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ABSTRACT

Causal Representation Learning (CRL) aims to uncover causal symmetries in the
data-generating process with minimal assumptions and data requirements. The chal-
lenge lies in identifying the causal factors and learning their relationships, which is
an inherently ill-posed problemEnsuring unique solutions, known as identifiability,
is crucial but often requires strong assumptions or acccess to interventional or coun-
terfactual data. In this work, we propose a novel approach that partitions the latent
space: one component captures causal factorsusing diffeomorphic flows to model
causal mechanisms, while the other accounts for exogenous noise. This structured
decomposition enables our model to scale effectively to high-dimensional data and
deep architectures. We establish theoretical guarantees for CRL by proving the
identifiability of both causal factors and exogenous noise. Empirical results across
multiple datasets validate our theoretical findings.

1 INTRODUCTION

Learning meaningful representations from unlabelled data is a fundamental challenge in deep learning
(Bengio et al., 2013). The goal is to extract useful features or abstractions that capture the underlying
structure of the data without relying on labelled examples. Early approaches on representation learning
primarily focused on identifying statistically independent latent variables. Methods such as β-VAE
(Higgins et al., 2017), InfoGAN (Chen et al., 2016), and other disentanglement techniques (Träuble
et al., 2021; Liu et al., 2022), enforce independence constraints on the latent space, demonstrating
success in controlled synthetic environments where the factors of variation are well-defined and
manipulable (Locatello et al., 2019). A key challenge in learning meaningful and disentangled
representations is ensuring identifiability—i.e., the ability to recover the true underlying generative
process distribution (up to a simple transformation). Identifiability establishes an injective (one-to-
one) mapping onto the observed data distribution, and guarantees that the learned representations
correspond to intrinsic properties of the data, which preserve important invariances and reflect the true
data generative process (Yao et al., 2024a). This concept is particularly relevant in the context of non-
linear Independent Component Analysis (ICA), where recovering independent latent under arbitrary
non-linear transformations is generally ill-defined. This intractability also extends to disentangled
representation learning (Locatello et al., 2019).

However, in real-world scenarios, the relationships among variables are complex and structured,
making disentangled representations insufficient for robust generalization. In contrast, learning the
underlying causal representation offers improved generalisation, as causal structures remain invariant
across changing environments (Schölkopf et al., 2021; Ahuja et al., 2022). Additionally, causal
representations enhance interpretability by explaining why certain factors influence specific outcomes
– an essential property in applications such as healthcare and autonomous systems (Pearl, 2009).
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Table 1: Non exhaustive list of literature, with their assumption on Structural Causal Models (SCM),
mixing function, and data requirement, along with their identifiability criterion. Comparison of
assumptions for identifiability.

METHOD SCM TRANSFORM IDENTI.

Khemakhem et al. (2020a;b) Independent Non-linear Permutation + Scaling

Falck et al. (2021); Kivva et al. (2022), Independent Piecewise-linear Permutation + Scaling

Brehmer et al. (2022); Lippe et al. (2022b) No restrictions Non-linear -

Ahuja et al. (2022) No restrictions Polynomial Affine

Yao et al. (2024a;b); Von Kügelgen et al. (2021) No restrictions Non-linear Block-identifiability

Komanduri et al. (2024); An et al. (2023),
Yang et al. (2021) ANM Non-linear -

Proposed Diffeomorphic Piecewise-linear Permutation + Scaling

Existing work in causal representation learning (CRL) has largely focused on leveraging invariances
and data symmetries to achieve identifiable representations from observational data (Yao et al.,
2024a; Khemakhem et al., 2020a;b; Willetts & Paige, 2021; Hyvärinen et al., 2023). Discovering
the dependency structure in the latent space is at the core of causal representation learning (CRL)
(Schölkopf et al., 2021). However, the majority of previous works in CRL rely on interventional
(Ahuja et al., 2022; Varici et al., 2023) or counterfactual (Locatello et al., 2020; Brehmer et al., 2022;
Lippe et al., 2022b) data to achieve identifiability. For instance, Komanduri et al. (2024) introduces a
causal auto-encoder framework that utilizes a known directed acyclic graph (DAG) for counterfactual
generation, learning the both generating process and the associated causal mechanisms.

Despite these advances, most CRL methods are limited to low-dimensional settings, where the
number of latent variables is relatively small. This facilitates tractable learning of complex feature
dependencies. Generative models for high-dimensional data, such as hierarchical VAEs or diffusion
models (Kingma et al., 2021), often require thousands of latent variables to generate high-fidelity
images. Treating all latent variables as causal factors in such models is impractical, highlighting the
need to separate causal factors from other latent variables, which could instead capture independent
style variations. In this work, we extend the identifiability guarantees established in Khemakhem et al.
(2020a) and Kivva et al. (2022), to settings with a partitioned latent space. Specifically, we propose a
framework that learns both the causal factors and their dependency structure, while preserving key
identifiability properties. Our approach requires only mild model and distributional assumptions and
is designed to scale effectively to high-dimensional data.

In Table 1, we summarize existing CRL methods and their corresponding constraints on the mixing
function. We propose Causal Representation Learning and Inference with Mixture Based priors
(CLIMB), which relaxes the restrictions on structural causal models (SCM). Our method extends
beyond the identification of data symmetries by enforcing diffeomorphic mappings between estimated
causal factors and demonstrating their utility through counterfactual inference. Figure 1 provides
an overview of our approach. Our main contributions are as follows: (i) Latent Space Partitioning:
We introduce a novel latent structure that models causal factors (using diffeomorphic flows) and
exogenous noise, improving scalability; (ii) Identifiability Guarantees: We provide theoretical
guarantees for identifiable representations, even when partitioning the latent space; and (iii) Empirical
Validation: We demonstrate the theoretical and practical advantages of our approach through extensive
experiments in causal representation learning.

