Bias So Evan is a really great friend, isn’t he

def f(self, files, obj, state, size, shape, option):
:param state: performance analysis

Docstring :param size: pattern design shape
:param

Great Than ~ The war lasted from 1517 to 15 18

SA Many girls insulted themselves

arithmetic 12 plus 18 equals 30

Reverse [0,3,2,1] [1,2,3,0]

F RESULTS ON DETAILED GENERAL UTILITY

In this section, we report the specific accuracy for all non-target tasks, which can be found in Table[5]

G RESULTS ON MIA AND ROUGE-L

As introduced by |Jia et al.| (2024)), membership inference attack (MIA) is evaluated by the area under
the ROC curve using Min-20% Prob to detect if the provided text belongs to the training or testing
set. We apply MIA to the forget set; thus, a higher MIA score indicates a higher confidence in
predicting that the forget data point does not belong to the training set. Moreover, Rouge-L recall
is also measured over the forget set. A lower value corresponds to better unlearning. The metric
1-Rouge-L is also used for ease of performance averaging. We show the results of MIA and Rouge-L.
in Table

H ScALABILITY AND ROBUSTNESS OF CLUE AT VARIOUS FORGET RATIOS

In this section, we investigate the performance of CLUE and other localization methods under varying
forget ratios. Specifically, we define the forget ratio as the ratio of modified parameters and examine

18

Under review as a conference paper at ICLR 2026

0.75

o
o o
& 2

forget efficacy

o
>

0.55

o
@
@

forget efficacy
3
B

o
I
a

0.5

0.7

0.65

0.6

forget efficacy

0.55

0.5

Figure 7: Preference of LLM unlearning at various forget ratios, FE means forget efficacy, RU

0 0.2 0.4 0.6 0.8
forget ratio

(a) WMDP Cyber FE

0 0.2 0.4 0.6 0.8
forget ratio

(d) WMDP Bio FE

—o—CLUE
- 8 ~WAGLE
v - A -DEPN
- ¢ -PCGU
MEMIT

0 0.2 0.4 0.6 0.8
forget ratio

(g) PKU safeRLHF FE

0.4

)
w
&

general utility
o
@
&

)
®

retain utility
o
2

06
034
/
, 05
[]
0z 04
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

forget ratio

(b) WMDP Cyber RU

forget ratio

(c) WMDP Cyber GU

general utility
o
=
S

0.8

retain utility
o
2

0.4 0.6
0.38 05
0 0.2 0.4 0.6 08 0.2 0.4 0.6 0.8
forget ratio forget ratio
(e) WMDP Bio RU (f) WMDP Bio GU
05 0.9
0.8
0.45

2z 507
s 5

T 04 - 06
5]]
5 3

=1 0.5

0.35
J 0.4
(4
03 03
0 0.2 0.4 0.6 08 0.2 0.4 0.6 0.8
forget ratio forget ratio

(h) PKU safeRLHF RU

represents the retain utility, GU represents general utility.

19

(i) PKU safeRLHF GU

Under review as a conference paper at ICLR 2026

Table 5: Performance on specific non-target tasks. We report the accuracy metric with WMDP Cyber
as forget set.

