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Abstract

Point cloud completion is to restore complete 3D scenes
and objects from incomplete observations or limited sen-
sor data. Existing fully-supervised methods rely on paired
datasets of incomplete and complete point clouds, which
are labor-intensive to obtain. Unpaired methods have been
proposed, but still require a set of complete point clouds
as a reference. As a remedy, in this paper, we propose a
novel point cloud completion framework without using any
complete point cloud at all. Our main idea is to generate
multiple incomplete point clouds of various poses and inte-
grate them into a complete point cloud. We train our frame-
work based on cycle consistency, to generate an incomplete
point cloud such that 1) shares the same object as the input
incomplete point cloud and 2) corresponds to an arbitrar-
ily given pose. In addition, we devise a novel projection
method conditioned by pose to gather visible features, from
a volumetric feature extracted by an encoder. Extensive ex-
periments demonstrate that the proposed method achieves
comparable or better results than existing unpaired meth-
ods. Further, we show that our method also can be applied
to real incomplete point clouds.

1. Introduction

A point cloud is a commonly used representation of 3D
scenes and objects in the fields of computer vision and
robotics [14, 20, 21, 22, 28, 9, 24, 2, 3, 7, 15]. However,
obtaining complete point clouds is often difficult due to the
lack of observation or the limitations of sensors. As a rem-
edy, the point cloud completion task has been spotlighted to
restore complete point clouds from incomplete ones.

The existing fully-supervised point cloud completion
methods [16, 17, 19, 38, 39, 40, 42, 43, 44] have shown
promising results; however, they typically rely on datasets
that include incomplete point clouds paired with complete
point clouds serving as ground truth (GT). Since obtain-
ing GT complete point clouds is labor-intensive, several
works [0, 36, 45, 4] have employed two sets of point clouds:

(b) Union of incomplete PC
= Complete PC @

(a) Incomplete PC = Observation of complete PC
ﬂ from a certain viewpoint

=\

—4q

(c) Generate incomplete PCs of various poses — Integrate them as complete PC

Input incomplete PC

i Sampled poses Generated incomplete PCs

Integrated
complete PC

Figure 1. Illustration of our main idea. We re-interpret the point
cloud completion task as generating multiple incomplete point
clouds that correspond to various poses and integrating them.

one with incomplete point clouds and the other with com-
plete point clouds, which are not directly paired with each
other. This unpaired setting could learn the mapping be-
tween the incomplete and complete point clouds, while re-
ducing the reliance on paired GT complete point clouds.
Nevertheless, the requirement of a set of complete point
clouds still remains a major limitation to the practical ap-
plication of point cloud completion.

In this paper, we propose a novel point cloud completion
framework that does not use any complete point clouds.
Our main novelty lies in how to learn a mapping from an
incomplete point cloud to a complete point cloud when the
latter is not available at all. For this, we present a simple yet
effective idea shown in Fig. 1. An incomplete point cloud
usually results from self-occlusion occurs when observing
an object from a certain viewpoint, as in (a). Therefore,
if we obtain multiple incomplete point clouds of the object
from various viewpoints, a union of them would be equiv-
alent to the complete point cloud of that object. Based on
this idea, we formulate the point cloud completion as gener-
ating multiple incomplete point clouds using a single input
incomplete point cloud and sampled poses. Here, the gen-
erated incomplete point clouds should 1) share the same ob-
ject as the input incomplete point cloud and 2) correspond



to the arbitrarily given input poses. If the poses are various
enough to cover the entire object, we could obtain the com-
plete point cloud by integrating the incomplete point clouds.

To achieve the above, our framework starts with an en-
coder that extracts a volumetric shape feature from the input
incomplete point cloud. This feature is designed to contain
complete information about the shape of the target object.
To generate an incomplete point cloud from the volumetric
feature, we propose a novel projection method conditioned
by the pose, similar to obtaining an incomplete point cloud
as a capture of the target object from a certain viewpoint.
The method determines the region visible at the given pose
and obtains a projected feature by gathering the volumetric
feature of that region. A decoder is then trained to generate
an incomplete point cloud from the projected feature.

