
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLUE: CONFLICT-GUIDED LOCALIZATION FOR LLM
UNLEARNING FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

The LLM unlearning aims to eliminate the influence of undesirable data without
affecting causally unrelated information. This process typically involves using
a forget set to remove target information, alongside a retain set to maintain
non-target capabilities. While recent localization-based methods demonstrate
promise in identifying important nodes (neurons) to be unlearned, they fail to
disentangle nodes responsible for forgetting undesirable knowledge or retaining
essential skills, often treating them as a single entangled group. As a result,
these methods apply uniform interventions, risking catastrophic over-forgetting
or incomplete erasure of the target knowledge. To address this, we turn to circuit
discovery, a mechanistic interpretability technique, and propose the Conflict-guided
Localization for LLM Unlearning framEwork (CLUE). This framework identifies
the forget and retain circuit composed of important nodes, and then the circuits
are transformed into conjunctive normal forms (CNF). The assignment of each
node in the CNF satisfiability solution reveals whether it should be forgotten or
retained. We then provide targeted fine-tuning strategies for different categories of
nodes. Extensive experiments demonstrate that, compared to existing localization
methods, CLUE achieves superior forget efficacy and retain utility through precise
neural localization. Our code is available at https://anonymous.4open.
science/r/CLUE.

1 INTRODUCTION

Large language model (LLM) unlearning (Liu et al., 2025; Yao et al., 2024), as a machine learning
method inherited from model unlearning (Cao & Yang, 2015; Neel et al., 2021), aims to have the
LLM avoid or remove certain target information while preserving its other non-target capabilities
as much as possible. Formally, the framework of LLM unlearning typically involves two datasets:
the forget set and the retain set. The optimization objective is to avoid the original responses to the
forget set (which are typically harmful or sensitive) and retain the existing responses to the retain set.

Existing localization Our localization

irrelevant nodes

important nodes

retain nodes

forget nodes

conflict nodes

Figure 1: A fine-grained exploration in-
spired by existing localization methods.

Many categories of methods currently exist for LLM un-
learning (Zhang et al., 2024; Jia et al., 2023; Liu et al.,
2024). Among these, localization-informed unlearn-
ing offers better interpretability by localizing key nodes
(neurons)1 or parameters. This also allows for better main-
tenance and targeted updates to these parameters, which
aligns well with future modular machine learning devel-
opments (Menik & Ramaswamy, 2023). Recently, various
localization-informed methods have emerged, including
those based on gradients (Wu et al., 2023; Yu et al., 2023),
weight attribution (Jia et al., 2024), and causal effect es-
timation (Patil et al., 2023; Meng et al., 2022).

However, existing localization methods can only identify an entangled set of “important” nodes
resulting from the joint optimization on the forget and retain sets. They cannot pinpoint the specific

1In this paper, the terms “node” and “neuron” represent almost the same concept. They are all used to
represent some kind of trainable parameter matrix in the model (see Sec 2.2 for details). For consistency, and
without loss of generality, we use “nodes” by default.

1

https://anonymous.4open.science/r/CLUE
https://anonymous.4open.science/r/CLUE

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

subset of nodes responsible for forgetting, retaining, or a combination of both. As depicted in
Figure 1, these important nodes can be intuitively subdivided into three categories: retain nodes,
which influence only the retain set; forget nodes, which influence only the forget set; and conflict
nodes, which influence both the forget and retain sets.

Clearly separating these three types of nodes is essential for improving unlearning’s forget efficacy
and retain utility. For instance, suppose the forget set contains harmful information, whereas the
retain set includes sentiment recognition samples. A coarse-grained intervention on all “important
nodes” might unintentionally compromise the model’s sentiment recognition capability when re-
moving the harmful information. By disentangling the retain nodes from the “important nodes”, the
sentiment recognition capability is better preserved. However, disentangling these node types from
the coarser set of important nodes is highly challenging. For example, in gradient-based methods, the
gradient from the joint optimization of the forget loss and retain loss is not equivalent to the linear
combination of the gradients from optimizing each loss separately. Therefore, the identified nodes
reflect intertwined signals and cannot distinctly represent forgetting or retaining.

To address this problem, we resort to circuit discovery (Conmy et al., 2023; Bhaskar et al., 2024), a
mechanistic interpretability method that identifies the important nodes and their activation relation-
ships for a target task or dataset, representing them in a graph-structured circuit. This method enables
explicit tracking of information flows between nodes, allowing us to isolate functional substructures.
Recent circuit discovery techniques (Chen et al., 2025; Heimersheim & Nanda, 2024) are also capable
of uncovering the logical relationships within a circuit; for example, some subcircuits resemble digital
logic gates like an AND gate, while others are similar to an OR gate. This is particularly appealing in
our setting, since forgetting and retaining are inherently compositional operations: for instance, a
capability could only be preserved if multiple nodes are unchanged (similar to an AND gate), while
another capability might be forgotten when just one of a group of nodes is edited (similar to an OR
gate).

Building on this, we propose the Conflict-guided Localization for LLM Unlearning framEwork
(CLUE), which can distinguish the node categories conceptualized in Figure 1 through the Boolean
satisfiability of circuits. Specifically, CLUE first extracts circuits from the forget set and retain set,
respectively. These circuits are then converted into Conjunctive Normal Form (CNF) using Tseitin’s
transformation (Tseitin, 1983). A CNF is constructed whose logic ensures that the forget circuit is
modified while the retain circuit is preserved. By solving this CNF as a satisfiability problem (Fleury
& Heisinger, 2020), we can determine which nodes belong to the retain node, forget node, and conflict
node categories based on the values of each node in the optimal solution. Finally, we also provide a
fine-tuning paradigm that provides supervision for the forget nodes using the forget loss and for the
conflict nodes using both the forget and retain loss.

CLUE allows for the editing of different node categories based on distinct optimization objectives.
This more fine-grained and precise localization enhances the effectiveness of unlearning. To demon-
strate this, we conducted extensive experiments on three mainstream unlearning datasets: WMDP
Cyber, WMDP Bio, and PKU SafeRLHF. The results not only show that our method significantly
improves forget efficacy and retain utility with fewer modified parameters, but also reveal a more
detailed correlation between the unlearning effect and the underlying circuits and nodes. In summary,
our contributions are threefold:

• We propose conflict-based localization, which identifies more fine-grained node categories
by solving the CNF satisfiability of the forget circuit and the retain circuit.

• We introduce CLUE, an effective framework for LLM unlearning that explicitly leverages
different node categories to achieve more precise unlearning.

• We demonstrate through extensive experiments that CLUE surpasses current localization
methods across multiple dimensions and offers more comprehensive interpretability.

2 PRELIMINARIES

2.1 LLM UNLEARNING

In light of the existing literature on LLM unlearning (Li et al., 2024; Maini et al., 2024; Ishibashi
& Shimodaira, 2023; Yao et al., 2024; Pawelczyk et al., 2024), we define the problem of LLM

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

unlearning as eliminating the influence of specific ”unlearning targets” and removing associated
model capabilities while preserving model performance for non-targets. To facilitate comprehension,
we provide a commonly-used formulation of LLM unlearning problems below.

min
θ

E(x,yf)∈Df
[L(yf |x; θ)] + λE(x,y)∈Dr

[L(y|x; θ)] (1)

where λ ≥ 0 represents the regularization parameter, L(y|x; θ) denotes the prediction loss of using
θ given the input x w.r.t. response y, Df and Dy refer to forget set and retain set. yf denotes the
desired model response post-unlearning. The retain set represents the non-target. It indicates that,
during LLM unlearning, the objective is to maintain the utility of the retain set, while simultaneously
ensuring that the model avoids generating the undesired responses associated with the forget set.

2.2 CIRCUIT DISCOVERY AND LOGICAL CIRCUIT

In Transformer decoder-based language models, the forward pass is typically conceptualized as a
computational graph G, where the nodes represent neurons, such as output, MLPs, and query, key,
and value matrices in each head and an edge i → j denotes a connection where the activation of node
i serves as input to node j. Circuit discovery seeks to identify a subgraph (circuit) C ⊂ G for a target
dataset that captures the task-relevant behavior (or mechanism/capability) of this dataset (Elhage
et al., 2021; Conmy et al., 2023; Rai et al., 2024), with the following objective:

argmin
C

E(x)∈T [D(pG(y|x)||pC(y|x))], s.t. 1− |C|/|G| ≥ s (2)

where s denotes the requirement of sparsity, T represents the target dataset, and D represent the
distance to quantify the difference between the two outputs from G and C. Circuit discovery aims
to retain the minimal C while faithfully reflecting the model’s capability in processing the T . The
nodes and edges within this circuit are regarded as those exerting the most critical influence on the
T . [Revised: We define the scope of nodes to include: q, k, v, o, MLPup, and MLPdown, treating
them as the smallest independent units that influence the outcome. Given that the adopted baseline
model is the Zephyr-7B-beta model, we additionally include MLPgate. Consequently, the entire
computation graph, excluding inputs and outputs, consists of 32 layers, with each layer containing 7
nodes, and each node corresponds to a learnable parameter matrix. The circuit analysis examines the
activation relationships between these nodes.]

Increasing research has demonstrated the existence of various logical structures within circuits.
Heimersheim & Nanda (2024) identified the AND and OR gates in circuits. Considering an AND
gate with node B as output and nodes A1, A2 as input, B is activated only when both A1 and A2

are activated simultaneously. Conversely, if B, A1, A2 construct an OR gate, i.e., B = A1 or A2,
then B is activated as long as at least one of A1 or A2 is activated. Similar OR gates have also been
observed in Conmy et al. (2023) and Wang et al. (2023). Furthermore, Chen et al. (2025) refined the
classification of logical structures, proposing three distinct types: AND, OR, and ADDER2.

3 CONFLICT-GUIDED LOCALIZATION

In this section, we provide a three-step framework of how circuit discovery ultimately enables precise
localization. An overview of our localization procedure is shown in Figure 2. Specifically,

• Step 1 (Section 3.1). Using the circuit discovery algorithm, we separately capture the forget
circuit and the retain circuit, corresponding to the forget set and the retain set, respectively.
The transformation from model to circuit reveals the nodes and activation connections that
are most critical for the responses to the forget and the retain set.