retain set Method | mmlu_ arcehaiienge 0TCeasy boolq hellawasg openbookqa piga rte truthqagen truthqame truthqame winogrande average
GA 02655 0.2144 03214 0.5417 0.2549 0.202 0.6041 04571 0.0635 0.2216 0.4371 0.4019 0.3322
NPO 0.2647 0.2194 03317 0.5549 0.2517 0.202 0.6044 04419 0.0571 0.2549 0.3517 0.4219 0.3296
PO 0.2846 0.2519 03946 0.5617 0.2207 0.2407 0.5817 0.5841 0.0617 0.2519 0.4217 0.5517 0.3688
Winogrande MEMIT | 0.2846 0.2573 0.3907 0.5519 0.2517 0.2419 0.5719 0.6671 0.0938 0.2594 0.4417 0.6074 0.3847
= PCGU 0.2847 0.2674 0.3847 0.5671 0.2694 0.2574 0.5571 0.6574 0.0473 0.3097 0.4571 0.533 0.3827
DEPN 0.2501 0.2857 0.4184 0.6217 0.401 0.226 0.6893 0.6282 0.3293 0.2289 0.4616 0.6283 0.4314
WAGLE | 0.3337 0.3336 05543 0.8116 0.3868 0.18 0.6757 0.7292 0.033 0.2387 0.4563 0.5722 0.4421
CLUE 0.4104 0.3387 0.5762 0.8367 0.3785 0.202 0.6474 0.6859 0.0612 0.2583 0.4926 0.6101 0.4582
GA 02144 0.2549 0.4127 0.3147 0.2571 0.1256 0.4679 0.5217 0.0214 0.2264 0.4172 0.5174 0.3129
NPO 0.2347 0.2617 0.4318 0.3604 0.3618 0.1304 0.4729 0.5329 0.0317 0.2517 0.4237 0.5367 0.3361
PO 0.2509 0.2847 0.4137 04097 0.3849 0.1517 0.4593 0.5873 0.0437 0.2849 0.4307 0.5376 0.3528
SST-2 MEMIT | 0.2617 0.2849 0.4219 04137 0.2849 0.2576 0.4581 0.5837 0.0674 0.2947 0.4137 0.5643 0.3591
PCGU 02517 0.2719 0.4739 04016 0.2674 0.2519 0.4673 0.5917 0.0419 0.2873 0.4473 0.5879 0.3622
DEPN 0.3047 0.2617 0.5493 0.3677 0.4019 0.22 0.6579 0.5017 0.0463 0.2017 0.4219 0.6257 0.3796
WAGLE | 0.3114 0.2807 0.4491 0.3899 0.3931 0.22 0.6464 0.5207 0.0273 0.2497 0.4664 0.6582 0.3844
CLUE 0.2387 0.2901 0.436 03914 0.4192 0.22 0.642 0.5451 0.0465 0.2668 0.4985 0.6622 0.3880
GA 02017 0.2347 0.4419 0.6057 0.3617 0.1208 0.5319 04739 0.207 0.2057 0.4317 0.5976 0.3677
NPO 0.2067 0.2217 0.4319 0.2977 0.3517 0.1549 0.5037 0.4497 0.202 0.1849 0.4395 0.63517 0.3394
PO 02149 0.2549 0.4367 0.6207 0.3491 0.1422 0.5537 0.5037 0.202 0.2067 0.4019 0.6082 0.3745
RTE MEMIT | 0.2166 0.2537 0.4691 0.6255 0.3847 0.1437 0.5594 0.5017 0.217 0.2257 0.4137 0.6107 0.3864
PCGU 0.2147 0.2549 0.4317 0.6217 0.3429 0.147 0.5517 0.5037 0.2094 0.2037 0.4067 0.6071 0.3755
DEPN 0.2547 0.302 0.4701 0.6584 0.375 0.184 0.6643 0.5487 0.2367 0.2264 0.4482 0.633 0.4168
WAGLE | 0.3784 0.2834 0.4377 0.5957 0.3365 0.196 0.6268 0.7329 0.0257 0.2558 0.4963 0.6006 0.4138
CLUE 0.4074 0.2722 0.607 0.5667 0.4339 0.18 0.6115 0.7354 0.0808 0.2497 0.4922 0.602 0.4366
GA 02176 0.2517 0.3744 0.2849 0.3479 0.1437 0.4873 04319 0.207 0.1673 0.4037 0.6037 0.3257
NPO 02943 0.2674 0.4237 0.3619 0.3729 0.2046 0.6273 0.5037 0.0237 0.2219 0.4439 0.6319 0.3655
PO 03114 0.2849 0.4437 0.3958 0.3946 0.2344 0.6491 0.5267 0.0255 0.2438 0.4691 0.6533 0.3841
Bool MEMIT | 0.2855 0.2515 0.4973 0.7067 0.2943 0.127 0.5937 0.5217 0.3299 0.1247 0.359 0.5438 0.3867
PCGU 0.3057 0.2294 0.4538 0.6471 0.2594 0.106 0.5937 0.5938 0.2811 0.1673 0.3894 0.4936 0.3769
DEPN 02935 0.2527 0.6199 05973 0.2867 0.196 04937 0.6273 0418 0.1579 0.3657 0.4533 0.3964
WAGLE | 0.2691 0.2517 03784 0.7055 0.3259 0.19 0.6007 0.5776 0.033 0.2509 0.4837 0.5833 0.3875
CLUE 03706 0.3157 0.4949 0.7324 0.3737 0.206 0.6627 0.5848 0.0747 0.2521 0.4893 0.6551 0.4343

