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Abstract

Quantum state tomography (QST), the task of estimating an unknown quantum state1

given measurement outcomes, is essential to building reliable quantum computing2

devices. Whereas computing the maximum-likelihood (ML) estimate corresponds3

to solving a finite-sum convex optimization problem, the objective function is not4

smooth nor Lipschitz, so most existing convex optimization methods lack sample5

complexity guarantees; moreover, both the sample size and dimension grow expo-6

nentially with the number of qubits in a QST experiment, so a desired algorithm7

should be highly scalable with respect to the dimension and sample size, just like8

stochastic gradient descent. In this paper, we propose a stochastic first-order algo-9

rithm that computes an ε-approximate ML estimate in O((D logD)/ε2) iterations10

with O(D3) per-iteration time complexity, where D denotes the dimension of the11

unknown quantum state and ε denotes the optimization error. Our algorithm is an12

extension of Soft-Bayes to the quantum setup.13

1 Introduction14

Quantum state tomography (QST), the task of estimating an unknown quantum state given15

measurement outcomes, is essential to building reliable quantum computing devices [52]. The states16

of the quantum bits (qubits) prepared by an experimental apparatus are estimated, in order to check17

the correctness of the apparatus and, if needed, determine how to calibrate it. Moreover, quantum18

process tomography, the task of estimating an unknown quantum channel, can also be cast as a QST19

problem [7]. There are various approaches to QST, such as trace regression [49, 28, 41, 25, 63, 64],20

maximum-likelihood (ML) estimation [33, 34, 12], Bayesian estimation [10, 11], and recently21

proposed deep learning-based methods [3, 53]. Among existing approaches, the ML approach has22

been widely adopted for its relatively low estimation error in practice and asymptotic statistical23

guarantees in theory [34, 55].24

Computing the ML estimator amounts to solving an optimization problem. Whereas the optimization25

problem is convex, standard convex optimization methods are not directly applicable. It is easily26

checked that the negative log-likelihood function in ML QST is neither Lipschitz nor smooth,27

violating standard assumptions in optimization literature [39, 24]. Hence, for example, even whether28

vanilla gradient descent converges for QST is unclear. This is perhaps why RρR, a heuristic29

algorithm known to be empirically fast, was developed via an expectation maximization, instead30

of convex optimization, argument [43, 44]. Unfortunately, RρR does not always converge [60]. The31

negative log-likelihood function is indeed self-concordant, so Newton’s method is readily applicable32

[45]. Nevertheless, the dimension of a quantum state grows exponentially with the number of33

qubits; the Hessian computations in Newton’s method are computationally too expensive when the34

dimension is high. There are a few first-order (i.e., gradient-based) convex optimization algorithms35
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provably converging for ML QST, such as diluted RρR [60, 27], SCOPT [57]1, NoLips [9], the36

Frank-Wolfe method [48, 24, 65, 14], and entropic mirror descent with line search [39]. These are all37

batch methods. As they require computing the full gradient in every iteration, their per-iteration time38

complexities are at least linear in the sample size. To estimate a quantum state, it has been proved39

that the sample size must be exponential in the number of qubits [47, 30, 17].40

Regarding the high dimension and sample size issues in ML QST, it is desirable to, like how we41

handle the same issues in modern machine learning applications, develop a stochastic first-order42

optimization method for ML QST. A stochastic first-order optimization method takes one or a few,43

instead of all, samples in each iteration and avoids computationally expensive Hessian computations.44

The stochastic quasi-Newton method for self-concordant minimization of Zhou et al. [66] seems45

to apply. Nevertheless, its step size selection rule involves Hessian computations; moreover, its46

analysis assumes a bounded Hessian, which does not hold in ML QST. The stochastic mirror-prox47

and stochastic primal-dual hybrid gradient methods were considered for problems very similar to ML48

QST [4, 16, 32]. However, their analyses assume either a bounded dual domain or Lipschitzness;49

both are violated in ML QST.50

In this paper, we propose a stochastic first-order algorithm for ML QST. We design the algorithm by an51

online learning argument. Consider an online convex optimization problem, where the loss function52

in each round corresponds to the negative log-likelihood function corresponding to one data point in53