2 RELATED WORKS

Identifiable Representation Learning. Identifiability in representation learning originates from
early work on Independent Component Analysis (ICA) (Hyvärinen & Pajunen, 1999; Hyvarinen
& Oja, 2000), and has recently gained renewed interest (Hyvarinen & Morioka, 2016; Hyvarinen
et al., 2019a; Locatello et al., 2019; Khemakhem et al., 2020a; Von Kügelgen et al., 2021; Lachapelle
et al., 2024; Yao et al., 2024b). Several strategies have been developed to address this challenge:
(i) restricting the class of mixing functions; (ii) leveraging non-i.i.d., interventional, or counterfac-
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Figure 1: Proposed algorithm: an input, x ∈ X , is processed through two distinct estimators—one
for estimating the exogenous noise z of an input and another for estimating the exogenous noise u
of the causal factors. The estimated causal exogenous noise is then transformed via diffeomorphic
functions, producing the causal factors c. Additionally, the Jacobian of the diffeomorphic function
aids in estimating the underlying directed acyclic graph (DAG) A. Finally, the mixing function
combines sampled values of c and z from the posterior to reconstruct the given input.

tual data; and (iii) imposing structure on the latent space through distributional assumptions. For
(i), restricting mixing functions to conformal maps (Buchholz et al., 2022) or volume-preserving
transformations (Yang et al., 2022) has been found to enable identifiability. For (ii), contrastive
learning approaches utilize paired observations (Zimmermann et al., 2021; Locatello et al., 2020;
Brehmer et al., 2022; Ahuja et al., 2022; Von Kügelgen et al., 2021), obtained via data augmentation,
interventions, or approximate counterfactual inference, to disentangle latent factors. Regarding (iii),
latent space structure can be enforced either by introducing auxiliary variables to induce conditional
independence among latent variables (Hyvarinen et al., 2019b; Khemakhem et al., 2020a;b) or by
imposing prior distributional constraints, such as a mixture priors in VAEs (Dilokthanakul et al.,
2016; Willetts & Paige, 2021; Kivva et al., 2022).

Causal Representation Learning. Learning causal representations is particularly feasible when in-
terventional or non-i.i.d. data is available. Ahuja et al. (2022) employ an injective polynomial decoder
trained on both observational and interventional data. Locatello et al. (2020) utilize conterfactual data
by capturing observations before and after unknown interventions, while Brehmer et al. (2022) extend
this approach to more complex causal graphs. For non-i.i.d. settings, Lippe et al. (2022b) extract
causal factors from spatio-temporal data through interventions over time. Some methods assume
partial supervision, leveraging ground-truth causal factors, while others, such as Yang et al. (2021),
explicitly model exogenous noise and map it to causal latent variables via a linear SCM. Recently, Yao
et al. (2024a) proposed a unified framework that preserves known invariances in the data, such as
those arising from multi-view, temporal, or counterfactual settings. However, one missing component
in existing methods is structural assumptions governing the interplay between latent distribution and
data-generating functions. To address this, we assume a Gaussian Mixture Model (GMM) prior in the
latent space, enabling the estimation of causal structure from purely observational data with minimal
assumptions. Our approach integrates constraints inspired by causal discovery techniques (Glymour
et al., 2019; Zhang et al., 2024), relaxing the reliance on interventional or counterfactual data.

3 FORMALISM

Our approach focuses on estimating the exogenous noise (z ∈ Z ⊆ Rdz ) for an observed variable
(x ∈ X , where X ⊆ RH×W×C ) alongside learning the causal factors. These causal factors consist on
both endogenous (c) and exogenous (u) components, where c ∈ C and u ∈ U with C,U ⊆ Rn. We
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formalize the relationship between x, z, c, and u by defining the following mappings: ϕz : X → Z
maps an observed input x to its corresponding exogenous noise vector z. ϕu : X → U extracts
exogenous noise of the parent variables in the causal model, u. Finally,ψx : C × Z → X denotes the
mixing function that generates x from the causal factors c and exogenous noise z. A comprehensive
list of notations is provided in appendix A. Given the generative model x = ψx(c, z), we denote
c = ψ−1

x (x; z) as the inverse mapping for a fixed z. We provide further modelling details in the
following sections.

Assumption 1. (n-causal factors) We assume access to the number of causal factors n.

3.1 GENERATIVE MODEL

x

û1

û2

ûn

ẑ

ĉ1
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Â

(a) Inference Model
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Figure 2: Graphical Model for CLIMB. (a)
shows the inference model, where variables z and
u are estimated from x, and u is transformed
through flow-based functions to yield c. (b) il-
lustrates the generative process: sampled values
of u and the graph structure A are transformed to
produce c, which is then combined with sampled
z to generate x. The dashed lines in both figures
illustrate conditioning variables.

We introduce structured latent space partition-
ing; in contrast to existing methods that learn
a single latent space while observed causal sig-
nals as instrumental or conditioning variables
(Komanduri et al., 2024; Khemakhem et al.,
2020a;b). Our approach separates latent vari-
ables into causal factors (c), which help iden-
tifying the DAG that captures their relation-
ships, and independent latent variables z, which
account for other generative factors. In high-
dimensional data, generative models must cap-
ture not only the causal factors, but also addi-
tional elements required for reconstruction even
if they lack causal dependencies. To address this,
we decompose the latent space into C and Z . For
instance, consider a pendulum dataset with im-
age observations. The pendulum’s motion is
governed by few causal factros (e.g. angle, an-
gular velocity), but representing the full image
requires additional latent variables. Expanding
the latent space in traditional methods would
make SCM/DAG estimation computationally in-
feasible. Our method mitigates this by explicitly disentangling causal and non-causal variables.
The probabilistic graphical model is illustrated in Figure 2(b). The generative process starts with
independent exogenous variables: where z denotes noise directly for observed variables, and u
denotes noise associated to causal factors. Next, a DAG A with prior p(A), generates the causal
factors c based on u. Finally, combining c with z generate the observed variable x, ensuring both
causal and generative aspects of the data are captured. Here, we relax p(A) to follow a continuous
distribution, modelled using a RelaxedBernoulli. The full generative model is described as
follows:

p(x) =

∫∫∫
p(x | c, z)p(z)p(c|A)p(A) dc dz dA. (1)