• Step 2 (Section 3.2). We then transform the forget circuit and the retain circuit into CNF.
The forget CNF ensures satisfiability from the perspective of forgetting, while the retain
CNF ensures satisfiability from the perspective of retaining. These two CNFs provide a
logical basis for assigning nodes to forget nodes, retain nodes, and conflict nodes.

2The ADDER gate, unlike binary gates such as AND and OR, represents a process where the output’s effect
is an accumulation of all input effects (we explain it in Appendix C). In this work, to define the CNF, we simplify
the ADDER gate in the forget circuit to an OR gate, and the ADDER gate in the retain circuit to an AND gate.
In Appendix B, we prove that such simplifications do not affect the unlearning functionality of the circuit.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Forget set

Retain set

(¬Na1 ∨ ¬Na3 ∨¬Na4)
∧(¬Na2∨¬Na3 ∨¬Na4)
∧……

Na3∧Na4∧Na5

∧(Nb1 ∨ Nb4) ∧Nb5∧Nc3

∧……

Safe nodes (value=True)
 Na3, Na4 …

Forget nodes (value=False)
 Nb2, Nb3…

Conflict nodes (no valid value)
 Na4, Nc2…

Dataset Logical Circuit CNF Localization

Na1 Na2 Na3 Na4

Nb1 Nb2 Nb3

Nc2

input

output

Nc1

Na1 Na2 Na3 Na4

Nb1 Nb4 Nb5

Nc3

input

output

Nc2

Na5

Figure 2: Overview from datasets to localization.

• Step 3 (Section 3.3). Finally, we jointly solve the forget and retain CNF to determine the
assignment of each node. nodes with value = 1 influence only the retain set, whereas nodes
with value = 0 influence only the forget set. nodes without a valid assignment (i.e., those
that produce conflicts) indicate shared influence on both the forget and retain sets.

3.1 LOGICAL CIRCUIT DISCOVERY

We utilize the Edge-Pruning (Bhaskar et al., 2024) to build an initiative circuit and logical circuit
framework (Chen et al., 2025) to further determine the logical property (AND, OR gates) of edges.

Forget set

𝒞Ns 𝒞Dn

Noising-based
intervention

Denoising-based
intervention

Retain set

𝒞Ns 𝒞Dn

Noising-based
intervention

Denoising-based
intervention

 AND OR

𝒞f

 AND OR

𝒞r

Figure 3: The processing from datasets to logical
circuits.

From each dataset, we extract a circuit using
Eq. 2, denoted as C, which attempts to recon-
struct the functionality of the computational
graph G. [Revised: Specifically, as shown in
Figure 3, for the forget set, two distinct basic
circuits, CNs and CDn, are first obtained via
noising-based intervention and denoising-based
intervention, respectively. Then, based on the in-
teraction between CNs and CDn, all edges within
them are classified as either AND or OR types,
which are subsequently combined to form a log-
ical circuit, designated as the forget circuit (Cf)
which contains all nodes and activation connec-
tions required for the model to produce original responses that are harmful. The same methodology
is applied to the retain set to derive the retain circuit (Cr) which contains all nodes and activation
connections necessary for the model to generate the original responses corresponding to the retain set.
We elaborate on the detailed process of logical circuits in Appendix C.]

3.2 CIRCUITS TO CNF

We convert the circuit into conjunctive normal form (CNF) in order to analyze the specific states of
individual nodes during the unlearning task. Specifically, we apply the Tseytin transformation to
convert AND and OR gates into CNF sub-expressions:{

clauses = (¬A ∨ ¬B ∨ C) ∧ (A ∨ ¬C) ∧ (B ∨ ¬C) (if C = A AND B)

clauses = (A ∨B ∨ ¬C) ∧ (¬A ∨ C) ∧ (¬B ∨ C) (if C = A OR B)
(3)

The above CNF conversion transforms Cf and Cr derived in Section 3.1 into the forget CNF Φf and
the retain CNF Φr. Both Φf and Φr are composed of a variable set that includes nodes (acting as A,
B, or C in Eq.3) and an output (outputf for Φf and outputr for Φr), in which all variables possess a
binary value. We define the state = 1 (True) as retaining, meaning that these nodes and circuits are
expected to persist in the post-unlearning model. We define state = 0 (False) as forgetting, meaning
that these nodes are expected to forget certain knowledge, and the corresponding circuit is expected
not to persist in the post-unlearning model. The final CNF representation is given by

Φ = Φf ∧ Φr ∧ (¬outputf) ∧ (outputr) (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

CNF Φ expects the output of Cf (i.e., outputf) to be 0 ((False)), indicating that the functionality of Cf
is removed in the post-unlearning model, and it expects the output of Cr (i.e., outputr) to be 1 ((True)),
indicating that the functionality of the Cr is retained in the post-unlearning model.

3.3 LOCALIZATION VIA CNF SOLUTION

Nodes with the same name must have identical states (1 or 0) in both Φf and Φr because they reflect
whether this node should be retained or edited for unlearning. Hence, we directly solve Eq. 4 as a
satisfiability problem to determine the specific state of each node.

Specifically, when Φ is satisfiable, all nodes with a state of 1 (True) indicate that they are in a
preserved state, so their retention will not affect the removal of the forget circuit or destroy the retain
circuit. They are unlikely to exclusively contain (or even not contain) the information to be forgotten
or they have a significant causal effect on the retain circuit. Consequently, we refer to them as “retain
nodes”. In contrast, all nodes with a state of 0 (False) represent nodes that must be removed to ensure
the forget circuit is eliminated and the retain circuit remains intact. As a result, they are likely to
exclusively or necessarily contain the information to be forgotten, or they do not make a critical
contribution to the retain circuit; hence, we call them “forget nodes”. However, if Φ is found to be
unsatisfiable, besides retain nodes and forget nodes, there will be conflict nodes. These are nodes
that do not have a consistent value across each clause in Eq. 4. Regardless of whether these nodes
have a value of 0 or 1, they cannot simultaneously satisfy the conditions of removing the forget circuit
and preserving the retain circuit. Such nodes indicate that both contain necessary information to be
forgotten and have an important causal effect on the retain set’s response (We show the case analysis
of satisfiable or unsatisfiable situation in Appendix D).

To address that, we utilize a conflict-driven clause learning SAT solver, as proposed in Zhu et al.
(2025); Fleury & Heisinger (2020), to determine the satisfiability of Φ. Additionally, this solver is
used to find the values of all nodes under the condition of a minimum number of, or no, conflict
nodes. Finally, all nodes of models can be divided into one of the following types:

Safe nodes: These include retain nodes (state=1) and nodes that do not appear in Φ. Safe nodes are
irrelevant to forget set, and do not require any editing.

Forget nodes: These are nodes with a value of 0 (False) in Φ. Forget nodes do not impact the
response of the retain set and merely have harmful information which needs to be removed to enhance
the forgetting efficacy.

Conflict nodes: These are nodes for which no valid assignment exists that satisfies Φ. On one hand,
conflict nodes must be modified to remove harmful information; on the other hand, modifying these
nodes can lead to a decrease in the retain set’s performance.

4 UNLEARNING VIA CONFLICT-GUIDED LOCALIZATION

Based on the forget and conflict nodes obtained from localization, we adopt a two-stage fine-tuning
approach for unlearning. First, we generate a forget mask (Mf) and conflict mask (Mc) with a
parameter scale equal to the language model3. In Mf, all elements corresponding to the forget node
are set to 1, while all others are set to 0. Similarly, in Mc, all elements corresponding to the conflict
node are set to 1, while all others are set to 0.

In the first stage, we begin by fine-tuning the forget nodes. Since forget nodes do not significantly
influence the response of the retain set, we only use the forget loss to constrain the fine-tuning. Thus,
the unlearning problem in this stage is defined as:

min
θf

E(x,yf)∈Df
[L(yf |x;Mf ⊙ θf + (1−Mf)⊙ θo)] (5)

where θf represents the parameters of forget nodes and θo represents parameters of other nodes.

3Taking the Zephyr-7B-beta model as an example, each layer contains seven parameter matrices: q, k, v, o,
MLPgate, MLPup, and MLPdown. There are 32 layers in total, so there are 224 parameter matrices in the
mask. The size of each parameter matrix is determined by the actual dimensions of the Zephyr-7B-beta model,
such as the q matrix, which has dimensions [4096× 4096].

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In the second stage, we further fine-tune the conflict nodes. Conflict nodes have a significant causal
effect on the responses of both the forget set and the retain set, so fine-tuning requires constraints
from both the forget and retain loss. Therefore, the unlearning problem is formulated as:

min
θc

E(x,yf)∈Df
[L(yf |x;Mf⊙θc+(1−Mf)⊙θo)]+λE(x,y)∈Dr

[L(y|x;Mf⊙θc+(1−Mf)⊙θo)]

(6)
where θc represents the parameters of forget nodes. The retain loss L(y|x;Mf ⊙ θc +(1−Mf)⊙ θo)
typically mirrors the training loss over the retain set. However, for the forget loss, there are various
types of implementations, such as GA (Liu et al., 2022), NPO (Zhang et al., 2024), and PO (Maini
et al., 2024). In this paper, we adopt PO for main results and show the ablation study about GA and
NPO.

5 EXPERIMENT SETUPS

5.1 UNLEARNING TASKS, DATASETS, MODELS, AND BASELINES

We conduct experiments on three LLM unlearning tasks4, where each task is assigned four retain
datasets. These three tasks are: WMDP Cyber (Li et al., 2024), which focuses on malicious use
prevention of LLMs in developing cyberattacks; WMDP Bio (Li et al., 2024), which assesses the
capability to prevent the hazardous knowledge in biosecurity; PKU-SafeRLHF (Ji et al., 2023),
which aims to prevent the toxic content in response to inappropriate prompts from SafeRLHF. For the
retain set, to better observe specific circuits, we selected four datasets with distinct tasks/capabilities
rather than original general corpus: Winogrande (ai2, 2019), which involves the task to infer the
correct referent of a pronoun from semantics; SST-2 (Socher et al., 2013), which includes the task
of inferring sentiment categories from a given text; RTE (Recognizing Textual Entailment) (Dagan
et al., 2022), which involves a model determining the entailment relationship between two texts; and
Bool (Suzgun et al., 2023), which includes the task of performing logical operations. Model-wise,
we follow existing practices and use the Zephyr-7B-beta model (Tunstall et al., 2024) for WMDP
Cyber and WMDP Bio, and LLaMA2-7B (Touvron et al., 2023) for PKU-SafeRLHF.