ML QST. Interestingly, this online convex optimization problem is exactly the quantum analogue54

of online portfolio selection, a celebrated online learning problem [19, 20]. Since the ML approach55

aims to minimize the empirical average of the negative log-likelihood, once we “quantumize” any56

existing first-order online portfolio selection algorithm that is no-regret and apply an online-to-batch57

conversion [15, 22], the resulting algorithm becomes a stochastic first-order algorithm for ML QST.58

We refer the reader to Section 2 for an introduction of relevant concepts.59

The algorithm we choose to “quantumize” is Soft-Bayes [51]. There are two reasons. First, the60

per-round time complexity of Soft-Bayes is linear in the ambient dimension, arguably the lowest61

one can expect; second, Soft-Bayes has a curious connection with expectation maximization [43, 44]62

(see Section 5). We call the resulting algorithm Stochastic Q-Soft-Bayes. Stochastic Q-Soft-Bayes63

processes one randomly chosen data point in each iteration. Suppose the quantum state to be estimated64

is represented by a D-by-D density matrix. The per-iteration time complexity of Stochastic Q-Soft-65

Bayes is O(D3), independent of the sample size. The expected optimization error of Stochastic Q-66

Soft-Bayes converges to zero at a O(
√
(1/T )D logD) rate, where T denotes the number of iterations.67

The main technical difficulty lies in figuring out an appropriate quantum extension of Soft-Bayes68

that coincides with Soft-Bayes when all matrices involved share the same eigenspace and allows69

for a regret analysis. This is challenging because for any given “non-quantum” expression, one can70

immediately find many candidates for its quantum extension, but only a few or one of them inherit71

the desired theoretical properties of their “non-quantum” counterpart; see, e.g., the discussion in72

[62, Chapter 11] for extending information theoretic quantities to the quantum case. Similar to the73

quantum extension of exponentiated gradient update by Tsuda et al. [58], the quantum extension we74

find reveals the complicated mathematical structure of Soft-Bayes hidden in the “non-quantum” setup.75

Instead of empirically beating state of the arts, our aim is to give the first provably fast stochastic76

first-order algorithm for ML QST. Section 3.3 shows that Stochastic Q-Soft-Bayes is competitive77

in time complexity in comparison to existing batch algorithms. Section 4 shows that Stochastic-Soft-78

Bayes is empirically even faster than RρR in terms of the number of epochs. Unfortunately, Section79

A shows that in terms of the elapsed time, Q-Soft-Bayes may not be satisfactory to practitioners.80

We discuss the possibility of developing faster stochastic first-order methods in Section 5.81

1.1 Related work82

A textbook approach to quantum state tomography is to approximate the problem as a trace regression83

problem [46] and compute the corresponding least-squares estimate or directly minimize the expected84

square loss, sometimes with regularization [49, 28, 25, 64, 63]. Since minimizing the square loss is85

arguably the most standard problem in optimization and machine learning, many existing algorithms86

apply. Youssry et al. [64] proved the convergence of stochastic entropic mirror descent. Yang et al.87

1A similar algorithm is proposed and studied in [26], but the bounded Hessian assumption therein renders
the algorithm inapplicable to ML QST.
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[63] showed that several standard online learning algorithms are no-regret for the corresponding88

online trace regression problem. Notice that both papers do not consider the ML formulation.89

Quantum state tomography schemes optimal or nearly optimal in sample complexity are known [47,90

30, 38, 29]. The optimal schemes require entangled measurements, challenging to implement [47, 30].91

If only incoherent measurements (as in the ML QST scheme considered in this paper) are allowed,92

the scheme by Kueng et al. [38] is optimal [17]; nevertheless, the scheme is still challenging to93

implement [38, p. 97]. The scheme proposed by Guţǎ et al. [29] is nearly optimal, but the numerical94

result in [29, Figure 1] shows that the ML approach achieves a smaller estimation error empirically.95

A problem closely related to quantum state tomography is shadow tomography, in which one is96

not interested in recovering the quantum state but estimating the probability distributions of its97

measurement outcomes [1]. Aaronson et al. showed that shadow tomography can be done in an online98

fashion, via follow the regularized leader with the von Neumann entropy [2]. We emphasize that99

shadow tomography is fundamentally different from quantum state tomography. Indeed, Aaronson100

showed shadow tomography is strictly easier than state tomography, in the sense that the former101

requires much less samples than the latter [1]. Another closely related problem is the quantum version102

of individual sequence prediction considered by Koolen et al. [37]. The loss function studied in [37]103

is the trace-log loss, instead of the log-trace loss we consider, as discussed in Section 4 of their paper.104