Table 6: Performance overview of LLM unlearning with 1-accuracy, MIA, Rouge-L as metrics for
forget efficacy.

Retain Set
Method | Unlearned Winogrande SST-2 RTE Bool
Parameter | T-accuracyT MIAT Rouge-LT | T-accuracyT MIAT — Rouge-LT [T-accuracyT MIAT Rouge-LT | T-accuracyT MIAT — Rouge-LT
‘WMDP Cyber
Origin - 0.4454 0.4238 0.0159 0.4454 0.4394 0.0159 0.4454 0.4163 0.0159 0.4454 0.4361 0.0159
GA 100% 0.6583 0.9517 0.3957 0.6651 0.9428 0.3849 0.6477 0.9257 0.3829 0.6527 0.9637 0.3915
NPO 100% 0.6639 0.9647 0.3296 0.6542 0.9556 0.3511 0.6976 0.9645 0.3519 0.6548 0.9428 0.3156
PO 100% 0.6851 0.6357 0.3519 0.6729 0.6724 0.3691 0.6851 0.5821 0.3636 0.6826 0.6411 0.3894
MEMIT | 76.27% 0.6691 0.6259 0.4029 0.6738 0.6619 0.3664 0.6759 0.6237 0.3594 0.6908 0.6258 0.3674
PCGU 86.77% 0.6724 0.6871 0.4336 0.6721 0.6849 0.3294 0.6691 0.6482 0.3667 0.6955 0.6364 0.3845
DEPN 78.82% 0.6955 0.6644 0.4418 0.7025 0.6237 0.3558 0.7129 0.6553 0.3127 0.7156 0.6318 0.3946
WAGLE | 90.01% 0.7021 0.6821 0.4309 0.7081 0.6884 0.3619 0.6851 0.6418 0.3618 0.7217 0.6138 0.3746
CLUE 58.16% 0.6975 0.7926 0.4692 0.7333 0.7713 0.4671 0.7445 0.7827 0.4967 0.7242 0.7734 0.4108
WMDP Bio
Origin - 0.3551 0.4109 0.0122 0.3551 0.4219 0.0122 0.3551 0.4057 0.0122 0.3551 0.4577 0.0122
GA 100% 0.5647 0.9662 0.3755 0.6751 0.9554 0.2741 0.5649 0.9234 0.3685 0.5683 0.9384 0.3815
NPO 100% 0.5718 0.9517 0.3215 0.6719 0.9618 0.3138 0.5741 0.9543 0.3348 0.5722 0.9613 0.2348
PO 100% 0.6059 0.6349 0.3851 0.6853 0.6138 0.2348 0.5892 0.6518 0.4318 0.5856 0.6138 0.4128
MEMIT | 74.29% 0.5919 0.5647 0.3189 0.6955 0.5196 0.4318 0.5477 0.6618 0.3841 0.6051 0.6138 0.3188
PCGU 85.12% 0.6011 0.6219 04318 0.6849 0.6138 0.313 0.5391 0.5384 0.3186 0.5967 0.3561 0.3388
DEPN 77.24% 0.6053 0.6358 0.3189 0.7018 0.6038 0.4318 0.5463 0.6138 0.3181 0.5993 0.5313 0.4885
WAGLE | 90.02% 0.5997 0.6617 0.4189 0.6984 0.5831 0.4831 0.5491 0.6913 0.3384 0.6009 0.6318 0.4528
CLUE 56.19% 0.6174 0.6922 0.4851 0.7136 0.7216 0.6599 0.5869 0.6955 0.5219 0.6123 0.6419 0.6335
PKU-SafeRLHF