We do not have access to either the complete point cloud
or the incomplete point cloud of another pose. Therefore,
for training, we propose a novel dataset that provides both
incomplete point clouds and corresponding poses, based on
the ShapeNet dataset [5]. Note that our dataset includes
only one incomplete point cloud per each object, unlike the
setting of [13]. Using our dataset, we make our framework
reconstruct the input incomplete point cloud itself by gath-
ering the projected feature using the pose corresponding to
the input. On the other hand, when using randomly sampled
poses, we impose cycle consistency by feeding the gener-
ated incomplete point cloud to the encoder/decoder again.

During the inference phase, we extract the volumetric
shape feature from the input and obtain the projected fea-
tures using various poses that cover the entire object. By
decoding the features and integrating the generated incom-
plete point clouds, we can obtain a complete point cloud as
the final output. To verify the proposed method, we conduct
extensive experiments and comparisons with the existing
unpaired point cloud completion methods, on the proposed
dataset. The results support that, the proposed method is
comparable to the existing studies and sometimes achieves
even more substantial completion results, without using any
complete point cloud. Further, we conduct an experiment
on the KITTI dataset [ 1 0] to show that the proposed method
can be also applied to the real incomplete point clouds. Our
main contributions are as follows:

e We formulate a point cloud completion task as generat-
ing and integrating multiple incomplete point clouds cor-
responding to various poses.

e We propose a novel framework that generates an incom-
plete point cloud using the input incomplete point cloud
and the given arbitrary pose.

e We introduce a new dataset consisting of incomplete
point clouds and poses.

e We experimentally verify that the proposed method is
comparable or even superior to existing studies, without
using complete point cloud at all.

2. Related Works
2.1. Point Cloud Completion

Point cloud completion aims to restore a complete point
cloud from an input incomplete point cloud. Although
fully-supervised completion methods [8, 17, 19, 23, 32, 34,

, 40, 43, 46, 35, 31] achieve substantial completion re-
sult, they rely on the dataset including paired incomplete
point cloud and GT complete point cloud, which is diffi-
cult to acquire, especially for real scenes. To overcome
the limitation, unpaired approaches [6, 36, 45, 11] have
been proposed to learn the mapping between the sets of
complete and incomplete point clouds. Pcl2pcl [6] is the
first unpaired point cloud completion method, which allows
translation between partial and complete latent spaces by
adversarial training. Subsequently, Cycle4completion [36]
has achieved more advanced results by considering bidirec-
tional geometric correspondence by cycle transformation
and missing region coding. Shapelnversion [45] obtained
optimal shape code for reconstructing 3D shapes based on
the concept of GAN inversion. OptDE [ | 1] proposed cross-
domain completion by disentangling shape, domain, and
occlusion factors, using domain-invariant geometric infor-
mation and viewpoint prediction. Although the unpaired
methods have shown promising results, their practical ap-
plication is still limited by the requirement for a number of
complete point clouds. [13] has proposed to utilize multiple
incomplete point clouds of the same object, obtained from
observations at different poses; however, such multiple ob-
servations are often not available. Unlike the existing meth-
ods, our method does not access the complete point cloud at
all, and also uses only one incomplete point cloud per each
object, throughout the entire training process.