Our algorithm is developed via “quantumizing” an online portfolio selection algorithm. Online105

portfolio selection is a classic online learning problem. It is known that the optimal regret of online106

portfolio selection is O(D log T ), where D denotes the ambient dimension and T denotes the107

number of rounds, and is achieved by Universal Portfolio Selection (UPS) [19, 20]. However, UPS108

is computationally too expensive to be practical [35]. There are several algorithms that try to balance109

between the regret and computational complexity, but none of them is optimal in both aspects [42, 59].110

Soft-Bayes strikes a balance with a O(D) per-round time complexity and O(
√
TD logD) regret.111

Recently, Zimmert et al. [67] “quantumized” another online portfolio selection algorithm, called112

BISONS, to solve the game of online quantum state tomography described in Section 3.12. By an113

online-to-batch conversion, their algorithm yields a stochastic algorithm for ML QST. The resulting114

algorithm achieves a better iteration complexity than Stochastic Q-Soft-Bayes; nevertheless, each115

iteration of it requires solving a self-concordant convex program by, e.g., Newton’s method, resulting116

in a high time complexity incomparable to that of Stochastic Q-Soft-Bayes. In the words of Zimmert117

et al. [67], both their and our algorithms are on the state-of-the-art efficiency-regret frontier.118

1.2 Notations119

We write R+ for the set of non-negative real numbers and R++ the set of strictly positive real numbers.120

Let J ∈ N. We write [J ] for the set { 1, . . . , J }. Let M be a matrix. We write MH for its Hermitian121

(conjugate transpose) and tr(M) for its trace. Let H be a Hermitian matrx; we write its spectral122

decomposition as H =
∑

d λdPd, where λd are the eigenvalues and Pd are projections onto the123

associated eigenspaces. Let f be a real-valued function whose domain contains {λd }. Then, f(H)124

is defined as the matrix
∑

d f(λd)Pd. Let A and B be two matrices. We write A ≥ B if and only if125

A−B is positive semi-definite. Let E be an event and ξ be a random variable following a probability126

distribution P . We write P(E) for the probability of the event and EP [ξ] for the expectation of ξ. We127

sometimes omit the subscript P and write E [ξ] when there is no ambiguity.128

2 Preliminaries129

2.1 Maximum-Likelihood Quantum State Tomography130

In the mathematical formulation of quantum mechanics, a quantum state corresponds to a density131

matrix, a Hermitian positive semi-definite complex matrix of unit trace. Let the dimension of the132

density matrix be D ∈ N. If there are q qubits, then D = 2q. We denote by D the set of density133

matrices in CD×D, i.e.,134

D :=
{
ρ
∣∣ ρ ∈ CD×D, ρ = ρH, ρ ≥ 0, tr ρ = 1

}
.

2We note that the work of Zimmert et al. [67] appears much later than the arXiv version of our work. This
footnote is simply to address potential confusions of reviewers and may be removed in the camera-ready version.
We do not encourage the reviewers to check the arXiv version as that violates the double-blind policy.
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A measurement setup corresponds to a positive operator-valued measure (POVM), a set of Hermitian135

positive semi-definite complex matrices summing to the identity. Let ρ ∈ D and {M1, . . . ,MJ } ⊂136

CD×D be a POVM. The measurement outcome is a random variable η taking values in [J ] such that137

P (η = j) = tr(Mjρ), ∀j ∈ [J ].

