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Abstract

We introduce TinyHazardSynth, a depth-aware synthetic001
model-auditing pipeline that can be used to stress-testing002
autonomous-driving detectors by controllably inserting003
photorealistic small road obstacles—situations rarely cap-004
tured by public datasets—into real dash-cam videos. NeRF-005
reconstructed assets are rendered with exact camera in-006
trinsics; precise occlusion handling arise from a two-stage007
fitting fusion of sparse LiDAR and Depth-Anything depth008
that converts relative estimates to metric scale. A Mask-009
Former semantic prior prevents ground and road clipping,010
and modular fog/shadow layers vary visibility to probe ro-011
bustness. The fully-automated factory produces thousands012
of labelled frames and can wrap around any perception013
stack. On inserted tiny obstacles, the in-house detector014
achieved a recall of only 29.4%, indicating a high miss rate015
for rare, small-scale hazards. And, after targeted retraining016
on our clips, we lifted accuracy by 1.4 pp, demonstrating017
the pipeline’s value for safety-critical model assessment.018
We leave as future work an investigation of how the same019
controllable-insertion pipeline adapts to other rare hazard020
types (e.g., deformable debris or transparent objects) and021
to public datasets such as nuScenes and KITTI.022

1. Introduction023

Small static hazards—such as fist-sized rocks, dropped024
cargo, or road-surface debris—pose a disproportionate025
safety risk for autonomous vehicles, yet they appear026
only rarely in public driving datasets. Purely simulator-027
generated clips like Airsim and Carla [3, 6] help to enlarge028
coverage, but the gap in texture realism, motion blur and029
camera ego-motion still limits their usefulness once a model030
is deployed on real dash-cam streams, which is the data used031
for real world driving task.032

We explore a complementary route: in-video insertion033
of realistic tiny obstacles directly into ordinary dash-cam034
footage. Our system, TinyHazardSynth, (i) captures ob-035

stacle assets with NeRF [5], (ii) renders them per frame us- 036
ing exact camera intrinsics, and (iii) achieves pixel-accurate 037
occlusions by fusing sparse LiDAR with Depth-Anything 038
predictions [8] to fit the relationship between relative depth 039
and metric depth. A lightweight MaskFormer prior [2] pre- 040
serves road and vehicle boundaries to help refine further, 041
while optional fog and shadow layers vary visibility condi- 042
tions. The pipeline produces more than thousands labelled 043
frames and can feed either regular data augmentation or tar- 044
geted robustness checks of existing detectors. 045

Contributions 046
1. A controllable dash-cam video insertion workflow fo- 047

cused on small road hazards, bridging the realism gap 048
left by simulator-only data. 049

2. A two-stage fusion of LiDAR and monocular depth that 050
converts relative estimates into metric scale, giving sta- 051
ble occlusions under fast camera motion. 052

3. An industrial-scale implementation that can synthesize 053
thousands of frames; we intend to share a streamlined 054
code snapshot after acceptance so that others can inspect 055
our pipeline logic and replicate the core steps on their 056
own inputs. 057

2. Literature Review 058

Synthetic data for autonomous driving. Large–scale 059
simulators such as CARLA [3], AIRSIM [6] render traf- 060
fic scenes with controllable lighting, weather and sensor 061
rigs, enabling low–cost data generation and in–sim per- 062
turbations for robustness studies. Yet a non-trivial do- 063
main gap—texture realism, motion blur and long–tail oc- 064
clusions— still limits transferable performance on real 065
dash–cam footage. Consequently, there is a gap demand for 066
production pipelines that augment real videos in real world 067
dash camera captured scenarios. 068

Object insertion in dash–cam videos. A straight- 069
forward approach would be to composite 2-D cut-outs. 070
However, this breaks down under strong parallax and, to 071
the best of our knowledge, lacks any pipeline capable of 072
handling complex viewpoint geometry or batch-level in- 073
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tegration across video frames. NeRF-based approaches074
[5] allow high-fidelity asset capture. In practice, exist-075
ing insertion tools assume either a fixed camera or pre-076
computed dense depth, conditions rarely met by long dash-077
cam sequences with sparse LiDAR. Few papers tackle small078
ground obstacles, whose limited pixel footprint amplifies079
any depth or mask error.080

Our position. We bridge these gaps by (i) inserting081
NeRF-reconstructed tiny hazards into real videos using082
a LiDAR + Depth-Anything metric fusion, (ii) preserving083
road semantics via MaskFormer thereby further refining084
synthesis, and (iii) modulating visibility with controllable085
shadows—with additional diffusion-based weather effects086
left as future work—so that quantitative audits remain en-087
tirely within the real-image domain. The resulting clips088
both enrich training data and serve as a fine-grained, dash-089
cam-authentic testbed for obstacle-detection auditing.090

3. Methodology091

3.1. NeRF-based 3D Reconstruction for Obstacle092
Cutout Images Gathering093

To generate accurate visual representations of small094
ground obstacles, we first employ Neural Radiance Fields095
(NeRF) [5] to reconstruct detailed 3D models in the .ply096
format from multiple views. Utilizing intrinsic and extrinsic097
camera parameters at various timestamps, we render obsta-098
cle images from precise virtual camera positions. This ap-099
proach allows us to generate continuous and realistic obsta-100
cle representations for subsequent insertion into dash cam101
videos. In practice, obstacle cutout images can be cut out102
with other methods or even manually.103