2.2. Pose-Aware 3D Processing

One of the most representative 3D tasks dealing with
the pose is point cloud canonicalization [29, 30, 26]. Con-
Dor [29] takes an un-canonicalized collection of full or
partial point clouds obtained through the internet or depth
sensor as input. Meanwhile, [33] proposed self-supervised
learning via disentangling content and pose information for
the point cloud feature representation. As such, numerous
studies have been conducted to exploit these two factors,
since 3D data usually contains pose attributes as well as
the shape of the object. Nevertheless, in the field of point
cloud completion, using pose has not been deeply studied
despite its usefulness. Since an incomplete point cloud
is usually obtained by scanning the object from a single
viewpoint through a scanner, information about the view-
point (i.e., pose) can be beneficial for recovering the self-
occluded regions. In this light, we utilize the pose infor-
mation to complete the point cloud by generating multiple
incomplete point clouds.
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Figure 2. Illustration of a framework for generating a pose-aware point cloud. First, the encoder extracts the volumetric shape feature V'
from the input point cloud P;. Then, projected features F; and [ are generated by determining the visible region with input pose o; and
random pose o,.. Incomplete point cloud Pz rec 1s decoded to constrain with L. Incomplete point cloud P, is decoded and entered into
the model again with input pose o;. After that, volumetric feature v, projected feature Fj, and P; Lcycle are generated sequentially. We use
Lshape and Leycie to constrain our network.

2.3. Volumetric Feature Representation

Volumetric features are commonly used in tasks such
as multi-view stereo [25, ], 3D semantic segmenta-
tion [12, 47], and point cloud completion [8, 41, 40] due
to their capability to preserve the spatial information of the
input. However, standard voxelization can result in geomet-
ric information loss and quantization effects. To address
this issue, GRNet [40] proposed a differentiable completion
network that aggregates features between 3D grid vertices
using interpolation. Similarly, our approach also utilizes the
volumetric representation and pose to perform completion.

3. Proposed Methods
3.1. Overview

In this paper, we refer to an incomplete point cloud as
P; € RV*3 where N is the number of points in the point
cloud, and the subscript ¢ represents the pose at which P; is
captured. For convenience, we define the pose as a two-
dimensional vector o = (¢,0), as the incomplete point
cloud is usually not significantly affected by the distance
between the scanner and the target object.

The goal of our work is to achieve point cloud comple-
tion without relying on using complete point clouds. To ac-
complish this, we generate multiple incomplete point clouds
from a single input point cloud, where each generated in-
complete point cloud shares the same object as the input
but corresponds to a different pose.

1%

As shown in Fig. 2, we begin by using an encoder E
to obtain the volumetric shape feature V' from the input in-
complete point cloud P;. We assume that the encoder can
extract complete shape information of the object from the
input incomplete point cloud. In other words, the volumet-
ric shape feature serves as a complete target object at the
feature level. To mimic the process of obtaining an incom-
plete point cloud as a capture of the target object at a certain
pose, we gather the features corresponding to the arbitrarily
given pose o, (or o, for the upper branch) from the volumet-
ric shape feature. Then, with a decoder D, we decode the
gathered feature F' to generate the incomplete point cloud.

To ensure that the incomplete point cloud generated by
our framework correctly corresponds to the given pose,
we impose reconstruction loss and cycle consistency loss,
which will be explained in Section 3.2. Further, we intro-
duce a novel method to determine the visible region and
gather the features on it into the projected feature. We de-
scribe the details of the projection method in Section 3.3.
Finally, in Section 3.4, we demonstrate how we obtain the
complete point cloud using our framework, in the inference
phase. It is worth noting that throughout the entire process,
we do not use any complete point cloud.

3.2. Pose-Aware Point Cloud Generation

Since we have neither a complete point cloud nor an in-
complete point cloud captured from another view, the input
incomplete point cloud is the only available data in the point
cloud domain that can be used as supervision. Therefore,
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Figure 3. Illustration of our projection method. (a) We first determine the base region (covered by yellow) according to the given pose. Note
that any pose can be categorized as one of cases I, II, and III, after a proper rotation. Then, the features on the base region are gathered into
a 2D feature grid. (b) The visible region (covered by blue) defined on the grid is obtained by interpolating the neighboring base features.

we devise two branches that can be effectively trained us-
ing the input incomplete point cloud. The first branch uses
the input pose o; to generate the projected feature F; and
decode I:’i,rec, which should be identical to the input point
cloud P;. To ensure this, we minimize the following recon-
struction loss L,.c.:

»Crec = *CCD(PZ' ) [Di,rec)- (1)

Here, L p denotes the Chamfer Distance (CD), commonly
used in the point cloud field. Note that, for two given point
clouds P; and P, the CD is formulated as