The ML estimation approach seeks the quantum state that maximizes the probability of observing the138

measured data. Let ρ♮ ∈ D be the density matrix to be estimated. In a standard QST experiment, we139

construct N independent copies of ρ♮ and measure the copies independently with possibly different140

POVMs. It is easily checked that the ML estimator is of the form141

ρ̂ ∈ argmax
ρ∈D

N∏
n=1

tr(Anρ),

where each An is an element of the POVM for the n-th measurement. We call {A1, . . . , AN } the142

data-set. We equivalently write the ML estimator as143

ρ̂ ∈ argmin
ρ∈D

f(ρ), (1)

f(ρ) :=
1

N

N∑
n=1

(− log tr(Anρ)) . (2)

Obviously, (1) is a convex optimization problem. If the matrix An′ is not full-rank for some n′ ∈ [N ]144

(as in the cases with the Pauli measurement [40] and Pauli basis measurement [54, 56]), then tr(An′ρ)145

can be arbitrarily close to zero on D and hence the k-th-order derivative of the objective function f is146

unbounded for all k ∈ N.147

Let A be a random matrix following the empirical distribution P̂N on the data-set {A1, . . . , AN }.148

If the matrices An are all different, then P̂N is simply the uniform distribution on the data-set149

{A1, . . . , AN }. Then, we can write the objective function in (1) as an expectation150

f(ρ) = EP̂N
[− log tr(Aρ)] . (3)

This observation connects ML QST with the problem of computing the log-optimal portfolio.151

2.2 Log-optimal Portfolio152

Interestingly, the optimization problem (1) is exactly a quantum extension of the problem of com-153

puting the log-optimal portfolio (aka the Kelly criterion), an asymptotically optimal strategy for154

long-term investment [5, 13, 36]. Consider multi-round investment in a market. Suppose there are D155

investment alternatives. For the t-th round, we list the return rates of the investment alternatives in156

that round as a random vector at ∈ RD
+ . Before each round starts, an investor needs to determine157

the portfolio for the round given the past return rates. Denote by Pt+1 the probability distribution of158

at+1 conditional on the history (a1, . . . , at). The log-optimal portfolio w⋆
t+1 for the (t+ 1)-th round159

is given by the stochastic optimization problem:160

w⋆
t+1 ∈ argmin

w∈∆
φ(w), (4)

φ(w) := EPt+1 [− log ⟨at+1, w⟩] , (5)

where ∆ denotes the probability simplex in RD, the set of entry-wise non-negative vectors whose161

entries sum to one. Then, the investor distributes the wealth to the investment alternatives following162

the ratios specified by w⋆
t+1.163

We now discuss the correspondence between ML QST and log-optimal portfolio. The set D is indeed164

a quantum extension of the probability simplex ∆, in the sense that a Hertimian matrix is a density165

matrix if and only if its vector of eigenvalues lies in the probability simplex. The objective functions166

in (1) and (4) are both expectations of the logarithm of linear functions. Indeed, it is easily checked167

that if the matrices involved in (1) share the same eigenbasis, then the non-commutativity issue in the168

quantum setup vanishes and (1) coincides with (4). Though the correspondence is obvious given the169

two problem formulations, it seems that this correspondence has not been discussed in the literature.170
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2.3 Online Portfolio Selection171

Online portfolio selection may be viewed as a probability-free version of log-optimal portfolio [19].172

Online portfolio selection is a multi-round game between two players, say INVESTOR and MARKET.173

Suppose the game consists of T rounds. In the t-th round of the game, first, INVESTOR announces a174

portfolio wt ∈ ∆; then, MARKET announces the return rates of all investment alternatives for the t-th175

round in a vector at ∈ RD
+ ; finally, INVESTOR suffers a loss of value − log ⟨at, wt⟩. The goal of IN-176

VESTOR is to achieve a low regret against all possible strategies of MARKET. The regret is defined as177

RT := sup

T∑
t=1

(− log ⟨at, wt⟩)− min
w∈∆

T∑
t=1

(− log ⟨at, w⟩) ,

where the supremum is over all possible strategies of MARKET to determine (at)1≤t≤T . We say178

an algorithm for INVESTOR to determine the portfolios is no-regret if it achieves RT = o(T ).179

If we can sample from the conditional probability distribution Pt+1 specified in the previous sub-180

section, then we can transform a no-regret online portfolio selection algorithm to an algorithm that181

approximately computes the log-optimal portfolio. The following is an immediate consequence of182

the online-to-batch conversion [15, 50].183

Proposition 2.1. Suppose in the online portfolio selection game, the vectors at are all independent184

and identically distributed (i.i.d.) random vectors following the probability distribution Pt+1 in185

the previoius sub-section. Let (wt)t∈N be the sequence of iterates generated by an algorithm for186

INVESTOR of regret RT . Then, for any T ∈ N,187

E

[
φ(wT )− min

w∈∆
φ(w)

]
≤ RT

T
, wT :=

w1 + · · ·+ wT

T
.