CLUE is a framework that performs both localization and fine-tuning, so we select two categories of
baselines for comparison. The first category includes localization methods for LLM unlearning, such
as WAGLE (Jia et al., 2024), DEPN (Wu et al., 2023), MEMIT (Patil et al., 2023), and PCGU (Yu
et al., 2023). The second category comprises fine-tuning methods for LLM unlearning, including
GA (Yao et al., 2024), NPO (Zhang et al., 2024), and PO (Maini et al., 2024) (Further details ain
Appendix E).

5.2 TRAINING AND EVALUATION SETUP

To obtain LLMs post-unlearning, we adopt PO as forget loss which performs better than GA and
NPO (Jia et al., 2024). All fine-tuning processes are conducted over 6 epochs, with 1 epoch for forget
nodes and the rest 5 epochs for conflict nodes. The learning rate is grid-searched at 1 × 10−5 for
each dataset. The parameter λ = 1, and we adopted AdamW (Loshchilov & Hutter, 2017) as the
optimizer. All experiments were conducted on 16 NVIDIA RTX A100 GPUs.

We evaluate the performance of unlearned LLMs from forgetting efficacy and retaining utility.
Forgetting efficacy adopts accuracy of LLMs post-unlearning on the forget set as the main metric.
For aligned tendency, we use 1-accuracy to measure forgetting efficacy. Thus, a higher 1-accuracy
indicates better unlearning. Moreover, we also provide the efficacy results about other prevalent
metrics, such as Membership inference attack (MIA) and Rouge-L, with detailed results shown
in Appendix G. Next, we measure retaining utility with accuracy in both retain set and other
non-target tasks. Specifically, for each retain dataset (one of Winogrande, SST-2, RTE, and
Bool), we first measure the accuracy on its corresponding test set (retain utility). Subsequently,
we measure the average accuracy on a series of unrelated tasks (general utility). These unrelated
tasks were evaluated using the Language Model Evaluation Harness toolkit (Gao et al., 2021) and

4We do not evaluate on the TOFU (Maini et al., 2024) and Who’s Harry Potter (Eldan & Russinovich, 2023)
datasets. This is because these datasets require a self-fine-tuned model as the baseline, and such fine-tuning
affects the circuits of non-target tasks, which leads to a lack of credibility in the results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

include: ARC-Challenge (Chollet, 2019), ARC-Easy (Chollet, 2019), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), Piqa (Bisk et al., 2020),
and TruthfulQA (Lin et al., 2021). Details about evaluation datasets are shown in Appendix E.

6 EXPERIMENT RESULTS

6.1 CAN CLUE IMPROVE LLM UNLEARNING THROUGH LOCALIZATION?

Table 1: Performance overview of LLM unlearning. “Unlearned Parameter” refers to the percentage
of parameters modified, calculated by averaging the percentage of changes in each parameter matrix.
“FE” (Forget efficacy) is measured as 1-accuracy and “RU” (Retain utility) is measured as accuracy
on the test set of the retain set. “GU” (General utility) is average accuracy on a series of non-target
tasks, and specific results can be found in Appendix F.

Method
Retain Set

Unlearned Winogrande SST-2 RTE Bool
Parameter FE↑ RU↑ GU↑ FE↑ RU↑ GU↑ FE↑ RU↑ GU↑ FE↑ RU↑ GU↑

WMDP Cyber
Origin - 0.445 0.729 0.624 0.445 0.727 0.624 0.445 0.703 0.624 0.445 0.555 0.624
GA 100% 0.658 0.254 0.332 0.665 0.151 0.312 0.647 0.067 0.367 0.652 0.124 0.325
NPO 100% 0.663 0.342 0.329 0.654 0.247 0.336 0.697 0.264 0.339 0.654 0.237 0.365
PO 100% 0.685 0.567 0.368 0.672 0.632 0.352 0.685 0.471 0.374 0.682 0.317 0.384
MEMIT 76.27% 0.669 0.662 0.384 0.673 0.567 0.359 0.675 0.524 0.386 0.690 0.335 0.386
PCGU 86.77% 0.672 0.654 0.382 0.672 0.692 0.362 0.669 0.546 0.375 0.695 0.314 0.376
DEPN 78.82% 0.695 0.817 0.431 0.702 0.731 0.379 0.712 0.457 0.416 0.715 0.429 0.396
WAGLE 90.01% 0.702 0.86 0.442 0.708 0.771 0.384 0.685 0.498 0.413 0.721 0.434 0.387
CLUE 58.16% 0.697 0.992 0.458 0.733 0.91 0.388 0.744 0.786 0.436 0.724 0.505 0.434

WMDP Bio
Origin - 0.355 0.729 0.624 0.355 0.727 0.624 0.355 0.703 0.624 0.355 0.555 0.624
GA 100% 0.564 0.064 0.375 0.675 0.124 0.379 0.564 0.125 0.385 0.568 0.214 0.354
NPO 100% 0.571 0.241 0.372 0.671 0.234 0.385 0.574 0.269 0.374 0.572 0.315 0.384
PO 100% 0.605 0.421 0.385 0.685 0.446 0.382 0.589 0.321 0.385 0.585 0.385 0.381
MEMIT 74.29% 0.591 0.672 0.429 0.695 0.619 0.399 0.547 0.395 0.421 0.605 0.421 0.395
PCGU 85.12% 0.601 0.662 0.415 0.684 0.627 0.402 0.539 0.402 0.419 0.596 0.413 0.396
DEPN 77.24% 0.605 0.739 0.469 0.701 0.761 0.424 0.546 0.443 0.471 0.599 0.429 0.441
WAGLE 90.02% 0.599 0.885 0.480 0.698 0.785 0.426 0.549 0.466 0.472 0.601 0.412 0.441
CLUE 56.19% 0.617 0.995 0.499 0.713 0.893 0.457 0.586 0.528 0.491 0.612 0.501 0.456

PKU-SafeRLHF
origin - 0.294 0.841 0.664 0.294 0.764 0.664 0.294 0.795 0.664 0.294 0.514 0.664
GA 100% 0.615 0.124 0.394 0.605 0.095 0.385 0.625 0.147 0.360 0.601 0.054 0.385
NPO 100% 0.605 0.195 0.385 0.612 0.154 0.395 0.614 0.196 0.327 0.616 0.214 0.396
PO 100% 0.625 0.361 0.395 0.623 0.225 0.396 0.623 0.314 0.395 0.625 0.387 0.402
MEMIT 77.62% 0.645 0.545 0.402 0.649 0.395 0.402 0.625 0.436 0.409 0.647 0.359 0.412
PCGU 86.29% 0.639 0.625 0.400 0.633 0.399 0.404 0.639 0.397 0.417 0.639 0.402 0.406
DEPN 74.36% 0.661 0.794 0.412 0.657 0.741 0.429 0.634 0.421 0.415 0.642 0.422 0.429
WAGLE 90.01% 0.655 0.751 0.429 0.663 0.761 0.434 0.641 0.496 0.421 0.635 0.422 0.411
CLUE 54.88% 0.724 0.956 0.462 0.681 0.883 0.455 0.656 0.682 0.429 0.659 0.536 0.438

To investigate the performance of CLUE compared to existing methods, we test the performance of
existing methods and CLUE on four different retain sets across the WMDP Cyber, WMDP Bio, and
PKU-SafeRLHF datasets. Table 1 reports the results of these performances. All experiments were
repeated five times, and the standard deviation was omitted as it was consistently less than 0.01.

It is clear that localization-based methods (MEMIT, PCGU, DEPN, WAGLE, CLUE) significantly
outperform finetuning-based methods (GA, NPO, PO) in terms of both retain utility and general
utility. We attribute this to the fact that localization can, to some extent, filter out important nodes,
thereby preventing the capabilities for non-target tasks from being affected. Furthermore, CLUE
generally outperforms existing methods in forget efficacy, retain and general utility. The advantage
in forget efficacy and utility comes from our more precise localization of forget nodes and conflict
nodes, which prevents a large number of irrelevant nodes from being fine-tuned.

To further validate the roles of the forget mask (Mf) and the conflict mask (Mc), we conduct ablation
studies on the WMDP Cyber dataset using CLUE. We choose SST-2 as the retain set. The specific
ablation measures are: “-Mf”: The fine-tuning process for the forget mask is removed, and only the
conflict mask is used for fine-tuning. “-Mc”: The conflict mask is replaced with a full-true mask

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11

retain task

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

fo
rg

et
 e

ffi
ca

cy

CLUE+Multiple tasks
WAGLE+MMLU: 0.6959
CLUE+MMLU: 0.7153

(a) Forget Efficacy

0 1 2 3 4 5 6 7 8 9 10 11

retain task

0.4

0.45

0.5

0.55

0.6

m
m

lu
 u

til
ity

CLUE+Multiple tasks
WAGLE+MMLU: 0.5530
CLUE+MMLU: 0.5516

(b) Utility of MMLU

0 1 2 3 4 5 6 7 8 9 10 11

retain task

0.4

0.45

0.5

0.55

0.6

0.65

ge
ne

ra
l u

til
ity

CLUE+Multiple tasks
WAGLE+MMLU: 0.6053
CLUE+MMLU: 0.6122

(c) General Utility

Figure 4: Performance of CLUE when retain set is MMLU dataset and multiple specific tasks.

matrix (in this mask, all values=1). “Mc to Mf”: Fine-tuning is performed first on the conflict mask
and then on the forget mask. Additionally, we investigat the impact of different fine-tuning methods
on CLUE. The default fine-tuning is “PO+PO”, where both the first and second stages use PO for
fine-tuning. We then test various combinations where each stage is replaced with “GA” or “NPO”.