origin - 0.2941 0.4219 0.0094 0.2941 0.4655 0.0094 0.2941 0.4319 0.0094 0.2941 0.4408 0.0094
GA 100% 0.6154 09217 0.3574 0.6055 0.9517 0.3519 0.6259 0.9492 0.3622 0.6019 0.9247 0.3661
NPO 100% 0.6055 0.9315 0.3691 0.6129 0.9427 0.3367 0.6144 0.9255 0.3359 0.6168 0.9366 0.2943
PO 100% 0.6259 0.6319 0.4296 0.6235 0.6217 0.4219 0.6238 0.6731 0.4127 0.6255 0.8412 0.5137
MEMIT | 77.62% 0.6459 0.5839 0.4935 0.6491 0.5394 0.4339 0.6255 0.6329 0.3629 0.6471 0.6719 0.3233
PCGU 86.29% 0.6394 0.5638 0.4163 0.6336 0.6173 0.3659 0.6399 0.5843 0.3816 0.6392 0.6652 0.4062
DEPN 74.36% 0.6617 0.6173 0.3195 0.6573 0.6628 0.3816 0.6347 0.6319 0.4457 0.6429 0.5937 0.4138
WAGLE | 90.01% 0.6559 0.6284 0.3326 0.6637 0.5973 0.4219 0.6417 0.6642 0.4369 0.6357 0.6173 0.3907
CLUE 54.88% 0.7249 0.841T 0.6305 0.6813 0.7359 0.6262 0.6561 0.6904 0.5391 0.6594 0.7216 0.6617

the performance of our localization methods in terms of forget efficacy, retain utility, and general
utility for forget ratios of [0.1, 0.2, 0.5, 0.8, 0.9]. For our experiments, the retain set used is SST-2.

Figure[/|shows the performance on WMDP Cyber, WMDP Bio, and PKU-safeRLHF. It is evident
that as the forget ratio increases, the unlearning efficacy improves; however, the utility trend is
more volatile and non-monotonic. Nevertheless, CLUE consistently outperforms other localization
methods. This demonstrates that our identification of both forget nodes and conflict nodes is beneficial
for the unlearning task across all tested forget parameter ratios.

I DISTRIBUTION OF DIFFERENT NODES

In this section, we investigate the proportion of different parameter types within forget nodes and
conflict nodes. For a comparative analysis, we also include the parameter distributions from MEMIT

20

Under review as a conference paper at ICLR 2026

100 -

60

Percentage

201

80

40t

I MEMIT

[CIwAGLE

[CLUE (Conflict Neuron)
[__ICLUE (Forget Neuron)

89.57
84.66

I 59.47,
I 56.53
52.66

30.46

33.6132.74
29.12

32,67,
30,07
25.44) 28,66

100.00]
90.0112:50

Percentage

905%;7 30

l78.31 03

57.49
53.49753.90
5.86

53.37
49.61

41.51

5.86 42,66

48.71
41.59
6.05

attn_q attn_k attn_v attn_o MLP attn_q attn_k attn_v attn_o MLP
Parameters Parameters
(a) Winogrande (b) SST-2
100 |- 99.99 | 100} 100.00|
90.103g 37 900Lg 75
80.1555'4783‘ 49 85.47) a7

) o 801

o =)

g g

c c L

55.3%4, 60

g %4.58 g 53.07,0 o

o 20.99 o

e 32.74 & dor 25046 27.05

24.6%3,83 24.673.83 3233508 2400507
19.44] 19.45] L 19.37
) IJ
0
attn_q attn_k attn_v attn_o MLP attn_q attn_k attn_v attn_o MLP
Parameters Parameters
(c) RTE (d) Bool

Figure 8: Nodes distribution of Zephyr-7B-beta model in WMDP Cyber.

and WAGLE. MEMIT uses a method similar to circuit discovery to identify important nodes but
relies exclusively on a denoising-based intervention. As has been confirmed by existing work
12025)), such a circuit is incomplete, lacking the necessary logical reasoning nodes. WAGLE, on
the other hand, employs a gradient-based weight attribution method, which often makes it difficult to
discover equivalent paths within OR gates.