Recall that φ is the conditional expectation of the log-linear loss in (5).188

If INVESTOR adopts a no-regret algorithm, then the expected optimization error vanishes as T → ∞.189

2.4 Soft-Bayes190

There are various existing algorithms for online portfolio selection. Among these algorithms, we are191

particularly interested in Soft-Bayes [51]. The per-iteration time complexity of Soft-Bayes is linear192

in D, arguably the lowest one can expect. This is a desirable feature for ML QST, as the dimension193

of the density matrix grows exponentially with the number of qubits.194

The iteration rule of Soft-Bayes is as follows.195

• Initialize at w1 = (1/D, . . . , 1/D) ∈ ∆ (the uniform distribution).196

• For each t ∈ N, compute197

wt+1 = (1− η)wt + η
at ◦ wt

⟨at, wt⟩
, ∀t ∈ N, (6)

for some properly chosen learning rate η ∈ [0, 1], where ◦ denotes the entry-wise product.198

Soft-Bayes has the following regret guarantee.199

Theorem 2.2 ([51]). After T rounds in online portfolio selection, the regret of Soft-Bayes with200

η =

√
DT√

DT +
√
logD

(7)

is at most 2
√
TD logD + logD.201

3 Online Maximum-Likelihood Quantum State Tomography by Q-Soft-Bayes202

Following the discussion in Section 1, we first propose a game of online quantum state tomography203

as a quantum extension of online portfolio selection. Then, we “quantumize” Soft-Bayes to derive204

a no-regret algorithm for the game and analyse its regret. Finally, we adopt the online-to-batch205

conversion and bound the expected optimization error of the resulting algorithm.206
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3.1 Game of Online Quantum State Tomography207

We propose the following game of online quantum state tomography as a quantum extension of208

online portfolio selection. Online quantum state tomography is a multi-round game between two209

players, say PHYSICIST and ENVIRONMENT. Suppose there are in total T rounds. In the t-th round,210

first, PHYSICIST announces a density matrix ρt ∈ D; then, ENVIRONMENT announces a Hermitian211

positive semi-definite matrix At ≥ 0; finally, PHYSICIST suffers for a loss of value − log tr(Atρt).212

The regret in this game is given by213

RT := sup

T∑
t=1

(− log tr(Atρt))−min
γ∈D

T∑
t=1

(− log tr(Atρ)) ,

where the supremum is over all possible strategies of PHYSICIST to generate the sequence (At)1≤t≤T .214

The connection with online portfolio selection is obvious and similar to that between ML QST and215

the log-optimal portfolio: The vector of eigenvalues of a density matrix lies in the probability simplex216

∆; the Hermitian matrices At and the positive semi-definiteness condition correspond to the vectors217

at in online portfolio selection and their non-negativity condition, respectively; the losses in the two218

games are both logarithms of linear functions; the regrets in the two games are defined exactly in the219

same manner. When all the matrices involved in the game of online quantum state tomography share220

the same eigenbasis, we recover the game of online portfolio selection.221

3.2 Q-Soft-Bayes and Stochastic Q-Soft-Bayes222

We propose the following Q-Soft-Bayes algorithm as a quantum extension of Soft-Bayes.223

• Initialize at ρ1 = W1 = I/D.224

• For each t ∈ N, compute225

Gt = (1− η)I + η
At

tr(Atρt)
,

Wt+1 = exp (log (Wt) + log (GT )) ,

ρt+1 =
Wt+1

tr(Wt+1)
,

(8)

for some properly chosen learning rate η ∈ [0, 1].226

Remark 3.1. Recently, we learned that Q-Soft-Bayes may be interpreted using the commutative227

matrix product by Warmuth and Kuzmin [61]. It is currently unclear to us whether this interpretation228

provides any insight.229

If we were able to cancel the exponential and logarithms in Q-Soft-Bayes, then we recover Soft-Bayes;230

however, due to the non-commutativity issue, such cancellation is illegal in general. In comparison to231

Soft-Bayes, Q-Soft-Bayes has an additional normalization step to ensure its outputs are of unit trace.232