Table 2: Ablation with WMDP Cyber as
forget set and SST-2 as retain set.

Method forget retain general
efficacy utility utility

CLUE 0.733 0.91 0.388
-Mf ↓ 0.045 ↓0.007 ↓0.011
-Mc ↓0.005 ↓0.264 ↓0.053
Mc to Mf ↓0.024 ↓0.192 ↓0.019
GA+GA ↓0.021 ↓0.529 ↓0.026
GA+PO ↓0.012 ↓0.067 ↓0.003
PO+GA ↓0.005 ↓0.191 ↓0.012
NPO+NPO ↓0.009 ↓0.093 ↓0.007
NPO+PO ↓0.002 ↓0.041 ↓0.006
PO+NPO ↓0.004 ↓0.081 ↓0.008

Table 2 shows that when the forget mask is removed, the
forget efficacy decreases the most. This supports the im-
portance of forget nodes for information forgetting. Sim-
ilarly, replacing the conflict mask also leads to the largest
drop in utility, which indicates that the conflict mask is
effective at preventing irrelevant nodes from being fine-
tuned. Moreover, the GA method results in a significant
performance decrease, especially in utility. This is con-
sistent with the conclusion in Zhang et al. (2024) that
GA leads to catastrophic forgetting by causing large-scale
modifications to node parameters.

Additionally, in Appendix G, we present the results for the
experiments in Table 1 on the MIA and Rouge-L metrics,
which also demonstrate that our method consistently out-
performs existing approaches. In Appendix H, we show
the performance of LLM unlearning varying different for-
get ratios, which indicates that the conflict-guided localization is beneficial for the unlearning task
across different forget ratios.

6.2 HOW CLUE PERFORMS WHEN A GENERAL CORPUS SERVES AS THE RETAIN SET?

Another question worth exploring is how CLUE performs where the retain set is a general corpus. To
investigate this, we conduct two types of experiments on WMDP Cyber: 1. CLUE paired with the
MMLU dataset (Hendrycks et al., 2020) (a general corpus as the default retain set for the WMDP)
as the retain set. 2. CLUE paired with multiple datasets from specific tasks as the retain set.

We select 12 specific tasks in total (for option 2): Winogrande, SST-2, RTE, Bool, Induction (Conmy
et al., 2023), IOI (Wang et al., 2023), Gender Bias (Vig et al., 2020), Docstring (Heimersheim &
Janiak, 2023), Great Than (Hanna et al., 2023), SA (Yu et al., 2024), arithmetic (Ghazal et al., 2013),
Reverse (Conmy et al., 2023). We then evaluate CLUE’s performance when 1 to 10 of these specific
tasks are used as the retain set. Each time, we randomly sample 20 times from the 12 specific tasks
based on the predetermined number of tasks. For comparison, we also provide the performance
of WAGLE when MMLU is used as the retain set. Figure 4 reports both experiments. The x-axis
indicates the number of retained tasks we select from the 12 specific tasks. As its number increases,
we plot the forget efficacy, utility of MMLU and general utility with blue lines. While the dotted lines
evaluates these three metrics when MMLU serves as the retain set.

Upon examining Figure 4, we can see that even when using a general corpus like MMLU as the
retain set, CLUE still demonstrates a higher forget efficacy and nearly equal utility than WAGLE.
When this is combined with the conclusions from Section 6.1, we can infer that although MMLU may
not provide sufficiently specific task circuits (because it is a multi-task dataset), it can still identify

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

KL Divergence
 forget efficacy

(a) WMDP Cyber

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) WMDP Bio

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) PKU-safeRLHF

Figure 5: Circuit Sparsity vs. Circuit Faithfulness and Forget Efficacy.

enough “forget nodes” via the forget set. Figure 4 (a) shows that when a specific task is used as the
retain set, the forget efficacy is higher than with MMLU, but it decreases as the number of specific
tasks increases. This makes sense: more specific tasks lead to more “conflict nodes,” which makes
unlearning critical information more difficult. Figure 4 (b) and (c) both indicate that as the number of
specific tasks increases, utility shows an upward trend. Because the more specific tasks there are, the
more skills or capabilities need to be retained. Although the utility on MMLU is not as high as when
MMLU provides direct supervision, at 7 number of specific tasks, the general utility can finally reach
and surpass the performance when MMLU is the retain set. This also suggests that when a sufficient
number of specific tasks are used as the retain set, the model’s utility is better preserved.

6.3 UNLEARNING PERFORMANCE VS. CIRCUIT SPARSITY AND FAITHFULNESS

In this section, we investigate the relationship between unlearning performance and circuit quality,
especially circuit sparsity and faithfulness. Sparsity is calculated by C

G , where C
G closer to 0 indicates

fewer edges in the circuit, so more sparse. Faithfulness refers to the discrepancy between the circuit
output and the computational graph output. We quantify this discrepancy using the Kullback–Leibler
(KL) divergence of the output logits, where a smaller KL divergence indicates that the circuit’s output
is closer to the original model’s output, thus demonstrating higher faithfulness.

Furthermore, a trade-off inherently exists: a more sparse circuit generally leads to lower faithfulness.
Therefore, we analyze the forget efficacy of different circuits by controlling sparsity from 0.2 to 0.95.
We use SST-2 as the retain set and evaluate the ∆ forget efficacy (i.e., forget efficacy − original
efficacy) on WMDP Cyber, WMDP Bio, and PKU-SafeRLHF datasets. Figure 5 confirms that as
the sparsity decreases, the KL divergence between the circuit and the computational graph gradually
decreases, while the ∆ forget efficacy progressively increases. It shows that the denser the circuit, the
smaller the functional gap with the computational graph, and the higher the forget efficacy. [Revised:
Empirically and from the results, the performance of unlearning generally reaches the optimal range
when sparsity attains a level of 0.7. Therefore, all remaining experiments in this paper utilize circuits
with a sparsity of 0.7.]

6.4 HOW DOES NODE LOCALIZATION CHANGE AFTER UNLEARNING?

Table 3: The number of forget nodes and conflict nodes before and after the unlearning.

Forget Set
Status of Winogrande SST-2 RTE Bool
of forget conflict forget conflict forget conflict forget conflict
Unlearning node(%) node(%) node(%) node(%) node(%) node(%) node(%) node(%)

WMDP Cyber before 15.66±0.24 32.29±1.72 3.74±0.16 44.21±1.38 4.98±0.05 43.09±1.71 3.90±0.07 44.09±1.55

after 19.47±0.27 29.47±1.31 8.61±0.17 28.01±1.56 11.94±0.39 34.71±1.39 18.94±0.74 16.33±1.72

WMDP Bio before 15.62±0.23 32.31±1.71 3.85±0.15 44.08±1.41 5.02±0.05 43.06±1.71 3.95±0.07 44.12±1.52

after 18.49±0.22 25.94±1.41 6.57±0.13 31.09±1.42 9.56±0.29 35.19±1.35 16.91±0.53 20.55±1.67

PKU-SafeRLHF before 13.46±0.52 30.63±1.05 23.03±0.66 21.06±0.53 0.73±0.00 43.36±1.39 0.42±0.00 39.85±1.37

after 18.77±0.67 22.57±1.29 28.67±0.79 15.49±0.44 5.69±0.09 31.24±1.24 3.95±0.03 26.39±1.11

In this section, we investigate whether forget nodes and conflict nodes change post-unlearning.
Table 3 presents the percentages of forget and conflict nodes for different pairings of forget and
retain sets, and it tracks their post-unlearning results. We observe that the proportion of forget
nodes significantly increases after unlearning, while the proportion of conflict nodes decreases. This

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

suggests that the conflict nodes, which is supervised by both a forget loss and a retain loss, shift the
forget and retain circuit to less overlapping locations. This implies that CLUE’s learning on conflict
nodes is effective at decoupling the forget circuit from those of other capabilities or mechanisms.

Finally, we explore the specific distribution of the forget and conflict nodes to further analyze the
response of CLUE to different nodes. Detailed results can be found in Appendix I. In simple terms,
nearly all MLPs are conflict nodes, which aligns with the finding that MLPs typically store a large
amount of information. Furthermore, compared to other methods, MEMIT appears to lack the forget
nodes, while WAGLE does not differentiate between forget nodes and conflict nodes.

7 CONCLUSION AND LIMITATION

In this paper, we introduce CLUE, a localization framework that uses circuit discovery to identify
the circuits for the forget and retain sets and converts them into a CNF. By employing a satisfiability
solver, we determine the role of each node in the unlearning task, classifying them as forget nodes,
retain nodes, or conflict nodes. We then provide targeted fine-tuning strategies for each type of
nodes. Compared to other localization methods, CLUE offers more precise node localization and
significantly outperforms existing methods in both forget efficacy and retain utility.

However, CLUE still has some limitations that can be explored further. First, the circuit is static and
cannot dynamically reflect changes in key nodes during the fine-tuning process. Therefore, exploring
the dynamics of circuits during parameter fine-tuning is a direction for future work. Additionally,
when dealing with multiple retain sets, although CLUE can identify which nodes are associated with
specific combinations of retain sets, the fine-tuning stage cannot provide targeted fine-tuning solutions
for every possible conflict combination. Consequently, developing editing methods other than fine-
tuning is another key focus of our future research. [Revised: Moreover, we must acknowledge that
there may exist potential forget datasets from which a clear circuit cannot be extracted (possibly due
to multi-domain mixing or excessive bias). Fortunately, this issue has not been observed in current
mainstream forget datasets; however, this remains a potential risk. Lastly, the inherent scalability
problems of circuit discovery also pose a significant challenge, making CLUE difficult to apply
to very large-scale language models. Nevertheless, current research (Syed et al., 2024; Lieberum
et al., 2023) is attempting to establish the feasibility of circuit discovery methods on these larger
models. Thus, the potential to resolve the scalability issues for CLUE remains a promising area of
investigation.]

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our code is publicly available in an anonymized repository linked in the abstract, which contains
the complete implementation of CLUE and related instructions (see README). Furthermore, each
theoretical step presented in the paper is supported by citations to relevant research (Chen et al.,
2025; Zhu et al., 2025). For clarification, we provide illustrative examples in Appendices B and C.
All datasets required for our experiments are available on Hugging Face and are described in detail
within the manuscript (see Section 5).