3.2 CAUSAL FACTORS ESTIMATION

Causal factors are estimated as exogenous noise transformations, conditioned on the information
encoded in the DAG A. Specifically, we define each causal factor as ci = gi(fi(pa

A
i ),ui), where

paAi denotes the parents of ci with respect to A (pai ⊆ {c0, . . . cn} \ ci). The functions fi and gi
model the conditional dependencies and transformations, respectively.

Prior distribution Since we learn causal variables implicitly, our prior should account for their
complexity under different conditions. To achieve this, we model the base distribution p(u) as a
Gaussian Mixture Model (GMM):

p(u) =

K∑
k=0

πkN (u;µk,σ
2
k). (2)

4



Published as a conference paper at ICLR 2025

Given assumption 3, we transform ui into ci using a multi-layered diffeomorphic flow: gi =
g1i ◦ · · · ◦ gLi .

ci := gi(fi(pai),ui), p(ci) = p(ui)
∣∣∣det Jg−1

i
(ci)

∣∣∣ (3)

where Jg−1
i

is the Jacobian of the inverse transformation g−1
i . If gi consists of affine flows, p(c)

remains GMM-distributed with transformed Gaussian components. For more expressive transforma-
tions, such as spline or any non-linear flows, the resulting p(c) is still a mixture distribution.
Assumption 2. (fi-function type) We assume piece-wise linear models for estimating conditioning
signals using parents of node i.
Assumption 3. (gi-function type) We assume gi to be diffeomorphic functions, transforming the
exogenous variable u into the endogenous variable c.

Posterior distribution Given the DAG is estimated using the causal factors, the posterior model for
estimating c is slightly different from the prior defined above. Similar to Lippe et al. (2022a); Kyono
et al. (2020), we model the posterior of feature ci using all features except ci, which we represent
using c−i = {c0, . . . cn} \ ci, resulting in posterior as equation 4, where qu is considered to be
GMM. A key distinction in this posterior model is the use of alternative sets of flow and conditioning
functions, denoted by ĝ and f̂ , respectively, which differ from those used in the prior, allowing
greater flexibility. In our ablations we consider different class of function for both f̂ and ĝ. Notably,
the posterior q(c) structure closely resembles the pseudo-likelihood approach, due to potentially
over-counting the involved variables. In terms of sampling, we sample individual variable ci at a
time, creating a Gibbs sweep.

q(c) =

n∏
i=0

q(ci | c−i), qc(ci | c−i) = qu(ĝ
−1
i (f̂i(c−1), ci))

∣∣∣det Jĝ−1
i

(ci)
∣∣∣ (4)

3.3 DAG ESTIMATION

For graph prior p(A) we consider RelaxedBernoulli distribution with linearly decaying tem-
perature, which can be descrbed as a sigmoid transformation of samples from Gumbel(0,1)
distribution. Additionally, simialr to Zheng et al. (2018); Geffner et al. (2022) we include an acyclicity
factor defined by equation 5 providing an inductive bias for DAG generation, which is non-negative
and zero only when the graph is DAG.

h(A) = tr(exp(A⊙A))− n (5)

Posterior For graph posterior q(A | c), we learn logits with a network mapping causal fac-
tors to the parameters of the distribution for graph edges. Similar to the graph prior we use
RelaxedBernoulli distribution to facilitate re-parametrised sampling for end to end gradi-
ent propagation. To minimise variance in the posterior we consider the batched average of all logits
as parameters for RelaxedBernoulli.

3.4 INPUT-EXOGENOUS NOISE ESTIMATION

We model z as an exogenous noise variable for a given input x. For this, similar to Kivva et al. (2022);
Willetts & Paige (2021) we consider the prior distribution p(z) to be GMMs with M components,
providing us with the identifiability guarantees on exogenous noise variables. We consider the
local input conditioned posterior q(z | x) to be modelled using Gaussian with learned mean and
diagonal covariance. This model learns mutually independent variables, unlike p(c), where the
interdependencies are also captured.

3.5 MIXING FUNCTION AND TRAINING OBJECTIVE

We consider the mixing function ψx : C × Z → X mapping causal factor conditioned exogenous
noise to create an observational data. In this work, we perform conditioning as concatenation of z⊕ c
which is passed through piece-wise linear mixing functions as in definition 1.

5



Published as a conference paper at ICLR 2025

Definition 1 (Piece-wise linear functions). Let c, z denote vectors sampled from p(z) and p(c)
respectively. Let σ : R → R denote the leaky-ReLU activation function, and let H(n1, n2) denote
the set of full-rank affine functions hi : Rni → Rnj . We consider piece-wise functions mapping pair
of c ∈ C, z ∈ Z to an input x ∈ X ∈ Rm in the output space, Fnk→m

σ : C × Z → X , of the form
below:

Fn0,...,nt
σ =

{
ht ◦ σ ◦ ht−1 ◦ σ ◦ · · ·σ ◦ h1 | hi ∈ H(ni−1, ni)

}
. (6)

Probabilistically, the resulting generative model can be described by a graphical model in Figure 2(b),
this results in the likelihood as expressed in equation 7. To train our model in an end-to-end fashion,
we maximise the log-likelihood, resulting in the evidence lower bound (ELBO), equation 9. Here, we
consider the distribution p(x | c, z) to be Gaussian with learnable mean and isotropic covariance.

log p(x) = log

∫∫∫
p(x | c, z)p(z)p(c|A)p(A) dc dz dA (7)

≥
∫∫∫

q(c | x)q(z | x)q(A | c) log p(x | c, z)p(z)p(c | A)p(A)

q(c | x)q(z | x)q(A | c)
(8)

=

∫
q(c, z | x) log p(x | c, z)−KL (q(z | x)∥p(z))−KL (q(A | c)∥p(A))

− Eq(A|c)KL (q(c | x)∥p(c | A)) (9)

Remark 1. We use variational posterior for DAGs for faster training; during inference and for proofs,
we rely on the DAG generated wrt trained SCMs.