3.2. Accurate Depth Estimation and Occlusion104
Handling105

A critical challenge in synthesizing realistic dash cam data106
arises when dynamic objects, such as animals, suddenly107
emerge from behind obstacles, creating complex occlusion108
relationships. Traditional depth estimation models, includ-109
ing Depth Anything V2 [8], output relative depth maps (0–110
255 values) rather than absolute distances, which is not111
compatible with LiDAR data. To bridge this gap, we in-112
corporate LiDAR point clouds as ground truth data to assist113
depth conversion. However, projecting point clouds onto114
images typically results in “edge outlining effects,” where115
the projected cloud is larger than the actual object in the116
image, producing numerous discrete, noisy values at object117
boundaries.118

To address this, we introduce an innovative two-stage119
curve fitting approach using Scipy [7] optimization. Ini-120
tially, we apply a preliminary fit to the LiDAR-based depth121
data and Depth Anything V2’s relative depth output, defined122
by a function of the form: This first fitting pass is specifi-123

Figure 1. Fitting curve between predicted (relative) and actual
depth. After outlier filtering, the final curve (in the form of y =
a / (x + b) + c) aligns well with ground truth.

Figure 2. the whole flowchart of the pipeline

cally utilized to filter outliers by removing points exceed- 124
ing a defined margin threshold from the initial fit. Subse- 125
quently, we perform a second fit using the filtered dataset to 126
accurately determine the final mapping parameters between 127
relative and absolute depth, to reduce noise and enhancing 128
occlusion realism. 129

3.3. Semantic Segmentation for Clip Handling 130

Another practical challenge encountered is the ”clipping” 131
effect due to camera perspective, where objects appear 132
partially embedded within road surfaces or vehicle struc- 133
tures, resulting in unrealistic visualization. This arises 134
from perspective distortion where parallel lines converge 135
in camera projection. To mitigate this issue, we employ 136
the MaskFormer [2] semantic segmentation model (trained 137
on the ADE20K dataset). MaskFormer enables the pre- 138
cise identification of road and vehicle hood areas, allowing 139
logic-based controls to manage object visibility effectively. 140
Specifically, we enforce rules to hide or show small objects 141
visually positioned beneath vehicle hoods or incorrectly in- 142
tersecting road surfaces, thus maintaining the semantic in- 143
tegrity and realism of synthesized videos. 144
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Accuracy Recall
Baseline (without synthetic
clips)

86.9 % 29.4 %

+ TinyHazardSynth clips 88.3 % 36.6 %

Table 1. Internal obstacle-detection results. Synthetic tiny-hazard
clips lift accuracy by 1.4pp and recall by 7–8pp (24.5 % relative).

4. Experimental Validation145

The goal of this section is to examine whether the clips146
produced by our pipeline translate into measurable per-147
formance gains on real-world autonomous-driving tasks.148
While a full public benchmark is in preparation, we report149
the first numbers from an internal test bed provided by an150
industry partner.151

The experiment uses proprietary dash-cam footage into152
which we insert metal plates—a canonical small, rigid haz-153
ard that is hard to detect because of its thin profile and154
low reflectivity. After one round of fine-tuning on the aug-155
mented set, the detector achieves the improvements listed156
in Table 1. Although the study covers a single class157
and a limited geography, the gain suggests that depth-158
and shadow-aware synthesis reveals failure cases other-159
wise under-represented in natural data and thus serves as160
a lightweight stress test of model robustness.161

Figure 3. Frame pair before (up) and after (bottom) inserting a
partially obscured fallen barricade at the hood–road junction.

Figure 4. Another example with additional synthetic shadowing to
match scene illumination.

Future work may include extending the pipeline to ad- 162
ditional object classes and investigating public release of a 163
small validation subset. 164

5. Conclusion and Future Work 165

We have presented a depth-aware pipeline that inserts pho- 166
torealistic tiny obstacles into dash-cam videos, combining 167
NeRF asset capture with a LiDAR + Depth-Anything fitting 168
scheme and a MaskFormer prior for clean semantic bound- 169
aries. On an internal test set the synthetic clips improved 170
iron-plate detection by 1.4 pp in accuracy and about 25% in 171
recall, indicating that such rare-event enrichment can bene- 172
fit production models. 173

Future directions 174
1. Wider sensor settings.The modular design makes it fea- 175

sible to plug in alternative depth sources—e.g. stereo or 176
monocular SfM—but the impact of domain shift remains 177
to be quantified. 178

2. Richer environment effects.Adding physics-based vol- 179
umetric fog or lightweight generative post-processing 180
could further close the realism gap under adverse 181
weather. 182

3. Broader evaluation.Extending the study to deformable 183
or transparent objects, and to public datasets such as 184
nuScenes [1] and KITTI [4], would clarify how well the 185
approach generalizes beyond metal plates. 186

All experiments in this paper rely on proprietary video due 187

3



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

to corporate restrictions; public benchmarking is left to fu-188
ture collaborative work.189
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