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning. Advances in Neural Information Processing Systems, 37:18506–18534, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Hang Chen, Jiaying Zhu, Xinyu Yang, and Wenya Wang. Rethinking circuit completeness in language
models: And, or, and adder gates, 2025. URL https://arxiv.org/abs/2505.10039.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Ido Dagan, Dan Roth, Fabio Zanzotto, and Mark Sammons. Recognizing textual entailment: Models
and applications. Springer Nature, 2022.

R Eldan and M Russinovich. Who’s harry potter? approximate unlearning in llms, arxiv. arXiv
preprint arXiv:2310.02238, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. Sat Competition, 2020:50, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Shawn Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jasmine Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, 10:8–9, 2021.

Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and
Hans-Arno Jacobsen. Bigbench: Towards an industry standard benchmark for big data analytics.
In Proceedings of the 2013 ACM SIGMOD international conference on Management of data, pp.
1197–1208, 2013.

11

https://arxiv.org/abs/2505.10039

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36:76033–76060, 2023.

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only
transformer. In Alignment Forum, 2023.

Stefan Heimersheim and Neel Nanda. How to use and interpret activation patching. arXiv preprint
arXiv:2404.15255, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2020.

Yoichi Ishibashi and Hidetoshi Shimodaira. Knowledge sanitization of large language models. arXiv
preprint arXiv:2309.11852, 2023.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. Advances in Neural Information Processing Systems, 36:24678–24704,
2023.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and
Sijia Liu. Model sparsification can simplify machine unlearning. arXiv preprint arXiv:2304.04934,
1(2):3, 2023.

Jinghan Jia, Jiancheng Liu, Yihua Zhang, Parikshit Ram, Nathalie Baracaldo, and Sijia Liu. Wa-
gle: Strategic weight attribution for effective and modular unlearning in large language models.
Advances in Neural Information Processing Systems, 37:55620–55646, 2024.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D
Li, Ann-Kathrin Dombrowski, Shashwat Goel, Gabriel Mukobi, et al. The wmdp benchmark:
Measuring and reducing malicious use with unlearning. In International Conference on Machine
Learning, pp. 28525–28550. PMLR, 2024.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice
capabilities in chinchilla. arXiv preprint arXiv:2307.09458, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2021.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference on
Lifelong Learning Agents, pp. 243–254. PMLR, 2022.

Chris Liu, Yaxuan Wang, Jeffrey Flanigan, and Yang Liu. Large language model unlearning via
embedding-corrupted prompts. Advances in Neural Information Processing Systems, 37:118198–
118266, 2024.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao,
Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large language
models. Nature Machine Intelligence, pp. 1–14, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. Tofu: A
task of fictitious unlearning for llms. In First Conference on Language Modeling, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

Samiyuru Menik and Lakshmish Ramaswamy. Towards modular machine learning solution develop-
ment: Benefits and trade-offs. arXiv preprint arXiv:2301.09753, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931–962. PMLR, 2021.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms?
objectives for defending against extraction attacks. In The Twelfth International Conference on
Learning Representations, 2023.

Martin Pawelczyk, Seth Neel, and Himabindu Lakkaraju. In-context unlearning: Language models as
few-shot unlearners. In International Conference on Machine Learning, pp. 40034–40050. PMLR,
2024.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic
interpretability for transformer-based language models. arXiv preprint arXiv:2407.02646, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D13-1170.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 13003–13051, 2023.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural
Networks for NLP, pp. 407–416, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. In Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pp. 466–483. Springer, 1983.

Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr:
Direct distillation of lm alignment. In First Conference on Language Modeling, 2024.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
Advances in neural information processing systems, 33:12388–12401, 2020.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, Shuangzhi Wu, Chao Bian, and Deyi Xiong.
Depn: Detecting and editing privacy neurons in pretrained language models. In The 2023 Confer-
ence on Empirical Methods in Natural Language Processing, 2023.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in Neural
Information Processing Systems, 37:105425–105475, 2024.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language
models by partitioning gradients. In Findings of the Association for Computational Linguistics:
ACL 2023, pp. 6032–6048, 2023.

13

https://www.aclweb.org/anthology/D13-1170

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lei Yu, Jingcheng Niu, Zining Zhu, and Gerald Penn. Functional faithfulness in the wild: Circuit
discovery with differentiable computation graph pruning. arXiv preprint arXiv:2407.03779, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. In First Conference on Language Modeling, 2024.

Jiaying Zhu, Ziyang Zheng, Zhengyuan Shi, Yalun Cai, and Qiang Xu. Circuit-aware sat solving:
Guiding cdcl via conditional probabilities, 2025. URL https://arxiv.org/abs/2508.
04235.

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we utilized a large language model (LLM) as an assistive tool
toenhance the quality of our writing and presentation. The LLM’s role was strictly confined to
refining the manuscript’s writing and formatting, without generating any core scientific content or
data.

B EXAMPLE FROM CIRCUIT TO CNF

A1 A2 A3 A4 A5 A6

B1 B2 B3

C1 C2

Input

Output

OROR

ORAND

AND

ADDER

Figure 6: The toy circuit with AND, OR,
and ADDER gate.

Following the notion of logical circuits introduced
in (Chen et al., 2025), we construct a toy circuit as il-
lustrated in Figure 6. The semantics of the three gates are
defined as follows:

AND gate. The receiver node is activated if and only if
the activation states of all sender nodes equal 1; otherwise,
the receiver node remains inactive.

OR gate. The receiver node is inactive if and only if the
activation states of all sender nodes equal 0; otherwise, the
receiver node is activated.

ADDER gate. Unlike the previous two gates, the receiver
node in this case admits multiple intermediate activation
states rather than a binary activated/inactivated outcome.
Each intermediate state corresponds to the contribution of
a sender node, with all sender nodes treated as equally weighted and independent. For example, if
only one sender node has activation state equal to 1, then the receiver node has activation state 1; if
two sender nodes are active, then the receiver node has activation state 2, and so on. In general, the
logical relation is expressed as receiver node = sender node1 + sender node2 + · · · .

We use an activation state of 1 to indicate that a given node should be retained and state of 0 to
indicate that it should be unlearned. To preserve the maximal capability of the retain set, the gates are
governed by the following rules:

• AND gate: all sender nodes must be retained.

• OR gate: at least one sender node must be retained.

• ADDER gate: all sender nodes must be retained; otherwise, the receiver node fails to reach
its optimal activation value, thereby impairing the model’s capability on the retain set.

Consequently, we define both the AND gate and the ADDER gate as conjunctions (denoted by the
symbol ∧), while the OR gate is defined as a disjunction (denoted by the symbol ∨). In this definition,
the ADDER gate only has two states (0/1). For the toy circuit in Figure 6, this leads to the following
conjunctive normal form (CNF):

14

https://arxiv.org/abs/2508.04235
https://arxiv.org/abs/2508.04235

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

output = C1 ∧ C2 ∧B1 ∧B2 ∧ (B2 ∨B3) ∧ (A1 ∨A2) ∧A3 ∧A4 (7)

Analogously, for the forget set, we represent the state of each gate using a negation operator (¬),
since the capability of the forget set is ideally satisfied when all nodes in the circuit have activation
state equal to 0. In this setting, the AND gate is expressed as a disjunction. The reason is that, to
unlearn the capability associated with the forget set, it suffices to unlearn any one of the incoming
edges of an AND gate. For example, in Figure 6, we have ¬C1 = ¬B1 ∨ ¬B2 .

By contrast, both the OR gate and the ADDER gate are expressed as conjunctions. This is because
all of their sender nodes must be unlearned to ensure that the capability of the entire gate is forgotten.
For instance, ¬B3 = ¬A5 ∧ ¬A6 .

Therefore, if Figure 6 corresponds to the forget set, the resulting conjunctive normal form (CNF) can
be written as

output =¬C1 ∧ ¬C2 ∧ (¬B1 ∨ ¬B2) ∧ ¬B2¬B3∧
(¬A1 ∨ ¬A3 ∨ ¬A4) ∧ (¬A2 ∨ ¬A3 ∨ ¬A4) ∧ (¬A3 ∨ ¬A4) ∧ ¬A5 ∧ ¬A6

(8)

Evidently, the CNF corresponding to the retain set is always satisfiable when all sender nodes satisfy
state=1, and the CNF corresponding to the forget set is always satisfiable when all sender nodes
satisfy state=0.

The above analysis proves that in the forget circuit, the propositional logic of the ADDER gate is the
same as that of the OR gate, while in the retain circuit, the propositional logic of the ADDER gate is
the same as that of the AND gate. Therefore, in the actual implementation, we convert the ADDER
gate in the forget circuit into an OR gate and the ADDER gate in the retain circuit into an AND gate.
Then, we use the logically complete Tseytin transformation to convert them into CNF.

C DETAILS OF LOGICAL CIRCUIT FRAMEWORK

At first, we systematically introduce three fundamental circuit logic types: the AND gate, OR gate,
and ADDER gate (Chen et al., 2025).

Definition 1. We assume a common paradigm in which a receiver node B, which is connected by
more than 1 sender node A1, A2, For any edge Ai → B, we use binary values ‘0’ and ‘1’ to
represent the activation state of a node. Specifically, Ai = 0 indicates that node Ai is removed,
ablated, or deactivated, whereas Ai = 1 indicates that node Ai is retained and active. When the
sender nodes are ablated, the effect of node B on the output exhibits three distinct patterns, which
are as follows:

AND: All sender nodes satisfy an AND logical relationship with the receiver node, i.e., B =
A1 ∧A2 ∧ In this case, node B exerts a significant effect on the output only if all of its sender
nodes are retained. If even a single sender node is ablated, the effect of B on the output is nearly
eliminated.

OR gate: All sender nodes satisfy an OR logical relationship with the receiver node, i.e., B =
A1 ∨A2 ∨ In this case, node B always exerts a significant effect on the output if one or more of
its sender nodes are retained. Only if all sender nodes are ablated, the effect of B on the output is
nearly eliminated.