Lop(Pr,Py)= Y min [jpi—pjl|+ Y min [|p;—pi|-
P EP2 pi€P
pi€P1 p; EP2
2

Further, we randomly sample an arbitrary pose o,., which
is different from the input pose o;, and generate projected
feature F).. If we decode F}., the resulting incomplete point
cloud P, should share the same shape with P; but corre-
spond to the sampled pose o,.. However, as mentioned, we
cannot access the GT P,. Therefore, we impose cycle con-
sistency on our framework. In specific, we put P, into the
encoder again and get V, which is the shape feature of the
]3T. Since the original input P; and pr should have the same
shape, we minimize a shape loss L,y defined as follows:

Eshape: ||V_VH1 (3)

Besides, using the V and the input pose o;, we gather
the projected feature Fz and decode it into ]—c’i@ycle, which
should be identical to the input point cloud. Therefore, we
define cycle loss L.ycie as follow:

‘Ccycle = LC’D (Pza -pi,cycle)~ (4)

These loss terms, Lgpqpe and L.y e, enable the encoder to
extract the shape feature containing complete shape infor-
mation and also help the decoder to generate incomplete
point cloud that reflects the pose.

To sum up, we train our framework by using a combina-
tion of Lyec, Leyete, and Lgpqpe. The total loss function is
defined as follow:

Etotal = »Crec + Ecycle + )\Acshape (5)

where A is the weight for Lspape.

3.3. The Proposed Projection Method

In order to effectively incorporate pose information into
our learning framework, we devise the encoder to extract
the shape information as a form of volumetric feature, de-
noted as V = {v;}¥"). Here, v; € R, where N is the
resolution of the volumetric feature and d is the feature di-
mension. Similar to the target object being captured as an
incomplete point cloud from a certain viewpoint, we devise
a gathering process that selects the features that are visible
from an arbitrarily given pose.

However, the volumetric feature is a spatially discrete
3D grid, and thereby a naive visibility test returns the same
results for the wide range of poses. To mitigate this, we
establish a projection rule that can be applied for arbitrary
poses, as shown in Fig. 3 (a). In specific, we subdivide the
entire set of poses into the pose subsets, per 30 degrees.
Then, we predefine the base region (covered by yellow) for
each pose subset. Note that, without loss of generality, any
arbitrary pose segment can be categorized into one of the
three cases (I, II, and III), after a proper rotation.
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Figure 4. Illustration of obtaining the complete point cloud with
the proposed framework in the inference phase. We gather the
projected features F1.g from the shape feature V', according to the
various poses 01:.g. Then, each projected feature is decoded into
the incomplete point cloud Py.s. A union of the generated incom-
plete point clouds serves as the resulting complete point cloud C.

Once the base region is determined, we unfold the vol-
umetric features located in that region into the 2D grid.
During the unfolding, we compute the feature of the empty
nodes by interpolating the neighboring volumetric features.
In detail, we simply average the neighboring features and
use the result as the feature of the node. Then, we define
the visible region (covered by blue) on the 2D base grid, as
shown in Fig. 3 (b). Here, as 6 and ¢ increase, the visible
region would move up and right, respectively. Finally, to
obtain the feature map that represents the visible region, we
perform bilinear interpolation using the neighboring base
features. The weights for interpolation are determined ac-
cording to the values of 6 and ¢. Further details of the pro-
jection method are provided in Supp. Material.

3.4. Obtaining Complete Point Cloud

As aforementioned, in the inference phase, we generate
multiple incomplete point clouds of various poses and inte-
grate them into a complete one. In detail, we first extract
the volumetric shape feature V' from the input incomplete
point cloud, as shown in Fig. 4. From the shape feature, we
obtain the projected features Fi.g by using a set of poses
o1:3. Here, we use a predefined set of eight poses, {(%, 7).
(5.%0), (5.72). (5.5, G55, G55, G55,

44 4 404 101 404 404
(F, )}, which can cover the entire object. Then, we de-
code the projected features into the incomplete point cloud
]51:8. Finally, a union of the generated incomplete point
clouds serves as the resulting complete point cloud C. Note
that we use the incomplete point cloud as the only input for
the inference, and the pose of the input is not required.