We prove the following in Section B.233

Proposition 3.2. It holds that tr(Wt) ≤ 1 for all t.234

Numerical experiments show that the equality does not always hold, so the normalization step is235

necessary. Recall that Soft-Bayes does not need the normalization step (see Section 2.4).236

In Appendix C, we prove the following regret bound for Q-Soft-Bayes, showing that it inherits the237

regret bound of Soft-Bayes.238

Theorem 3.3. The regret of Q-Soft-Bayes with the learning rate η given in (7) is at most239

2
√
TD logD + logD.240

Remark 3.4. One might wonder why D is not replaced by D2 in the quantum case. This is because241

in our extension, the analogue of a D-dimensional vector in the quantum case is the D-dimensional242

vector of eigenvalues of a D-by-D Hermitian matrix, instead of the D-dimensional vector obtained243

by vectorizing a
√
D-by-

√
D matrix. Similar coincidence of regret bounds can be observed in, for244

example, the matrix version of exponentiated gradient update [58, 8] and the quantum individual245

sequence prediction algorithms of Koolen et al. [37].246
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The standard online-to-batch conversion argument can also be applied to solving ML QST by247

Q-Soft-Bayes. Recall for ML QST, our aim is to solve the stochastic optimization problem248

ρ̂ ∈ argmin
ρ∈D

EP̂N
[− log tr(A, ρ)] ,

where A is a random matrix following the empirical probability distribution P̂N on the data-set249

{A1, . . . , AN } (see Section 2.1). We propose the following stochastic optimization algorithm, which250

we call Stochastic Q-Soft-Bayes, to solve ML QST.251

• Initialize Q-Soft-Bayes with ρ1 = W1 = I/D.252

• In the t-th iteration of Stochastic Q-Soft-Bayes, do the following.253

1. Output the t-th output ρt of Q-Soft-Bayes.254

2. Sample a random matrix Bt ∈ {A1, . . . , AN } following the empirical probability255

distribution P̂N on the data-set, independent of the past.256

3. Let ENVIRONMENT in the online QST game announce the matrix Bt.257

Similarly as for Proposition 2.1, the standard online-to-batch conversion argument provides the258

following convergence guarantee of Stochastic-Q-Soft-Bayes.259

Proposition 3.5. Let (ρt)t∈N be the sequence of iterates generated by Stochastic Soft-Bayes. Then,260

for any T ∈ N, it holds that261

E

[
f(ρT )−min

ρ∈D
f(ρ)

]
≤ 2

√
D logD

T
+

logD

T
,

where ρT := (ρ1 + · · · + ρT )/T and the expectation is with respect to the randomness in Bt of262

Stochastic Soft-Bayes. Recall f is the objective function in ML QST as defined in (2) or (3) (the two263

definitions are equivalent).264

Therefore, Stochastic-Q-Soft-Bayes outputs an approximate ML estimator of expected optimization265

error smaller than ε in O((D logD)/ε2) iterations. Each iteration of Stochastic-Q-Soft-Bayes266

requires computing a matrix exponential and two matrix logarithms. The overall time complexity is267

hence O((D4 logD)/ε2). One may adopt anytime online-to-batch [22], which seems to empirically268

yield faster convergence. According to [22], the optimization error guarantee remains the same; the269

only difference is that ∇f are evaluated at ρt instead of ρt when implementing Soft-Bayes, so the270

overall time complexity also remains the same.271

One may be interested in the distance to the minimizer. It is easily checked that the function f is272

self-concordant. If ∇2f is positive definite at the minimizer, a standard condition for well-posed273

estimators, then the function f is locally strongly convex around the minimizer [45, Theorem 4.1.6].274

Therefore, the distance to the minimizer, measured in terms of the Frobenius norm, is asymptotically275

of the order of the square root of the optimization error.276

3.3 Theoretical Comparison with Existing Batch Algorithms277

Let us compare the time complexities of Stochastic Q-Soft-Bayes and existing algorithms discussed278

in Section 1. The iteration complexities of existing algorithms are mostly unknown or vague in279

their dependence on the problem parameters. Diluted RρR and entropic mirror descent with line280

search do not have non-asymptotic analysis results [60, 27, 39]; SCOPT only has a local linear281

rate guarantee [57]; Adaptive Frank-Wolfe and Monotonous Frank-Wolfe have O(ε−1) iteration282

complexities with unclear dependence on the dimension and sample size, as their error bounds involve283

local smoothness parameters that are hard to evaluate [14, 24]. A finer analysis of Adaptive Frank-284