ADDER gate: all sender nodes satisfy an ADDER logical relationship with the receiver node, i.e.,
B = A1 + A2 + In this case, node B exhibits its maximal effect on the output only when all
of its sender nodes are retained. If any single sender node is ablated, the effect of B on the output
is substantially diminished; when all sender nodes are ablated, B’s effect on the output is reduced
to zero. Accordingly, we define the state of B as taking values 0,1,2,. . . , where the total number of
distinct states equals the number of sender nodes.

Theoretical analyses support the view that noising-based intervention is capable of recovering a
complete AND gate but fails to recover a complete OR gate, whereas denoising-based intervention
demonstrates the opposite pattern (Heimersheim & Nanda, 2024). This asymmetry is straightforward

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

to interpret. The noising-based intervention procedure corresponds to the transition from a clean
activation state (state = 1) to a corrupted activation state (state = 0). Since all gates can be
regarded as being initialized with activation states equal to 1, any transition to state = 0 induces a
significant change in the effect of AND and ADDER gates on the output. Consequently, noising-based
intervention can reliably identify AND and ADDER gates.

The denoising-based intervention first performs the corrupted run in the computational graph, and
then replaces the corrupted activations with the clean activations. Those activations that lead to
significant changes in the output (ỹ) consist of the circuits. denoising-based intervention thus has the
following objective:

argmin
C

E(x,x̃)∈T [D(pG(ỹ|x̃)||pC(ỹ|x̃, x))], s.t. 1− |C|/|G| ≥ s (9)

Conversely, the denoising-based intervention procedure corresponds to initialization with activation
states equal to 0. In this case, any transition to state = 1 produces a significant change in the effect of
OR and ADDER gates on the output.

Therefore, we denote the circuit constructed under the noising-based intervention strategy as CNs,
and the one constructed under the denoising-based intervention strategy as CDn. Based on the above
set-theoretic relationships between CNs and CDn, we extract subsets of edges corresponding to AND,
OR, and ADDER gates as follows:

• AND gate (CAND): edges that are present in CNs but absent from CDn.

• OR gate (COR): edges that are present in CDn but absent from CNs.

• ADDER gate (CADDER): edges that are shared between CNs and CDn.

Therefore, we propose a combined Ns+Dn approach to recover logically complete gates. This method
is compatible with a wide range of circuit discovery algorithms, introduces minimal additional
computational overhead, and enables clear and effective separation of the three types of logic gates.
Ns+Dn has the following objective:

argmin
C

E(x,x̃)∈T [D(pG(y|x)||pC(y|x, x̃)) +D(pG(ỹ|x̃)||pC(ỹ|x̃, x))], s.t. 1− |C|/|G| ≥ s (10)

Finally, we simplify the ADDER gate in the forget circuit to an OR gate, and the ADDER gate in the
retain circuit to an AND gate, as shown in Appendix B.

D CASE ANALYSIS OF CNF-SATISFIABILITY PROBLEM

D.1 SATISFIABLE SITUATION

For example, similar to Eq. 3, let Cf : outputf = A AND B and Cr : outputr = A OR B. Then,

Φ =(¬A ∨ ¬B ∨ outputf) ∧ (A ∨ ¬outputf) ∧ (B ∨ ¬outputf) ∧ (A ∨B ∨ ¬outputr)∧
(¬A ∨ outputr) ∧ (¬B ∨ outputr) ∧ (¬outputf) ∧ (outputr)

(11)

Φ being satisfiable would require the value assignment for [A,B, outputf, outputr] to be either
[0, 1, 0, 1] or [1, 0, 0, 1]. Both of these outcomes ensure that Cf is corrupted while Cr is preserved. In
this case, one of A and B must be changed while the other is preserved. For instance, if A = 1 and
B = 0, preserving A has no impact on violating Cf or maintaining Cr. Therefore, A is a retain node,
and correspondingly, B is a forget node. Conversely, if A = 0 and B = 1, then A becomes the forget
node and B the retain node. This is intuitive: in Cf, A and B are related by AND logic, so neither A
nor B exclusively or independently contains the information to be forgotten. Similarly, in Cr, A and
B are related by OR logic, which means that both A and B individually have a significant influence
on outputr.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2 UNSATISFIABLE SITUATION

For example, let Cf : outputf = A OR B and Cr : outputr = B AND C. Then,

Φ =(A ∨B ∨ ¬outputf) ∧ (¬A ∨ outputf) ∧ (¬B ∨ outputf) ∧ (¬B ∨ ¬C ∨ outputr)∧
(B ∨ ¬outputr) ∧ (C ∨ ¬outputr) ∧ (¬outputf) ∧ (outputr)

(12)

Φ being satisfiable would require the outputf = 0, and thus A= 0, B= 0. However, Φ would also
require the outputr = 1, and thus B= 1, C= 1. In this instance, A must be 0, which categorizes it
as a forget node. This is because the state of A alone is sufficient to determine the outcome of Cf,
meaning A exclusively and independently contains the information to be forgotten. Analogously, C
must be 1, identifying it as a retain node, as it is independent of Cf and thus requires no modification.
B, however, is a conflict node: to remove Cf, it must be changed (value=0), yet to preserve Cr, it must
be maintained (value=1).

E DETAILS ABOUT EXPERIMENT SETUPS

E.1 MODEL CONFIGURATIONS

For the WMDP task, we select the original Zephyr-7B-beta as the pretrained model. For the PKU-
SafeRLHF task, we selected LLaMA2-7B as the foundational model for our study. All experiments
were conducted on 16 NVIDIA RTX A100 GPUs. Each experiment takes approximately 5 minutes
per 100 steps. We adopt the same rejection-based answers designed by Jia et al. (2024).

E.2 UNLEARNING CONFIGURATIONS

All fine-tuning are conducted over 6 epochs, with 1 epoch for forget nodes and the rest 5 epochs
for conflict nodes. The learning rate is grid-searched at 1 × 10−5 for each task and datasets. The
parameter λ is set to 1 for each method across all tasks, and we adopted AdamW (Loshchilov &
Hutter, 2017) as the optimizer.

E.3 BASELINES

DEPN (Wu et al., 2023) (Detect and Edit Privacy Neurons) is a framework designed to safeguard
against privacy leakage in pretrained language models by localizing and editing specific neurons. The
method’s core localization component is a novel privacy neuron detector that uses a gradient-based
attribution technique. This detector computes a privacy attribution score for each neuron to quantify
its contribution to the model’s leakage of private information. This is achieved by calculating the
cumulative gradient of the output probability with respect to the neuron’s activation value, as the
activation is gradually changed from zero to its original value.

WAGLE (Jia et al., 2024) (Weight Attribution-guided LLM Unlearning Framework) is a framework
that pinpoints the most influential weights for unlearning through a strategic weight attribution
method. The method frames the weight attribution problem as a bi-level optimization (BLO) problem,
which allows it to balance unlearning efficacy with utility preservation. The core of the localization
process is the derivation of a closed-form attribution score for each weight, calculated using the
implicit gradient from the BLO problem. This score’s value is determined by combining the gradients
from both the forget loss and the retain loss.

PCGU (Yu et al., 2023) (Partitioned Contrastive Gradient Unlearning) is a gray-box method for
unlearning social biases by localizing the specific weights responsible for encoding them. The
method’s localization strategy is based on comparing gradients from ”contrastive sentence pairs,”
which are sentences that are minimally different in a specific domain, such as gender. PCGU first
partitions the model’s parameter set into discrete weight vectors or blocks. It then computes the
gradients for each sentence in a pair with respect to these weight blocks. By measuring the cosine
similarity between the gradients of the two sentences, it identifies the weight blocks that are most
relevant to the targeted bias (i.e., those with the lowest cosine similarity between their gradients).

MEMIT (Patil et al., 2023) ((Mass-Editing Memory in a Transformer)) addresses the deletion of
factual information by causal tracing, a denoising-based intervention method. This approach relies

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

on the assumption that knowledge is stored in specific, localized components of the network, and can
be identified via causal mediation.

GA (Yao et al., 2024) (Gradient Ascent) encourages the response of the LLM post-unlearning to
deviate from its original response within the training set.

NPO (Zhang et al., 2024) (Negative Preference Optimization) specifies the forget loss as the loss of
direct preference optimization by treating the forgotten data exclusively as negative examples. The
NPO loss outperforms the GA loss due to its improved stability, avoiding catastrophic collapse in
forgetting and utility preservation during optimization.

PO (Maini et al., 2024) (Preference Optimization) is also inspired by DPO but introduces targeted
unlearning responses such as ’I don’t know’ or responses stripped of sensitive information, treating
these exclusively as positive examples for preference alignment.

E.4 RETAIN SET

We select a series of specific tasks as retain set: Winogrande, SST-2, RTE, Bool, Induction, IOI,
Gender Bias, Docstring, Great Than, SA, arithmetic, Reverse. We show the examples of each task in
the Table 4.

Table 4: An overview of the datasets of specific tasks.
Task Example Label
Winograde John moved the couch from the garage to the backyard to create space. The is small. garage
SST-2 hide new secretions from the parental units negative

RTE No Weapons of Mass Destruction Found in Iraq Yet. not entailmentWeapons of Mass Destruction Found in Iraq.
Bool (True AND True) OR False True
Induction Vernon Dursley and Petunia Durs ley
IOI When John and Mary went to the store, Mary gave a bottle of milk to John
Gender Bias So Evan is a really great friend, isn’t he

Docstring

def f(self, files, obj, state, size, shape, option):

shape:param state: performance analysis
:param size: pattern design
:param

Great Than The war lasted from 1517 to 15 18
SA Many girls insulted themselves
arithmetic 12 plus 18 equals 30
Reverse [0, 3, 2, 1] [1, 2, 3, 0]

F RESULTS ON DETAILED GENERAL UTILITY

In this section, we report the specific accuracy for all non-target tasks, which can be found in Table 5.