We observe that the resulting integrated point cloud
C has substantial quality. However, our generate-and-
integrate approach involves repeated decoding to generate

Our framework
(Frozen)

Pseudo-GT C’
Figure 5. Illustration of the proposed re-training strategy. We use
the frozen framework to obtain pseudo-GT C. Then, a new point
cloud completion network G is trained to learn a mapping between
the input P; and the pseudo-GT.

multiple incomplete point clouds, which can be computa-
tionally inefficient. In Section 4.3, we conduct an experi-
ment to verify the completion performance while changing
the number of used poses. It shows that there is a trade-off
between the performance and the number of poses. To al-
leviate this issue, we propose a strategy named Re-Training
(RT). As visualized in Fig. 5, this strategy uses the inte-
grated complete point cloud as supervision for training an-
other completion network.

First, our framework is trained as in Section 3 and frozen.
Then, we obtain an integrated complete point cloud for each
incomplete point cloud in the training dataset. Since the
obtained complete point cloud is a reasonable completion
result, it can serve as a pseudo-GT for the corresponding in-
complete point cloud (which was originally used as input).
In other words, starting from the initial dataset including in-
complete point clouds without any complete point cloud at
all, we now have a paired dataset including the incomplete
point cloud and the pseudo-GT pairs. Using the incomplete
point cloud and pseudo-GT pairs, we train another point
cloud completion network G, like the conventional fully-
supervised point cloud completion methods. For this, we
use the Chamfer Distance loss between the input P; and
pseudo-GT C‘, which is denoted as Lr7. Note that, we
still do not access the real GT complete point clouds at all,
throughout the whole process of the re-training.

Compared to directly using the output of our framework
as a final output, the re-training can be advantageous in sev-
eral aspects. First, as we mentioned, re-training is much
more efficient and practical in the inference phase, since it
requires only one inference per input and can perform multi-
class point cloud completion. Further, in terms of the com-
pletion performance, the re-training enables learning more
complex and beneficial concepts. For example, during re-
training, we can expect the network to learn the geomet-
ric relation between the incomplete and (pseudo-)complete
point clouds. It is especially helpful when the input is
severely self-occluded (e.g., when only the upper side of the
table can be observed), which cannot be dealt with directly
using the pseudo-complete point cloud. In addition, we ob-
serve that the re-training can reject some outlier points in
the pseudo-GT.



Table 1. Completion results on our dataset. The numbers shown are [CD | / F1 1], where CD is Chamfer Distance scaled with x10%. Best

results are indicated as bold.

Methods Using Complete PC.| Airplane Cabinet Car Chair Sofa Table Vessel Average
Cycle. [36] Yes 14.71/81.53 16.64/74.94 35.02/49.33 22.23/70.53 20.38/47.07 21.45/77.18 16.09/76.49 |20.93/68.15
Shapelnv. [45] Yes 4.16/96.05 14.20/79.91 10.69/87.09 16.67/81.39 16.01/80.82 23.86/82.93 10.55/87.72|13.74/85.13
Ours No 4.84/95.13 15.11/77.52 9.63/88.01 18.25/75.34 17.50/74.62 19.02/80.93 12.45/84.43 | 13.73/82.46
Ours (+RT) No 4.87/94.85 15.14/81.20 9.06/88.84 16.22/77.92 15.41/77.67 18.04/80.73 10.95/86.36 | 12.81/83.94
Input Cycle. [35] Shapelnv. [44] Ours Ours (+RT) GT
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Figure 6. Qualitative results of the point cloud completion methods on our dataset. From left to right: incomplete input, completion results
of Cycledcompletion [36], Shapelnversion [45], ours, ours (+RT), and GT.