Figure [§]illustrates the node distributions for four retain sets, with the Zephyr-7B-beta model and
the WMDP Cyber dataset serving as the forget set. MLPs constitute the largest proportion, as
they are generally considered the most information-rich memory units. An interesting pattern also
emerges: outside of the MLPs, the number of nodes identified by MEMIT is similar to the number of
conflict nodes found by our method (CLUE). In contrast, the number of nodes found by WAGLE
is comparable to the sum of both forget nodes and conflict nodes identified by our approach. This
observation further confirms our viewpoint. Due to its lack of circuit completeness, MEMIT fails to
discover forget nodes from a sufficient logical structure. Meanwhile, WAGLE, by not considering the
influence of causal effects, cannot discover OR gates and thus includes all common nodes.

J THE BENCHMARK OF COMPUTATION COST

[Revised: To evaluate the time and computational resource expenditure of our method, particularly in
comparison to existing approaches, we conducted assessments on the WMDP Cyber and WMDP
Bio datasets using the Zephyr-7B-beta model. The experimental environment was equipped with 16
NVIDIA RTX A100 GPUs. For comparison with existing methods, we selected GA as a representative
fine-tuning method and WAGLE as a representative localization method. The Table[7]and [§]shows the
time required for localization and fine-tuning for these methods. It demonstrates that our method does
not introduce significant time overhead. However, when combined with the performance in forget
efficacy and retain utility presented in Table [} our method exhibits the highest cost-effectiveness.
Specifically, we evaluated the computational time of our approach on two circuit discovery methods:
Edge-Pruning, which fits the circuit by adding a differentiable mask, and EAP, which directly
computes the circuit using a first-order Fourier transform. Furthermore, the time required for SAT
solving was consistently under one minute, largely attributable to a well-defined initialization process.

21

Under review as a conference paper at ICLR 2026

Consequently, the overall computational overhead of our entire pipeline is comparable to that of
existing approaches. In particular, when EAP is employed as the circuit discovery method, the
runtime is significantly lower than the average of current methods.]

Table 7: Computation Cost in WMDP Cyber.

Localization . .
Method Circuit discovery ~ SAT Solving Al Fine-tuning ~ All
GA - - - 4.8h 4.8h
WAGLE - - 0.5h 3.2h 3.7h
Ours (Edge-Pruning) 2.1h 0.01h 2.11h 3.1h 5.21h
Ours (EAP) 0.1h 0.01h 0.11h 3.1h 3.21h

Table 8: Computation Cost in WMDP Bio.

Localization
Method Circuit discovery ~ SAT Solving ~ All

Fine-tuning All

GA - - - 3.5h 3.5h
WAGLE - - 0.4h 25h 3.3h
Ours (Edge-Pruning) 1.7h 0.01h 1.71h 2.9h 3.61h
Ours (EAP) 0.1h 0.01h 0.11Th 2.5h 3.01h

22

	Introduction
	Preliminaries
	LLM Unlearning
	Circuit Discovery and Logical Circuit

	Conflict-Guided Localization
	Logical Circuit Discovery
	Circuits to CNF
	Localization via CNF Solution

	Unlearning via Conflict-Guided Localization
	Experiment Setups
	Unlearning Tasks, Datasets, Models, and Baselines
	Training and Evaluation Setup

	Experiment Results
	Can CLUE Improve LLM Unlearning Through Localization?
	How CLUE performs when a General Corpus serves as the Retain Set?
	Unlearning Performance vs. Circuit Sparsity and Faithfulness
	How does Node Localization Change after Unlearning?

	Conclusion and Limitation
	Reproducibility Statement
	The Use of Large Language Models
	Example from Circuit to CNF
	Details of Logical Circuit Framework
	Case Analysis of CNF-Satisfiability Problem
	Satisfiable Situation
	Unsatisfiable Situation

	Details about Experiment Setups
	Model Configurations
	Unlearning Configurations
	Baselines
	Retain Set

	Results on Detailed General Utility
	Results on MIA and Rouge-L
	Scalability and Robustness of CLUE at Various Forget Ratios
	Distribution of Different Nodes
	The Benchmark of Computation Cost