G RESULTS ON MIA AND ROUGE-L

As introduced by Jia et al. (2024), membership inference attack (MIA) is evaluated by the area under
the ROC curve using Min-20% Prob to detect if the provided text belongs to the training or testing
set. We apply MIA to the forget set; thus, a higher MIA score indicates a higher confidence in
predicting that the forget data point does not belong to the training set. Moreover, Rouge-L recall
is also measured over the forget set. A lower value corresponds to better unlearning. The metric
1-Rouge-L is also used for ease of performance averaging. We show the results of MIA and Rouge-L
in Table 6.

H SCALABILITY AND ROBUSTNESS OF CLUE AT VARIOUS FORGET RATIOS

In this section, we investigate the performance of CLUE and other localization methods under varying
forget ratios. Specifically, we define the forget ratio as the ratio of modified parameters and examine

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 0.2 0.4 0.6 0.8 1

forget ratio

0.55

0.6

0.65

0.7

0.75

fo
rg

et
 e

ffi
ca

cy

CLUE
WAGLE
DEPN
PCGU
MEMIT

(a) WMDP Cyber FE

0 0.2 0.4 0.6 0.8 1

forget ratio

0.32

0.34

0.36

0.38

0.4

ge
ne

ra
l u

til
ity

(b) WMDP Cyber RU

0 0.2 0.4 0.6 0.8 1

forget ratio

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ta

in
 u

til
ity

(c) WMDP Cyber GU

0 0.2 0.4 0.6 0.8 1

forget ratio

0.5

0.55

0.6

0.65

0.7

0.75

fo
rg

et
 e

ffi
ca

cy

CLUE
WAGLE
DEPN
PCGU
MEMIT

(d) WMDP Bio FE

0 0.2 0.4 0.6 0.8 1

forget ratio

0.38

0.4

0.42

0.44

0.46

ge
ne

ra
l u

til
ity

(e) WMDP Bio RU

0 0.2 0.4 0.6 0.8 1

forget ratio

0.5

0.6

0.7

0.8

0.9

re
ta

in
 u

til
ity

(f) WMDP Bio GU

0 0.2 0.4 0.6 0.8 1

forget ratio

0.5

0.55

0.6

0.65

0.7

fo
rg

et
 e

ffi
ca

cy

CLUE
WAGLE
DEPN
PCGU
MEMIT

(g) PKU safeRLHF FE

0 0.2 0.4 0.6 0.8 1

forget ratio

0.3

0.35

0.4

0.45

0.5

ge
ne

ra
l u

til
ity

(h) PKU safeRLHF RU

0 0.2 0.4 0.6 0.8 1

forget ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
ta

in
 u

til
ity

(i) PKU safeRLHF GU

Figure 7: Preference of LLM unlearning at various forget ratios, FE means forget efficacy, RU
represents the retain utility, GU represents general utility.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Performance on specific non-target tasks. We report the accuracy metric with WMDP Cyber
as forget set.

retain set Method mmlu arcchallenge arceasy boolq hellawasg openbookqa piqa rte truthqagen truthqamc1 truthqamc2 winogrande average

Winogrande

GA 0.2655 0.2144 0.3214 0.5417 0.2549 0.202 0.6041 0.4571 0.0635 0.2216 0.4371 0.4019 0.3322
NPO 0.2647 0.2194 0.3317 0.5549 0.2517 0.202 0.6044 0.4419 0.0571 0.2549 0.3517 0.4219 0.3296
PO 0.2846 0.2519 0.3946 0.5617 0.2207 0.2407 0.5817 0.5841 0.0617 0.2519 0.4217 0.5517 0.3688
MEMIT 0.2846 0.2573 0.3907 0.5519 0.2517 0.2419 0.5719 0.6671 0.0938 0.2594 0.4417 0.6074 0.3847
PCGU 0.2847 0.2674 0.3847 0.5671 0.2694 0.2574 0.5571 0.6574 0.0473 0.3097 0.4571 0.533 0.3827
DEPN 0.2501 0.2857 0.4184 0.6217 0.401 0.226 0.6893 0.6282 0.3293 0.2289 0.4616 0.6283 0.4314
WAGLE 0.3337 0.3336 0.5543 0.8116 0.3868 0.18 0.6757 0.7292 0.033 0.2387 0.4563 0.5722 0.4421
CLUE 0.4104 0.3387 0.5762 0.8367 0.3785 0.202 0.6474 0.6859 0.0612 0.2583 0.4926 0.6101 0.4582

SST-2

GA 0.2144 0.2549 0.4127 0.3147 0.2571 0.1256 0.4679 0.5217 0.0214 0.2264 0.4172 0.5174 0.3129
NPO 0.2347 0.2617 0.4318 0.3604 0.3618 0.1304 0.4729 0.5329 0.0317 0.2517 0.4237 0.5367 0.3361
PO 0.2509 0.2847 0.4137 0.4097 0.3849 0.1517 0.4593 0.5873 0.0437 0.2849 0.4307 0.5376 0.3528
MEMIT 0.2617 0.2849 0.4219 0.4137 0.2849 0.2576 0.4581 0.5837 0.0674 0.2947 0.4137 0.5643 0.3591
PCGU 0.2517 0.2719 0.4739 0.4016 0.2674 0.2519 0.4673 0.5917 0.0419 0.2873 0.4473 0.5879 0.3622
DEPN 0.3047 0.2617 0.5493 0.3677 0.4019 0.22 0.6579 0.5017 0.0463 0.2017 0.4219 0.6257 0.3796
WAGLE 0.3114 0.2807 0.4491 0.3899 0.3931 0.22 0.6464 0.5207 0.0273 0.2497 0.4664 0.6582 0.3844
CLUE 0.2387 0.2901 0.436 0.3914 0.4192 0.22 0.642 0.5451 0.0465 0.2668 0.4985 0.6622 0.3880

RTE

GA 0.2017 0.2347 0.4419 0.6057 0.3617 0.1208 0.5319 0.4739 0.207 0.2057 0.4317 0.5976 0.3677
NPO 0.2067 0.2217 0.4319 0.2977 0.3517 0.1549 0.5037 0.4497 0.202 0.1849 0.4395 0.63517 0.3394
PO 0.2149 0.2549 0.4367 0.6207 0.3491 0.1422 0.5537 0.5037 0.202 0.2067 0.4019 0.6082 0.3745
MEMIT 0.2166 0.2537 0.4691 0.6255 0.3847 0.1437 0.5594 0.5017 0.217 0.2257 0.4137 0.6107 0.3864
PCGU 0.2147 0.2549 0.4317 0.6217 0.3429 0.147 0.5517 0.5037 0.2094 0.2037 0.4067 0.6071 0.3755
DEPN 0.2547 0.302 0.4701 0.6584 0.375 0.184 0.6643 0.5487 0.2367 0.2264 0.4482 0.633 0.4168
WAGLE 0.3784 0.2834 0.4377 0.5957 0.3365 0.196 0.6268 0.7329 0.0257 0.2558 0.4963 0.6006 0.4138
CLUE 0.4074 0.2722 0.607 0.5667 0.4339 0.18 0.6115 0.7354 0.0808 0.2497 0.4922 0.602 0.4366

Bool

GA 0.2176 0.2517 0.3744 0.2849 0.3479 0.1437 0.4873 0.4319 0.207 0.1673 0.4037 0.6037 0.3257
NPO 0.2943 0.2674 0.4237 0.3619 0.3729 0.2046 0.6273 0.5037 0.0237 0.2219 0.4439 0.6319 0.3655
PO 0.3114 0.2849 0.4437 0.3958 0.3946 0.2344 0.6491 0.5267 0.0255 0.2438 0.4691 0.6533 0.3841
MEMIT 0.2855 0.2515 0.4973 0.7067 0.2943 0.127 0.5937 0.5217 0.3299 0.1247 0.359 0.5438 0.3867
PCGU 0.3057 0.2294 0.4538 0.6471 0.2594 0.106 0.5937 0.5938 0.2811 0.1673 0.3894 0.4936 0.3769
DEPN 0.2935 0.2527 0.6199 0.5973 0.2867 0.196 0.4937 0.6273 0.418 0.1579 0.3657 0.4533 0.3964
WAGLE 0.2691 0.2517 0.3784 0.7055 0.3259 0.19 0.6007 0.5776 0.033 0.2509 0.4837 0.5833 0.3875
CLUE 0.3706 0.3157 0.4949 0.7324 0.3737 0.206 0.6627 0.5848 0.0747 0.2521 0.4893 0.6551 0.4343

Table 6: Performance overview of LLM unlearning with 1-accuracy, MIA, Rouge-L as metrics for
forget efficacy.

Method
Retain Set

Unlearned Winogrande SST-2 RTE Bool
Parameter 1-accuracy↑ MIA↑ Rouge-L↑ 1-accuracy↑ MIA↑ Rouge-L↑ 1-accuracy↑ MIA↑ Rouge-L↑ 1-accuracy↑ MIA↑ Rouge-L↑

WMDP Cyber
Origin - 0.4454 0.4238 0.0159 0.4454 0.4394 0.0159 0.4454 0.4163 0.0159 0.4454 0.4361 0.0159
GA 100% 0.6583 0.9517 0.3957 0.6651 0.9428 0.3849 0.6477 0.9257 0.3829 0.6527 0.9637 0.3915
NPO 100% 0.6639 0.9647 0.3296 0.6542 0.9556 0.3511 0.6976 0.9645 0.3519 0.6548 0.9428 0.3156
PO 100% 0.6851 0.6357 0.3519 0.6729 0.6724 0.3691 0.6851 0.5821 0.3636 0.6826 0.6411 0.3894
MEMIT 76.27% 0.6691 0.6259 0.4029 0.6738 0.6619 0.3664 0.6759 0.6237 0.3594 0.6908 0.6258 0.3674
PCGU 86.77% 0.6724 0.6871 0.4336 0.6721 0.6849 0.3294 0.6691 0.6482 0.3667 0.6955 0.6364 0.3845
DEPN 78.82% 0.6955 0.6644 0.4418 0.7025 0.6237 0.3558 0.7129 0.6553 0.3127 0.7156 0.6318 0.3946
WAGLE 90.01% 0.7021 0.6821 0.4309 0.7081 0.6884 0.3619 0.6851 0.6418 0.3618 0.7217 0.6138 0.3746
CLUE 58.16% 0.6975 0.7926 0.4692 0.7333 0.7713 0.4671 0.7445 0.7827 0.4967 0.7242 0.7734 0.4108