Wolfe by Zhao and Freund [65] shows that its iteration complexity is O(ε−1N) and hence its time285

complexity is O
(
ε−1(N2D2 +Nτ)

)
, where the symbol τ denotes the time of computing the local286

norm defined by the Hessian, for which we do not know an efficient implementation. In comparison,287

the complexities of Stochastic Q-Soft-Bayes is very clear: O(ε−2D logD) iteration complexity and288

hence O(ε−2D4 logD) time complexity. The time complexity of Stochastic Q-Soft-Bayes becomes289

competitive with Adaptive Frank-Wolfe if N ≫ D
√
(1/ε) logD, ignoring the time of computing the290

local norms. Recently, it is proved that any QST scheme with non-coherent measurement, e.g., ML291

QST we consider in this paper, requires N = Ω(D3/δ2) to achieve an estimation error smaller than δ292
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Figure 1: Approximate optimization errors
in function value of Stochastic Q-Soft-Bayes
(SQSB), RρR (RrhoR), and Monotonous Frank-
Wolfe (FW).

Figure 2: Fidelity values of the iterates and the
W state achieved by Stochastic Q-Soft-Bayes
(SQSB), RρR (RrhoR), and Monotonous Frank-
Wolfe (FW).

in the trace distance [17]. The algorithm by Zimmert et al. [67] has a Õ(D3/ε) iteration complexity293

and O(D6) per-iteration time complexity ignoring the dependence on other parameters, due to the294

use of Newton’s method to compute the iterates; the overall time complexity has a much higher295

dependence on the dimension than Adaptive Frank-Wolfe and Stochastic Q-Soft-Bayes. We conclude296

that the time complexity of Stochastic Q-Soft-Bayes is competitive compared to existing algorithms.297

4 Numerical Results298

As discussed above, Stochastic Q-Soft-Bayes is competitive in theory. We now examine its empirical299

performance with anytime online-to-batch. We compare its empirical speed with two batch methods,300

the RρR method [43, 44] and Monotonous Frank-Wolfe [14], on a synthetic data-set in Figure301

1 and Figure 2. We have mentioned several batch methods applicable for ML QST in Section302

1. Among them, we choose RρR for comparison as it is representative in physics literature and303

empirically fast, though it does not always converge. We choose monotonous Frank-Wolfe for304

comparison as it avoids computationally expensive Hessian computations in step size selection. Recall305

that Monotonous Frank-Wolfe converges at a O(1/t) rate as other Frank-Wolfe methods for self-306

concordant minimization do [65, 24, 48], but its complexity guarantee lacks a clear characterization307

of the dependence on the dimension and sample size.308

The synthetic data-set is generated basically following the set-up in [31]. The number of qubits q309

equals 6. The dimension D then equals 2q = 64. The unknown quantum state to be measured is the310

W state. We randomly generate N = 4q × 100 = 409600 Pauli observables as in, e.g., [25, 28, 40],311

each of which corresponds to a POVM of two rank-(D/2) elements. As there are in total 4q different312

Pauli observables (and hence POVMs), each observable is used about 100 times. Then, we sample313

the N measurement outcomes and formulate the ML estimator following Section 2.1.314

The performance measures we consider are optimization errors (in objective function) and fidelity315

values. To estimate the optimization error, we run each algorithm for 200 epochs and use the316

smallest function value found by the algorithms as an approximate optimal value. The approximate317

optimization error of an iterate is defined as the difference between the objective function value at318

the iterate and the approximate optimal value. Fidelity is a notion commonly used by physicists319

to measure how close two quantum states are to each other. For any two density matrices ρ and320

σ, the fidelity is given by F (ρ, σ) :=
(
tr
√√

ρσ
√
ρ
)2

, which takes values in [0, 1]. The fidelity of321

two quantum states equals 1, if the two states are exactly the same. We plot the optimization errors322

and fidelity values versus the number of epochs. An epoch corresponds to one pass of the whole323

data-set. One iteration of Stochastic Q-Soft-Bayes corresponds to 1/N epoch. One iteration of RρR324

and Monotonous Frank-Wolfe corresponds to 1 epoch as both algorithms are batch.325