4. Experimental Results

4.1. Dataset Generation

The datasets [8, 34] widely used for the existing point
cloud completion studies consist of input point clouds and
complete point clouds, which are suitable for the fully-
supervised or unpaired settings. On the other hand, to
train and evaluate our study, a dataset consisting of com-
plete/incomplete point clouds and corresponding poses is
required. Therefore, we build and publish a new dataset
for this setting. We use the complete point clouds in the
ShapeNet Benchmark [5]. First, we randomly sample the
pose as a viewpoint located on the sphere. Then, with the
sampled pose, we use [18] to remove unobserved points
from the complete point cloud. The resulting point cloud
can serve as an incomplete point cloud, where the sampled
pose is the corresponding pose. Note that, in our dataset,
there is only one incomplete point cloud per the complete
point cloud. It means that any complete point cloud cannot
be observed from more than one view. More details about
the proposed dataset can be found in the Supp. Material.

4.2. Comparisons with Other Methods

In order to evaluate the effectiveness of the proposed
method, we conduct a comparison with existing methods
(Cycle. [36] and Shapelnv. [45]), which access a set of
complete point clouds during training. To ensure a fair com-
parison, we trained and evaluated all methods on the pro-
posed dataset, using official codes provided by the authors.
We evaluate and compare our method with and without us-
ing Re-Training (RT) strategy.

Quantitative Results We use Chamfer Distance and F1-
score to evaluate the performance of point cloud comple-
tion. As shown in Table I, we evaluate seven categories.
Overall, the re-training process improve the performance
in most categories, indicating its effectiveness in enhancing
the results. Compared to Shapelnv., our proposed method
has a lower average Chamfer Distance and a slightly lower
Fl1-score of 1.19. Interestingly, our results outperform Cy-
cle. for all metrics. In other words, our results outperform
or achieve comparable performance to existing studies de-
spite not using a complete point cloud.
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Figure 7. Visualization of pose-aware incomplete point clouds. The cuboids in the top part indicate the volumetric shape features viewed
from an arbitrary pose, highlighted in red. The right side of the figure shows the input and ground truth complete point clouds. Two
scenarios are considered for generating incomplete point clouds: one that uses only the L. loss term, and the other with the full loss term.
We also generate ground truth incomplete point clouds to evaluate how well the incomplete point clouds are generated.

Qualitative Results We qualitatively compare the point
cloud completion results on our dataset. Figure 6 shows
complete point cloud results from existing methods, Cy-
cle., Shapelnv., ours, and ours with re-training technique.
Compared to the results of the existing methods, the results
support that our method successfully completes the parts
that were originally invisible at the input point cloud. Also,
we find that the conventional methods fail to restore cer-
tain details that are present in the input point cloud. For
instance, as shown in the dashed boxes, some fine details
such as the exhaust port of the airplane or the armrest parts
of the chair are not completely generated, even though they
are present in the input point cloud. However, our method
can reconstruct them sharply, resulting in a more accurate
and realistic airplane model. To sum up, both the quantita-
tive and qualitative results support that the proposed method
can achieve substantial completion results, considering that
GT complete point cloud is not used at all.

4.3. Ablation Studies

Effectiveness of Each Loss Term We conduct the ablation
studies to verify the effectiveness of each term in Eq. 5. As
shown in Table 2, we use Chamfer Distance and F1-score
as a metric in several categories. The case with only recon-
struction loss is used as the baseline. As shown in first row
and second row, Chamfer Distance decreases 1.01 CD and
F1-score increases 1.30 in average after adding shape loss.
We can see that there are performance improvements in ev-
ery category. As shown in first row and third row, Cham-
fer Distance decreases 1.55 CD and F1-score increases 1.75
after adding cycle loss. Also, there are performance im-
provements in every categories. As shown in last row, it

Table 2. Ablation studies on the proposed dataset. The numbers
shown are [CD | / F1 1], where CD is Chamfer Distance scaled
with x10%. Best results are indicated as bold.