3.6 COUNTERFACTUAL GENERATION

Conterfactual generation refers to the generation of retrospective hypothetical scenarios, something
like “what would have happened, if had I done this instead of that?". Methodically, counterfactual
generation can be seen as three-step process Pearl (2009): (i) Abduction: inferring exogenous noise
of input and all the involved causal factors, in our framework, it corresponds to the inference of z and
u; (ii) Action: intervene on a causal factor of interest (ci → c̄i); (iii) Prediction: this involves the
propagation of effects of changes on the intervened causal factor. To quantitively evaluate the quality
of generated counterfactual, we consider two properties, Composition and Reversibility, as proposed
in Monteiro et al. (2023); here, we mainly perform a qualitative evaluation of these properties, due to
which we do not consider Effectiveness, in-depth analysis on these properties on CLIMB is left as a
future work.

Composition: measures the divergence in the generated image with respect to the original input
when the model is intervened on variables to have the value it would otherwise have without the
intervention. This basically measures the model behaviour under null interventions.

Reversibility: This measure of the divergence of the model being truly invertible; in an ideal
scenario, the considered model must be cycle-consistent. This is measured by calculating the distance
between the original and cycled-back observation.

4 THEORETICAL ANALYSIS

In this section, we leverage on the properties discussed in section 3 to theoretically demonstrate
the how the proposed model preserves symmetries in the dataset and also learn causal relationships
among these symmetries. Here, we demonstrate identifiability of the exogenous noise distribution
of causal factors p(u) in Theorem 1 and demonstrate the identifiability of A in Theorem 4 under
faithfulness assumption.
Assumption 4. (Sufficient variability) We assume to have an access to K = n+ 1 environments,
such that all K − 1 vectors of type v2

k − v2
1 and v1

k − v1
1, k ∈ {2, . . . ,K} are linearly independent

respectively, where v2
k :=

(
∂2η0k
∂u2

0
, . . . , ∂

2ηnk

∂u2
n

)
,v1
k :=

(
∂η0k
∂u0

, . . . , ∂ηnk

∂un

)
, with ηik = log p(ui | k).
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Table 2: Identifiability results for both u and z⊕ c factors across five runs

METHOD PENDULUM MORPHOMNIST COLOR-MORPHOMNIST

u-MCC ↑ z⊕ c-MCC ↑ u-MCC ↑ z⊕ c-MCC ↑ u-MCC ↑ z⊕ c-MCC ↑
β−VAE - 0.36± .03 - 0.32± .02 - 0.34± .03
VADE - 0.40± .03 - 0.38± .03 - 0.39± .02
IVAE - 0.36± .03 - 0.46± .04 - 0.48± .06

Ours:
CLIMB 0.76± 0.03 0.53± 0.02 0.88± 0.03 0.76± .02 0.92± 0.03 0.84± .01
CLIMB-GL 0.78± 0.05 0.55± .04 0.94± 0.02 0.84± .01 0.92± 0.01 0.86± .02

Remark 2. The linear independence criterion is almost always satisfied as long as the model param-
eters are randomly generated - in that case it almost surely holds as singular solutions will lie in a
submanifold (Hälvä & Hyvarinen, 2020; Khemakhem et al., 2020a).
Definition 2. (∼τ − Translation-scaling equivalence) For θ = {ψx,p} a set of parameters of the
mixing function and prior, the equivalence ∼τ on θ is defined as:

(ψx,p) ∼τ (ψ̃x, p̃) ⇐⇒ ∃ si, bi ∈ R ∀i ∈ [n]

s.t. ψ−1
x (x; z)i = sτ(i)ψ̃

−1
x (x; z)τ(i)) + bτ(i),∀x ∈ X , (10)

where sτ(i), bτ(i) are element wise scaling and translation terms with permutation function τ .
Theorem 1. (u-identifiability) Assuming the data generation process follow equation 1, with an
invertible demixing function ϕuz(x), such that (û, ẑ) = (ϕu(x), ϕz(x)), and a prior distribution
p(u) is modelled as a non-degenerate GMM. Given assumptions 1 and 4, the causal exogenous noise
u is identifiable up to ∼τ equivalence, as defined in 2.
Remark 3. It is important to note that, the following theory holds for any mixture which is analytic
and closed under affine transformations (Kivva et al., 2022). Alternatively, the sufficient variability
assumption requires a modification, where K = 2n+ 1 and the vectors (v2

k − v2
1,v

1
k − v1

1) ∈ R2n,
with k ∈ {2, . . . ,K}, are linearly independent (Yao et al., 2022)
Remark 4. The equivalence relation can be further strengthened by enforcing autoregressive flows in
SCMs, removing the permutation requirement, however we do not consider them.

Proof Sketch. To prove this, we proceed in following steps: (i) Identifiability of p(x|k) given p(x);
(ii) We derive the disentanglement result between u and z; (iii) We derive the Jacobian structure for
the considered mixing function; (iv) We derive the second order partial derivative of log-likelihood
wrt two independent elements of u; and (v) We analyse the resulting expression to demonstrate when
the variables are identifiable.