Obviously, Stochastic Q-Soft-Bayes converges faster than RρR in both optimization error and fidelity.326

Where as Monotonous Frank-Wolfe is the fastest in both figures, this can be explained by the fact that327
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Frank-Wolfe tends to generate approximately low-rank iterates. The W state corresponds to a rank-1328

density matrix, so the ML estimate should be approximately low-rank, matching the structure favoured329

by Frank-Wolfe. We conclude that the convergence speed of Stochastic Q-Soft-Bayes is competitive330

in theory (Section 3.3) and comparable to fast yet theoretically non-rigorous algorithms in practice.331

A comparison in terms of the elapsed time is provided in Appendix A. The results show there is a332

large room for improvement to compete with RρR and Monotonous Frank-Wolfe in the elapsed time.333

The source codes are provided in the supplementary material.334

5 Discussions335

5.1 Can We Find a Faster Stochastic First-Order Algorithms for ML QST?336

Our approach to constructing a stochastic first-order algorithm for ML QST conceptually applies337

to any no-regret online portfolio selection algorithm. In this paper, we focus on Soft-Bayes. Other338

existing online portfolio selection algorithms have much higher per-iteration time complexities, in339

terms of the dependence on the ambient dimension and sample size. If we adopt any other existing340

online portfolio selection algorithm and “quantumize” it to obtain a stochastic algorithm for ML341

QST, then the resulting algorithm will scale poorly with the number of qubits. Developing an online342

portfolio selection algorithm that enjoys both a low regret and low time complexity is still open343

[59, 67].344

It is still possible to develop another quantum extension of Soft-Bayes that enjoys a lower per-345

iteration time complexity. The per-iteration time complexity issue may be mitigated if we consider346

other quantum extensions of Soft-Bayes. For example, if we naïvely replace (8) by Wt+1 =347

(GtWt +WtGt) /2, the resulting algorithm still coincides with Soft-Bayes when all matrices share348

the same eigenbasis, whereas the per-iteration time complexity is reduced to O(Dω) for some349

ω < 2.373 [6]. Unfortunately, we cannot work out a non-asymptotic analysis for any other possible350

quantum extension of Soft-Bayes we can think of.351

The discussion above assumes that we adopt the online-to-batch argument as in this paper. Another352

way, which we think perhaps more plausible, is to directly consider the stochastic optimization353

formulation and develop a stochastic optimization algorithm for ML QST.354

5.2 Connection with Expectation Maximization355

Finally, let us discuss an interesting connection between Q-Soft-Bayes and expectation maximization356

(EM). The RρR algorithm, according to [43, 44], was inspired by the expectation maximization (EM)357

method for solving optimization problems of the form (4). Given a full-rank initial iterate ρ1 ∈ D,358

RρR iterates as359

ρt+1 =
RtρtRt

tr(RtρtRt)
, Rt := −∇f(ρt), ∀t ∈ N,

where f is defined in (2). In comparison, given an entry-wise positive vector w1 ∈ ∆, EM for (4)360

iterates as361

wt+1 = wt ◦ (−∇φ(wt)), ∀t ∈ N.

It is interesting to notice that even when all matrices involved share the same eigenbasis, RρR is362

not equivalent to EM. Indeed, EM is proved to asymptotically converge to the optimum [18, 21],363

whereas RρR oscillates on a carefully designed data-set [60]. This suggests that RρR is perhaps not364

a “natural” quantum extension of EM. Later, there were variations of RρR that solve the convergence365

issue by line search [60, 27], but these variations still do not recover EM.366

Notice that the formulation of Soft-Bayes (6) is the convex combination of the previous iterate and367

the output of EM. Therefore, Soft-Bayes, after the online-to-batch conversion, can be interpreted as a368

relaxed stochastic EM method for computing the log-optimal portfolio. As Q-Soft-Bayes becomes369

Soft-Bayes when all matrices involved share the same eigenbasis, we may claim that Stochastic370

Q-Soft-Bayes is also a relaxed stochastic EM method, though its derivation does not have any obvious371

relation with the standard derivation of EM [23].372
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