WMDP Bio
Origin - 0.3551 0.4109 0.0122 0.3551 0.4219 0.0122 0.3551 0.4057 0.0122 0.3551 0.4577 0.0122
GA 100% 0.5647 0.9662 0.3755 0.6751 0.9554 0.2741 0.5649 0.9234 0.3685 0.5683 0.9384 0.3815
NPO 100% 0.5718 0.9517 0.3215 0.6719 0.9618 0.3138 0.5741 0.9543 0.3348 0.5722 0.9613 0.2348
PO 100% 0.6059 0.6349 0.3851 0.6853 0.6138 0.2348 0.5892 0.6518 0.4318 0.5856 0.6138 0.4128
MEMIT 74.29% 0.5919 0.5647 0.3189 0.6955 0.5196 0.4318 0.5477 0.6618 0.3841 0.6051 0.6138 0.3188
PCGU 85.12% 0.6011 0.6219 0.4318 0.6849 0.6138 0.313 0.5391 0.5384 0.3186 0.5967 0.3561 0.3388
DEPN 77.24% 0.6053 0.6358 0.3189 0.7018 0.6038 0.4318 0.5463 0.6138 0.3181 0.5993 0.5313 0.4885
WAGLE 90.02% 0.5997 0.6617 0.4189 0.6984 0.5831 0.4831 0.5491 0.6913 0.3384 0.6009 0.6318 0.4528
CLUE 56.19% 0.6174 0.6922 0.4851 0.7136 0.7216 0.6599 0.5869 0.6955 0.5219 0.6123 0.6419 0.6335

PKU-SafeRLHF
origin - 0.2941 0.4219 0.0094 0.2941 0.4655 0.0094 0.2941 0.4319 0.0094 0.2941 0.4408 0.0094
GA 100% 0.6154 0.9217 0.3574 0.6055 0.9517 0.3519 0.6259 0.9492 0.3622 0.6019 0.9247 0.3661
NPO 100% 0.6055 0.9315 0.3691 0.6129 0.9427 0.3367 0.6144 0.9255 0.3359 0.6168 0.9366 0.2943
PO 100% 0.6259 0.6319 0.4296 0.6235 0.6217 0.4219 0.6238 0.6731 0.4127 0.6255 0.8412 0.5137
MEMIT 77.62% 0.6459 0.5839 0.4935 0.6491 0.5394 0.4339 0.6255 0.6329 0.3629 0.6471 0.6719 0.3233
PCGU 86.29% 0.6394 0.5638 0.4163 0.6336 0.6173 0.3659 0.6399 0.5843 0.3816 0.6392 0.6652 0.4062
DEPN 74.36% 0.6617 0.6173 0.3195 0.6573 0.6628 0.3816 0.6347 0.6319 0.4457 0.6429 0.5937 0.4138
WAGLE 90.01% 0.6559 0.6284 0.3326 0.6637 0.5973 0.4219 0.6417 0.6642 0.4369 0.6357 0.6173 0.3907
CLUE 54.88% 0.7249 0.8411 0.6305 0.6813 0.7359 0.6262 0.6561 0.6904 0.5391 0.6594 0.7216 0.6617

the performance of our localization methods in terms of forget efficacy, retain utility, and general
utility for forget ratios of [0.1, 0.2, 0.5, 0.8, 0.9]. For our experiments, the retain set used is SST-2.

Figure 7 shows the performance on WMDP Cyber, WMDP Bio, and PKU-safeRLHF. It is evident
that as the forget ratio increases, the unlearning efficacy improves; however, the utility trend is
more volatile and non-monotonic. Nevertheless, CLUE consistently outperforms other localization
methods. This demonstrates that our identification of both forget nodes and conflict nodes is beneficial
for the unlearning task across all tested forget parameter ratios.

I DISTRIBUTION OF DIFFERENT NODES

In this section, we investigate the proportion of different parameter types within forget nodes and
conflict nodes. For a comparative analysis, we also include the parameter distributions from MEMIT

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

attn_q attn_k attn_v attn_o MLP

Parameters

0

20

40

60

80

100

P
er

ce
nt

ag
e

52.66

89.57

48.43

36.23

84.66

29.12
33.61

30.01

2.73
32.74

25.44

32.67

28.12

1.95
30.07 28.66

59.47

26.07

30.46

56.53

81.25

90.01

87.50

12.50

100.00
MEMIT
WAGLE
CLUE (Conflict Neuron)
CLUE (Forget Neuron)

(a) Winogrande

attn_q attn_k attn_v attn_o MLP

Parameters

0

20

40

60

80

100

P
er

ce
nt

ag
e 78.31

90.55

80.27

7.03
87.30

53.49
57.49

48.04

5.86
53.90

41.51

53.37

43.75

5.86
49.61

42.66
48.71

35.54

6.05
41.59

96.87

90.01

100.00

100.00

(b) SST-2

attn_q attn_k attn_v attn_o MLP

Parameters

0

20

40

60

80

100

P
er

ce
nt

ag
e

80.16
85.47

83.49

83.49

19.44
24.67

21.88

1.95
23.83

19.45
24.67

22.66

1.17
23.83

32.74

55.39

33.59

20.99

54.58

87.5090.01

96.87

3.12
99.99

(c) RTE

attn_q attn_k attn_v attn_o MLP

Parameters

0

20

40

60

80

100

P
er

ce
nt

ag
e

85.47
90.10

87.20

1.17
88.37

21.37
26.33

24.60

1.95
26.55 24.09

28.34

25.39

5.07
30.46

19.37

53.07

22.75

27.05

49.80

81.75

90.01

81.25

18.75

100.00

(d) Bool

Figure 8: Nodes distribution of Zephyr-7B-beta model in WMDP Cyber.

and WAGLE. MEMIT uses a method similar to circuit discovery to identify important nodes but
relies exclusively on a denoising-based intervention. As has been confirmed by existing work (Chen
et al., 2025), such a circuit is incomplete, lacking the necessary logical reasoning nodes. WAGLE, on
the other hand, employs a gradient-based weight attribution method, which often makes it difficult to
discover equivalent paths within OR gates.

Figure 8 illustrates the node distributions for four retain sets, with the Zephyr-7B-beta model and
the WMDP Cyber dataset serving as the forget set. MLPs constitute the largest proportion, as
they are generally considered the most information-rich memory units. An interesting pattern also
emerges: outside of the MLPs, the number of nodes identified by MEMIT is similar to the number of
conflict nodes found by our method (CLUE). In contrast, the number of nodes found by WAGLE
is comparable to the sum of both forget nodes and conflict nodes identified by our approach. This
observation further confirms our viewpoint. Due to its lack of circuit completeness, MEMIT fails to
discover forget nodes from a sufficient logical structure. Meanwhile, WAGLE, by not considering the
influence of causal effects, cannot discover OR gates and thus includes all common nodes.

J THE BENCHMARK OF COMPUTATION COST

[Revised: To evaluate the time and computational resource expenditure of our method, particularly in
comparison to existing approaches, we conducted assessments on the WMDP Cyber and WMDP
Bio datasets using the Zephyr-7B-beta model. The experimental environment was equipped with 16
NVIDIA RTX A100 GPUs. For comparison with existing methods, we selected GA as a representative
fine-tuning method and WAGLE as a representative localization method. The Table 7 and 8 shows the
time required for localization and fine-tuning for these methods. It demonstrates that our method does
not introduce significant time overhead. However, when combined with the performance in forget
efficacy and retain utility presented in Table 1, our method exhibits the highest cost-effectiveness.
Specifically, we evaluated the computational time of our approach on two circuit discovery methods:
Edge-Pruning, which fits the circuit by adding a differentiable mask, and EAP, which directly
computes the circuit using a first-order Fourier transform. Furthermore, the time required for SAT
solving was consistently under one minute, largely attributable to a well-defined initialization process.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Consequently, the overall computational overhead of our entire pipeline is comparable to that of
existing approaches. In particular, when EAP is employed as the circuit discovery method, the
runtime is significantly lower than the average of current methods.]

Table 7: Computation Cost in WMDP Cyber.

Method Localization Fine-tuning AllCircuit discovery SAT Solving All

GA - - - 4.8h 4.8h
WAGLE - - 0.5h 3.2h 3.7h
Ours (Edge-Pruning) 2.1h 0.01h 2.11h 3.1h 5.21h
Ours (EAP) 0.1h 0.01h 0.11h 3.1h 3.21h

Table 8: Computation Cost in WMDP Bio.

Method Localization Fine-tuning AllCircuit discovery SAT Solving All

GA - - - 3.5h 3.5h
WAGLE - - 0.4h 2.9h 3.3h
Ours (Edge-Pruning) 1.7h 0.01h 1.71h 2.9h 3.61h
Ours (EAP) 0.1h 0.01h 0.11h 2.9h 3.01h

22

	Introduction
	Preliminaries
	LLM Unlearning
	Circuit Discovery and Logical Circuit

	Conflict-Guided Localization
	Logical Circuit Discovery
	Circuits to CNF
	Localization via CNF Solution

	Unlearning via Conflict-Guided Localization
	Experiment Setups
	Unlearning Tasks, Datasets, Models, and Baselines
	Training and Evaluation Setup

	Experiment Results
	Can CLUE Improve LLM Unlearning Through Localization?
	How CLUE performs when a General Corpus serves as the Retain Set?
	Unlearning Performance vs. Circuit Sparsity and Faithfulness
	How does Node Localization Change after Unlearning?

	Conclusion and Limitation
	Reproducibility Statement
	The Use of Large Language Models
	Example from Circuit to CNF
	Details of Logical Circuit Framework
	Case Analysis of CNF-Satisfiability Problem
	Satisfiable Situation
	Unsatisfiable Situation

	Details about Experiment Setups
	Model Configurations
	Unlearning Configurations
	Baselines
	Retain Set

	Results on Detailed General Utility
	Results on MIA and Rouge-L
	Scalability and Robustness of CLUE at Various Forget Ratios
	Distribution of Different Nodes
	The Benchmark of Computation Cost