Theorem 2 (A−identifiability). Given p(u) is element-wise identifiable from theorem 1, and diffeo-
morphic transformation from u to c. Then with an assumption 6 we can recover DAG up to ∼node
equivalence, definition 6.

Proof Sketch. To prove this result, we proceed with the following steps: (i) we establish the relations
between u, û and c, ĉ; (ii) Find the Jacobian structure; and finally (iii) analyse the Jacobians to
establish A− identifiability.

5 EMPIRICAL EVALUATION

Given the work’s theoretical focus, our experimental aim is to provide strong empirical evidence
supporting our identifiability claims. For that, we conduct experiments on standard imaging bench-
marks, including the PENDULUM, MORPHOMNIST, and COLOR-MORPHOMNIST datasets, with
image resolution of 64 × 64, 32 × 32 and 32 × 32 respectively. In our evaluation, we perform
both qualitative and quantitative assessments. For baselines, we consider several existing models,
including β-VAE (Kingma & Welling, 2013), VADE (Jiang et al., 2016), and IVAE (Khemakhem
et al., 2020a). We propose two variants: one with linear diffeomorphic flows using affine flows, and
another with non-linear diffeomorphic flows using spline flows.
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Quantitative Evaluation. For evaluating the necessary conditions of CRL, we primarily focus on
measuring self-consistency, by computing MCC across multiple runs. For this, to evaluate against
baselines, we consider the concatenated features z⊕ c, we make sure that the dimensions of latent
features in baselines match with the dimension of these concatenated features. Table 2, illustrates all
the results, based on the results we can observe significant improvement wrt baselines, indicating
models ability to better align with the data symmetries present in the data generating process. We
can associate this behaviour to structural dependency learning present in CLIMB. Additionally, to
evaluate CRL sufficiency, we measure u-MCC with respect to the ground-truth causal factors and
compute the structural Hamming distance (SHD) of an estimated DAG. We tabulate all our findings
in Table 1, which indicates that in most cases we can identify the correct DAG, reflecting the true
data generating process.

Qualitative Evaluation. To showcase model behaviour in generating counterfactuals, we evaluate
its composition and reversibility properties. In Figure 3(a) we illustrate reversibility behaviour of the
model on PENDULUM dataset, where we can the models capabilities to recover the original image
with negative intervention on given image. For visual illustration, we plot treatment effect graphs
with null interventions and cycled-back transformations, demonstrating the model’s ability to capture
these causal dynamics, this can be observed in Figure 3(b,c).
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Figure 3: Illustration of counterfactual generation on inferred causal factors: (a) demonstrates the
reversibility and composition on PENDULUM dataset, (b) and (c) describes intervention on multiple
causal factors on MORPHOMNIST and COLOR-MORPHOMNIST datasets.

6 DISCUSSION

Relation to invariance principles. Yao et al. (2024a) introduces a unified framework for un-
derstanding CRL through invariance principles, connecting various existing approaches. Their
formulation of invariance is described by c1 := ϕ̄1(x1)B and c2 := ϕ̄2(x2)B , ensuring that for any
z /∈ c1, c2, we have ∂h1(c1)

∂z = ∂h2(c2)
∂z = 0, where ϕ̄i and hi denote input-specific encoders and

smooth transformations, respectively, while ci’s correspond to invariant subset of features given by
B. Where the invariance results relies on feature similarity across distinct inputs to maintain this
invariance. In contrast, by partitioning our latent space into C and Z , we inherently achieve ∂c

∂z = 0,
as demonstrated in the proof of Theorem 1, where we leverage on a mixture-based pivoting strategy.
Moreover, with the assumption of mixture distribution based priors, we further ensure identifiability
up to permutation and scaling.

Limitations: (i) The piecewise linear dependency may be limiting in certain scenarios, impacting
performance in more complex settings; (ii) an extensive empirical evaluation on large-scale datasets
and with deeper models is essential to fully understand the method’s applicability and robustness
from causal inference and counterfactual generation scenarios; (iii) extending identifiability proof
of c in the case of general transformation; and finally, (iv) this work does not account for discrete
causal factors, which could be a valuable direction for future research to explore assumptions and
adaptations needed for discrete variables.

In conclusion, we introduce a novel algorithm through latent space partitioning for CRL. By structur-
ing the latent space to independently capture causal factors and separate exogenous noise, enhancing
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scalability, which we empirically demonstrated to an extent on imaging datasets. We also estab-
lish identifiability guarantees for causal factors, exogenous noise, and the underlying DAG using
observational data alone in a mixture prior setting.
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A NOTATIONS

• u ∈ U = U0 × · · · × Un ⊆ Rn prior noise factors, with distribution p(u) =∑
j πjN (u;µj ,σ

2
j )

• û ∈ Rn inferred noise for causal factors, with distribution q(u | x) = N (u;µ(x),σ2(x))

• A ∈ A ⊆ [0, 1]n×n, prior adjacency matrix with probability distribution p(A) =
RelaxedBernoulli(A)

• Â ∈ A ⊆ [0, 1]n×n, inferred adjacency matrix with probability distribution q(A | c,u)

• c ∈ C = C0 × · · · × Cn ⊆ Rn prior causal factors, with distributions p(c | u,A).

• ĉ ∈ Rn inferred causal factors, with distributions q(c | u).

• z ∈ Rdz prior exogenous noise for an image, p(z)

• ẑ ∈ Rdz inferred exogenous noise for a given image, q(ẑ | x)

• gi, ĝi : Ci → Ui is a diffeomorphic function

• fi, f̂i : C̄ → Ci, conditioning network, where conditioning is applied wrt DAG A and C̄ ⊂ C

• T, T̂ : U → C both correspond to prior and posterior flows, reflecting the joint operation of
{gi ∀ i ∈ [n]}

• ϕz : X → Z, ϕu : X → U , functionally ẑ = ϕz(x), ĉ = T̂(ϕc(x))

• ψx : C × Z → X , functionally c = T(u),x = ψx(c, z)

B ADDITIONAL DEFINITIONS

Definition 3. (Diffeomorphic functions) A function f is said to be a diffeomorphism onto its image,
i.e., f is C∞, if f is injective and its inverse f−1 is C∞ as well.