Lrec Lshape Leyele || Airplane  Cabinet Sofa | Average
v 5.63/94.11 17.66/73.41 19.97/72.47|14.42/79.99
v 5.58/94.29 15.86/76.39 18.80/73.19|13.41/81.29

v
v v [[5.08/94.95 15.47/76.38 18.08/73.89|12.87/81.74
v v

v 4.84/95.13 14.90/88.01 17.50/74.62 | 12.42/82.69

shows best performance in both Chamfer Distance and F1-
score with all constraints. From these results, proposed con-
straints are all effective in point cloud completion.
Effectiveness of Number of Poses We examine the effect
of the number of input poses on the quality of the complete
point cloud generated from our method without re-training.
Intuitively, if we use more poses, the generated point clouds
that are aware of the input poses and incomplete could cover
a wider range of partial views, and thereby complete point
cloud would be better. We conduct an experiment with 2, 4,
8, 10, and 14 poses for some categories, where the configu-
rations of 2, 4, and 8 poses are shown in Fig. 8. For a config-
uration of 10 poses, upward and downward poses are added
to the 8 poses. Likewise, additional 4 sideward poses are
incorporated into the case of 10 poses for the configuration
of 14 poses. Fig. 9 shows how the completion performance
changes depending on the number of poses used. As we ex-
pected, Chamfer Distance decreases meaningfully as more
poses are used until 8 poses. However, the performance be-
comes saturated as we increase the number of poses to 10
and 14. Therefore, we use 8 poses for our default setting.

4.4. Additional Experiments

Results of Pose-Aware Incomplete Point Cloud Since our
main idea is generating and integrating the multiple incom-
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Figure 8. Illustration of pose configurations, which are used to ver-
ify the effectiveness of the number of poses. The black dots repre-
sent the location of the poses.
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Figure 9. Impact of the number of poses on performance. CD is
Chamfer Distance scaled with x 10%.

plete point clouds corresponding to the given poses, we
qualitatively verify whether our network can generate high-
quality incomplete point clouds that correspond to the de-
sired poses. Figure 7 shows incomplete point clouds gen-
erated from our method. The top row of the figure indi-
cates the various poses we used, and the right side shows
the input incomplete input point cloud and the GT complete
point cloud. According to them, we generate incomplete
point clouds using the models, which are (1) trained with
reconstruction loss only and (2) trained with all loss terms.
We also provide the GT incomplete point clouds obtained
by applying hidden point removal [18] on the GT complete
point cloud. When using only £,..., we can observe that the
generated incomplete point clouds do not reflect the given
poses correctly, and also fail to preserve fine details overall.
On the other hand, we can see that incomplete point clouds
obtained by the proposed method are well-corresponded to
their respective poses appearing as if they had been cap-
tured from those viewpoints. Notably, the fine details (e.g.,
exhaust ports on the wings) are well-completed for all in-
complete point clouds, indicating that the network could ef-
fectively capture detailed shapes from the input point cloud
across various poses. The results support that our frame-
work correctly learns to generate incomplete point clouds
according to the given poses, and achieve substantial com-
pletion results in the ultimate.

Using Noisy Poses In the real scenario, there can be a noise
in the poses corresponding to the obtained incomplete point
cloud. Therefore, we conduct an experiment to verify the
sensitivity of the proposed method against the noise in the
poses that we used for training. We observe that our method
is robust to the noise in poses to some extent. We conduct
an experiment by introducing Gaussian noise to the given
poses. Specifically, we add a noise sampled from normal
distribution to the given pose o; = (¢, ). The resulting
noisy pose, denoted as @y,pise and @445, 18 defined as fol-

Table 3. Effect of noise in pose. The numbers shown are [CD |
/ F1 1], where CD is Chamfer Distance scaled with x10%. Best
results are indicated as bold.

o | Airplane Cabinet Sofa | Average
0.1 [4.94/95.22 16.79/75.05 19.79/72.08 | 13.84/80.79
0.03 | 4.89/95.23 15.44/77.42 18.07/73.38 | 12.80/82.01