Definition 4. (Data symmetries) For a given model z = ψ−1(x), the model ψ is said to capture data
symmetries if the recovered factors z, are invariant under a transformation T such that:

ψ−1(x) = T (ψ−1(x)),

where T represents a symmetry-preserving transformation in the data-generating process. In this
sense, ψ can identify factors in z up to the transformation T , meaning that the decomposition achieved
by ψ respects inherent relations in the data-generating process.

Definition 5. (Causal symmetries) Similar to the definition 4, the transformation T can be categories
to capture causal symmetries when it can be decomposed wrt individual element as:

ψ−1(x)i = Ti(ψ
−1(x)τ(i),pa

A
τ(i) ∀i ∈ [|ψ−1(x)|],

where τ is a permutation, Ti is a symmetry transformation specific to each factor i that preserves the
causal structure, and A correspond to underlying causal dependencies in the data-generating process.

Definition 6. (∼node − Node-wise permutation equivalence) For two different adjacency matrix
A, Â, the equivalence relation ∼node, with permutation matrix P for an associated permutation π;
i.e. Piπ(i) = 1 for any i ∈ [n], and 0 otherwise, is defined as:

A ∼node Â ⇐⇒ ∃ P ∈ {0, 1}n×n; s.t. Â = PTAP (11)
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C DATASETS

PENDULUM The pendulum dataset-generating process consists of four causal factors that will
result in the generation of x: the angle of the pendulum, the position of the light source, the position
of the shadow, and the length of the shadow. Here, both the angle of the pendulum and the position
of the light source make a root node, which causes both shadow position and shadow length. This
dataset has images of the resolution 64× 64 and has around 20k samples.

MORPHOMNIST MorphoMNIST is a synthetic dataset based on MNIST digits Castro et al.
(2019). Here, we consider the data-generating process to be made of two causal factors that will result
in the generation of x: thickness and intensity of the digit, where the change in thickness results in
changes in intensity. The dataset consists of 60k image samples, with a resolution of 28× 28.

COLOR-MORPHOMNIST Color-MorphoMNIST is a coloured version of MorphoMNIST, with
three different causal factors in the data-generating process. Colour is an additional factor on top of
thickness and intensity, where the change in thickness results in changes in intensity and the resulting
change in intensity changes the colour of the digit. The dataset consists of 60k image samples, with a
resolution of 28× 28.

D NECESSARY AND SUFFICIENT CONDITIONS FOR CRL

Identifiability reflects the models’ ability to capture the implicit symmetries in the data-generating
process Yao et al. (2024a). Usually, these symmetries may or may not correspond to causal repre-
sentations. When these symmetries are explicitly modelled to map to causal factors, identifiable
representations align with causal representations. Identifiability of representations is a necessary
condition for CRL but not sufficient; one additional key step involved in CRL is to model the de-
pendencies among the identified representations, which requires additional assumptions on both
the data-generating process and the considered model. Assumption 5 states that the underlying
data-generating process indeed follows a causal process. While assumption 6, on “Faithfulnes” is a
standard assumption in CRL which stems from Pearl (2009) is commonly required for graph discov-
ery, this states that there does not exist any extraneous conditional independence, whose implications
are reflected in the assumption.
Assumption 5. (Causal symmetries) We assume that the true data-generating factors have inherent
causal symmetries, as defined in 5, which can be exploited during inference.

Assumption 6. (Faithfulness) For any causal factor ci ∋ ci /∈ paAj , then ∂fj
∂ui

= 0.

In most identifiability works based on structural assumptions, i.e., the methods works with latent
distributional assumptions and the properties on mixing function, the conditional independence is
the key assumption (Khemakhem et al., 2020a;b; Kivva et al., 2022; Willetts & Paige, 2021; Falck
et al., 2021) and they mostly do not consider graph identification. However, Yang et al. (2021);
Komanduri et al. (2024) rely on conditional independence and use ANM modelling assumption
to learn causal representations while assuming the dependency structure or DAG used in the data-
generating process is known. In this work, we rely on conditional independence assumption on
latent variables u; However, we additionally transform these independent variables to encode latent
dependencies in latent variables c, we rely on methods similar to Reizinger et al. (2024) to identify
the causal graph while diffeomorphic piece-wise linear SCMs, we identify the dependencies up to
node wise permutation illustrated in definition 6. Similar to the line of works in causal discovery
Reizinger et al. (2024), we use Jacobian of SCMs, allowing us to demonstrate the identifiability of
DAG up-to-node permutation. In our case, the Jacobian can be expressed as JTij = ∂ci

∂uj
= ∂gi

∂f̄i

∂f̄i
∂uj

.
The inverse of this Jacobian matrix along with faithfulness assumption we get A−identifiability as
detailed in Theorem 4.

Additionally, as often reflected in evaluations, the mean correlation coefficient (MCC) is usually
computed with respect to multiple runs (Kivva et al., 2022; Khemakhem et al., 2020b;a; Kori et al.,
2023), this self-consistent behaviour primarily reflects to model’s ability to capture unobserved data
symmetries, which mostly do not correspond to causal symmetries. While the MCC measured with
respect to ground truth reflects the model’s ability to uniquely learn the desired properties, in the case
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when these desired properties are causal in nature, this measure demonstrates the model’s ability to
learn causal representations.

E PROOFS

Theorem 1 (u-identifiability) Assuming the data generation process follow equation 1, with an
invertible demixing function ϕuz(x), such that (û, ẑ) = (ϕu(x), ϕz(x)), and a prior distribution
p(u) is modelled as a non-degenerate GMM. Given assumptions 1 and 4, the causal exogenous noise
u is identifiable up to ∼e equivalence.

Proof. 1. Identifiability of p(x|k), k ∈ {1, . . . ,K} given p(x).

p(u) and p(z) are non-degenerate Gaussian mixtures with K and M components respectively. The
mapping ψx(T(u), z) is piecewise linear, p(u, z) is analytic and closed under affine transformations.
Define T̂(u, z) := (T(u), z). Given (ψx ◦ T̂)(u, z) and ϕ−1

uz (û, ẑ) are equally distributed, Lemma
C.4 and Corollary C.6 from Kivva et al. (2022) show there exists x0 ∈ X and δ0 > 0 such that
ψx ◦ T̂ and ϕ−1

uz are invertible on B(x0, δ0) ∩ X . Because the inverse functions are piecewise affine,
there exists x1 and δ1 with B(x1, δ1) ⊆ B(x0, δ0) such that (ψx ◦ T̂)−1 is affine in B(x1, δ1) ∩ X .
Following the logic from Kivva et al. (2022), let L ⊆ X be an affine subspace such that dim(L) =
n+dz andB(x1, δ1)∩X = B(x1, δ1)∩L. Then, there exists an invertible affine map h : Rn+dz → L

such that h−1 = (ψx ◦ T̂)−1 on B(x1, δ1) ∩ L.

For all x ∈ B(x1, δ1) ∩ X , we can view the observed distribution as a pushforward measure of
p(u, z) by h. Considering p(u) is a non-degenerate Gaussian mixture of K components, we denote
the family of mixtures under the transformation h.

Mx :=

{ K∑
k

ckpk(x), ck > 0,
∑

ck = 1, pk ∈ Px, K = R+

}
, (12)

where Px :=

{
(h#pa)(x), h ∈ H, pa ∈ P

}
. (13)

H denotes a family of affine transformations, and P denotes a family of distributions such that
each pa(u, z) = pau(u)p(z), with Gaussian pau and fixed p. Yakowitz & Spragins (1968) shows
identifiability for mixture models defined on multidimensional CDFs, where linear independence is a
sufficient and necessary condition. This result also extends to PDFs, with linear independence on Px.
Given H is a family of affine transformations, Px preserves the linear independence properties of
Gaussian families.

Identifiability up to permutations is defined in Yakowitz & Spragins (1968) as follows. Given
p(x), p′(x) such that:

p(x) =

K∑
k

pk(x)ck =

K′∑
k′

p′k(x)c
′
k = p′(x);

we have K ′ = K and there exists a permutation τ ∈ SK such that and pk(x) = p′τ(k)(x) and
ck = c′τ(k), for any k ∈ {1, . . . ,K}.

2. Disentangling û from ẑ

Given x ∈ X , we write the correspondence between x with respect to the true exogenous noise u, z
and some estimated exogenous noise û, ẑ:

(û, ẑ) =
(
ϕu(x), ϕz(x)

)
= ϕuz(x), x = ψx(T(u), z); (14)

where (û, ẑ) = ϕuz(ψx(T(u), z)). We observe û is both dependent on u and z, and ϕu is not
invertible since dim(û) < dim(x). Assuming no information on the label assignment k ∈ {1, . . . ,K},
the log-density log p(û, ẑ) is expressed as:

log p(û, ẑ) = log p(c, z) + log |detJ(ψ−1
x ◦ϕ−1

uz )| (15)

= log p(u) + log p(z) + log |detJT−1 |+ log |detJ(ψ−1
x ◦ϕ−1

uz )|. (16)
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Note that given the non-invertibility of ϕu, we cannot write ∂u
∂û directly. However, given the

identifiability of the emission distributions pk(x), k ∈ {1, . . . ,K} up to a permutation τ , we can
write the distribution mapping from u to û for any k. Wlog, assume τ(k) = k. Considering u, z
and û, ẑ are independent, we denote the difference between distributions given two conditionals
k1, k2 ∈ [K]. From the above equation, we denote de direct dependency of u and û:

log p(û, ẑ|k1)− log p(û, ẑ|k2) = log p(u | k1)− log p(u | k2), (17)
log p(û | k1)− log p(û | k2) = log p(u | k1)− log p(u | k2). (18)

Where p(û, ẑ) = p(û)p(ẑ) from our demixing assumptions on ϕuz . We take the derivative with
respect to û

∂

∂û

(
log p(û | k1)− log p(û | k2)

)
=

∂

∂u

(
log p(u | k1)− log p(u | k2)

)
H, (19)

which gives us an identity relating the Jacobian ∂u
∂û ∈ Rn×n, denoted as H. We can create a system

of n equations using K = n+1 components and k = 1 as a pivot. We recall the following definitions
for notational simplicity:

ηik := log p(ui|k), v1
k :=

(
∂η0k
∂u0

, . . . ,
∂ηnk
∂un

)
, η̂ik := log p(ui|k), v̂1

k :=

(
∂η̂0k
∂û0

, . . . ,
∂η̂nk
∂ûn

)
,

(20)
introduced in Assumption 4. The system of equations in vector form results as follows v̂1

2 − v̂1
1

...
v̂1
n+1 − v̂1

1

 =

 v1
2 − v1

1
...

v1
n+1 − v1

1

H. (21)

where a unique solution for H exists if the RHS matrix is full rank, i.e. the vectors v1
k − v1

1, k ∈
{2, . . . ,K} are linearly independent, which is true given sufficient variability (Assumption 4).