0 |4.84/95.13 14.90/78.31 17.50/74.62 | 12.42/82.69

Input 0.1 0.03 0 GT

Cabinet Airplane

Sofa

Figure 10. Qualitative results with noisy poses. 0.1, 0.03, and 0
are value of o in Eq. 6, 7.

lows:

¢noise = (b + O'N((), 1) x 180° (6)
Onoise =0+ o N(0,1) x 180°. (7)

Here, N (0, 1) is a normal distribution with mean 0 and vari-
ance 1. We train and evaluate the model by varying the
value of 0. We set the o as 0.03 and 0.1. For these val-
ues, the errors in the pose are mostly within 11° and 36°,
respectively. Table 3 demonstrates the impact of the noise
on pose information. A value of ¢ = 0 means that there is
no noise in the pose, which is the default setting provided
in the main paper. As noise increases, the average perfor-
mance decreases compared to the case without any noise.
The average Chamfer distance increases by 1.42 CD, and
Fl-score decreases by 1.90 compared to the case without
noise. It should be noted that the effect of noise on perfor-
mance is not significant. Figure 10 shows the qualitative
results when adding noise to the pose. Although the pose
is perturbed, the generated complete point clouds remain
similar to the case without any noise. From these results,
we can conclude that errors in pose have a limited effect on
performance.

Completing the Real Incomplete Point Clouds To assess
the scalability of our method, we conduct an experiment
using the real dataset. We train and test our framework
on the point cloud data in KITTI [10] and nuScenes [!],
using the provided bounding boxes to calculate the rela-
tive pose. Since the real dataset does not include incom-
plete point clouds observed from upward or downward di-
rections, we enforce a constraint to ensure that the sampled
poses fall within a range of the poses of the incomplete point



Table 4. Quantitative comparison on KITTI dataset [10]. Mini-
mum Matching Distance (MMD, |) and Unidirectional Chamfer
Distance (UCD, | ) are scaled with x 10® and x10%, respectively.

| Cycle. [36] Shapelnv. [45] Ours
MMD 32.2 1.6 2.4
UCD 12.76 3.61 1.47
nuScenes - Car

KITTI - Car

KITTI - Van

Figure 11. Completion results of Real dataset. (A: Real incomplete
point cloud, B: Our result)

clouds. Table 4 compares the quantitative performance
of Cycle.[36] and Shapelnv.[45] using Minimum Match-
ing Distance (MMD) and Unidirectional Chamfer Distance
(UCD). To calculate MMD, we use complete point clouds
in ShapeNet [5]. MMD evaluates the quality of the result in
terms of how realistically the point cloud is generated, and
Shapelnv. shows the best performance in this regard. How-
ever, our approach also shows comparable performance.
Additionally, our approach outperforms the others on the
UCD metric, which evaluates how well the generated point
cloud reflects the input shape. We show the qualitative re-
sults in Fig. 11. In each section, the left side displays in-
put incomplete point clouds, while the right side showcases
predicted complete point clouds. Our network successfully
generates the complete shape of cars and vans, even when
the input point clouds are severely sparse. We can also ob-
serve that the obtained complete point clouds well-reflect
the detailed shapes. These results demonstrate the potential
practicality of our method for real-world applications.

5. Conclusion

In this paper, we propose a novel method for point cloud
completion that does not require any complete point clouds.
The proposed method generates multiple incomplete point
clouds corresponding to various poses and integrates them
to obtain the complete point cloud. Our method employs
an encoder-decoder framework where the encoder extracts
a volumetric shape feature from the input incomplete point
cloud, and the decoder generates pose-aware incomplete
point clouds. To train the model, we introduce a novel
dataset with incomplete point clouds and corresponding
poses. The proposed method achieves comparable results
with the existing state-of-the-art methods and outperforms
some categories. Additionally, we demonstrate that the
method can be applied to real incomplete point clouds. In
future work, we plan to use a neural implicit representa-
tion for the shape feature instead of the volumetric feature,
which can achieve better 3D representation capability. In
addition, we will further enhance the projection method us-
ing a visibility check with learnable opacity.
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