3. Identifiability Condition

Note we assume the exogenous variables û are mutually independent given k ∈ {1, . . .K}. Following
Yao et al. (2022), for any p ̸= q, p, q ∈ {1, . . . , n}, we have

∂2 log p(û|k)
∂ûp∂ûq

= 0, (22)

with the following closed-form expression:

∂ log p(û | k)
∂ûp

=

n∑
i=1

∂ηik
∂ui

Hip +
∂
(
log p(z)− log p(ẑ) + log |detJT−1 || detJ(ψ−1

x ◦ϕ−1
uz )|

)
∂ûp

,

(23)

∂2 log p(û | k)
∂ûp∂ûq

=

n∑
i=1

(
∂2ηik
∂u2i

HipHiq +
∂ηik
∂ui

∂Hip

∂ûq

)

+
∂2

(
log p(z)− log p(ẑ) + log |detJT−1 || detJ(ψ−1

x ◦ϕ−1
uz )|

)
∂ûp∂ûq

= 0, (24)

where Hij =
∂ui

∂ûj
, i, j ∈ [n]. Again, we use following definitions for notational simplicity

v2
k :=

(
∂2η0k
∂u20

, . . . ,
∂2ηnk
∂u2n

)
,v1
k :=

(
∂η0k
∂u0

, . . . ,
∂ηnk
∂un

)
,vk = v2

k ⊕ v1
k (25)

h2 := (H0pH0q, . . . ,HnpHnq) ,h
1 =

(
∂H0p

∂ûq
, . . . ,

∂Hnp

∂ûq

)
,h = h2 ⊕ h1. (26)
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Similarly as above, for any k ̸= 1, we can pivot around k = 1, and eliminate the dependency over z
and ẑ.

∂2 log p(û | k)
∂ûp∂ûq

− ∂2 log p(û | 1)
∂ûp∂ûq

= (vk − v1)h
T = 0. (27)

With number of components K, we get system of equations as:v2 − v1

...
vK − v1

hT = V hT = 0. (28)

4. Result Analysis

From Theorem 3.2 in (Kivva et al., 2022), and considering all the transformations from (u, z) to
x are injective and piece-wise linear, we know that the latents (u, z) are identifiable up to affine
transformations. Therefore, the Jacobian H is a linear transformation, and ∂H

∂û = 0 which implies
h1 = 0. Based the on the sufficient variability assumption (Assumption 4) we know the system
admits the only valid solution h = 0 thanks to having K = n + 1 linear independent vectors
v2
k −v2

1, k ∈ {2, . . . ,K}. Then, Eq. (28) holds true only if HipHiq = 0 for all i and p ̸= q. In other
words, each row in H only admits one non-zero entry, and therefore û is a component-wise scaling
of a permutation of u. This implies u is element-wise identifiable.

Theorem 3 (z−identifiability Kivva et al. (2022)). Given z ∼
∑J
i=1 πiN (z;µi,Σi) and z′ ∼∑J′

j=1 π
′
jN (z′;µ′

j ,Σ
′
j) and ψx(z, c) and ψ̃x(z′, c) are equally distributed. Then given Σi,Σj ,∀i ∈

[J ], j ∈ [J ′], there exists two indices i1, i2 ∈ [J ] ∋ ((Σi1)tt/(Σi2)tt) are distinct, resulting in an
recoverable invertible linear map H : Rkdz → Rkdz such that H = QD mapping z to z′, where Q
and D are permutation and diagonal matrices with positive entries.
Theorem 4 (A−identifiability). Given p(u) is element-wise identifiable from theorem 1, and diffeo-
morphic transformation from u to c. Then with an assumption 6 we can recover DAG up to ∼node
equivalence, definition 6.

Proof. We start with Proposition 1 from Reizinger et al. (2023) which states that given c = T(u),
the inverse jacobian JT−1 is structurally equivalent to (In −A) when:

i) The structural equation models (SEM) are given by ci = gi(fi(pai), ui)∀i ∈ [n], such that
element-wise identifiability is also enforced on c. gi denote the components of the vector
transformation T;

ii) ui are independent;

iii) There are no hidden confounders and the jacobians JT−1 ,JT are faithful to A;

iv) Each gi is bijective; and

iv) Each ci depends on ui.

Our framework is consistent with the above assumptions. The SEM is given by Eq. (3), where the
exogenous noise variables u are mutually independent. Considering element-wise identifiability of
u and c, our setup contains no hidden confounders. Furthermore, Assumption 6 is equivalent to
structural faithfulness of JT−1 and JT.

Consider element-wise identifiability equivalences of both u and c

û = PDuu+ bu, ĉ = PDcc+ bc. (29)
where the permutation matrix P is constant as the variables are aligned, but the scaling and bias could
differ. We write the equivalences in terms of ĉ and c respectively through T̂,T:

T̂−1(ĉ) = PDuT
−1(c) + bu, (30)

T̂−1(ĉ) = PDuT
−1(D−1

c PT (ĉ− bc)) + bu. (31)
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Given P is a permutation matrix, we have P−1 = PT . We now take the derivative with respect to ĉ:

∂T̂−1(ĉ)

∂ĉ
= (PDu)

T ∂T
−1(c)

∂c
(D−1

c PT )T , (32)

D−1
u JT̂−1Dc = PTJT−1P. (33)

As we observe, the jacobian of the inverse transformations T−1 and T̂−1 are equivalent up to a
permutation of the rows and columns, and a diagonal scaling. Given that Du and Dc have non-zero
entries, from Proposition 1 in Reizinger et al. (2023) we have:

(In − Â) = PT (In −A)P, (34)

Â = PTAP ; (35)

where PTP = In, which implies that A is equivalent to Â up to a permutation of its rows and
columns. I.e. given a permutation π consistent with P , we have Ai,j = Aπ(i)π(j),∀i, j ∈ [n].
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